
Typographic characters are carefully
designed shapes incorporating type-

design tradition,1 the rules related to visual appearance,
and the design ideas of a skilled character designer.2

The typographic design process is structured and sys-
tematic: letterforms are visually related in weight, con-
trast, space, alignment, and style. To create a new

typeface family, type designers gen-
erally start by designing a few key
characters—such as o, h, p, and v—
incorporating the most important
structure elements such as vertical
stems, round parts, diagonal bars,
arches, and serifs (see Figure 1).
They can then use the design fea-
tures embedded into these struc-
ture elements (stem width,
behavior of curved parts, contrast
between thick and thin shape parts,
and so on) to design the font’s
remaining characters.3

Today’s industrial font description
standards such as Adobe Type 1 or
TrueType represent typographic
characters by their shape outlines,
because of the simplicity of digitiz-
ing the contours of well-designed,
large-size master characters.4 How-
ever, outline characters only implic-
itly incorporate the designer’s

intentions. Because their structure elements aren’t
explicit, creating aesthetically appealing derived designs
requiring coherent changes in character width, weight
(boldness), and contrast is difficult. Outline characters
aren’t suitable for optical scaling, which requires rela-
tively fatter letter shapes at small sizes.5 Existing
approaches for creating derived designs from outline
fonts require either specifying constraints to maintain
the coherence of structure elements across different
characters6,7 or creating multiple master designs for the
interpolation of derived designs.8

We present a new approach for describing and syn-
thesizing typographic character shapes. Instead of
describing characters by their outlines, we conceive each
character as an assembly of structure elements (stems,
bars, serifs, round parts, and arches) implemented by
one or several shape components. We define the shape
components by typeface-category-dependent global
parameters such as the serif and junction types, by glob-
al font-dependent metrics such as the location of refer-
ence lines and the width of stems and curved parts, and
by group and local parameters. (See the sidebar “Previ-
ous Work” for background information on the field of
parameterizable fonts.)

Conceptual model and terminology
To provide highly flexible parameterizable fonts, we

first describe a conceptual model for typographic char-
acters based on shape components. A character’s basic
structure is font independent. Basic characters are made

0272-1716/01/$10.00 © 2001 IEEE

Rendering

70 May/June 2001, IEEE CG&A, Vol. 21, No. 3, 70-85

We propose a new, highly

flexible font description

method that explicitly

describes characters as

assemblies of parameter-

izable shape components.

By varying global

parameters, we can derive

fonts that vary in weight,

condensation, and shape.

Changyuan Hu and Roger D. Hersch
Ecole Polytechnique Fédérale de Lausanne,
Switzerland

Parameterizable
Fonts Based on
Shape Components

Optical
correction

Arch

Round
part

Ascender
stem

Round
part

Diagonal
bar

Narrow
diagonal
bar

Descender
stem

Ascender
line

x-height
line

Base
line

Descender
line

Top
serif

1 Character
structure ele-
ments incorpo-
rated into key
typographic
characters.

of stem, bar, sweep, half-loop, serif, and terminal com-
ponents. Figure 2 shows the set of components and their
interconnections for the characters h and b.

By specifying the junction between components (for
example, the junction between a stem and a sweep) and
by associating absolute and relative metrics to the set of

IEEE Computer Graphics and Applications 71

The earliest work known to describe typographic
characters by parameterizable shape primitives is that of
Philippe Coueignoux, who designed one of the first fully
digital typesetter controllers.1

The most serious published work done in the field of
parameterizable fonts is the Metafont system, a program-
mable parameterizable font synthesizing system.2 The
Metafont system relies on a few basic paradigms for
generating characters and symbols. The main character
parts such as horizontal, vertical, and diagonal strokes and
round parts are specified by describing the path of a pen
with given orientations and pen widths. A sequence of pen
positions and directions describes the pen’s central path.
From this information, Metafont computes a smooth
centerline pen trajectory. With the given pen positions,
widths, and orientations and with the centerline trajectory,
Metafont infers the description of the corresponding pen
stroke’s boundary.3 It adjusts serifs with font-dependent serif
width, height, and depth information to the computed
stroke boundary. The shape boundary resulting from the
assembly of serifs and stroke can either be directly filled or
traced by a small, circular pen and then filled. In addition to
strokes defined by pen trajectories, Metafont specifies
round character parts covering one or a multiple quadrants
by superarcs, that is, scaled arcs defined within single
quadrants without outlines whose boundaries are given by
superellipses.2

Donald Knuth used the Metafont program to create his
Computer Modern typeface family.4 He parameterized the
Computer Modern typefaces so as to automatically
generate optically scaled fonts and to generate sans-serif,
typewriter, semibold, bold, condensed, and slanted roman
fonts by a simple change of parameterizations. Metafont
uses separate character shape descriptions for the italic font.
Since Metafont is both a complete programming language
and a flexible font design tool, using it requires both
programming and typographic skills. Only a few individuals
use Metafont, often for designing non-Latin characters.5,6

One of the lessons learned by Metafont users designing
Latin characters is that Metafont’s pen paradigm doesn’t
offer sufficient freedom to exactly generate character
shapes according to the designer’s intention. This explains
why most Metafont designs for Latin fonts besides
Computer Modern rely heavily on outline descriptions.7

The recent Infinifont system (US Patent 5,586,241)8 is a
feature-based parameterizable font description and
reconstruction system. Its authors describe the basic
mechanism to assemble a character such as character E
from parameterizable vertical bars, horizontal bars, and
serifs. However, most of their work isn’t published, so we
don’t know how they synthesize different typeface
categories and which paradigms they use for synthesizing
curved character shapes and serif variants.

Schneider describes a method for assembling parameter-
izable pen-based strokes into typographic characters.9

Regarding Latin character shapes, the method suffers from
the same limitations as Metafont. It seems, however, well
suited for synthesizing Asian characters (such as Kanji and
Hangul).

References
1. Ph. Coueignoux, “Character Generation by Computer”, Com-

puter Graphics and Image Processing, vol. 16, 1981, pp. 240-269.
2. D. Knuth, The Metafont Book, Addison-Wesley, Reading, Mass.,

1986.
3. J.D. Hobby, “Rasterizing Curves of Constant Width,” J. ACM, vol.

36, no. 2, Apr. 1989, pp. 209-229.
4. D. Knuth, Computer Modern Typefaces (Volume E of Computers

and Typesetting), Addison-Wesley, Reading, Mass., 1986.
5. Y. Haralambous, “Typesetting Khmer,” Electronic Publishing: Origi-

nation, Dissemination, and Design, vol. 7, no. 4, 1994, pp. 197-215.
6. R. Southall, “Metafont in the Rockies: the Colorado Typemaking

Project,” Electronic Publishing, Artistic Imaging, and Digital Typog-

raphy, R.D. Hersch, J. André, and H. Brown, eds., LNCS 1375,
Springer-Verlag, 1998, pp. 167-180.

