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Moiré effects that occur in the superposition of aperiodic layers such as random dot screens are known as Glass
patterns. Unlike classical moiré effects between periodic layers, which are periodically repeated throughout
the superposition, a Glass pattern is concentrated around a certain point in the superposition, and farther
away from this point it fades out and disappears. I show that Glass patterns between aperiodic layers can be
analyzed by using an extension of the Fourier-based theory that governs the classical moiré patterns between
periodic layers. Surprisingly, even spectral-domain considerations can be extended in a natural way to ape-

riodic cases, with some straightforward adaptations.

These new results allow us to predict quantitatively the

intensity profile of Glass patterns; furthermore, they open the way to the synthesis of Glass patterns that have
any desired shapes and intensity profiles. © 2003 Optical Society of America

OCIS codes: 070.0070, 120.4120.

1. INTRODUCTION

When two identical random dot screens, or any two iden-
tical aperiodic structures, are superposed on top of each
other with a small angle or scaling difference, a typical
moiré effect [Fig. 1(a)l appears in the superposition.
This moiré effect is known in the literature as a Glass
pattern, after Leon Glass, who described it in the late
1960s.12  Unlike a moiré effect between periodic dot
screens [Fig. 1(b)], which is periodic and extends through-
out the entire superposition,® a Glass pattern is concen-
trated around a certain point in the superposition, and it
gradually fades out and disappears as we move farther
away from this point.

In all of the Glass patterns studied in the past, the two
superposed random layers were either identical or
slightly transformed (scaled, rotated, or translated) copies
of each other. As widely reported in literature, the re-
sulting Glass patterns in such cases have a typical shape
resembling a top-viewed funnel or a distant galaxy in the
night sky. However, it was recently discovered? that by
choosing appropriate dot shapes for the dots of the two su-
perposed aperiodic screens, one may obtain in the super-
position a Glass pattern of any desired shape and inten-
sity profile, as illustrated in Fig. 2. The aim of the
present contribution is to provide a full qualitative and
quantitative theoretical explanation of Glass patterns in
general and of this surprising phenomenon in particular.
As we will see, the explanation is based on an extension
into the aperiodic case of results that are already known
for periodic dot screens. But whereas in the superposi-
tion of periodic dot screens the moiré profile is periodi-
cally repeated throughout the superposition, in the
present case the Glass pattern obtained in the superposi-
tion consists of only one moiré profile (compare Figs. 2
and 3).

Our approach here is based on a Fourier-based analysis
of the behavior of Glass patterns both in the image do-
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main and in the spectral domain. We start in Section 2
with a review of the basic concepts from the periodic case
that are required for understanding the rest of this paper.
In Section 3 we investigate the superposition of aperiodic
line gratings, and then, using these results, we proceed in
Section 4 to the case of aperiodic screens. In both cases
we analyze the resulting Glass patterns and their inten-
sity profiles both in the image domain and in the Fourier
domain as a generalization of the moiré theory between
periodic layers. This will also show us how to synthesize
Glass patterns that have any desired intensity profiles
and shapes. Then, in Section 5, an explanation is given
of why in the superposition of aperiodic layers no higher-
order moirés may exist, unlike in the periodic case. Fi-
nally, in Section 6 the main conclusions of the paper are
presented.

Remark: The PostScript files that generate the dot
screens and the line gratings used in the figures of this
article are available on the internet.® They can be down-
loaded and printed on transparencies with any standard
PostScript printer. Superposing these transparencies
manually with varying orientations, shifts, etc., can give
a vivid demonstration of the Glass (or moiré) patterns and
their dynamic behavior in the superposition, even beyond
the few static figures that illustrate this paper.

2. BACKGROUND AND BASIC CONCEPTS

The rules that govern the qualitative behavior of Glass
patterns in the superposition of general aperiodic layers
have been investigated in previous contributions.»%57
However, none of the previous studies provides a quanti-
tative analysis of these phenomena and of their intensity
profiles. In the present study we will investigate the
layer superpositions and the resulting Glass patterns by
using a Fourier-based approach, which is a direct exten-
sion of the theory that governs the superposition of peri-
odic layers. This powerful mathematical approach will

© 2003 Optical Society of America
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Fig. 1. (a) Superposition of two identical aperiodic dot screens with a small angle difference gives a moiré effect in the form of a Glass
pattern around the center of rotation. (b) When the superposed layers are periodic, a Glass pattern is still generated around the center
of rotation, but owing to the periodicity of the layers, this pattern is periodically repeated throughout the superposition, thus generating

a periodic moiré pattern.

Fig. 2. Superposition with a small angle difference of a random
dot screen consisting of 1-shaped dots and a random dot screen
consisting of small white dots (pinholes) on a black background,
where the dot locations in both screens are identical, gives a
single 1-shaped moiré intensity profile (Glass pattern).

also allow us to predict quantitatively the intensity profile
of the resulting Glass patterns, and, furthermore, it will
lead us to a method for synthesizing Glass patterns that
have any desired shapes and intensity profiles.

Before we proceed to our new results, we review in the
rest of this section the basic concepts and terminology
that are required for understanding the next sections.

A. General Properties of Superposed Layers and of
Their Fourier Spectra

First of all, let us mention that throughout this paper we
are concerned only with monochrome, black-and-white
images (or layers). This means that each image can be
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Fig. 3. Periodic counterpart: The superposition with a small
angle difference of a periodic dot screen consisting of 1-shaped
dots and a periodic dot screen consisting of small white dots (pin-
holes) on a black background gives a periodic 1-shaped moiré in-
tensity profile.

represented by a reflectance function, which assigns to
any point (x, y) of the image a value between 0 and 1 rep-
resenting its light reflectance: 0 for black (i.e., no re-
flected light), 1 for white (i.e., full light reflectance), and
intermediate values for in-between shades. In the case
of transparencies, the reflectance function is replaced by a
transmittance function defined in a similar way. The su-
perposition of such images can be done by overprinting or
by laying printed transparencies on top of each other.
Since the superposition of black and any other shade al-
ways gives black, this suggests a multiplicative model for
the superposition of monochrome images. Thus when m
monochrome images are superposed, the reflectance of
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the resulting image is given by the product of the reflec-
tance functions of the individual images:

r(x, y) = rix, y)ra(x, y) ... ru(x, y). (€Y)

According to the convolution theorem (Ref. 8, p. 244),
the Fourier transform of the product function is the con-
volution of the Fourier transforms of the individual func-
tions. Therefore, if we denote the Fourier transform of
each function by the respective capital letter and the two-
dimensional (2D) convolution by **, the spectrum of the
superposition is given by

R(u, U) = Rl(”a U)** RZ(uy U)** ek Rm(u7 U).
(2)

B. Spectra of Periodic and Aperiodic Layers

Although the structures that we study in the present pa-
per are not periodic, it would be helpful to start with a
short reminder from the periodic case, whose mathemati-
cal behavior is already fully understood.?> Suppose we
are given a periodic image defined on the continuous
(x, y) plane, such as a line grating or a dot screen. The
spectrum of a periodic image on the (u, v) plane is not
continuous but rather consists of impulses corresponding
to the frequencies that appear in the Fourier series de-
composition of the image. In the case of a onefold peri-
odic image, such as a line grating, the spectrum consists
of a one-dimensional (1D) “comb” of impulses centered
about the origin; in the case of a twofold periodic image,
the spectrum is a 2D “nailbed” of impulses centered about
the origin. Note that we sometimes use the more general
term “cluster” for a comb or a nailbed.

Each impulse in the 2D spectrum is characterized by
its geometric location and its amplitude. The geometric
location of an impulse is represented by a frequency vec-
tor f in the spectrum plane, which connects the spectrum
origin to the geometric location of the impulse. This vec-
tor can be expressed by its polar coordinates ( f, 6), where
0 is the direction of the impulse and f'is its distance from
the origin (i.e., its frequency in that direction). In terms
of the original image, the geometric location of an impulse
in the spectrum determines the frequency f and the direc-
tion 6 of the corresponding periodic component in the im-
age, and the amplitude of the impulse represents the in-
tensity of that periodic component in the image. (Note
that if the original image is not symmetric about the ori-
gin, the amplitude of each impulse in the spectrum may
also have a nonzero imaginary component).

However, the question of whether an impulse in the
spectrum represents a visible periodic component in the
image depends strongly on properties of the human visual
system. The fact that the eye cannot distinguish fine de-
tails above a certain frequency (i.e., below a certain pe-
riod) suggests that the human visual system model in-
cludes a low-pass filtering stage. For the sake of
simplicity, this low-pass filter can be approximated by the
visibility circle, a circular step function around the spec-
trum origin whose radius represents the cutoff frequency
(i.e., the threshold frequency beyond which fine detail is
no longer detected by the eye). Obviously, the radius of
the visibility circle depends on several factors such as the
contrast of the observed details, the viewing distance, and
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light conditions. If the frequencies of the original image
elements are beyond the border of the visibility circle in
the spectrum, the eye can no longer see them; but if a
strong enough impulse in the spectrum of the image su-
perposition falls inside the visibility circle, then a moiré
effect becomes visible in the superposed image.

