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Isaac Amidror and Roger D. Hersch
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A Fourier-based approach is presented for the investigation of multilayer superpositions of periodic structures
and their moiré effects. This approach fully explains the properties of the superposition of periodic layers and
of their moiré effects, both in the spectral domain and in the image domain. We concentrate on showing how
this approach provides also a full explanation of the various phenomena that occur because of phase shifts in
one or more of the superposed layers. We show how such phase shifts influence the superposition as a whole
and, in particular, how they affect each moiré in the superposition individually: We show that each moiré
in the superposition undergoes a different shift, in its own main direction, whose size depends both on the
moiré parameters and on the shifts of the individual layers. However, phase shifts in the individual layers
do not necessarily lead to a solid shift of the whole superposition, and they may rather cause modifications in
its microstructure. We demonstrate our results by several illustrative figures.
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1. INTRODUCTION
The superposition of periodic structures (such as line grat-
ings or dot screens) offers a wide range of interesting prop-
erties for exploration, starting from the overall structure
of the superposition and culminating in the interesting
and sometimes even spectacular moiré effects that may
appear in the superposition. The importance of the su-
perposition moiré phenomenon is clearly demonstrated by
its vast number of applications in many different fields.1 – 5

It is therefore important to understand this phenome-
non and its various properties fully, along with the global
properties of the layer superposition as a whole.

Although classical geometric or algebraic approaches
can be used to explain the superposition moiré phenome-
non and its geometric properties,6,7 it has been shown
that the best approach for exploring phenomena related
to the superposition of periodic structures is the spectral
approach, which is based on the Fourier theory.8,9 Un-
like the classical geometric and algebraic methods, this
approach enables us to analyze properties not only in the
original images and in their superposition but also in their
spectral representations, and thus it offers a more pro-
found insight into the problem and provides indispensable
tools for exploring it. Moreover, the additional dimen-
sion offered by the impulse amplitudes in the spectrum
(in addition to their geometric locations) also enables a
quantitative analysis of the moiré intensity levels,10 in ad-
dition to the qualitative geometric analysis of the moiré
already offered by the earlier approaches.

One of the questions that were not fully investigated
until now concerns the phase of the superposed layers;
in fact, this question has been studied, by means of the
classical approaches, only for the superposition of m ­ 2
layers.1 It is important, however, to understand what
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happens in the general m-layer superposition (and, par-
ticularly, to each of its moiré effects) when one or more of
the superposed layers is being shifted.

Our main aim in the present paper is, therefore, to show
how our spectral approach is particularly well adapted for
investigating the influence of phase shifts in the superpo-
sition of any m periodic layers. We start, in Section 2,
with a short review of our Fourier-based approach and its
significant advantages, and we show how this approach
explains the properties of the superposition and of the
moiré effects generated thereby. In Section 3 we intro-
duce the terminology and the basic notions related to
phase shifts of 1-fold and 2-fold periodic functions. In
Section 4 we analyze the effects of phase shifts in the
superposition of any number of periodic layers. We al-
low the superposed layers to be freely or shifted on top of
each other, with any desired phase difference. We show
that each moiré in the superposition undergoes a different
shift, and we derive the formula that gives the resulting
shift for each of the moirés. Finally, we show that shifts
in the individual superposed layers do not necessarily lead
to a solid shift of the whole superposition but may rather
cause modifications in its microstructure, and we give the
conditions under which each of these cases occurs.

2. SPECTRAL APPROACH
The spectral approach is based on the duality between
two-dimensional (2-D) images in the sx, yd plane and their
2-D spectra in the su, vd frequency plane through the
2-D Fourier transform. Let us first review here the basic
properties of the image types with which we are concerned
and the fundamental notions and notations on which our
spectral approach is based.
1996 Optical Society of America
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A. Properties of Our Images and Their Spectra
First, we deal here only with monochromatic (black-and-
white) images. In this case each image can be repre-
sented in the image domain by a reflectance function,
which assigns to any point sx, yd of the image a value
between 0 and 1 representing its light reflectance: 0 for
black (i.e., no reflected light), 1 for white (i.e., full light re-
flectance), and intermediate values for in-between shades.
The images are superposed, for example, by overprint-
ing. In the case of transparencies the reflectance func-
tion is replaced by a transmittance function defined in
a similar way. Since the superposition of black and any
other shade always gives black, this suggests a multiplica-
tive model for the superposition of monochromatic images.
Thus, when m monochromatic images are superposed, the
reflectance of the resulting image is given by the product
of the reflectance functions of the individual images:

rsx, yd ­ r1sx, ydr2sx, yd · · · rmsx, yd . (1)