7. N. Billawala, “Pandora, An Experience with Metafont,” Raster

Imaging and Digital Typography, J. André and R.D. Hersch, eds.,
Cambridge Univ. Press, Cambridge, Mass., 1989, pp. 34-53.

8. C.D. McQueen and R.G. Beausoleil, “Infinifont, A Parametric Font
Generation System,” Electronic Publishing: Origination, Dissemi-

nation, and Design, vol. 6, no. 3, Sept. 1993, pp. 117-132.
9. U. Schneider, “An Object-Oriented Model for the Hierarchical

Composition of Letterforms in Computer-Aided Typeface
Design,” Electronic Publishing, Artistic Imaging and Digital Typog-

raphy, R.D. Hersch, J. André, and H. Brown, eds., LNCS 1375,
Springer-Verlag, New York, 1998, pp. 109-125.

Previous Work

Stem
connecting

arch

Top
serif

Ascender
stem

Foot
serif

Foot
serif

Stem

Top
serif

Ascender
stem

Spur

Round
part

Structure
elements:

Components and
interconnections:

Structure
elements:

Components and
interconnections:

(a) (b)

Top
serif

Ascender
stem

Foot
serif

Foot
serif

Stem

Top
serif

Ascender
stem

Spur

Half
loop

Sweep Sweep

Sweep

Sweep

2 Component-
based font-
independent
character
models.

available parameters, we can fully specify character
instances. We associate a software object with each
character. A software object incorporates different char-
acter-synthesis methods that can support the genera-
tion of characters of different typeface categories—that
is, of characters whose junctions between components
considerably vary. We use global parameters to specify
junction types, serif and terminal types, reference line
positions, bar and stem widths, and serif and terminal
metrics. Group parameters define the metrics associat-
ed with a group of related characters—for example, the
junction depth in the characters b, d, p, and q. Local
parameters are parameters describing features specific
to a single character. For each font, an external file
describes its global parameters (see Figure 3), its group
parameters, and the local parameters associated to each
character. We express local and group parameters as
percentages of global parameters.

Typeface categories relate to character structure. Type-
faces with strongly different structures—for example,
different component junctions, different serif types, and

possibly different character round-part parameters (such
as squareness and obliqueness)—belong to different
typeface categories. Strongly modifying a feature relat-
ed to a typeface category changes the character struc-
ture, or earmark.9 Modifying global width metrics
changes relative weight, contrast, and certain character
features (such as junctions, serifs, and terminals) with-
out changing the basic character structure. Therefore,
at the conceptual level, we propose two levels of design
spaces: one at the structural level (typeface category)
and one at the metric, boldness, and contrast level.

Regarding the terminology we use, structure element
refers to typographic structures, and shape component
(or component) refers to a set of well-defined parame-
terizable geometric shapes. Metrics generally refers to
relative sizes and distances.

The basic shape components we use to implement
structure elements are vertical, horizontal, and diag-
onal bars; the half-loop component used for round
parts covering two quadrants; and the sweep compo-
nent for connecting between two stems (see Figure 4a)
and between a half-loop and a stem (see Figure 4b).
We also use the sweep component to synthesize spe-
cific curved parts of the characters a, g, and s. We use
serifs and ellipse-like components to synthesize ter-
minal elements.

We can’t synthesize some characters by simply
assembling shape components such as bars, round
parts, and ellipse-like terminal elements. Therefore,
we introduce boundary correction curves, generally in
the form of cubic Bezier spline curves, to produce the
desired character outline shape (see Figure 5a) or to
smooth out the junction between two shape primitives
(see Figures 5b and 5c).

Rendering

72 May/June 2001

Foot
serif

height
Foot
serif

width

Diagonal
serif

width
(inner)

Stem
width

Slant serif
slope

Horizonal curve
width

Vertical
curve
width

Narrow horizonal
curve width

Narrow diagonal
stem width

Diagonal stem
width

Diagonal
serif
width
(outer)

Ascender line

x-height line

Base line

Top serif:

3 Global font
parameters.

Verical
bar

Serif

Sweep
Sweep Top

sweep

Bottom sweep

Half
loop

(a) (b)

Vertical
bar

Vertical
bar

4 Description of
the specific
features of the
Times charac-
ters h (a) and
b (b).

(b)(a) (c)

5 Application of
boundary cor-
rection curves
for synthesizing
the Times char-
acters t (a), a
(b), and f (c).

A further operator necessary for
assembling character shape compo-
nents into characters is the cut oper-
ator. It enables cutting a component
into two parts and keeping one of
the two parts for assembling the
final character. The cutline orienta-
tion specifies the part we’ll keep (see
Figure 6a).

Describing characters by
structure elements

Traditional Latin letter shapes that
derive from Antiqua and Grotesque
(sans serif) typefaces1 can be decomposed into basic
structure elements: vertical stems, round parts (also
called curved shape parts or bowls), arches, horizontal
bars, diagonal bars, serifs, and terminals (see Figure 1).
Conversely, we aim to synthesize traditional letter shapes
by coherently assembling such basic structure elements.

The challenge lies in defining parameterizable geo-
metric shapes (components) with which we can syn-
thesize most instances of structure elements. We
propose both components for structure elements rep-
resenting straight strokes such as stems, horizontal bars,
and diagonal bars and components for curved structure
elements such as round parts and arches. We use simi-
lar components to describe serifs and terminals. To sup-
port different typeface categories, we also propose a set
of standard parameterizable junctions between shape
components.

Parameterizable components for straight
structure elements

We describe vertical stems, horizontal bars, and diag-
onal bars with one point located on their centerline,
their orientation, and their respective width, which is a
global font parameter. Vertical stems and diagonal bars
are bounded by their respective reference lines (base-
line, x-height line, descender line, ascender line, or caps-
line). The length of horizontal bars, which are generally
defined as local parameters (for example, in the char-
acters f and z) can be given as percentages of other pre-
defined parameters such as serif width or letter width
(see Figure 7a). Stem, horizontal bar, diagonal bar (see
Figure 7b), and curved element width are important
global parameters that we use to synthesize fonts of vari-
able weight, contrast, and condensation.

Parameterizable shape primitives for round
structure elements

Round structure elements are difficult to synthesize.
Both external and internal boundaries need to be gen-
erated to obtain the desired round-shape part. Let’s first
see how we can synthesize round-shape parts, or loops,
covering one or several quarters of an arc. Such loops,
for example, appear in the lower-case characters o, c, e,
g, b, d, p, and q. The definition of loops must be flexible
enough to synthesize quite different shapes, such as the
round parts of the characters e, o, and b for different
typeface families (such as Times and Bodoni).