Finally, a word about the Fourier spectra of aperiodic
layers: Unlike the spectra of periodic layers, which are
purely impulsive, the Fourier transform of an aperiodic
layer is basically continuous. For example, the Fourier
transform of a unit cube is a 2D sinc function; see Ref. 9,
pp- 150-151. But when the layer’s structure is very com-
plex, as in the case of a random dot screen, its Fourier
spectrum becomes very jumpy or noisy and presents a
typical diffuse appearance (see Ref. 9, pp. 586—590; 600—
601).

C. Moiré Effects in the Superposition of Periodic
Gratings

The simplest moiré effects occur in the superposition of
two straight periodic gratings, as shown in Fig. 4. Let
ri(x, y) and ro(x, ¥) be such periodic gratings; their fre-
quencies and orientations are given by their frequency
vectors f; and f,, respectively. The spectrum R;(u, v) of
each of the original gratings consists of a comb whose im-
pulses are located at integer multiples of the fundamental
frequency nf;:

Rl(u’ U) = E aill)ﬁnfl(u’ U)’

n=—o

©

Ry(u, v) = X aP sy (u, v).

n=—w

Here, 5,Lfi(u, v) denotes an impulse located in the spec-
trum at the frequency vector nf;, and aif) is its ampli-
tude.

When we superpose (i.e., multiply) the line gratings
ri(x, y) and ro(x, ), the spectrum of the superposition
is, according to the convolution theorem, the convolution
of the two original combs, R,(u, v)** Ry(u, v), which
gives an oblique nailbed of impulses [see Fig. 4(f)]. This
convolution of combs can be seen as an operation in which
frequency vectors from the individual spectra are added
vectorially, while the corresponding impulse amplitudes
are multiplied. We can therefore express the geometric
location of the general (k;, k5) impulse in the spectrum

convolution by the vectorial sum
£k, = Rafy + Rofy 3
and its amplitude by

i by = Vaf?), @
where f; denotes the frequency vector of the fundamental
impulse in the spectrum of the ith grating and %;f; and
a}e’? are, respectively, the frequency vector and the ampli-
tude of the £;th harmonic impulse in the spectrum of the
ith grating.

The vectorial sum of Eq. (3) can also be written in
terms of its Cartesian components. If f; are the frequen-
cies of the original gratings and 6; are the angles that
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they form with the positive horizontal axis, then the coor-
dinates (f,, f,) of the (ky, ky) impulse in the spectrum
convolution are given by

fur, r, = kif1cos 61 + kofscos 6y,
kal’kz = klfl sin 01 + szz sin 02. (5)

Therefore the frequency, the period, and the angle of the
considered impulse are given by the length and the direc-
tion of the vector f; ,, as follows:

f=f2+ 12

T = 1/f, ¢ = arctan(f,/f,).

(6)

Now, if one of the new impulses in the spectrum convo-
lution, say, the (k;, k9) impulse, falls (together with its
symmetric twin) close to the origin inside the visibility
circle, this implies the existence in the superposed image
of a moiré effect with a visible period. This moiré is rep-
resented in the spectrum convolution by a full comb of im-
pulses, centered on the origin, that contains the (&, k5)
impulse as well as all its harmonics. We call this moiré a
(k1, k) moiré since the fundamental impulse of its comb
is the (&, k) impulse of the spectrum convolution. For
example, in the case of Fig. 4(f), the (1, —1) impulse [as
well as its symmetric (—1, 1) impulse] falls inside the vis-
ibility circle; this indicates that the moiré effect that is
clearly visible in the grating superposition [Fig. 4(c)] is
the first-order (1, —1) moiré. The frequency and the pe-
riod of this moiré can be found from Egs. (5) and (6) by
using k; = 1 and %k, = —1; equivalently, they can be
found by a simple geometric consideration, as shown in
Fig. 5 for the case with f; = f5:

/2
sin(a/2) = —;
f
hence
fu = 2fsin(a/2), 7
and thus
v
A
f f
M 7
fyi

Fig. 5. Geometric consideration in the spectral domain for find-
ing the frequency fj; and the period T of the (1, —1) moiré effect
between two gratings with identical frequencies f and an angle
difference of @. The dotted line indicates the infinite impulse
comb that represents the (1, —1) moiré [see Fig. 4(f)]; the funda-
mental impulse of this moiré has the frequency f;; .
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1 T
 2fsin(e/2) 2 sin(a/2)’

Ty (8

The orientation of the moiré in this case is perpendicu-
lar to the bisector of the original gratings.

These equations can be generalized to the case in which
the original gratings have different frequencies f; # f5;
in this case the respective formulas are (see Ref. 3, p. 409,
or Ref. 10)

fu = (1% = 2fifzcos a + f,2)12, 9
and thus

T,
Ty = , (10)
(T2 + Ty? — 2T, T cos a) V2

and the moiré orientation is

T2 sin 01 - T1 Sin 02
= arctan . (11)
om Ty cos 6; — T cos Oy

Returning to the general (k;, ky) moiré in the super-
position of two gratings, the location fkl,k2 of its funda-
mental impulse in the spectrum is given by Eq. (3). The
nth impulse of the comb of this moiré is the (nk;, nky)
impulse in the spectrum convolution; its location is
nfkl,kg’ and its amplitude d,, is given by d, = @k nky
which means, according to Eq. (4),

d, = o alZ), a2)

where a!! and aEZ) are the respective impulse amplitudes

from the combs of the first and the second line gratings.
For example, in the case of the simplest first-order moiré
between two gratings, the (1, —1) moiré [see Fig. 4(f], the
amplitudes of the moiré-comb impulses are given by

d, =a'Va?. (13)

In other words, we can say the following:

Proposition 1. The impulse amplitudes of the comb of
the (1, —1) moiré in the spectrum convolution are ob-
tained by a term-by-term multiplication of the combs of
the original superposed gratings, one of which being in-
verted (rotated by 180°) before the multiplication. |

Since we already know the location of the impulses of
the moiré comb, this comb can be considered, in fact, to be
a product of the two original combs after they have been
normalized (rotated and stretched) to fit the impulse loca-
tions of the resulting moiré comb. This moiré comb can
be easily extracted from the spectrum convolution, as
shown in Fig. 4(h). Thus by taking its inverse Fourier
transform, we can reconstruct, back in the image domain,
the isolated contribution of the moiré in question to the
image superposition; this is the intensity profile of the
moiré [see Fig. 4(g)]. Note that although this moiré is
visible both in the layer superposition [Fig. 4(c)] and in
the extracted moiré intensity profile [Fig. 4(g)], the latter
does not contain the fine structure of the original layers
ri(x, y) and rq(x, y) but only the pure contribution of the
extracted moiré itself.

However, this term-by-term multiplication of the origi-
nal combs, as defined by Eq. (13), can be also interpreted,
back in the image domain, by using the T-convolution
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theorem, which is the periodic counterpart of the convo-
lution theorem. The full details can be found in Sec. 4.2
of Ref. 3; here we will only give the following result for the
(1, —1) moiré (as an illustration, refer to Fig. 4).

Proposition 2. The intensity profile of the (1, —1)
moiré that is generated in the superposition of two peri-
odic line gratings with periods 7; and T, and an angle
difference « can be seen from the image-domain point of
view as the result of a three-stage process:

1. Normalization of the original gratings (by linear
stretching and rotation transformations) in order to bring
both of them to a common period and orientation (that is,
to make their periods, or their impulse combs in the spec-
trum, coincide).

2. T convolution of the two normalized line gratings.

3. Stretching and rotating the resulting normalized
moiré intensity profile into its actual scale and orienta-
tion, as determined by Eqs. (10) and (11). |

Thus, whereas the period and the orientation of the
(1,—1) moiré bands are determined by Eqgs. (10) and (11),
their intensity profile is governed by Proposition 2. Note
that in the particular case where Ty = Ty and 6; ~ 0,
the (1, —1) moiré bands are approximately perpendicular
to the original gratings, and their period is given by Eq.
(8).

In conclusion, the T-convolution theorem allows us to
express the moiré profile that we have extracted in the
spectral domain in terms of the image domain, too. The
importance of the image-domain interpretation of the
moiré profile as a T convolution will become clearer in the
following.

D. Moire Effects in the Superposition of Periodic Dot
Screens

The generalization of the above results into the 2D case of
periodic dot screens is of particular importance for our
needs. We therefore summarize below the main results
that will be needed later. The full developments can be
found in Chap. 4 of Ref. 3.

Let r1(x, y) be a periodic dot screen whose frequencies
and orientations are given by the two perpendicular fre-
quency vectors f;, fy; and let ro(x, y) be a second periodic
dot screen whose frequencies and orientations are given
by the two perpendicular frequency vectors f5, f,. The
spectrum R(u, v) of the screen r{(x, y) consists of a 2D
impulse nailbed, whose impulses are located at integer
linear combinations of the two fundamental frequency
vectors of ri(x, y), mf; + nf,. Similarly, the spectrum
Ry(u, v) consists of a 2D nailbed whose (m, n)th impulse
is located at the integer linear combinations mf; + nf,.
The amplitude of the (m, n)th impulse of the ith nailbed
is denoted by a%{n .

