Next Generation Typeface Representations: Revisiting
Parametric Fonts

Tamir Hassan
Pattern Recognition and
Image Processing Group

Technische Universitat Wien

Vienna, Austria

tam@tamirhassan.com

ABSTRACT

Outline font technology has long been established as the
standard way to represent typefaces, allowing characters to
be represented independently of print size and resolution.
Although outline font technologies are mature and produce
results of sufficient quality for professional printing applica-
tions, they are inherently inflexible, which presents limita-
tions in a number of document engineering applications. In
the 1990s, the topic of finding a successor to outline fonts was
a hot topic of research. Unfortunately, none of the methods
developed at the time were successful in replacing outline
font technology and this field of research has since then de-
clined sharply in popularity.

In this paper, we revisit a parametric font format devel-
oped between 1995 and 2001 by Hu and Hersch, where char-
acters are built up from connected shape components. We
extend this representation and use it to synthesize several
characters from the Frutiger typeface and alter their weights
by setting the relevant parameters. These settings are au-
tomatically propagated to the other characters of the font
family.

To conclude, we provide a discussion on next-generation
font technologies in the light of today’s Web-centric tech-
nologies and suggest applications that could greatly benefit
from the use of flexible, parametric font representations.

Categories and Subject Descriptors: 1.7.m [Document
and Text Processing]: Miscellaneous; 1.3.m [Computer
Graphics|: Miscellaneous

General Terms:

1. INTRODUCTION

Although the advent of outline fonts in the late 1980s was
seen as a massive technological breakthrough, they do not
present the ideal solution to representing character shapes.

Experimentation

This work was funded in part by the Austrian Akademisch-
soziale Arbeitsgemeinschaft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DocEng2010, September 21-24, 2010, Manchester, United Kingdom.
Copyright 2010 ACM 978-1-4503-0231-9/10/09 ...$10.00.

Changyuan Hu
20-20 Technologies Inc.,
Montreal,
QC, Canada
changyuan.hu@gmail.com

181

Roger D. Hersch
Peripheral Systems
Laboratory,

Ecole Polytechnique Fédérale

de Lausanne, Switzerland
rd.hersch@epfl.ch

In order to represent an entire font family, it is necessary
to create a separate font for each possible combination of
attributes (e.g. bold, italic, condensed). Because these indi-
vidual styles are represented independently of each other, it
is not possible to select missing combinations of attributes
or to continuously vary them.

Furthermore, there are several aspects of traditional ty-
pography which are either poorly or not at all supported by
outline fonts, for example optical scaling. In the era of metal
type, the shape of each glyph (character) varied according
to its size. Smaller characters were usually slightly wider,
in order to improve readability, and had thicker strokes in
order to give the page a uniform appearance by keeping the
font colour as constant as possible. The same applies to fea-
tures such as small capitals, super- and subscript and math-
ematical formulae. In the move to digital outline fonts, such
typographical subtleties as optical scaling have been lost and
replaced by a straightforward mathematical transformation,
producing inferior results.

In this paper, we revisit a previous parametric font rep-
resentation (Chapter 3), extend it, and use it to synthesize
several characters in different weights of the Frutiger type-
face (Chapter 4). In Chapter 5 we describe further work
necessary to develop the system to a mature stage and pro-
vide a discussion in Chapter 6 of the potential applications
of the technology in the light of today’s web-centric appli-
cations.

2. RELATED APPROACHES

Multiple Master Fonts were introduced in 1991 from
Adobe. A Multiple Master family consists of two or more
basis outline fonts, known as masters, whose characters con-
tain common control points. These control points allow the
continuous modification of parameters or design axes. Un-
fortunately, Multiple Master fonts were never very popular
and were discontinued.

A parametric font format that is still in use today is
Metafont. Introduced in 1979 by Donald Knuth, it is nowa-
days mostly used in combination with the typesetting sys-
tem TEX. Characters in Metafont fonts are built up using
pen strokes defined by geometric equations, enabling sev-
eral parameters to be varied continuously. More complex
character shapes, such as those found in serif fonts, cannot
be adequately represented using pen strokes alone. There-
fore, the representation needs to be enhanced with outlines,
which are then filled [1].

The Infinifont system [2] also builds character outlines
using a sequence of operations, which may be adjusted using

RN

(a) (b) (©) (@

Wed 7.

left right
bottom

Pae

(e) (f)

Figure 1: The loop and half-loop components

Qa Q2 Q
sw2 swi_sw2 B 5 \B3
2 Py
“IPa Pa
& By
swi P1
SW5 sw4

Bi= BoB1 _ QuQi1 _ PgPs
®- BoBa QdQa PaPa
swi
/Pd _ QaQ2 _ PaP2
Sy

Arrival
segment

BsBa QaQa PaPa

Qq Departure segment

Figure 2: The sweep component

parameters. The system contains typeface-generic knowl-
edge and can therefore approximate character shapes when
only a small number of parameters are available.