Modeling quadrant arcs. To synthesize loops,
let’s analyze the flexibility offered by cubic Bezier splines
with control polygon given by vertices B0B1B2B3 for gen-
erating quadrant arcs—that is, curves that have a hori-
zontal and a vertical tangent at their endpoints. We
define by parameters β1=—B0

—B1/—B0
—A and β2=—B3

—B2 /—B3
—A

the relative positions of the Bezier polygon control points
B1 and B2 (Figure 8a, next page). By varying parameters
β1 and β2, we can obtain families of curves whose apex—
the point with tangent parallel to baseline B0B3—lies
within circumscribed triangle B0AB3. Since curvature
conveys the visual information associated with a given
arc, Figure 8b gives curvatures corresponding to the plot-
ted Bezier splines. Experience shows that curves having
a high curvature at their end points and low curvature
at their central part (for example, curves with β < 0.4)
aren’t visually pleasant.

We analyzed the Bezier splines (quadrant arcs) defin-
ing the external and internal contours of the character
o in various font families. In most cases, β1 and β2 values
are similar, and we can therefore merge them into a sin-

IEEE Computer Graphics and Applications 73

Contour before cutting:

Contour after cutting:

Cutting edge

Cutline

stst

sw

st

sw

l

Cut (st, l), where
cutting line l is
derived from
sweep sw

Before cutting: After cutting:

(a) (b)

Cutting edge orientation and
contour orientation are coherent

6 (a) Definition and (b) use of the
cut operator. Figure 6b uses a cut-
line to synthesize character f start-
ing with a vertical bar and a top
round part made of two sweeps
and an ellipse-like terminal.

Narrow diagonal
bar width

Diagonal
bar width

Horizontal
bar width

Vertical
stem width

100% of
serif width

142% of
serif width

Serif
width

(a) (b)

7 Characters
incorporating
vertical stems,
horizontal, and
diagonal bars.

gle β value expressing an arc’s squareness. Even in the
case of widely different β1 and β2 values, we can com-
pute an intermediate common β value by minimizing a
function giving the difference between the original Bezi-
er spline and its approximation with a single β1 = β2 =
β value. We minimize the sum of the squares of the dis-
tances between points of the new Bezier spline Bnew(u)
at parameter values u = {0.1, 0.2, 0.3, 0.4, 0.45, 0.5,
0.55, 0.6, 0.7, 0.8, 0.9} and the original spline B(t) to
obtain good visual results.

We have computed the single beta values for the
external and internal contours of character o, for many
different typefaces.10 The distance between the original
contour and the contour synthesized with single beta
values is negligible (less than 1/1000 of the capital let-
ter height).

Modeling loops. A loop is a curved character-shape
part covering a single or several quadrants. For example,
we can model the Helvetica character o with a single loop
covering four quadrants, the exterior, and respective
interior contours defined by four connected quadrant
arcs having a common center (see Figure 9a). The Times
character o, however, is more complex. Although we can
model its exterior contour—which looks like an upright
ellipse—in the same manner as the Helvetica character
o’s contours, its interior contour looks like an ellipse with
an oblique orientation and would require circumscribed
quadrants with four different centers to describe it by
quadrant arcs (see Figure 9b).

A simpler way to model oblique ellipse-like contours

is by computing their bounding box. The bounding box
center represents the center of symmetry of the pseu-
doellipse. We can show10 that, within a single quadrant,
the line VH connecting the horizontal and vertical tan-
gential points is parallel to the line connecting points
A=(±p,0)and B = (0, ±q) of the ellipse’s bounding-box
(see Figure 9c). Therefore, only a single obliqueness
parameter η = ∆p/p = ∆q/q giving the relative offset of
the horizontal and vertical tangential points is neces-
sary to define the four quadrant arcs making up an
oblique ellipse-like contour.

We model a full loop with exterior and interior ellipse-
like contours having upright or oblique orientations.
Such a full loop has a single center, which is the center
of symmetry of both the exterior and the interior ellipse-
like contours. However, half-loops used for synthesiz-
ing the round parts of the characters b, d, p, and q may
have disjoint centers, one for the external contour and
one for the internal contour.

The characterization of loops by two parameters, β
for the squareness and η for the obliqueness of interior
and exterior arcs, offers great design freedom for creat-
ing full or partial loops. It also maintains the coherence
across characters incorporating full loops (o), half-loops
(c, b, d, p, or q), and quarter-loops (e).

Modeling sweeps. We can use loops to render the
round parts in the letters b, d, p, and q. When looking
at one of these characters, we can see that the curved
part connecting the loop to the bar shows a particular
behavior. Its parameters aren’t directly related to the

Rendering

74 May/June 2001

0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
B0

B0

B3B2

B1

B3
A

A

C
ur

va
tu

re

B1 = β1 A + (1 − β1) B0
B2 = β2 A + (1 − β2) B3
β = β1 = β2

β = 0.3
β = 0.7

β = 0.3

β = 0.5β = 0.7

β = 1

β = 0.1

β = 0.1

β = 1

β1 = 0.25
β2 = 0.9

t = 0

t = 1

Parameter t
(a) (b)

8 (a) Family of
cubic Bezier
splines covering
a quarter of an
arc and (b) their
respective
curvatures,
obtained by
varying parame-
ters β1 and β2.

OA

B

p

q
l1

l2

∆p

∆q

η = — = —
∆p
p

∆q
q

V

H

(a) (b) (c)

9 Quadrant arcs
describing the
(a) Helvetica
and (b) Times
character o, (c)
modeled by
their bounding-
box and by their
obliqueness η.

loop’s parameters. Similarly, the arches of the charac-
ters h, n, m, and u aren’t parts of loops. They’re curved
character parts connecting two vertical stems and there-
fore need their own shape description.

To support connecting elements made of curved
parts, we introduce the sweep-shape primitive. Tradi-
tionally, sweeps were defined by a pen of a given shape
and orientation sweeping along a centerline described
by a Bezier spline.12,11 Pen width and orientation are
often given at sweep departure and arrival points and
may be interpolated according to the centerline position
parameter t. According to our observations, the sweep-
ing pen paradigm isn’t always suitable for generating
Latin typographic characters. Especially if the sweep
incorporates a long, flat part and strongly varying pen
diameters at sweep departure and arrival positions, the
resulting sweep (see Figure 10b) considerably diverges
from an ideal sweep (see Figure 10a).

We can obtain a higher quality sweep primitive by
generating for the left and right sweep boundaries Bezi-
er splines that strongly resemble the centerline Bezier
spline (see Figure 10c). We can achieve this by enforc-
ing the same tangent directions at endpoints as the tan-

gent directions of the centerline spline and by using the
same β1 and β2 values. The generated control polygons
for the left and right boundaries differ from one anoth-
er by the size relationships of their respective B0A and
AB3 control triangle sides. We can easily obtain elon-
gated sweeps by using different β1 and β2 values for the
centerline Bezier control polygon.