Assume now that we superpose (i.e., multiply) r;(x, y)
and ro(x, y). According to the convolution theorem, the
spectrum of the superposition is the convolution of the
nailbeds R(u, v) and Ry(u, v); this means that a cen-
tered copy of one of the nailbeds is placed on top of each
impulse of the other nailbed (the amplitude of each copied
nailbed being scaled down by the amplitude of the im-
pulse on top of which it has been copied). This convolu-
tion gives a “forest” of impulses scattered throughout the
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a=f -f,

b=f,-f,

Fig. 6. Superposition of two dot screens with identical frequen-
cies and with an angle difference of « = 5° (top) and the corre-
sponding spectrum (bottom). Only impulse locations are shown
in the spectrum, but not their amplitudes. Encircled points de-
note the locations of the fundamental impulses of the two origi-
nal dot screens. Large points represent convolution impulses of
the first order (i.e., (kq, kg, k3, k4) impulses with 2; = 1, 0, or
—1); smaller points represent convolution impulses of higher or-
ders. (Note that impulses of only the first few orders are shown;
in reality, each impulse cluster extends in all directions ad infini-
tum.) The circle around the spectrum origin represents the vis-
ibility circle. Note that the spectrum origin is closely sur-
rounded by the impulse cluster of the (1, 0, —1, 0) moiré.

spectrum, as shown in Fig. 6. As we can see in the fig-
ure, the spectrum origin is closely surrounded by a full
cluster of impulses. The cluster impulses closest to the
origin, inside the visibility circle, include the
(ki, ko, ks, ky) impulse, the fundamental impulse of the
moiré in question,'! and its perpendicular counterpart,
the (—kq, k1, —ky4, k3) impulse, which is the fundamen-
tal impulse of the same moiré in the perpendicular direc-
tion. Naturally, each of these two impulses is also accom-
panied by its respective symmetrical twin to the opposite
side of the origin. The locations (frequency vectors) of
these four impulses are marked in Fig. 6 by a, —a, b, and
-b.
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If we look attentively at the impulse cluster surround-
ing the origin, we can see that this cluster is in fact a nail-
bed whose support is the regular lattice that is spanned
by a and b, the geometric locations of the fundamental
moiré impulses (b1, ko, ks, ky) and
(=ky, ki1, —ky, k3). This infinite impulse nailbed rep-
resents in the spectrum the 2D (kq, ky, k5, k4) moiré,
and its basis vectors a and b determine the period and the
two perpendicular directions of the moiré. This impulse
nailbed is the 2D generalization of the moiré comb that
we had in the case of line-grating superpositions. Note
that the impulse nailbed shown in Fig. 6 belongs to the
simplest first-order moiré between two dot screens, the
(1, 0, —1, 0) moiré, which is the 2D generalization of the
(1, —1) moiré between two gratings (Fig. 4).

The full expressions for the location and the amplitude
of each of the impulses of the (k, &y, k5, k4) moiré nail-
bed can be found in Ref. 3, Sec. 4.3. Here we will give
them only for the (1, 0, —1, 0) moiré. The location of the
(m, n)th impulse in the spectrum is given in this case by

ma + nb = mfl + nf2 - mf3 - nf4. (14)

For instance, the (1, 0)th impulse of the moiré nailbed is
the (1, 0, —1, 0)th impulse of the convolution, and it is lo-
cated in the spectrum at the point a = f; — f3. Simi-
larly, the (0, 1)th impulse of this moiré nailbed is the
(0, 1, 0, —1)th impulse of the convolution, and it is located
in the spectrum at the point b = f, — f;.

The amplitude d,, , of the (m, n)th impulse in the
(1, 0, —1, 0) moiré cluster is given by

dp,p=ala? 15)

m,n m,n” —m,—

This means that the (1, 0, —1, 0) moiré-nailbed is simply
a term-by-term product of the nailbeds R;(u, v) and
Ry(—u, —v) of the original screens, that is, where
Ry(u, v) is inverted (rotated by 180°) before the multipli-
cation.

Since we already know the exact locations of the im-
pulses of the moiré nailbed, this nailbed can be consid-
ered, in fact, to be a product of the two original nailbeds
after they have been normalized (rotated and stretched)
to fit the impulse locations of the resulting moiré nailbed.
Now this moiré nailbed can be extracted from the spec-
trum convolution. Thus by taking its inverse Fourier
transform, we can reconstruct, back in the image domain,
the isolated contribution of the moiré in question to the
image superposition; this is the intensity profile of the
moiré, a function in the image domain whose value at
each point (x, y) indicates quantitatively the intensity
level (more precisely: the reflectance or the transmit-
tance) of the moiré in question. Note that although this
moiré is visible both in the layer superposition
ri(x, y)ry(x, y) and in the extracted moiré intensity pro-
file, the latter does not contain the fine structure of the
original layers r(x, y) and ry(x, y) but only the pure
contribution of the extracted moiré itself.

Now, just as in the case of grating superposition (Sub-
section 2.C), the spectral-domain term-by-term multipli-
cation of the moiré nailbeds as defined by Eq. (15) can be
also interpreted, back in the image domain, by using the
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2D version of the T-convolution theorem (Ref. 3, p. 95).
This gives the following result, which is the 2D generali-
zation of Proposition 2:

Proposition 3. The intensity profile of the (1, 0, —1, 0)
moiré in the superposition of two periodic dot screens
with frequencies f;, f, and f;, f, and an angle difference
of a can be seen from the image-domain point of view as
the result of a three-stage process:

1. Normalization of the original screens (by linear
stretching and rotation transformations) in order to bring
both of them to a common period and orientation (that is
to make their periods, or their impulse nailbeds in the
spectrum, coincide).

2. T convolution of the two normalized screens.

3. Stretching and rotating the resulting normalized
moiré intensity profile into its actual scale and orienta-
tion, as determined by the vectors a = f; — f; and b
= f, — f,, or, more explicitly, by Egs. (5) and (6). |

Let us see now how this 7 convolution sheds a new
light on the profile form of the (1, 0, —1, 0) moiré and ex-
plains the striking visual effects observed in superposi-
tions of dot screens such as those in Fig. 3.

1. Shape of the Moiré Profile

Case 1. Suppose, first, that one of the superposed
screens consists of dots of a given shape (such as the digit
1) and that the other screen consists of tiny white (or
transparent) pinholes on a black background. In the T
convolution such pinholes play the role of very narrow
pulses with amplitude 1. As shown in Fig. 7(a), the T
convolution of such narrow pulses (from one of the
screens) and dots of any shape (from the other screen)
gives dots of the latter shape, in which the zero values re-
main at zero, the 1 values are scaled down to the value A
(the volume of the narrow white pulse divided by the total
period area), and the sharp step transitions are replaced
by slightly softer ramps. This means that the dot shape
received in the normalized moiré period is practically
identical to the dot shape of the other screen (in our ex-
ample, 1) except that its white areas turn darker. How-
ever, this normalized moiré period is stretched back into
the real size of the moiré period, T, as it is determined
by Egs. (5) and (6). Hence the moiré form in this case is
essentially a magnified version of the screen element (the
digit 1), where the magnification rate is controlled by the
angle « between the two screens.

Case 2. A similar effect, albeit somewhat less impres-
sive, occurs in the superposition where one of the two
screens contains tiny black dots [see Figs. 4.4(c) and
4.4(d) of Ref. 3]. Tiny black dots on a white background
can be interpreted as inverse pulses of 0 amplitude on a
constant background of amplitude 1. As we can see in
Fig. 7(b), the T convolution of such inverse pulses (from
one of the screens) and dots of any shape (from the other
screen) gives dots of the latter shape, where the zero val-
ues are replaced by the value B (the volume under a one-
period cell of the second screen divided by the period area)
and the 1 values are replaced by the value B — A (where
A is the volume of the “hole” of the narrow black pulse di-
vided by the period area). This means that the dot shape
of the normalized moiré period is similar to the dot shape
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(a) Convolution of tiny white dots (from the first screen) with dots of any given shape (from the other screen) gives dots of

essentially the same given shape; (b) convolution of tiny black dots (from the first screen) with dots of any given shape (from the other
screen) gives dots of essentially the same shape, but in inverse video.

of the second screen except that it appears in inverse
video and with slightly softer ramps.

Case 3. When none of the two superposed screens con-
tains tiny dots, either white or black, the profile form of
the resulting moiré is still a magnified version of the T'
convolution of the two original screens. As before, this T'
convolution gives some kind of blending between the two
original dot shapes, but this time the resulting shape has
a rather blurred or smoothed-out appearance, and the
moiré looks less attractive to the eye.