In this paper, we concentrate on the parametric repre-
sentation of Hu and Hersch, which was developed be-
tween 1995 and 2001 [3]. Here, characters are built up from
their logical building blocks, such as strokes, curves, loops
and serifs. Results of a first prototype, CPFPage, which
synthesized the Times, Helvetica and Bodoni fonts, were
published in 2001 [4].

3. THE CPFPAGE SYSTEM

In the representation from Hu and Hersch, characters are
built up from the following basic component shapes:

e strokes to represent the horizontal and vertical stems,
and other straight components of a character;

e loops and half-loops (see Fig. 1) to represent round
parts of characters such as “0” and “b, d, p” respec-
tively. Loops are defined by their inner and outer el-
lipses as well as an optional stress parameter 7, which
controls the relative orientations of the loop’s inner
and outer outlines;

e sweeps (see Fig. 2) to represent curved strokes. In
contrast to (half-)loops, sweeps are defined by the ori-
entations and widths of their departure and arrival
segments, and by the Bézier curve of the central path.
The letter “s” in sans-serif typefaces is often solely com-
posed of sweeps;

e serifs to represent the terminals in serif typefaces;

e path correction operators to smooth the joins be-
tween certain components in serif faces.

182

For synthesizing sans-serif typefaces such as Frutiger, only
the first three types of component primitives are usually re-
quired. A character structure graph can be used to represent
how each of these components are joined together to create a
character. Between different fonts, this structure graph can
vary. Therefore, CPFPage includes several structure graphs
for some characters, representing their most common varia-
tions. Please refer to [4] for a more detailed explanation of
how characters are built from their components.

A font is defined by three parameter files. The global pa-
rameter file contains all the global measurements, such as
x-height, stroke widths and character widths. The local pa-
rameter file contains parameters that affect the way only a
single character is rendered. Whereas the shape of many
characters, such as “h, m, n, u” can usually be accurately
determined from the global parameters alone, other char-
acters, such as “a”; have a very individual appearance, and
therefore contain a much larger number of parameters.

The third parameter file, the group parameter file, con-
tains parameters which affect given groups of characters.
For example, the curve-to-stem junctions of the characters
“h, m, n, u” and “b, d, p, q” are identical in many typefaces
and can therefore be adjusted uniformly.

4. A NEW FONT FAMILY

In this section, we describe our experiments in synthesiz-
ing the well-known Frutiger font family. We choose to con-
centrate on the first five letters of the lower-case alphabet,
“abcde”, as they contain a variety of different features, many
of which also occur in other lower-case characters. Thus,
while we were working on these five characters, other lower-
case letters such as “o, p, q” automatically obtained their
correct appearance.

In creating the first version of our parameterized Frutiger
Medium (Fig. 3, Ib), it became clear to us that the CPFPage
system had been designed primarily with serif typefaces in
mind. The character “e” was modelled using a half-loop com-
ponent, which resulted in the top and bottom curve centres
having the same x-position (Fig. 1, c). As you can see from
the original Type 1 font (Fig. 3, Ia), the centre of the bot-
tom curve is shifted to the right. We found this to be a
common feature of sans-serif fonts and not just limited to
the Frutiger typeface.

We found that it was possible move the bottom curve
towards the right by changing the loop stress parameter 7.
However, this had the undesired consequence of affecting the
thickness of the top-left curve considerably (Fig. 1, d). We
therefore created a new variation of the character “e” and
replaced the half loop with two sweep components, allowing
the bottom curve to be adjusted independently of the top
curve (Fig. 3, Ic).

A further limitation that was observed was the inability to
control stroke widths for each character individually. Bolder
versions of sans-serif typefaces generally use slightly thinner
strokes for “busier” characters such as “a” and “e”. Already
in the medium weight, these strokes were found to be visibly
thinner. A new parameter was therefore added to adjust the
stroke width in these characters.

Further structural changes were made to support the
curved terminal at the bottom of the character “a” using an
additional sweep component as well as to alter the thickness
of the top terminal of the character “c” to match the bottom
terminal. The improved version of our synthesized Frutiger

Medium, which now very closely resembles the original, is
shown in Fig. 3 (Ic).