The sweep component is useful for establishing the
connections between a loop and a vertical stem and
between two vertical stems. We also use it to create
curved parts such as the tail of the character g and the
round parts of the characters a, which we can’t model
with quadrant loops.

Parameterizable terminal elements
The shape of terminal elements such as serifs, bulbs

(see Figure 5b and 5c), and ears (top right part of the
character g) greatly determines a typeface’s look. Ter-
minal elements at the end of straight stems and bars are
standard serifs, such as foot, top, bar, and diagonal ser-
ifs. They’re composed of predefined elements whose
main metrics are given by global parameter values (see
Figure 11). To accommodate the large variety of serif

IEEE Computer Graphics and Applications 75

(a) (b) (c)

In
te

rp
ol

at
ed

by
pen

orientations
10 The sweep component. (a)
Original sweep extracted from the
Times character, (b) sweep synthe-
sized by linear interpolation
between sweeping pen departure
and arrival orientations, and (c)
improved sweep obtained by syn-
thesizing its boundary control
polygons.

Foot serif
width left

Foot serif
width right

Foot
serif

height

Foot
serif

depth

Vertical
stem

Base
line

Bar serif
width
top

Bar serif
width
bottom

Bar serif
height

Bar
serif depth

Horizontal
bar

Diagonal
serif width

(outer)

Diagonal
serif width

(inner)

Vertical
serif
height

Diagonal
serif

depth
(outer)

Diagonal
stem

Base
line

Diagonal
serif
depth
(inner)

Connecting
curve

(a)

(c)(b)

11 Foot (a), bar
(b), and diago-
nal (c) serifs and
their basic
parameters.

types,9 we introduce variations in bracket styles, serif
end styles and serif faces.

We can explicitly define terminals located at the end
of curved strokes with a set of specific shape primitives
that can comprise pears (ellipse-like elements) and
small bars, as well as boundary-correction curves.

Serifs
Serifs are the most important terminal elements.

Researchers have extensively described the foot and bar
serifs (see Figures 11a and 11b) in the literature.4,7,13 Half-
serifs on each side of a stem or a bar are defined by three
basic parameters: the serif width, the serif height, and
the serif depth. In addition, serifs are characterized by
their brackets—that is, by the way the serif slab is con-
nected to the main stem or bar and by the serif ends (see
Figure 12). The serif face can also vary (see Figure 13).

Thanks to the basic serif parameters, the variations
in brackets, serif ends, and the serif face, most of the
serif styles that Rockledge and Perfect9 and Bauermeis-
ter14 describe can be synthesized. If required, we can

incorporate additional variations in serif ends and faces
into the serif component model.

The slant serif is designed mainly for top serifs. We
can also use it to synthesize the shape of beaks and tips
as in the characters z and T (see Figure 14b).

We can describe a slant serif (see Figure 14a) by the
intersection of its stem and of a small diagonal bar,
called a slab, with orientation θ, by a certain amount
of optical correction, by the curve connecting the stem
to the slab (curve1), and by the equivalent of the serif
face—that is, a curve connecting the slab end to the
optical correction point (curve2). In the case of the
Times character u, the slab is horizontal and doesn’t
require optical correction.

We can also apply the design variations we know from
the foot and bar serifs—variations in stem to slab con-
nection, variations in serif ends and variations in serif
face (curve2) to slant serifs.

Terminal elements and dots
For serif typefaces, terminals of curved strokes such

Rendering

76 May/June 2001

sd

sw

(a)

θ

sd

sw

(b)

sd

sw

(c)

sw

(d) Rounded end extension

(e)

(f)

12 Variations in
serif brackets:
(a) smoothed,
(b) angled,
(c) straight, and
(d) none, and
serif ends:
(e) butt and
(f) rounded.

Concavity
depth

Concavity
depth

With
angle

Without
angle

Without
angle

(b) Directly concave(a) Flat serif face (c) Smoothly concave

13 Variations of
the serif face

θ

Optical
correctionSerif

width

Serif
height

curve2

curve1

Serif
depth

(a) (b)

l i j k h b
d m u z q
T Z E F

Top
serif

Beak
Beak

Tip

Top
serif

Tail

14 (a) Descrip-
tion and
(b) occurrences
of slant serifs.

as bowls, arches, and tails often incorporate pears and
small bars (see Figure 15a).

Times characters such as a, f, j, and r have bulbs that
are oblique, ellipse-like terminal elements at the end of
their round strokes. We can obtain these terminal ele-
ments by rotating pseudoellipses made up of quadrant
Bezier arcs and by smoothing out the junctions between
ellipse-like terminal elements and associated sweeps.
Figures 5b, 5c, and 15b show terminal elements made
up of sweeps, pseudoellipses, and boundary-correction
curves.

The junctions between ellipse-like terminal ele-
ments and associated sweeps are smoothed out by a
boundary-correcting curve whose departure and
arrival tangents are also tangents of the two inter-
secting outline segments (see Figure 15b). We give the
length of each of the correcting curve Bezier-control-
polygon segments B0B1 and B2B3 as a percentage of a
global parameter.

Sans-serif typefaces don’t generally incorporate any
decoration at the end of curved strokes. Their curved
strokes are terminated abruptly, leaving the end squared
or pointed. An angle θ might define the orientation of
the terminal’s end segment (see Figure 15a).

We can also model the dots on top of the characters i
and j as ellipse-like elements with appropriate β values
defining their squareness.

Junctions between character
components

We aim to synthesize traditional Latin characters
using bar components for straight structure elements
and loop and sweep components for round structure
elements. The way components are interconnected
greatly influences a typeface’s design. We first define
features enabling design variations for the junctions
between round parts and stems (vertical bars). Then,

we introduce the parameters and geometric construc-
tions enabling the synthesis of design variations for
junctions between diagonal bars and other bars.

Junctions between vertical stems and sweeps
The junctions between vertical stems and sweeps

define the interconnection between straight- and round-
character structure elements. Generally, junctions are
either angled or smooth. Figure 16 shows angled and
smooth junctions for the characters h and b. The junc-
tions in the character h are representative of the junc-
tions in the characters n, m, and u. The angled and
smooth junctions in the character b are representative
of the junctions in the characters p, q, and d.

The sweep at the junction between straight and round-
character structure elements determines the junction’s
visual appearance. Besides being smooth or angled, the
junction depth parameter defines, as a proportion of the
character height, the vertical distance between the cor-
responding horizontal reference line and the junction.
The location of the control triangle’s vertex A of the
sweep’s centerline Bezier spline also defines the sweep’s
shape. As Figure 17a shows, we give vertex A’s horizon-
tal position as a percentage of the horizontal distance
between centerline Bezier start and end points.