2. Orientation and Size of the Moiré Cells
As we can see in Fig. 3, although the (1, 0, —1, 0) moiré
cells inherit the forms of the original screen cells, they do
not inherit their orientations. Rather than having the
same direction as the cells of the original screens (or an
intermediate orientation), the moiré cells appear in a per-
pendicular direction. This fact is explained as follows.
As we already know, the orientation and the size of the
moiré are determined by the location of the fundamental
impulses of the moiré nailbed in the spectrum, i.e., by the
location of the basis vectors a and b. We have seen fol-

lowing Eq. (14) that in the case of the (1, 0, —1, 0) moiré,
these vectors are given by

a=f —f;,

b = f2 - f4 (16)

And indeed, as we can see in Figs. 6 and 8, when the two
original screens have the same frequency, these basis vec-
tors are perpendicular to the bisectors of the angles
formed between the frequency vectors f;, f; and f;, f,.
This means that in this case the (1, 0, —1, 0) moiré nail-
bed (and the corresponding moiré profile in the image do-
main) are closely perpendicular to the original screens
ri(x, y) and ry(x, y). The period of this moiré can be
found by Eq. (8), which was derived for the (1, —1) moiré
between two line gratings with identical periods 7' and
angle difference of «.

b=f,f,

The vectorial sum: -,
a=f-f;

\

\
\
\

\

Fig. 8. Detail from Fig. 6 showing the spectral interpretation
(vector diagram) of the (1,0, —1,0) moiré between two dot
screens with identical frequencies and a small angle difference a.
The low-frequency vectorial sums a and b [which are the geomet-
ric locations of the two fundamental impulses of the (1, 0, —1, 0)
moiré cluster] are closely perpendicular to the directions of the
two original screens: a is perpendicular to the bisecting direc-
tion between f; and f;, and b is perpendicular to the bisecting
direction between f, and f,.

3. GLASS PATTERNS IN THE
SUPERPOSITION OF APERIODIC GRATINGS

Having reviewed the basic concepts of the periodic cases,
we are ready now to investigate their aperiodic counter-
parts. We start our study with the superposition of ape-
riodic gratings consisting of parallel straight lines (see
Fig. 9). This case is simpler and easier to understand
than the superposition of aperiodic dot screens, and it will
serve as a useful introduction to the case of aperiodic dot
screens that we will study in Section 4.

Before we start, let us first introduce a few new terms
that will be needed in the following sections.
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Definition 1. Two layers (line gratings, dot screens,
etc.) will be called isometric if the individual elements in
the two layers (lines, dots, etc.) have the same locations.

|

For example, if dot screen rq(x, y) consists of arbi-
trarily located circular dots, and dot screen ry(x, y) is ob-
tained by replacing each of the circular dots of r{(x, y) by
a triangular dot that is centered at the same location,
then r(x, y) and ry(x, y) are isometric. Note that the
size of the triangular dots need not be identical to the size
of the original circular dots; all that we require is that
they be centered at the same locations.

Definition 2. Two layers (line gratings, dot screens,
etc.) will be called congruent if they can be made isomet-
ric (that is, brought into coincidence, element on element)
by rotations, translations, or any combination thereof. H

For example, any two periodic layers having the same
periodicity (or the same frequencies) are congruent.

Definition 3. Two layers (line gratings, dot screens,
etc.) will be called similar if they can be made congruent
by a linear spatial scaling. (Note that by spatial scaling
we mean a spatial expansion or contraction, not a scaling
in the function’s amplitude.) |

It follows, therefore, that similar layers can be brought
to coincidence, element on element, by rotations, transla-
tions, spatial scalings, or any combination thereof. Con-
gruent layers, however, have the same spatial scaling,
and they can have only different rotations or translations.

For example, any two periodic line gratings with peri-
ods Ty = T, are congruent; but if their periods 7'y and 7'y
are different, they are no longer congruent but only simi-
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Note that we will generally be interested in congruent
or similar layers that differ from each other only by slight
rotation or spatial-scaling transformations so that a
moiré effect (or Glass pattern) becomes visible in their su-
perposition.

Finally, some cases of particular interest are introduced
by the following definition:

Definition 4. An aperiodic layer with fixed element
shapes is a layer that is composed of identical elements
whose shapes and profiles are fixed but whose locations
are arbitrary (random, pseudorandom, or deterministic).
In particular, an aperiodic dot screen is said to have a
fixed dot shape if it is composed of dots whose shapes and
profiles are identical while their locations are arbitrary
(random, pseudorandom, or deterministic). Such screens
can be obtained, for example, by randomizing the dot lo-
cations of an initially periodic dot screen. An aperiodic
line grating is said to have a fixed line shape if it consists
of parallel lines having a fixed intensity profile but vary-
ing distances; the line distances may be random, pseudo-
random, or deterministic. |

A. Superposition of Correlated Gratings

Suppose we are given two aperiodic gratings r(x, y) and
ro(x, y) as shown in Figs. 10(a) and 10(b). We assume,
first, that the two gratings r{(x, y) and ry(x, y) are con-
gruent and that only their orientations are slightly differ-
ent. As shown in Figs. 9(a) and 10(c), such aperiodic
gratings give a clearly visible linear Glass pattern in their
superposition. Because each of the original gratings is
constant along its lines, i.e., perpendicularly to its main
direction, its spectrum R;(u, v) consists of a line impulse
(a “blade”) passing through the origin that is oriented
along the grating’s main direction [see Figs. 10(d) and
10(e)]. Aline impulse is a generalized function that runs
along a 1D line through the plane and is null everywhere

0
i
i
\\\\\\\\\\N\\\\\\\\\\i\\\\\\\\\\\\\\an:uut“mai\\\\\\\\\\\\\\\\\\\\\\\\\\\\

(b)

Fig. 9. (a) Superposition of two identical aperiodic line gratings with a small angle difference gives a moiré effect in the form of a linear
Glass pattern passing through the center of rotation. (b) When the superposed layers are periodic, a linear Glass pattern is still gen-
erated through the center of rotation, but owing to the periodicity of the layers, this pattern is periodically repeated throughout the

superposition, thus generating a periodic moiré pattern.



(d) (e) () (h)
Fig. 10. Correlated aperiodic line gratings (a) and (b) and their superposition (c) in the image domain; their respective spectra [obtained by 2D fast Fourier transform (FFT)]
are the infinite Hermitian blades (d) and (e) and their convolution (f). The white perpendicular line in (f) is the infinite Hermitian blade that represents the Glass pattern seen
in (¢). This Hermitian blade is shown isolated in (h), after its extraction from the spectrum convolution (f). The amplitude at each point of this blade is the point-by-point
product of the respective amplitudes of the blades (d) and (e) taken head to tail. In (g) is shown the image-domain function that corresponds to the spectrum (h), as obtained
by inverse FFT of (h); this is the intensity profile of the Glass pattern shown in (¢). Note that unlike its periodic counterpart (Fig. 4), the present figure has been obtained by

digital simulation; the scaling and angle parameters used here are slightly different in order to reduce aliasing and other FFT artifacts. Only the real parts of the spectra are
shown; the complex amplitudes of the blades (d) and (e) are similar to those shown in Fig. 11.
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else. A line impulse can be graphically illustrated as a
blade whose behavior is continuous (or diffuse; see end of
Subsection 2.B) along its 1D line support but impulsive in
the perpendicular direction.

As our aperiodic gratings in the image domain are real
valued but are not necessarily symmetric about the ori-
gin, it follows that their spectra are Hermitian (Ref. 8, p.
15). This means that the amplitude of each of the blades
in Figs. 10(d) and 10(e) is complex valued, where the real
part is symmetric with respect to the origin and the
imaginary part is antisymmetric (see Fig. 11).

Consider now the superposition of our aperiodic grat-
ings ri(x, ¥) and re(x, y) [Fig. 10(c)]. Since this super-
position is the product of the two original gratings, it fol-
lows according to the convolution theorem that the
spectrum of the superposition is the convolution of the
original spectra. The convolution of two 2D functions
can be illustrated graphically by the “move-and-multiply”
method (see, for example, Ref. 12 pp. 13 and 14 or Ref. 13
pp- 291 and 292): We first rotate one of the original func-
tions by 180°, and then we determine the value of the con-
volution at any point («, v) in the plane as the volume
under the product of the two functions when the origin of
the moving function is located at the point («, v). In our
case, the convolution is performed between two blades
R(u, v) and Ry(u, v) that have different orientations, so
the value of the convolution at any point in the (u, v)
plane is simply the product of the two blades R (u, v)
and Ry(—u, —v) at their intersection point. It follows,
therefore, that unlike in the periodic case, the spectrum of

bt sl

(@) (®)

Fig. 11. Amplitude of the Hermitian blade of Fig. 10(d). (a)
Real part of the amplitude, (b) the imaginary part of the ampli-
tude.
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the grating superposition [i.e., the convolution of the two
line impulses; see Fig. 10(f)] is no longer impulsive but
rather a 2D continuous (or diffuse) function. We will call
this function, for the sake of our discussion, a “hump.”
This hump is Hermitian, since it is the spectrum of the
grating product r(x, y)rs(x, y), which is obviously real
valued.