According to the convolution theorem (Ref 11, p. 244)
the Fourier transform of the product function is the con-
volution of the Fourier transforms of the individual func-
tions:

Rsu, vd ­ R1su, vd pp R2su, vd pp · · · Rmsu, vd . (2)

Second, we are basically interested in periodic images
defined on the continuous sx, yd plane, such as line grat-
ings and dot screens, and their superpositions. This im-
plies that the spectrum of the image on the su, vd plane is
not a continuous one but rather consists of impulses, cor-
responding to the frequencies that appear in the Fourier
series decomposition of the image (Ref. 11, p. 204). A
strong impulse in the spectrum indicates a pronounced
periodic component in the original image at the frequency
and the direction of that impulse. In the case of a 1-fold
periodic image, such as a line grating, the spectrum con-
sists of a one-dimensional (1-D) comb of impulses through
the origin; in the case of a 2-fold periodic image the spec-
trum is a 2-D nailbed of impulses through the origin.

Each impulse in the 2-D spectrum is characterized by
three main properties: its label (which is its index in
the Fourier series development), its geometric location,
and its amplitude (see Fig. 1). In terms of the original
image the geometric location of an impulse in the spec-
trum determines the frequency f and the direction u of
the corresponding periodic component in the image, and
the amplitude of the impulse represents the intensity of
that periodic component in the image. (The impulse am-
plitude may be complex if the original image is not sym-
metric about the origin.)

However, the question of whether or not an impulse
in the spectrum represents a visible periodic component
in the image strongly depends on properties of the hu-
man visual system. The fact that the eye cannot distin-
guish fine details above a certain frequency (i.e., below
a certain period) suggests that the human visual system
model includes a low-pass filtering stage. This is a bidi-
mensional bell-shaped filter [whose form is anisotropic,
since it appears that the eye is less sensitive to small de-
tails in diagonal directions such as 45± (Ref. 12)]. How-
ever, for the sake of simplicity this low-pass filter can be
approximated by the visibility circle, a circular step func-
tion around the spectrum origin whose radius represents
the cutoff frequency (i.e., the threshold frequency beyond
which fine detail is no longer detected by the eye). Ob-
viously, its radius depends on several factors such as the
contrast of the observed details, the viewing distance, and
light conditions. If the frequencies of the original image
elements are beyond the border of the visibility circle in
the spectrum, the eye can no longer see them; but if a
strong enough impulse in the spectrum of the image su-
perposition falls inside the visibility circle, then a moiré
effect becomes visible in the superposed image. (In fact,
the visibility circle has a hole in its center, since very low
frequencies cannot be seen, either.)

B. Spectrum Convolution and the Superposition Moirés
According to the convolution theorem [Eqs. (1) and (2)],
when m line gratings are superposed in the image domain,
the resulting spectrum is the convolution of their individ-
ual spectra. This convolution of combs (or nailbeds) can
be seen as an operation in which frequency vectors from
the individual spectra are added vectorially, while the
corresponding impulse amplitudes are multiplied. More
precisely, each impulse in the spectrum convolution is
generated during the convolution process by the contri-
bution of one impulse from each individual spectrum: its
location is given by the sum of their frequency vectors, and
its amplitude is given by the product of their amplitudes.
This permits us to introduce an indexing method for de-
noting each of the impulses of the spectrum convolution in
a unique, unambiguous way. The general impulse in the
spectrum convolution will be denoted the sk1, k2, . . . , kmd
impulse, where m is the number of superposed gratings
and each integer ki is the index (harmonic), within the
comb (the Fourier series) of the ith spectrum, of the im-
pulse that this ith spectrum contributed to the impulse in
question in the convolution. Using this formal notation,
we have therefore the following result:

The geometric location of the general sk1, k2, . . . , kmd
impulse in the spectrum convolution is given by the vec-
torial sum (or linear combination)

fk1,k2...,km ­ k1f1 1 k2f2 1 · · · 1 kmfm , (3)

and its amplitude is given by

ak1,k2,...,km ­ as1d
k1 as2d

k2 · · · asmd
km , (4)

Fig. 1. Geometric location and amplitude of impulses in the 2-D
spectrum. To each impulse is attached its frequency vector,
which points to the geometric location of the impulse in the
spectrum plane su, vd.
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where fi denotes the frequency vector of the fundamental
impulse in the spectrum of the ith grating and kifi and asid

ki

are, respectively, the frequency vector and the amplitude
of the kith harmonic impulse in the spectrum of the ith
grating.

The vectorial sum of Eq. (3) can also be written in terms
of its Cartesian components. If fi are the frequencies of
the m original gratings and ui are the angles that they
form with the positive horizontal axis, then the coordi-
nates s fu, fvd of the sk1, k2, . . . , kmd impulse in the spec-
trum convolution are given by

fu k1,k2,...,km
­ k1f1 cos u1 1 k2f2 cos u2 1 · · ·

1 kmfm cos um ,

fv k1,k2,...,km
­ k1f1 sin u1 1 k2f2 sin u2 1 · · ·

1 kmfm sin um . (5)

Therefore the frequency, the period, and the angle of the
considered impulse (and of the moiré that it represents)
are given by the length and the direction of the vector
fk1, k2, ..., km as follows:

f ­
q

fu
2 1 fv

2 , TM ­ 1yf , wM ­ arctans fvyfud .

(6)

Note that in the special case of m ­ 2 gratings, when a
moiré effect occurs because of the (1, 21) impulse in the
convolution, Eqs. (5) and (6) are reduced to the familiar
geometrically obtained formulas of the period and the
angle of the moiré effect between two gratings6:

TM ­
T1T2

sT1
2 1 T2

2 2 2T1T2 cos ad1/2
,

sin wM ­
T1 sin a

sT1
2 1 T2

2 2 2T1T2 cos ad1/2
(7)

(where T1 and T2 are the periods of the two original im-
ages and a is the angle difference between them, u2 2 u1).
When T1 ­ T2, this is further simplified into the well-
known formulas13

TM ­
T

2 sinsay2d
, wM ­ 90± 2 ay2 . (8)

Let us now say a word about the notations used for the
superposition moirés. As we have seen, a sk1, k2, . . . , kmd
impulse of the spectrum convolution that falls close to the
spectrum origin, inside the visibility circle, represents a
moiré effect in the superposed image (see Figs. 2 and 3).
We call the m-grating moiré whose fundamental impulse
is the sk1, k2, . . . , kmd impulse in the spectrum convolution
a sk1, k2, . . . , kmd moiré; the highest absolute value in the
index list is called the order of the moiré. Note that in
the case of doubly periodic images, such as in dot screens,
each superposed image contributes two frequency vectors
to the spectrum, so that in Eqs. (3)–(5) m represents twice
the number of superposed images.
Fig. 2. Binary gratings (a) and (b) and their superposition (c) in the image domain; their respective spectra are the infinite combs
shown in (d) and (e) and their convolution (f ). Only impulse locations are shown in the spectra, and not their amplitudes. The circle
in the center of the spectrum (f ) represents the visibility circle. It contains the impulse pair whose frequency vectors are f1 2 f2
and f2 2 f1 and whose indices are (1, 21) and (21, 1); this is the fundamental impulse pair of the (1, 21) moiré seen in (c). The
dotted line in (f ) shows the infinite comb of impulses that represents this moiré.
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Fig. 3. (a) The superposition of two identical gratings at a small
angle difference gives rise to a (1, 21) moiré. The spectral
interpretation of (a) is shown in the vector diagram (b); compare
with Fig. 2(f ), which shows also impulses of higher harmonics.
(c) The superposition of three identical gratings with angle differ-
ences slightly away from 120± gives a significant (1, 1, 1) moiré;
its vector diagram is shown in (d).