The control triangle vertex A’s junction depth and rel-
ative position define the connecting sweep’s shape. By
considering the control triangle vertex A’s junction depth
and relative position as group parameters (or as valid

IEEE Computer Graphics and Applications 77

Boundary
correcting

curve

B0
B1

B2 B3

(a) (b)

θ

θ

15 (a) Repre-
sentation of
curved stroke
terminals and
(b) junction
between ellipse-
like terminal
element and its
associated
sweep
component.

Times Geneva Times Bodoni

AngledSmooth

16 Junctions
between verti-
cal bar and
sweep

(a) (b)

A
x-height

Ju
nc

tio
n

de
pt

h

A

Ju
nc

tio
n

de
pt

h

Base

x-height

Baseh
17 Defining the shape of the con-
necting sweep by the junction
depth and the relative horizontal
position of centerline Bezier spline
control triangle vertex A.

Rendering

78 May/June 2001

Times Roman
angled junction

Corona
smooth junction,
thick serif slab

18 Synthesis of
coherent Times
and Corona
characters.

Times Flat
derived from
Times Roman,
angled junction

Times Round
derived from
Times Roman,
smooth junction

19 Coherent
shape modifica-
tions across a
group of char-
acters (Times).

s1 s1s2

l 1

l1

l 2

cut (s1, l 2)
cut (s2, l 1)

Miter limit

Cut (s1, l 1)
the position of
the cut line l1
is controlled
by the local
parameter miter
limit.

(a) (b)

20 Synthesiz-
ing bar junc-
tions of
characters v (a)
and z (b).

s2

s3

s1
s1

s2

s3

I1

I1 I1

I2

I2

I3

cut (s2, I1)
cut (s3, I2)

After cutting:Before cutting: After cutting:Before cutting:

s1

s2

s3

s1

s2

s3

cut (s2, I3)
cut (s3, I2)

s1

s2 s2́

s1

s2́

s2s2
s2́ = duplicate (s2)
cut (s2, I1)
cut (s2, I1́)
translate (s2́ , v).

v

After correction:Before correction: Correction:

(a) (b)

(c)

21 Bar intersec-
tions for the
characters k
and x.

parameters for the group of characters a, h, m, n, u, b, d,
p, and q), we can generate coherent character shape
modifications across these characters. Figure 18 shows
coherent Times Roman and Corona characters that were
resynthesized with components. Figure 19 shows coher-
ent variants of Times Roman, generated by modifying
the junction depth parameters. In the same way that
Times Roman and Corona belong to different typeface
categories, our experimental Times Flat and Times
Round also belong to different typeface categories. They
represent an attempt to explore a small part of the tra-
ditional typeface design space.

Junctions between diagonal bars and other bars
A bar is given by two points of its centerline and by its

width, which is generally a global parameter (such as
VerticalBarWidth, NarrowVerticalBarWidth, and so on).
To synthesize characters such as v and w, we must inter-
sect two diagonal bars and appropriately reshape them
with cutlines (see Figure 20a). To synthesize the char-
acter z, an additional relative parameter defines the
miter junction between the diagonal and the horizon-
tal bar (see Figure 20b).

Character k comprises either a single or a double junc-
tion between its vertical bar and its two diagonal bars.
As Figure 21a and 21b shows, we apply the cutline oper-
ator differently if a single or a double junction is present.

Character x consists of the intersection of two diago-
nal bars. Type creators15 know that we need an optical
correction: the departure of the lower part of the nar-
row diagonal is displaced horizontally to the left by 15
percent of its horizontal width (see Figure 21c).

Synthesis of characters with
parameterizable elements

The components we described in the previous sec-
tions are the basic building blocks for synthesizing char-
acters. To synthesize specific characters with completely
defined metrics and shapes, the character designer
needs to supply global, group, and local parameters.

For example, consider the character b (see Figure 2b).
A global lower-case stem width parameter defines the
ascender stem. Global parameters specifying the serif
type and the serif’s main metrics define the top serif,
and a local parameter defines the spur. The round part
comprises a half-loop component and two connecting

sweeps, defined by group and local parameters.
We’ll now describe how we synthesize characters

from their parameterized component description. The
font’s horizontal reference lines (baseline, x-height,
caps-height, ascender and descender lines, as well as
the corresponding optical correction lines) define exact-
ly the placement of the character’s components. The
character synthesizing method places the character’s
main parts (the stem and half-loop) horizontally apart
according to global spacing parameters. Secondary
parts such as serifs or connecting arches are placed so
as to correctly connect to the main parts.

The font creator defines global spacing parameters
for the standard round-letter width, for the horizontal
spacing between vertical stem and half-loop (the spac-
ing between the stem and round parts of character b),
and for the horizontal spacing of two vertical stems (see
Figure 22). These global spacing parameters are a pro-
portion of the standard round-letter width parameter.

Figure 23 (next page) illustrates how the character
synthesizing software computes the character b. We syn-
thesize its vertical bar using the standard stem width and
position it at an arbitrary horizontal position. The half-
loop’s center Oext is vertically in the middle of its respec-
tive reference lines (xheight_o and base_o). We compute
the vertical position of center Oint as a function of the ref-
erence lines and the respective horizontal curve part
widths (w2 and w3). The centers’ horizontal locations are
given by the vertical stem to half-loop spacing (dx) and
by group parameters p1 and p2 specifying their relative
horizontal positions between stem midline and half-loop
midline. The half-loop’s internal and external arcs are
defined by their center positions, bounding boxes,
obliqueness parameters ηint and ηext, and squareness
parameters βint and βext (according to global parameters).

After placing the half-loop component, we can place
the angled sweep components connecting the half-loop
component to the vertical bar. Their starting sweep posi-
tion and orientation are given by the half-loop compo-
nent’s extremities. The ending orientation of sweep C5

is vertical, and the junction depth group parameter p5

defines its position. The ending points of sweep C4 are
given by group parameters p3 and p4, (parameters valid
for the characters b, d, p, and q). Slant serif component
C2 is defined by the global parameters defining slant ser-
ifs and is inserted at the top of the vertical bar. Compo-

IEEE Computer Graphics and Applications 79

o n b m
dx_o =
standard round
letter width

dx_b =
standard stem to
round part spacing
(71% dx_o)

dx_n =
standard stem
to stem spacing
(60.5% dx_o)

dx_n dx_n

dx_m =
200% dx_n

22 Horizontal
spacing of
character struc-
ture elements
(values for
Times Roman).

nent C3 (spur) is described by a slant serif component
with zero width and zero height.