Consider now the cross section (infinitely thin slice) of
this hump that passes through the spectrum origin per-
pendicularly to the line bisecting the original line spectra
of Figs. 10(d) and 10(e). This section, which appears in
Fig. 10(f) as a white line, can be extracted by setting all
the rest of the spectrum convolution to zero. Clearly, this
isolated section [see Fig. 10(h)] is a line impulse; more-
over, the amplitude of this line impulse is, by construc-
tion, a spatially scaled version of the product of the two
original line impulses, one of which has been inverted (ro-
tated by 180°) before the multiplication. Thus, if we con-
sider in the spectral domain each of the two original line
impulses P, and P, as well as our new line impulse P as
a 1D function running along its own main direction, we
obtain

P(fy) = P1(f)Py(—f), a7

where f); = cf, ¢ being a scaling factor that depends on
the angle difference « between the two original line im-
pulses (i.e., the angle between the original gratings).
The value of fj; for any given point f along the original
blades can be found as shown in Fig. 12:

ful2
sin(a/2) = —;
f
hence
fu = 2f sin(a/2), (18)
¢ = fylf = 2sin(a/2). (19)

Note that the functions P;(f) and P,(f) are identical
to the spectra of the original layers, R;(u, v) and
Ry(u, v) except that they are expressed in terms of dif-
ferent basis vectors.

v
3

The resulting
_— moiré line impulse

P(4p)

e
Line impulse
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(b)
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BN
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©

Fig. 12. Geometric consideration in the frequency domain illustrating the scaling ratio between the original line spectra shown in (a)

and (b) and the isolated line spectrum shown as a dotted line in

(c).
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We immediately recognize that Eq. (17) is, in fact, a
generalization of Eq. (13) of the (1, —1) moiré between
two periodic gratings: It generalizes the purely impul-
sive spectra of periodic gratings into the continuous (or
diffuse) line-impulse spectra of aperiodic gratings. Fur-
thermore, Eq. (18) is identical to Eq. (7), which was ob-
tained in the case of the (1, —1) moiré between two peri-
odic gratings with the same frequency (f; = f3); the only
difference is that in our case we cannot proceed from Eq.
(18) to the language of periods, as we did in the periodic
case [Eq. (8)], because in an aperiodic case there is no
equivalent to the relation T' = 1/f.

It should be noted that Eqgs. (17) and (18) above were
derived for the case in which the original gratings have
undergone only rotations but not scalings. (Recall our
assumption in the beginning of Subsection 3.A that our
two aperiodic gratings are congruent and only their orien-
tations are slightly different.) If, in addition to the rota-
tion, each of the gratings undergoes a scaling transforma-
tion, Eqgs. (17) and (18) become

P(fy) = P1(f1)Pa(—f2) (20)

and

fu = (f1% = 2f1fz cos a + f,%)2 (21)

These are generalizations into the aperiodic case of
Egs. (13) and (9) of the (1, —1) moiré between two periodic
gratings with different frequencies f; # fy. Note that in
this case the cross section [Eq. (20)] through the spectrum
convolution is no longer oriented perpendicularly to the
bisector of the original line impulses; it can be shown that
its orientation is given, just like in the periodic case [see
Eq. (11)], by

T2 sin 01 - Tl sin 02

¢y = arctan (22)

Ty cos 6, — T cos 0]

We see, therefore, that Egs. (17) and (20) are the ape-
riodic counterparts of Eq. (13) that we have obtained in
Subsection 2.C in the case of the (1, —1) moiré between
periodic gratings. The (1, —1) moiré is indeed the sim-
plest and most common type of a (k;, k5) moiré between
two periodic gratings; the reason that this particular
moiré is the basis for the generalization into the aperiodic
case will be explained later, in Section 5.

Hence, interestingly, the extension of the periodic case
into the aperiodic case is most naturally done in the spec-
tral domain, where, instead of considering three impulse
combs with discrete frequencies nf;, nf,, and nfy
= n(f; — fy), n € 7, as we did in the periodic case, we
consider three line impulses with continuous frequencies
nf,, nfy, and nfy;, = n(f; — f,), where n € R. Each of
these line impulses is therefore a continuous extension of
the corresponding impulse comb, where the gaps between
the discrete impulse locations have been filled in. In this
continuous case, the basis vectors f;, fy, and f;; along the
respective line impulses simply indicate the correspond-
ing unit frequency rather than a discrete fundamental
frequency that determines a periodicity in the image do-
main.

The relationship between the discrete spectra of the pe-
riodic case and the continuous spectra of the aperiodic
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case can be shown even better by rewriting Eq. (20) in an
equivalent form, using the basis vectors f;;, f;, and f5:

P(nfy) = Pi(nf))Py(—nf,), neR,  (23)

where f1, fs2, and fj; of Eq. (20) are the lengths of the vec-
tors nf;, nfy, and nfy;. This can be written in a more
concise form, where the coordinate n of each of the line
impulses is expressed in terms of its own basis vector, f;;,
f, orf,:

P(n) = P{(n)Py(—n), n e R. (24)

This is clearly the continuous counterpart of Eq. (13).
Note that in Eq. (13), too, the index n in each of the three
components refers to the nth impulse of a different comb,
and the corresponding impulse location in the u,v plane
is determined in terms of the fundamental frequency vec-
tor of its own comb: £, f;, or f5.

This relationship between the periodic and the aperi-
odic cases can be graphically illustrated by comparing the
spectra of Fig. 4 (the periodic case) and Fig. 10 (its aperi-
odic counterpart).

Extending this relationship between Fig. 4 and Fig. 10
one step further, we may guess that the line impulse of
Fig. 10(h), which we have extracted from the spectrum
convolution Fig. 10(f), is the spectrum of the moiré effect
that is generated in the superposition of the two gratings,
namely, in our case, the linear Glass pattern that is
clearly visible in Fig. 10(c). And, indeed, if we apply an
inverse Fourier transform on the extracted line impulse of
Fig. 10(h), we obtain back in the image domain [see Fig.
10(g)] the intensity profile of the isolated Glass pattern of
Fig. 10(c). Note that just as in the periodic case (Fig. 4),
this extracted Glass pattern no longer contains the fine
structure of the original layers but only the pure contri-
bution of the Glass pattern itself.

However, since the extracted line impulse of Fig. 10(h)
is a normalized product of the line impulses of the origi-
nal spectra, as stated by Eq. (20), it follows from the con-
volution theorem that the extracted intensity profile of
the Glass pattern, shown in Fig. 10(g), is simply a normal-
ized convolution of the intensity profiles of the two origi-
nal gratings.

This result can therefore be formulated as an extension
of Proposition 2 of Subsection 2.C into the aperiodic case:

Proposition 4. The intensity profile of the linear Glass
pattern that is generated in the superposition of two simi-
lar aperiodic line gratings (namely, isometric gratings
that have undergone linear rotation and spatial-scaling
transformations) can be seen from the image-domain
point of view as the result of a three-stage process:

1. Normalization of each of the original gratings by
applying on it the inverse of its rotation and spatial-
scaling transformation.

2. Convolution of the two normalized gratings, giving
the normalized linear Glass pattern.

3. Rotating and spatially scaling the normalized
Glass pattern into its actual scale and orientation, as de-
termined by Eqgs. (21) and (22). |

This result can be stated more formally as the aperiodic
counterpart of Proposition 10.2 of Ref. 3, p. 330:
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Proposition 5. Let ri(x, y) and ry(x, y) be two aperi-
odic line gratings that are obtained by applying linear
transformations (scalings, rotations, etc.) g;(x, y) and
gao(x, y), respectively, on two isometric aperiodic line
gratings that have the intensity profiles p(x') and
pax’):

ri(x, y) = p1(gi(x, ¥)), ro(%x, ) = palgalx, ¥)).
Then the Glass pattern m(x, y) in the superposition of
ri(x, y) and ro(x, y) is given by

m(x,y) = p@(x, y)),

where

1. p(x'), the normalized intensity profile of the Glass
pattern, is the convolution of the normalized intensity
profiles of the original gratings,

p(x') = pi(x)*pa(—x'); (25)

2. g(x,y), the linear transformation that brings
p(x’) back into the actual scale and orientation of the
Glass pattern m(x, y) is given by

gx,y) =g1(x,y) — galx, y). m (26)

Note that if the explicit expressions of the linear trans-
formations g(x, ¥) and g4(x, y) are given by

gi(x,y) =ux + vy =f;-x

with f1 = (ul, Ul), X = (x’y)’
8a(x, y) = ugx + vgy = fo-x
with f2 = (u2, U2), X = (x’ y)’

then we have
g(x,y) = (ug —ug)x + (v —vy)y = fiy-x

with £, = f; — £, X = (x,y).