The spectrum of the superposition of periodic images,
namely, the convolution of their original nailbed spec-
tra, consists of a forest of impulses (with real or com-
plex amplitudes, depending on the symmetry properties
in the image domain). It has been shown10 that the in-
finite impulse cluster in the spectrum convolution, which
is centered on the spectrum origin and whose fundamen-
tal impulse is sk1, . . . , kmd, represents in the spectrum the
sk1, . . . , kmd moiré effect generated in the superposition.
And indeed, by extracting from the spectrum convolution
only this impulse cluster and taking its inverse Fourier
transform, one obtains, back in the image domain, the
isolated contribution of the moiré in question to the su-
perposition, i.e., the moiré profile form (intensity levels).

C. Advantages of the Spectral Approach
The spectral approach presented above proves fruitful in
the investigation of the superposition of periodic layers
and their resulting moiré effects. The most appealing
features of the spectral approach include the following
points:

1. It provides a means for labeling and identifying
each of the possible moiré effects in the m-layer su-
perposition individually. The fact that every moiré is
represented in the spectral domain by its fundamental
impulse in the spectrum convolution (or, more precisely,
by the impulse cluster that it spans there) means that
each moiré in the superposition has its own identity or
index notation: the sk1, . . . , kmd moiré.
2. The spectrum convolution contains all the infor-
mation about each moiré: the period and the angle of
the moiré are given by the geometric location of its fun-
damental impulse, and its profile form is given by the
impulse amplitudes of the fundamental impulse and its
higher harmonics (the moiré cluster). This makes possi-
ble a full quantitative analysis of the intensity levels of
each moiré, in addition to the qualitative geometric analy-
sis of the moiré, which is already offered by the previous
approaches.

3. And most important, since the spectrum of the su-
perposition contains simultaneously all the impulses that
may represent moiré effects in the given superposition,
it offers an overall, panoramic view of all the different
moirés of various orders that are simultaneously present
in the same layer superposition.9

4. Moreover, this approach permits us to see how
changes in the original superposed layers influence
the spectrum. This enables us, in particular, to trace
dynamically in the spectral domain the development of
each of the moirés and to identify at any moment which
of them are indeed visible.

5. Our approach provides an easy explanation for all
multiple-layer moirés, including the more complex cases
in which the geometric analysis may become too compli-
cated. In our approach all moirés of all orders are treated
equally, and there is no longer any need to deal first with
simple moirés, then with moirés of moirés, etc.

3. PHASE TERMINOLOGY
The aim of the present paper is to analyze what happens
in the superposition (and particularly to the moiré effects)
when we change the relative phase between the super-
posed layers. In the following sections we will see how
our spectral approach allows one, in a simple and ele-
gant way, to cope with the question of the phases in the
superposition of any m periodic layers. However, before
proceeding to questions concerning the phases in the su-
perposition and in its eventual moirés (Section 4), we will
first define here the required terminology: first for the
1-D case and then for the 2-D case.

A. Phase of a Periodic Function
Let psx, yd [or, in short, psxd] be a 2-fold periodic (­ skew-
periodic) function with fundamental frequency vectors f1,
f2 (see Fig. 11 in Appendix A). It is well known from the
Fourier theory that psx, yd (if it satisfies some mathemati-
cal conditions, which are met by all our cases of interest)
can be represented in the form of a 2-fold Fourier series14:

psxd ­
P̀

m­2`

P̀
n­2`

cm,n expfi2psmf1 1 nf2d ? xg , (9)

with the Fourier series coefficients

cm,n ­
1
A

ZZ
A

psxdexpf2i2psmf1 1 nf2d ? xgdx . (10)

The spectrum of psxd is an oblique impulse nailbed,
whose sm, ndth impulse has the frequency mf1 1 nf2

and the complex amplitude cm,n [where f1 ­ su1, v1d and
f2 ­ su2, v2d are the fundamental frequency vectors of the
nailbed]:
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P sud ­
P̀

m­2`

P̀
n­2`

cm,ndfu 2 smf1 1 nf2dg . (11)