Font description parameters and
implementation issues

Flexible character shape descriptions, which we can
modify to create derived versions with varying width,
weight, and contrast, need to incorporate their most sig-
nificant features as percentages of modifiable global font
parameters. For example, the round-letter width (RLW)
defined as the horizontal width of the letter o is a glob-
al parameter used as a reference to describe the basic
spacing of stems and curved elements (half-loops) of all
lower-case characters of a font (see Figure 22).

The global width parameters specify the respective
thicknesses of vertical stems, horizontal bars, diagonal
bars, vertical curved parts, and horizontal curved parts.
We also use proportions of their width to describe the
starting and ending width of associated sweep primi-
tives—for example, width w4 of the sweep component
c5 in the letters b (see Figure 23) and n (see Figure 24b).
Since width parameters distinguish between the thick-

nesses of vertical, horizontal, and diagonal strokes as
well as between thin and thick strokes (Figure 7b), they
both govern a character’s weight and the amount of con-
trast incorporated into the font.

The global serif parameters govern the shapes of the
serifs by specifying the serif type given by the selected
variation in bracket, serif end, and serif face and by spec-
ifying their width, height, depth, and slant angle (see
Figures 12 through 14).

As further examples, let’s look at the definition of the
Times characters o and n in Figure 24. Character o does-
n’t need any local parameters. We can completely syn-
thesize it using global font parameter information.
Synthesizing the character n requires placing the first stem
at an arbitrary starting position and placing the second
stem according to the given stem-to-stem spacing value.
The serifs are defined according to global font parame-
ters. The two sweep components are defined by global and
group parameters. Figure 25 shows lower-case Times
Roman characters recreated with components. Figure 26
shows the components and resulting characters for a few
representative upper-case Times Roman characters.

Rendering

80 May/June 2001

x-height

Base

Round letter width

Optical
correction

Vertical
 curve
width

Vertical
 curve
width

Narrow
horizontal
curve
width

x-height

Base

Optical
correction

Serif
height

Serif
height

Serif
depth

Stem
width

Stem
width

Serif
width

Serif
width

58%
72%

72% 76%
Arch
depthJunction

width

Horizontal
curve
width

(a) (b)

Standard stem
to stem spacing

(60.5% RLW)

Narrow
horizontal
curve
width

24 Parameters
needed to
synthesize the
Times Roman
characters o (a)
and n (b).

c1

c2

c0

c4

c5

dx

Ascender

x-height

Base
w2

w0 w1

w3

w4

Ascender_o

x-height_o

Base_o

p1

Oext
Oint

p7

p5

p4
p3

p2

p6
c3θ

Components:
c0 : stem, c1 : half-loop covering quadrants IV, I
c2 : slant serif, c3 : spur (slant serif)
c4, c5 : connecting sweeps

Global parameters:
dx : standard vertical stem to half-loop spacing
w0 : the standard vertical stem width
w1 : the standard vertical curved part width
w2 : the standard narrow horizontal curved part width
w3 : the standard horizontal curved part width
w4 : width of the junction, often equal to w2
η1, η2: loop extreme corrections, external and internal

Group parameters (the group of b, d, p and q):
p1 : relative h-position of loop external center
p2 : relative h-position of loop internal center
p3, p4 : relative h-position of the lower junction (c4)
p5 : relative depth of the upper junction (c5)
p6 : relative control point position of the sweep c4
p7 : relative control point position of the sweep c5

Local parameter:
θ : spur angle

23 Synthesis of
the character b
with its parame-
terized
elements.

Component-based font descriptions require global,
group, and local parameters. Table 1 shows how many
parameters we need for our versions of resynthesized
lower-case Times, Helvetica, and Bodoni characters.
Bodoni requires fewer parameters, because all its serifs
are slab serifs (uniform height). The sans-serif font Hel-
vetica further reduces the number of required
parameters.

A 26 lower-case character font with the complexity of
Times requires approximately 540 parameters, or 1,080
bytes. Comparatively, TrueType requires approximate-
ly 1,500 bytes for the global parameters and a mean of
154 bytes per character for storing the outlines of lower-
case characters. The grid-fitting instructions needed by
TrueType for character generation at medium and low
resolution require an additional 385 bytes per charac-
ter. In contrast, component-based character descriptions
already include all information about their structure
(stems, half-loops, bars, connecting sweeps, and serifs).
In addition, component-based fonts let us generate
derived fonts (such as condensed and semibold) by
changing the values of a few global parameters. A single
component-based font can therefore replace several tra-
ditional outline fonts. Thus, we expect component-
based fonts to require an order of magnitude less storage
space than traditional outline fonts.

With our current software, we can synthesize char-
acters by rasterizing the partly overlapping components
and by excluding components that aren’t part of the
character, by using the cut operation (see Figure 6).
Also, we can recover the full character outline by using
a variant of Vatti’s algorithm16 to assemble components
made up of straight and curved outline segments.

Synthesizing derived characters by
varying global font parameters

Here, we describe experiments showing the effects
we can obtain by varying some global font parameters.
Increasing the vertical stem width and vertical curve
width parameters and decreasing the serif width para-
meters increases a font’s weight. Figure 27a (next page)
shows the alphabet at different sizes, at normal weight,
and at 125 percent and 150 percent weights.

High-quality horizontally condensed fonts are need-
ed where space is scarce—in telephone books for exam-
ple. Furthermore, condensed fonts may offer increased
flexibility for information presentation at display reso-
lution—for example on Web pages.17 Reducing the char-
acter width without reducing in the same proportion
the thickness of the strokes generates high-quality hor-
izontally condensed fonts. Because individual charac-
ter width is a function of the round letter width,

reducing the global round letter width parameter’s size
ensures the width reduction of the font’s characters. Fig-
ure 27b shows text condensed to 90 percent and 80 per-
cent. Condensation down to 90 percent is barely
perceptible and enables the generation of high-quality
characters. Eighty percent condensation considerably
distorts the original character shapes.

IEEE Computer Graphics and Applications 81

25 Lower-case
Times Roman
characters
recreated with
components.

26 Resynthe-
sized Times
Roman capital
letters

Table 1. Number of parameters for a font comprising the lower-
case character a to z.

Times Bodoni Helvetica

Number of global
parameters 110 98 63

Number of group
parameters 31 31 31

Mean number of local
parameters per character 15.3 16.0 14.0

Optically scaled fonts are relatively fatter and larger
at small sizes.5 Their x-height and character width are
slightly larger than corresponding values obtained by
plain scaling. In the following optical scaling example,
we use optical scaling correction factors to generate
characters between 5 and 12 points. We experimental-
ly determine maximum correction factors (maxFact) for
the various parameters (letter, stem, bar, and curved
element widths) for the 5 point character size. Between
5 and 12 points, these correction factors are interpolat-
ed by the parabola giving the maximum correction at 5
points and a zero correction factor at 12 points:

At 5 points, the maximum correction factor for the
round letter width and for the stem-to-stem and stem-to-
curved-element part spacing is between 106 and 110 per-
cent. The stem, bar, and curved element width have a
maximum correction factor of 125 percent. The narrow
diagonal bar, narrow horizontal bar, and narrow curved
element width have a maximal correction factor of 150
percent. Figure 28a shows characters printed at high res-

olution, with and without optical scaling. Clearly, optical
scaling improves legibility. Figure 28b shows the corre-
sponding optically scaled character shapes at large sizes.