This general formulation embraces formulas (21) and
(22) and their particular case, Eq. (18), which simply give
explicit expressions for the length and the orientation of
the vector f); = f; — f5. But whereas in the periodic
case f;, f; and f); = f; — £, were the frequency vectors of
the original periodic gratings and of the resulting moiré,
here they are simply the basis vectors of the respective
spectra, and they convey only the scaling and the orien-
tation of the aperiodic gratings—but not any notion of
periodicity.**

Thus, by extending our moiré theory from the periodic
case to the aperiodic case, we have succeeded in extract-
ing the isolated Glass pattern from the grating superpo-
sition both in the spectral domain and in the image do-
main. The full significance of these results will be better
appreciated in Section 4, when we will discuss their 2D
counterparts.

Remark 1. Note that since the intensity profiles p;()
are not periodic, we are dealing here with convolution and
not, as in Section 2, with 7' convolution (the periodic coun-
terpart of convolution). Whereas this convolution gives a
single Glass pattern, T' convolution gives in the periodic
case infinitely many moiré replicas. The reason is that in
the periodic case, each time the moving layer in the move-
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and-multiply convolution process advances by a full pe-
riod, the same values are recorded in the result on a pe-
riodic basis.

B. Superposition of Uncorrelated Gratings
What would have happened now if the original gratings
ri(x, y) and ry(x, y) were not isometric (or at least cor-
related) before undergoing the linear rotation and scaling
transformations g(x, y) and g4(x, y)? As shown in Fig.
13, two uncorrelated gratings (a) and (b) do not generate a
Glass pattern in their superposition (c). Let us see how
we can explain this fact using the theory we have devel-
oped above.

First of all, we note that the convolution in Eq. (25) is,
in fact, the cross correlation of p;(x’) and py(x’) (see Ref.
13, p. 172):

p1(x') *py(x') = pi(x’) * pa(—x).

Intuitively, the cross correlation of two functions is ob-
tained by a move-and-multiply process similar to that of
convolution, except that none of the two original functions
is inverted (or rotated by 180°) before the operation.
Suppose, first, that our two original layers are isometric.
Therefore when p;(x’) and py(x’) are located, during the
move-and-multiply process, in full or almost full coinci-
dence, the resulting cross-correlation values (the volume
under the product function) are high; but when the two
layers are out of coincidence, the resulting values fluctu-
ate arbitrarily around some mean value. This results in
much higher values around the center of the cross corre-
lation [see Fig. 14(a)l. And indeed, this area of higher
values in the center of the cross correlation simply repre-
sents the brighter zone in the center of the intensity pro-
file of the Glass pattern [see Fig. 10(g)]l. A similar result
will be obtained whenever the two original layers are well
correlated, giving a “privileged” area of brighter values in
the center, which corresponds to the Glass pattern. But
when the original layers are not correlated, there exists
no mutual locus where all of their elements fall on top of
one another, and therefore their cross correlation does not
contain such a privileged area; it simply fluctuates
around the same mean level throughout [see Fig. 14(b)].
Hence no visible structure (Glass pattern) appears in the
superposition. Note, however, that the terms “high val-
ues” and “brighter” that we have used above to describe
the privileged area in the center of the cross correlation
are not always appropriate. This will be explained in Re-
mark 2.

Remark 2. It should be noted that the privileged area
in the center of the cross correlation of two correlated lay-
ers is not necessarily brighter. If the two layers involved
are correlated and each of them has fixed element shapes,
it follows that when the layers are in full or almost full
coincidence during the move-and-multiply process, all of
their individual elements coincide simultaneously in the
same manner. Therefore in this privileged area, the val-
ues of the full-layer convolution (or cross correlation) are
determined basically by the convolution (or cross correla-
tion) of a single element from each layer. But although
in many cases this indeed gives high values in the privi-
leged area, in other circumstances the result may have a
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Fig. 13. Same as in Fig. 10, but with two different aperiodic line gratings (a) and (b). No Glass pattern is generated in their superposition (c).
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Fig. 14. (a) Cross section through the extracted Glass pattern of
Fig. 10(g), showing its intensity profile. (b) Cross section
through Fig. 13(g). Clearly, when the original gratings are not
correlated, no Glass pattern is visible in their superposition nor
in the extracted intensity profile.

more interesting shape. In Subsection 4.B this will be il-
lustrated in the 2D case through Fig. 7.

In conclusion, it has been shown that the fundamental
relationship between the image domain and the spectral
domain holds also in the generalized case in which the su-
perposed gratings are no longer periodic. This is illus-
trated clearly by Figs. 4 and 10. The main differences be-
tween periodic and aperiodic cases are that in aperiodic
cases our spectra consist of continuous structures instead
of discrete impulses and that frequency considerations in
the spectral domain, such as those leading to Eq. (18) (see
Fig. 12), can no longer be interpreted in the image domain
in terms of periods.

4. GLASS PATTERNS IN THE
SUPERPOSITION OF APERIODIC DOT
SCREENS

Having understood the simpler case of aperiodic line grat-
ings, we are ready now to proceed to the superposition of
aperiodic dot screens.

A. Superposition of Correlated Screens

Suppose we are given two aperiodic dot screens r;(x, y)
and ro(x, y). We assume, first, that the two screens are
either congruent or similar and that only their orienta-
tions (and possibly their spatial scalings) are slightly dif-
ferent. As shown in Fig. 1(a), such aperiodic dot screens
give a clearly visible Glass pattern in their superposition.

Unlike in the case of aperiodic gratings, the spectrum
of an aperiodic screen is no longer a line impulse but a 2D
continuous (or diffuse) hump, which is, of course, Hermit-
ian, since our aperiodic screen is real valued.

Consider now the superposition of our aperiodic screens
ri(x, y) and ro(x, y). Since this superposition is the
product of the two original gratings, it follows according
to the convolution theorem that the spectrum of the su-
perposition is the convolution of the original spectra.
Hence, unlike in the periodic case, this spectrum convolu-
tion is not impulsive but rather a 2D continuous (or dif-
fuse) hump.

Following our experience from the previous cases, and
as an extension of Fig. 4(h) and Fig. 10(h), we would like
now to extract from this convolution the 2D spectrum that
belongs to the isolated Glass pattern. Let us try, there-
fore, to identify the spectrum that we would like to ex-
tract. As we did in the case of aperiodic gratings (Section
3), we consider the simplest moiré between two periodic
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screens, namely, the (1, 0, —1, 0) moiré. The reason that
this particular moiré is the only one that can be general-
ized into the aperiodic case will be explained later, in Sec-
tion 5. As we already know, the impulse amplitudes of
the (1, 0, —1, 0) moiré between periodic screens are given
by Eq. (15):

d

—aD @

mn mon@m. —n with m,n e 7.

Note that in this equation the indices m, n in each of
the three components refer to the m, nth impulse of a dif-
ferent nailbed. The location of this impulse in the u, v
plane is determined in terms of the fundamental fre-
quency vectors of its own nailbed, which are, respectively,
a=f —fyandb=1f, — £, f; and f,, and f; and £, (see
Fig. 6).

Now, being inspired by what we did in the case of ape-
riodic gratings [Eq. (24)], we consider the continuous ex-
tension of the spectrum given by Eq. (15), namely,

P(m, n) = Py(m, n)Py(—m, —n) with m,n € R,

27
where the coordinates m, n of each of the three functions
is expressed in terms of its own basis vectors. Note that
P,(m, n) and Py(m, n) are identical to the spectra of the
original screens, R(u, v) and Ry(u, v) except that they
are expressed in terms of different basis vectors, as ex-
plained below.

As we remember, we have assumed that our super-
posed screens are congruent (or similar). This means
that the original screens were initially isometric, but be-
fore being superposed, each of them was linearly trans-
formed (scaled and rotated). Thus the coordinates m,n
in P,(m, n) are expressed in terms of the basis vectors
f,, f5 of the first spectrum after it has been scaled and ro-
tated; and similarly, the coordinates m,n in Po(m, n) are
expressed in terms of the basis vectors f;, f; of the second
spectrum after it has been scaled and rotated. The re-
sulting spectrum, P(m, n), is defined as the product of
Pi(m, n) and Po(—m, —n), but its coordinates m, n are
expressed in terms of the basis vectors a = f; — f3 and
b=1f - f,.

Therefore Eq. (27) can be written, back in our usual
u, v coordinate system, as follows:

Now, as we did in the previous cases, we wish to extract
P(m, n) from the spectrum convolution. However, in the
present case this seems to be rather hopeless, because un-
like in the cases we have studied previously, both the full
convolution and the spectrum we wish to extract from it
are 2D humps that overlap each other and are not sepa-
rable. In other words, P(m, n) cannot be separated or
isolated by setting the rest of the spectrum convolution to
zero, as was the case in the previous sections (see Figs. 4,
6, and 10). Nevertheless, we can still synthesize this iso-
lated spectrum, using Eq. (27). And indeed, if we apply
an inverse Fourier transform on the extracted hump
P(m, n), we obtain, back in the image domain, the inten-
sity profile of the isolated Glass pattern. Note that just
like in the periodic case, this extracted Glass pattern does
not contain the fine structure of the original layers but
only the pure contribution of the Glass pattern itself.
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But since the extracted function P(m, n) is a normal-
ized product of the spectra of the original screens, as
stated by Eq. (27), it follows from the convolution theorem
that the extracted intensity profile of the Glass pattern is
simply a normalized convolution of the intensity profiles
of the two original screens. This result can therefore be
formulated as an extension of Proposition 3 (Subsection
2.D) into the aperiodic case.