Assume now that we shift psx, yd in the image domain
by the vector a ­ sa, bd, namely by a units in the x di-
rection and b units in the y direction. We obtain for the
shifted periodic function psx 2 a, y 2 bd the following ex-
pression:

psx 2 ad ­
P̀

m­2`

P̀
n­2`

cm,n expfi2psmf1 1 nf2d

? sx 2 adg

­
P̀

m­2`

P̀
n­2`

expf2i2psmf1 1 nf2d ? ag

3 cm,n expfi2psmf1 1 nf2d ? xg . (12)

This is, in fact, a particular case of the general
2-D shift theorem (Ref. 11, p. 244), which is applied here
to the case of 2-D periodic functions, i.e., to discrete
(nailbed) spectra. The general 2-D shift theorem says
that if the spectrum of a function f sx, yd is F su, vd, then
the spectrum of the shifted function f sx 2 a, y 2 bd is
expf2i2psua 1 vbdgF su, vd. In other words, a shift of
a ­ sa, bd in the image domain multiplies the spectrum
at each frequency f ­ su, vd by the factor exps2i2pf ? ad.
And indeed, Eq. (12) shows that in our case, in which the
spectrum is a nailbed, each sm, nd impulse in the spec-
trum, whose frequency is f ­ mf1 1 nf2, is multiplied by
the factor expf2i2psmf1 1 nf2d ? ag.

It follows from the shift theorem as a corollary that
the phase increment generated in the spectrum as a re-
sult of a shift of a in the image domain is a linear func-
tion of the frequency, meaning that the increment in the
phase spectrum that is due to the shift has the form of a
continuous linear plane, whose slopes are determined by
a ­ sa, bd:

fsu, vd ­ f ? a ­ ua 1 vb . (13)

In our case, however, the spectrum of psxd is defined only
in the points of the nailbed, i.e., at the frequencies of
all the sm, ndth impules: su, vd ­ msu1, v1d 1 nsu2, v2d,
or, in vector notation, f ­ mf1 1 nf2. The phase in-
crement generated at the sm, ndth impulse in the spec-
trum as a result of the shift of a in the image domain
is

fm,n ­ smf1 1 nf2d ? a

­ mf1 ? a 1 nf2 ? a (14)

(where f1 ? a and f2 ? a are constant numbers), which is
simply the restriction of the linear plane of Eq. (13) to
the points of our nailbed.

As we can see, a shift of the function psxd in the image
domain influences only in the spectral domain the phases
of the impulses; the impulse locations in the spectrum (as
well as the absolute values of their amplitudes) are not
influenced by the shift.

Expression (12) can be rewritten in yet another form
as follows:

psx 2 ad ­
P̀

m­2`

P̀
n­2`

cm,n expfi2psmf1 1 nf2d ? x

2 i2psmf1 1 nf2d ? ag (15)
or

psx 2 ad ­
P̀

m­2`

P̀
n­2`

cm,n expfi2psmf1 1 nf2d ? x

2 i2pfm,ng , (16)

where fm,n ­ smf1 1 nf2d ? a is the phase component of the
sm, nd impulse in the spectrum. We can see, therefore,
that the phase of the function psx, yd may be expressed
in the Fourier series representation of psx, yd either ex-
plicitly in the exponential part, as in Eq. (16), or implic-
itly, incorporated in the complex Fourier coefficients cm,n

(the impulse amplitudes). The connection between these
two representations of the phase can be clearly seen from
Eq. (12), where the exponential constant representing the
phase can be incorporated either in the main exponential
part of the expression or in the coefficient cm,n itself.

If the function in the image domain is symmetric with
respect to a certain point sx, yd, it is natural to shift the
function and to choose its initial phase (or its in-phase
position) as the position in which its center of symmetry
coincides with the origin. In this position the impulse
amplitudes in the spectrum are purely real (or, in terms
of modulus and phase, their phase components are con-
stantly 0). But when the function is shifted from this
position (by a nonintegral number of periods), its impulse
amplitudes in the spectrum receive an imaginary com-
ponent (or, in terms of modulus and phase, their phase
component becomes a linear function of the frequency, ac-
cording to the shift theorem).