Inspired by the designs of Gerrit Nordzij, a Dutch type
designer,18 we tried to vary the few parameters deter-
mining the character e’s shape to generate derived
designs along three different dimensions (see Figure
29). The first dimension is the character’s weight, or
boldness. All horizontal and vertical width parameters
are equally influenced by the boldness parameter.

The second dimension is contrast. Increasing the con-
trast requires reducing the horizontal curve width para-
meters. The third dimension is stress obliqueness.
Characters with oblique stress derive from pen-based
manuscript writing and were created soon after the
invention of moveable metal type—for example, the
typeface Jenson, created in 1470. Typeface designs
evolved from oblique stress to vertical stress characters.
Vertical stress characters became fashionable with the
designs of the Bodoni and Didot typefaces at the end of
the 18th century. Increasing stress obliqueness requires
increasing the obliqueness parameter of the internal
ellipse-like arcs. Increased stress obliqueness also
requires a slight increase of the horizontal curve-width
parameters determining the stroke width at the bottom
of the character. Figure 30 (next page) shows the para-

corrFactor ptSize

maxFact

pt pt
ptSize pt pt ptSize pt

() =

−()
−() ≤ ≤

5 12
12 5 12

2

2
;

Rendering

82 May/June 2001

125% weight: 90% condensation:

150% weight: 80% condensation:

27 Lower-case
alphabet at
different
weight (a) and
condensation
factors (b).

(a) (b)

Optical
scaling

5 pt
8 pt

12 pt

Plain
scaling

5 pt
8 pt

12 pt

5 pt

8 pt

12 pt

(a) (b)

28 Comparison
of optical scaling
and plain scal-
ing. (a) Charac-
ters printed at
high resolution,
with (top) and
without (bot-
tom) optical
scaling. (b)
Optically scaled
character shapes
at large sizes.

meters determining the character shapes and gives the
interpolation rules for computing these parameters
from input parameters weight, contrast, and stress
obliqueness. Figure 29 shows a volumic representation
of the designs obtained by varying these three input
parameters.

Generating derived typefaces by parameter modifica-
tions is a high-level process, which considerably differs
from interpolation between character outline control
points.8 Direct interpolation between outline control
points requires the explicit design of character masters at

the extremities of the design range. Interpolation
between character outlines may lead to inconsistencies
in stroke width and to tangential discontinuities at the
junctions between curved outline parts. On the other
hand, varying the character’s global and local parame-
ters according to different design axes such as weight,
contrast, and stress obliqueness is a more robust process,
since loop parameters β and η ensure the coherence of
each of the generated loops or half-loops. At the joints
between loops and sweeps and between consecutive
sweeps, tangential continuity is ensured by construction.

IEEE Computer Graphics and Applications 83

H
igh

C
ontrast

Low

Low

Weight

High

Upright

Style

Oblique

29 Variations of
the character e’s
weight, con-
trast, and
obliqueness.

Conclusions
Using geometric properties as a means of enforcing

coherence across different characters of a typeface has
been a dream since the Renaissance. A fundamental
question raised by Donald Knuth and Douglas Hofs-
taeder19 is whether a significant part of the design space
can be explored by turning a few knobs.

A first requirement along that path is to reduce the
number of parameters governing the shapes of typo-
graphic characters. We’ve tried to achieve this by defin-
ing loops and half-loops with the width, squareness, and
obliqueness parameters and by defining categories of
terminal elements, each described with only a few
parameters. Furthermore, we’ve developed a specific
geometric construction that provides arches that have
the shape required by traditional typefaces.

Our approach is validated by the fact that we’ve been
able to recreate existing traditional Latin fonts such as
Times Roman, Helvetica, and Bodoni (see http://diwww.
epfl.ch/w3lsp/research/typography/compofont/). The
experiments we’ve made show that we can generate inter-
esting derived fonts from existing component-based font
descriptions. However, further exploration in collabora-
tion with type designers is required to verify the aesthet-
ic quality of the generated derived font designs.

Fonts made of shape components are flexible parame-
terizable designs, which we can easily adapt to various
display and printing conditions (such as condensed font
when lacking display space, high-quality optical scaling,
adaptation of fonts to existing character metrics). Beside
applications related to typeface design, fonts based on
parameterizable components may be used in portable
devices where memory is scarce. A single parameteriz-
able design and its variations may allow enough flexibil-
ity for providing both high-quality antialiased fonts at low
resolution and typefaces for high-resolution printing. �

Acknowledgment
We thank André Gürtler, well-known type designer and

professor of typography at the Basel School of Design.

Thanks to his criticism and encouraging remarks, we were
able to significantly improve the quality of the characters
we resynthesized using parameterizable components.

References
1. J. Tschichold, Treasurey of Alphabets and Lettering, W.W.

Norton & Company, New York, 1995.
2. R. Southall, “Character Description Techniques in Type

Manufacture,” Raster Imaging and Digital Typography II, R.
Morris and J. André, eds., Cambridge Univ. Press, Cam-
bridge, Mass., 1991, pp. 16-27.

3. D. Adams, “abcdefg, A Better Constraint Driven Environ-
ment for Font Generation,” Raster Imaging and Digital
Typography, J. André and R.D. Hersch, eds., Cambridge
Univ. Press, Cambridge, Mass., 1989, pp. 54-70.

4. P. Karow, Font Technology, Description, and Tools, Springer-
Verlag, New York, 1994.

5. J. André and I. Vatton, “Dynamic Optical Scaling and Vari-
able-Sized Characters,” Electronic Publishing- Origination,
Dissemination, and Design, vol. 7, no. 4, Dec. 1994, pp. 231-
250.

6. B. Zalik, “Font Design with Incompletely Constrained Font
Features,” Proc. Third Pacific Conf. Computer Graphics and
Applications (Pacific Graphics 95), S.Y. Shin and T.L. Kunii,
eds., World Scientific, Singapore, 1995, pp. 512-526

7. A. Shamir and A. Rappaport, “Feature-Based Design of
Fonts Using Constraints,” Electronic Publishing, Artistic
Imaging, and Digital Topography, R.D. Hersch, J. André,
and H. Brown, eds., LNCS 1375, Springer-Verlag, New
York, 1998, pp. 93-108.