4.1 Parametric weight variation

Having achieved an accurate representation of Frutiger
Medium, we used this as a starting point to generate the
light and bold weights of the typeface, simply by modifying
parameters. Fig. 3 (Ila) and (IIla) show, as before, the orig-
inal Type 1 rendition. Fig. 3 (IIb) and (IIIb) show the result
that we obtained by modifying only the global parameters
(see Table 1), i.e. character and stroke widths. Just by mod-
ifying half a dozen parameters, a new font style is generated
whose quality is already acceptable for many purposes.

Fig. 3 (IIc) and (IIIc) show the result after modifying the
remaining group and local parameters. In particular, mov-
ing certain control points of the “a” character achieves a bet-
ter result. The curves of the characters “b” and “d”, which
were represented by sweep components, were also adjusted
to look more natural. If an appropriate loop segment com-
ponent had been available to represent these curves, perhaps
this adjustment would have not been necessary.

As a further experiment, we tried to reconstruct the “Reg-
ular” weight by interpolating between the parameters of the
“Light” and “Medium” weights. We first obtained what we
believed to be the most influential parameter for boldness,
the vertical stem width, from the Type 1 original. Based on
this value, we performed a linear interpolation to calculate
the remaining parameters. We were surprised by the result,
as shown in Fig. 3, (IVb), which was almost perfect. For the
“corrected” version (IVc), we made some slight adjustments
to the character widths, which were evidently not in a linear
relationship to vertical stroke thickness.

We also attempted to extrapolate the differences between
the “Medium” and “Bold” weights to obtain the “Extra
Black” weight of the typeface. The result, which is shown
in Fig. 3 (Vb), was not of acceptable quality. It is worth
noting that the shapes of extra bold fonts often differ
considerably to the other weights, in order to produce an
acceptable optical result within the limited available space.
By reducing the character and horizontal curve widths (i.e.
the parameters marked “*” in the rightmost column of Ta-
ble 1), which had been over-increased by the extrapolation,
we were able to obtain our first corrected result (Vc), which
already represents a significant improvement. The second
corrected result (Vd), which uses modified group and local
parameters in addition, is even closer to the original font.

For our final experiment, we resynthesized Frutiger
Medium Condensed based on our Frutiger Medium. The
result is shown in Fig. 3 (VIb) which, apart from the
obvious changes to condense the character widths, only
required minor changes to the stroke widths. Although the
weight of both faces was “medium”, the stroke widths of the
condensed version are slightly reduced to account for space
limitations to produce a better optical result.

S. FUTURE WORK

As mentioned earlier, one possible improvement to the
current representation would be to construct (half-)loops us-
ing sweep components, which might offer increased flexibility
for character shape variation.

In our experiments with the Frutiger family, we found that
many relationships between components were not present in
the representation. For example, although the terminals of

183

characters such as “a, c, e’ are identical, this dependency
was not present in the character structures.

The next step would be to analyse a greater number of
typefaces and generate groups of group parameters for par-
ticular classes of font. It is a challenging task to find an ap-
propriate way to specify this knowledge about letterforms,
whilst still allowing the font designer to make any changes
that he/she desires.

Once this information is adequately represented in the sys-
tem, a further research direction would be the (semi-)auto-
matic generation of parameterized fonts based from bitmap
characters, which could contain noise or be incomplete.

Finally, a superior typeface representation will never be-
come popular if there are no adequate interactive tools to
create typefaces in this format, and a suitable GUI is there-
fore essential.

6. POTENTIAL APPLICATIONS

A key application of parametric fonts is in the conversion
of documents from paper into electronic form. Even if the
text has been correctly detected, the current trend of OCR
software is to overlay a scanned bitmap image of the page on
top of the text. The document therefore looks identical to
the scanned image, but the hidden text remains selectable
and searchable. This text is typically represented using a
standard font whose metrics have been altered (and would
therefore look very poor if it were visible).

Even with increasing resolutions, processing power and
the use of antialiasing, it is still not a pleasurable experience
to view a scanned document onscreen, and the printed result
is also significantly worse than a digital original. Due to the
increased file size, navigating such documents is slow, espe-
cially on low-power portable devices such as eBook readers
and mobile phones.

Brailsford [5] recently described the difficulties in generat-
ing a vector representation of a scanned document. We be-
lieve that parametric fonts could play a very important role
in this conversion, ultimately making it automatic. In many
cases, such as the archiving operations of out-of-copyright
material by Google Books, the fonts do not exist in dig-
ital form. Even when they are available, they may have
significantly different metrics. Furthermore, each new use
of a commercial font would require obtaining the relevant
licences. The use of parametric fonts to approrimate the
fonts used in scanned materials would sidestep these licens-
ing and availability issues, and still create a much better,
scalable visual result than the scanned image of a page.

The further potential applications of this technology are
perhaps more obvious, including font compression, auto-
matic detailed classification (the format is self-describing)
and the creation of new styles or characters (e.g. symbols,
logos, Cyrillic characters, etc.) for an existing typeface with
little additional effort.