Proposition 6. The intensity profile of the Glass pat-
tern that is generated in the superposition of two similar
aperiodic dot screens (i.e., isometric screens that have un-
dergone linear rotation and spatial-scaling transforma-
tions) can be seen from the image-domain point of view as
the result of a three-stage process:

1. Normalization of each of the original screens by ap-
plying on it the inverse of its rotation and spatial-scaling
transformation.

2. Convolution of the two normalized screens, giving
the normalized Glass pattern.

3. Rotating and spatially scaling the normalized
Glass pattern into its actual scale and orientation, as de-
termined by the vectors a = f; — f; and b = f, — f;, or,
more explicitly, by Eqs. (21) and (22). |

Note that the aim of the normalization is to bring all
three functions in Eq. (27) to the same common basis (or
coordinate system) before we perform the multiplication.
The need for this normalization was more obvious in the
periodic case (Propositions 2 and 3), where the entities to
be multiplied in the spectral domain were impulse combs
or impulse nailbeds, whose multiplication was done term
by term; but it remains essential in the aperiodic case,
too, although the entities to be multiplied are continuous.

This result can be stated more formally as the aperiodic
counterpart of Proposition 10.5 of Ref. 3, p. 339; note that
functions denoted by boldface letters indicate mappings of
R? onto itself:

Proposition 7. Let ri(x) and ryo(x) be two aperiodic
screens that are obtained by applying linear mappings
(scalings, rotations, etc.) g;(x) and g,(x), respectively, on
two isometric aperiodic screens that have intensity pro-
files p1(x') and py(x'):

r1(x) = p1(g1(x), ro(X) = pa(ga(x)).

Then the Glass pattern m(x) in the superposition of r;(x)
and ry(x) is given by
m(x) = p(g(x)),

where

1. p(x’'), the normalized intensity profile of the Glass
pattern, is the convolution of the normalized intensity
profiles of the original screens:

p(X') = p1(X')** py(—X'); (29)

2. g(x), the linear transformation that brings p(x’)
back into the actual scale and orientation of the Glass
pattern m(x), is given by

g(x) = g1(x) — g(x). (30)

Note that if the explicit expressions of the linear map-
pings g;(x) and g,(x) are given by
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This indeed gives us, the connection between Eq. (30)
and the basis vectors of the individual screens and their
resulting moiré, which are, respectively, f; and f,, f; and
f,, and a and b, where a = f; — fy and b = f, — £, ex-
actly as in the periodic case [see Eq. (16)].1

Thus by extending our moiré theory from the 2D peri-
odic case to the 2D aperiodic case, we have succeeded in
extracting the isolated Glass pattern from the screen su-
perposition both in the spectral domain and in the image
domain. Let us now see the full significance of this re-
sult.

B. Shape of the Glass Pattern

Following our previous experience with periodic dot
screens (see Subsection 2.D.1), we divide our study into
three cases.

Case 1. Suppose, first, that one of the superposed lay-
ers is an aperiodic screen consisting of arbitrarily posi-
tioned dots having a fixed shape (such as the digit 1) and
that the second layer is an aperiodic screen consisting of
tiny pinholes on a black background, where the dot loca-
tions in the two screens are identical (or slightly trans-
formed). In the convolution such pinholes play the role of
very narrow pulses with amplitude 1. According to Re-
mark 2 in Subsection 3.B, the shape of the Glass pattern
that is generated in the layer convolution is determined
basically by the convolution of one element from each
layer. As shown in Fig. 7(a), this means that in this case,
just as happens in the superposition of periodic layers
(Subsection 2.D), the moiré (or Glass) pattern that ap-
pears in the superposition is essentially a magnified and
rotated version of an individual dot of the first screen.
But as already explained in Remark 1 at the end of Sub-
section 3.A, the Glass pattern generated in the aperiodic
case is not periodically repeated throughout the superpo-
sition, as in the periodic case, and it consists of only one
copy of the magnified dot shape (compare Figs. 2 and 3).
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This surprising result seems at first to contradict the
basic properties of Glass patterns as generally known un-
til now. A classical Glass pattern is expected to be
brighter in its center than in areas farther away, owing to
the partial overlapping of the dots of the two layers in this
area [see Fig. 1(a)]l. But the Glass pattern of Fig. 2 seems
to completely contradict this property.

In reality, however, there is no contradiction at all.
The key point is that in classical Glass patterns, as
known until now, the two superposed layers were identi-
cal, both consisting of black dots on a white background.
But if, as shown in Fig. 2, one of the screens consists of
tiny pinholes on a black background and the other screen
has a fixed dot shape, then the convolution of the dot
shape of one screen with the dot shape of the other screen,
gives, indeed, a Glass pattern that has the intensity pro-
file of the dot shape of the other screen.

Case 2. Suppose now that we replace our pinhole
screen by an inverse-video copy of itself, consisting of tiny
black dots on a white (or, rather, transparent) back-
ground. In this case the convolution of the individual dot
shapes of the two layers basically gives an inverse-video
version of the result in the first case, as shown in Fig.
7(b). Hence if one of the screens contains tiny black dots
and the other screen has a fixed dot shape, then the moiré
intensity profile that we obtain is a magnified version of
the individual dot shape of the other screen, but this time
in inverse video. In our example, we will obtain a single
1-shaped Glass pattern that is brighter inside the digit
shape and darker outside. Note, however, that this
moiré intensity profile is weaker and less impressive than
that of the previous case.

Case 3. Finally, when none of the superposed layers
consists of tiny dots (either white or black), or when the
superposed layers do not have fixed element shapes, the
intensity profile form of the resulting moiré (or Glass pat-
tern) is still a magnified version of the convolution of the
dot shapes of the two layers. This convolution gives
some kind of blending between the original dot shapes,
but the resulting shape has a blurred or smoothed-out ap-
pearance resembling a 2D Gaussian, with no recognizable
shapes. As we can now understand, this is exactly what
happens in classical Glass patterns, where the two super-
posed layers are identical [as in Fig. 1(a)] or where their
dot shapes are arbitrary. This is also the reason for
which Glass patterns described in the past did not have
the shape of a magnified element from one of the super-
posed layers.

C. Orientation and Size of the Glass Pattern

Looking at Figs. 2 and 3, we already know by now how to
explain their common 1-shaped moiré (or Glass) pattern:
In both the periodic and the aperiodic cases, this is simply
a normalized convolution of a single pinhole from one
layer and a single 1 element from the other layer. But
how can we explain the fact that in the two cases the re-
sulting moiré (or Glass) patterns have the same orienta-
tion and the same size?

As we have seen, the (1, 0, —1, 0) moiré in the periodic
case and the Glass pattern in the aperiodic case are gov-
erned by the same basis vectors in the spectrum [Eq.
(16)]:
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a=f —f;,
b:f2_f4.

Although in the aperiodic case these vectors cannot be
interpreted in terms of periodicities as in the periodic
case, they still determine the orientation and the size of
the resulting moiré effect. For example, when the two
superposed screens are congruent (meaning that they
have the same scaling or, in the periodic case, the same
frequencies or periodicities), the basis vectors a and b are
perpendicular to the bisectors of the angles formed be-
tween the frequency vectors f;, f; and f,, f,. This
means that the (1, 0, —1, 0) moiré (or the Glass pattern)
are closely perpendicular to the original screens r{(x, y)
and ry(x, y) (see Figs. 2 and 3). As for the size of the
Glass (or moiré) patterns, they are obtained by multiply-
ing the original screen element size by the spatial scaling
(magnification) of the moiré. For example, if the length
of each of the basis vectors f; ...f, of the original screens is
f and the length of each of the two basis vectors a and b of
the Glass (or moiré) pattern is f3; = 0.1f, then the size of
the 1-shaped moiré in both Figs. 2 and 3 will be ten times
the size of the element 1 in the original screen. But
whereas in the periodic case the magnification rate can be
also interpreted in terms of periods, T, = 107, in the
aperiodic case the interpretation is done in terms of the
scaling ratio, which is clearly the aperiodic counterpart of
the periodic notion of frequency ratio [compare Eqgs. (18)
and (19) in the aperiodic case with Egs. (7) and (8) in the
periodic case].

We therefore obtain the following remarkable result:

Proposition 8. If the respective dot screens in the pe-
riodic case and in the aperiodic case consist of the same
microstructure elements and they have the same angle
difference « and the same scaling factors, then the result-
ing (1, 0, —1, 0) moiré (or Glass) patterns in the two cases
have the same shape, the same size, and the same orien-
tation. The only difference is that in the aperiodic case
only one such pattern is generated, whereas in the peri-
odic case there appear infinitely many replicas, as already
explained in Remark 1. |

The above result is clearly illustrated in Figs. 2 and 3.