8. J. Seybold, “Adobe’s MultiMasters Technology: Break-
through in Type Aesthetics,” Seybold Report on Desktop Pub-
lishing, vol. 7, no. 5, 1991, pp. 3-7.

9. G. Rockledge and C. Perfect, Rockledge’s International Type
Finder: The Essential Handbook of Typeface Recognition and
Selection, Rizzoli Int’l Publications, New York, 1991.

10. C. Hu, Synthesis of Parameterizable Fonts by Shape Compo-
nents, EPFL thesis no 1905, 1998, http://diwww.epfl.ch/

Rendering

84 May/June 2001

1. CH1 = iplt [iplt [normalCH1, maxCH1, boldness], minCH1, contrast]
2. CH2 = iplt [iplt [iplt [normalCH2, maxCH2, boldness], minCH2, contrast],
 iplt [normalCH2, maxCH2, boldness], obliqueStress * 0.6]
3. CV1 = iplt [minCV1, maxCV1, boldness]
4. CV2 = iplt [minCV2, maxCV2, boldness]
5. SH = iplt [iplt [normalSH, maxSH, boldness], minSH, contrast]
6. ST = iplt [iplt [minCV2, maxST, boldness], minST, contrast]
7. EBar = iplt [maxEBar, minEBar, boldness]
8. ETail = iplt [iplt [minETail, maxETail, boldness], minETail, contrast]
9. ηext = minh = 0; hint = iplt [minh, maxh, obliqueStress]
10. βext = normalb; bint = iplt [iplt [normalb, maxb, (contrast + boldness) / 2],
 normalb, obliqueStress]

E xplanations:
1: Boldness increases CH1 value, contrast decreases CH1 value.
2: Boldness increases CH2 value, contrast decreases CH2 value,

stress obliqueness increases partly CH2 value.
3, 4: Boldness increases CV1 and CV2 values.
5, 6: Boldness increases, respectively contrast decreases SH and ST values.
7: Boldness decreases EBar values.
8: Boldness increases, respectively contrast decreases ETail value.
9: Stress obliqueness increases obliqueness h of interior loops.
10: Contrast and boldness increase,
 respectively obliqueness reduces squareness b.

CH1

CH2

CV2

CV1

SH

ST

ETail

EBar

iplt (a, b, percentage) =
 a * (1 - percentage) + b * percentage.

Definition of interpolation:

30 Parameters
determining the
character e’s
shape.

w3lsp/publications.
11. D. Knuth, The Metafont Book, Addison-Wesley, Reading,

Mass., 1986.
12. U. Schneider, “An Object-Oriented Model for the Hierar-

chical Composition of Letterforms in Computer-Aided
Typeface Design,” Electronic Publishing, Artistic Imaging
and Digital Typography, R.D. Hersch, J. André, and H.
Brown, eds., LNCS 1375, Springer-Verlag, New York, 1998,
pp. 109-125.

13. D. Knuth, Computer Modern Typefaces (Volume E of Com-
puters and Typesetting), Addison-Wesley, Reading, Mass.,
1986.

14. B. Bauermeister, A Manual of Comparative Typography, The
PANOSE System, Van Nostrand Reinhold Company, New
York, 1987

15. M. Jamra, “Some Elements of Proportion and Optical
Image Support in a Typeface,” Visual & Technical Aspects of
Type, R.D. Hersch, ed., Cambridge Univ. Press, Cambridge,
Mass., pp. 47-55.

16. B.R. Vatti, “A Generic Solution to Polygon Clipping,”
Comm. ACM, vol. 35, no. 7, pp. 56-63.

17. R.A. Morris, R.D. Hersch, and A. Coimbra, “Legibility of
Condensed Perceptually-Tuned Grayscale Fonts,” Electronic
Publishing, Artistic Imaging and Digital Typography, R.D.
Hersch, J. André, and H. Brown, eds., LNCS 1375, Springer-
Verlag, New York, 1998, pp. 281-291.

18. G. Nordzij, “The Shape of the Stroke,” Raster Imaging and
Digital Typography II, R. Morris and J. André, eds., Cam-
bridge Univ. Press, Cambridge, Mass., 1991, pp. 34-42.

19. D. Hofstaedter, “Metafont, Metamathematics, and Meta-
physics: Comments on Donald Knuth’s Article ‘The Con-
cept of a Meta-Font,’” Metamagical Themas, Penguin Books,
London, 1985, pp. 260-296.

Changyuan Hu develops 3D Web
authoring software in Montreal,
Canada. His research interests are
focused on computer graphics and
digital typography. He graduated
from the Department of Computer
Science, Nanjing University and

received his PhD from Ecole Polytechnique Fédérale de
Lausanne.

Roger D. Hersch is a professor of
computer science and the head of the
Peripheral Systems Laboratory at the
Ecole Polytechnique Fédérale de Lau-
sanne. He was the conference chair-
man of the International Conference
on Raster Imaging and Digital

Typography 1998. He also directs the Visible Human Web
Server project, which offers advanced visualization ser-
vices for exploring the Visible Human Male and Female
datasets (see http://visiblehuman.epfl.ch). He received his
engineering degree ETH Zurich and PhD from EPFL.

Readers may contact Hersch at the Computer Science
Dept., EPFL, CH-1015 Lausanne, Switzerland, rd.
hersch@epfl.ch, http://diwww.epfl.ch/w3lsp.

E D I T O R I A L
C A L E N D A R

JANUARY/FEBRUARY
Usability Engineering in
Software Development
When usability is cost-justified, it can be integrated
into the development process; it can even become one
of the main drivers of software development.

MARCH/APRIL
Global Software Development
What factors are enabling some multinational and
virtual corporations to operate successfully across
geographic and cultural distances? Software
development is increasingly becoming a multisite,
multicultural, globally distributed undertaking.

MAY/JUNE
Organizational Change
Today’s organizations must cope with reorganization,
process improvement initiatives, mergers and
acquisitions, and ever-changing technology. We will
look at what organizations are doing and can do to
cope.

JULY/AUGUST
Fault Tolerance
We used to think of fault-tolerant systems as ones
built from parallel, redundant components. Today, it’s
much more complicated. Software is fault-tolerant
when it can compute an acceptable result even if it
receives incorrect data during execution or suffers
from incorrect logic.

SEPTEMBER/OCTOBER
Software Organizational
Benchmarking
How do you decide what to benchmark and how
much detail is necessary? How do you identify the
right information sources?

NOVEMBER/DECEMBER
Just Enough…
How little process and technology can your project
get away with? This focus explores the ramifications
of developing software from a minimalist
perspective.

Ubiquitous Computing
This third wave of computing, after the mainframe
and the PC eras, will allow technology to recede into
the background of our lives.