REFERENCES
D. Knuth: Lessons learned from Metafont. In Digital
Typography, pp.315-338, CSLI Publications, Stanford, 1999.
C.D. McQueen III and R.G. Beausoleil: Infinifont: a parametric
font generation system In Elec. Pub. 6(3):117-132, 1993.
C. Hu: Synthesis of parametrisable fonts by shape components.
PhD thesis, EPF Lausanne, 1998.
C. Hu and R.D. Hersch: Parameterizable fonts based on shape
components. In IEEE Comp. Graph. Appl. 21(3):70-85, 2001.
D.F. Brailsford: Automated re-typesetting, indexing and
content enhancement for scanned marriage registers. In
Proceedings of DocEng ’09, pp. 29-38, 2009.

7.
(1]

Tntorpolated | Corrocted Extrapolated Corrocted
| Light | Regular Regular Medium | Med. Cond. | Bold Extra Black Extra Black
Global parameters
Vertical stem width 64 90 90 130 124 172 248 248
Vertical curve width 64 90 96 131 120 181 271 250%
Round letter width 453 482 505 526 460 588 700 653*
Stem—curve width 358 359 378 361 300 386 431 365*
Narrow hor. stem width 54 67 87 75 102 129 107*
Horizontal curve width 54 72 100 93 123 165 143*
X-height 492 494 496 493 501 510 502
Group parameters
“e”-bar position 0.51 0.51 0.51 0.5 0.48 0.49
Loop centre x-pos. external 0.53 0.55 0.58 0.67 0.83 0.76
“b” lower sweep A 1.34 1.36 1.39 1.42 1.47
“b” upper sweep A 0.90 0.89 0.88 0.90 0.94
Local parameters “a”
Main width 0.69 0.65 0.60 0.58 0.54
Secondary width 0.64 0.63 0.61 0.61 0.61 0.63
Dot angle 88 88 88 88 88 90
Head width 0.9 0.9 0.9 0.75 0.48 0.6
Belly left-most height 0.27 0.27 0.27 0.29 0.33 0.29
s6 curve A.x 1.12 1.12 1.12 1.28 1.57 1.31
Belly bottom-most x 0.55 0.55 0.55 0.56 0.58
s8 arrival y 0.38 0.38 0.38 0.49 0.69 0.52
Vertical stem width % 0.97 0.95 0.92 0.92 0.92
Protrusion of bottom terminal 0.02 0.02 0.03 0.03 0.03
‘Width of bottom terminal 0.95 0.95 0.95 0.98 1.03
Height of bottom terminal 0.15 0.23 0.35 0.2 -0.07** 0.00
Local parameters “c”
Main width 0.79 0.76 0.71 0.75 0.82 0.76
Secondary width 0.79 0.76 0.72 0.74 0.78 0.76
Tail width 0.80 0.80 0.80 0.70 0.52
Loop centre x-pos. external 0.70 0.70 0.69 0.69 0.69
Loop centre x-pos. internal 0.74 0.74 0.75 0.75 0.75
Dot centre y 0.98 0.98 0.98 0.97 0.95
Tail y 0.01 0.01 0.01 0.02 0.04
Dot angle 85 85 85 85 85 90
Tail angle 86 86 86 86 86 90
Local parameters “e”
Main width 0.82 0.82 0.82 0.81 0.79 0.83
Tail width 0.80 0.80 0.80 0.70 0.52
‘Wide miniscule vertical curve width 1.00 0.97 0.93 0.93 0.93
‘Wide miniscule horizontal curve width 1.00 0.97 0.93 0.93 0.93 0.88
Width of right curve % 1.00 1.00 0.99 0.90 0.74 0.87
Loop centre x-pos. internal 0.50 0.50 0.50 0.50 0.50 0.52

* For the first corrected version of this font, only the parameters marked with an asterisk were modified from the extrapolated values.
** As this negative value did not fall within the range of accepted values for this parameter, it was set to zero.

Table 1: Parameters that were modified in the various styles of the Frutiger typeface. Please note: Blank
cells mean that the parameter was not modified from its previous value (the neighbouring cell to the left)

abcde

abcde
abcde

. abcde
. abcde

abcdee .

. abcde

abcde
. abcde .
. abcde
. abcde
. abcde ..

abcde
abcd

abcde
abcde

abcde
abcde

Figure 3: Synthesis of the various versions and styles of the parametric Frutiger typeface. Figures with the
suffix “a” represent the original Type 1 font, “b” the initial synthesized version, and subsequent letters relate
to further improvements, as detailed in the referring text

184