D. Superposition of Uncorrelated Screens

What would have happened now if the original screens
ri(x, y) and ry(x, y) had not been isometric (or at least
correlated) before undergoing the linear rotation and scal-
ing transformations gi(x, y) and go(x, y)? It is well
known that two uncorrelated screens do not generate a
Glass pattern in their superposition. This can be ex-
plained, just as in the case of aperiodic gratings (Subsec-
tion 3.B), by using the fact that the convolution in Eq. (29)
is the cross correlation of p(x’) and py(x'):

P1(X") xx py(X') = pq(X') ** py(—x').

Therefore, as we have already seen in Subsection 3.B, if
the original screens are correlated, their cross correlation
contains in its center a privileged area that corresponds
to the Glass pattern. But when the original screens are
not correlated, their cross correlation does not contain
such a privileged area, and it simply fluctuates around
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the same mean level throughout. Hence no visible struc-
ture (Glass pattern) appears in the screen superposition.

E. Discussion

We have seen that the fundamental moiré relationship
between the image domain and the spectral domain holds
also in the generalized case where the superposed screens
are no longer periodic. Note, however, that in the case of
aperiodic screens the spectral considerations are much
less intuitive, and we have obtained them by virtue of the
insights that we have gained by analyzing the simpler
cases in the previous sections.

But the importance of our results is not only in the the-
oretical generalization of the periodic moiré theory into
the case of aperiodic layers: Our results allow, appar-
ently for the first time, the quantitative prediction of the
intensity profile of the resulting Glass patterns; and fur-
thermore, they open the way to the synthesis of Glass pat-
terns that have any desired shapes and intensity profiles.

These results may find application in several scientific
and technological disciplines. For example, they can be
used in vision research; in physiological experiments such
as form perception; and in the study of the human visual
system, where classical Glass patterns have been used for
a long time.2!® Possible technological fields of applica-
tion may include precision optical alignment, image reg-
istration, measurement of microscopic displacements,'®
analogic magnifiers, and even document security and
authentication.!”

5. HIGHER-ORDER MOIRES

It is interesting to note that the moiré theory that we
have developed here for aperiodic line gratings and for
aperiodic dot screens is in fact a generalization of the
first-order (1, —1) moiré between periodic line gratings or
its 2D counterpart, the (1, 0, —1, 0) moiré between peri-
odic dot screens. The reason is that in aperiodic struc-
tures, higher-order moirés simply do not exist: Whereas
in periodic cases new higher-order moirés may occur
when a scaling ratio of s = 2, 3, etc., is applied to one of
the superposed layers, in aperiodic cases no higher-order
moirés can exist, since at such scaling ratios no correla-
tion exists between the superposed layers [for instance, a
random screen r(x, y) is not correlated with r(2x, 2y)].

Furthermore, it turns out that even the other first-
order moirés from the periodic case do not have equiva-
lents in the aperiodic case: As we have seen throughout
this paper, our generalization from the periodic to the
aperiodic case concerns only the subtractive (1, —1) moiré
(or its 2D counterpart, the (1, 0, —1, 0) moiré, in the case
of dot screens) but not the additive (1, 1) moiré (or its 2D
counterpart, the (1, 0, 1, 0) moiré). The aperiodic equiva-
lent of the (1, 1) moiré would be obtained theoretically as
a continuous extension of d, = a"a'?’, namely, P(n)
= P,(n)Py(n) [compare with Eqgs. (13) and (24)]. But
owing to the lack of inversion in Py(n), the result in the
image domain is the cross correlation of p;(x') and
po(—x'), which are not correlated [the correlated func-
tions are p;(x') and py(x')]. Therefore in such cases no
Glass pattern is generated in the superposition.
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The subtractive (1, —1) moiré [and its 2D counterpart,
the (1, 0, —1, 0)-moiré] are indeed the strongest, the sim-
plest, and the most frequent of all the (&, ky) or
(ky, kg, kg, ks) moirés between periodic gratings (or dot
screens). They give the most spectacular moiré effects
between periodic layers, like those of Fig. 3, and their ex-
planation, both in the image domain and in the spectral
domain, is the most straightforward (see Chap. 4 of Ref.
3). It is therefore interesting to see that when we ran-
domize the element locations in two originally periodic
layers, the only moiré that survives in the resulting layer
superposition is precisely the (1, —1) moiré (in the case of
gratings) or the (1, 0, —1, 0) moiré (in the case of screens).
Note that even in this surviving moiré, only one of the in-
finitely many moiré replicas from the periodic case still
survives in the aperiodic case; it has been shown® that
this is precisely the one that is generated around the fixed
point of the two superposed screens.

6. CONCLUSIONS

In spite of their different appearance, moiré effects that
occur between periodic or between aperiodic structures
are particular cases of the same basic phenomenon, and
all of them satisfy the same fundamental rules. Super-
positions of periodic structures are simply a particular
case in which the elements within each of the layers are
arranged periodically so the resulting moiré effect is peri-
odic, too.

We have shown that Glass patterns between aperiodic
layers can be analyzed by using an extension of the math-
ematical theory that governs the classical moiré patterns
between periodic layers. Spectral-domain considerations
are extended in a natural way to such aperiodic cases, al-
though their handling is less intuitive than in the periodic
case. Our results allow us to predict quantitatively the
intensity profile of the resulting Glass patterns; further-
more, they lead us to the possibility of synthesizing Glass
patterns that have any desired shapes and intensity pro-
files.

It should be noted that although we have limited our
discussion here to monochrome black-and-white layers,
the extension of our results to the multichromatic case is
straightforward, and it can be done exactly as in the pe-
riodic case (see, for example, Chap. 9 in Ref. 3).

APPENDIX A: INTERMEDIATE, PARTLY
RANDOM CASES

Having developed our generalized Fourier-based ap-
proach, which explains quantitatively the moiré (or
Glass) patterns between both periodic and aperiodic, ran-
dom layers, it would be interesting to see now whether
this general theory could also predict the behavior of
moiré patterns in intermediate cases, that is, when the el-
ement locations in the two superposed layers are neither
fully periodic nor fully random. Such partly random lay-
ers can be obtained, for example, by adding a varying de-
gree of randomness to the element locations in an initially
fully periodic layer. As we can see in Fig. 15, the result-
ing Glass patterns in such cases indeed have an interme-
diate look: Depending on the degree of randomness be-
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ing added, they may have around the center one or more
oscillations between darker and brighter areas. But be-
cause the correlation between the layers decreases with
the distance, these oscillations are not repeated ad infini-
tum as in the periodic case, and they gradually fade out
and disappear as we go farther from the center of the
Glass pattern. Clearly, the higher the degree of random-
ness, the lower the number of oscillations around the cen-
ter. These oscillations are, in fact, replicas of the central
Glass pattern that gradually become more and more noisy
as we go farther from the center, until they finally disap-
pear completely within the background noise.

From the image-domain point of view, the center of the
Glass patterns in Fig. 15 consists of a gray level brighter
than areas farther away, owing to the partial overlapping
of the microstructure elements of the two layers in this
area. Because of the residual periodicity in the super-
posed layers, elements from the two layers half a period
away from the center are more likely to fall side by side,
thus increasing the covering rate and the macroscopic
gray level. Depending on the degree of periodicity in the
superposed layers, several such oscillations between
brighter and darker areas may occur in the superposition.
But as we go farther away from the center, the correlation
between the two layers becomes lower, and the elements
from both layers start falling in an arbitrary, noncorre-
lated manner; in this area the Glass pattern fades out,
and we obtain a mean gray level that remains constant
throughout.

Indeed, these image-domain considerations are fully
confirmed in the spectral domain, too. As one would ex-
pect, the Fourier spectrum of such partly periodic layers
is intermediate between the spectra of periodic and ape-
riodic cases: Its blade consists of partly blurred impulses
corresponding to the frequencies in question plus a dif-
fuse background that is typical of stochastic cases. More-
over, as shown in Fig. 15, the moiré intensity profile ob-
tained by an inverse Fourier transform of the extracted
moiré blade shows clearly the oscillations between darker
and brighter areas, which fade out and disappear as we
go farther away from the center; and the number of oscil-
lations clearly depends on the degree of randomness.
This confirms that our generalized Fourier-based ap-
proach indeed predicts the quantitative behavior of moiré
patterns in all cases—periodic, random, and intermedi-
ate.

It should be noted that although the case of partly ran-
dom layers has been illustrated here by line gratings for
the sake of simplicity, the same results remain true for
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dot screens, too, and in particular for all the special cases
enumerated in Subsection 4.B. For example, partly ran-
domized versions of Fig. 3 indeed look intermediate be-
tween Figs. 2 and 3, with a sharp Glass pattern in the
center that is surrounded by several blurred replicas de-
pending on the degree of periodicity in the superposed
layers.
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