However, in the case of a function having no point of
symmetry, we will arbitrarily choose a certain shift posi-
tion of the function as its initial phase, and we will fix
this position by inserting its phase components inside the
coefficients cm,n. Once this initial phase and its corre-
sponding coefficients cm,n have been fixed, they will be
kept frozen, and from that moment on any phase shifts
relative to this initial state will be represented only in
terms of a phase component in the exponential, without
modifying the fixed coefficients cm,n.

It should be noted, however, that since we are dealing
only with real images, their spectrum is always Hermi-
tian (Ref. 11, p. 15), which means that the amplitudes of
the impulse twins (which are symmetrically located on
both sides of the origin, as in Fig. 1) are always complex
conjugates.

B. Phase Terminology for Periodic Functions
in the One-Dimensional Case
Let us introduce now some notations and terms in con-
nection with the phase. We will start, for the sake of
simplicity, with the 1-D case. Assume that psxd is a pe-
riodic function (symmetric or not) of period T. Clearly,
since psxd is periodic, psx 2 nT d is identical to psxd for any
integer n, so that a shift of psxd by an integer multiple of
the period T is indistinguishable from the unshifted func-
tion. This fact suggests that any shift of psxd by a should
be considered as being composed of an integer number of
periods T plus a residue t:

a ­ nT 1 t 0 # t , T ,

where only the residue t affects the phase of psx 2 ad, i.e.,

psx 2 ad ­ psx 2 nT 2 td ­ psx 2 td .
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Consequently, we may introduce here the following no-
tational conventions:

1. The total distance by which psxd has been displaced
will be called the shift or the displacement of psxd and
denoted by a [as in psx 2 ad].

2. The residue t ­ a mod T , where 0 # t , T , will be
called the effective shift (or effective displacement) of psxd.

The shift and the effective shift of the periodic function
psxd may also be expressed in terms of periods rather than
in terms of distance units:

3. The shift of psxd expressed as a number (integer or
not) of periods T will be called the period phase of psxd and
denoted by f ­ ayT ­ fa. We have, therefore, a ­ fT .

4. The residue r ­ tyT ­ f mod 1, a number between
0 and 1 denoting the fraction of T by which psxd has been
effectively shifted, will be called the effective period phase
(or, in short, the effective phase) of psxd.

As for the term phase itself, we will continue using it in
the most general sense, including in the context of com-
plex numbers (e.g., the modulus and phase representation
of the spectrum, the phase component of an impulse).

As we can see, the influence of a shift of a on the phase
of the periodic function psxd can be expressed in terms of
the period phase f as follows:

psx 2 ad ­
P̀

n­2`

cn expfi2pnf sx 2 adg

­
P̀

n­2`

cn expsi2pnfx 2 i2pnfad

­
P̀

n­2`

cn expsi2pnfx 2 i2pnfd . (17)

The phase component of the nth impulse in the spectrum
of psx 2 ad is, therefore, fn ­ nf.

C. Phase Terminology for 1-Fold Periodic
Functions in the Two-Dimensional Case
We proceed now to the 2-D case and start with the sim-
plest 2-D case—that of a 1-fold periodic function in an
arbitrary direction in the sx, yd plane (such as a rotated
grating; see Fig. 4). The 1-D terms that we defined above
can be generalized into this 2-D case by considering them
as vector quantities in the sx, yd plane.

Assume that psx, yd [or, in short, psxd] is a 1-fold pe-
riodic function (symmetric or not) whose fundamental
period vector is T. Note that the fundamental period vec-
tor T of psxd is the shortest nonzero vector attached to the
origin in the sx, yd plane that satisfies psx 1 T d ­ psxd.
This shortest period vector is located on the x0 axis, i.e.,
in the main direction of psxd. Clearly, shifting psxd in
the y 0 direction (i.e., perpendicularly to its main direction,
x0) has no effect, since psxd is constant in that direction.
Therefore the effect of any arbitrary shift a0 of psxd [that
is, of moving the origin of psxd to the point a0 in the sx, yd
plane] is equivalent to a shift of psxd by a ­ projsa0 dT ,
the orthogonal projection of a0 on the period vector T or
on the x0 axis [­ the vector component of a0 in the main
direction of psxd]. Therefore we will consider from now
on only shifts of psxd along its main direction, and any
other shift a0 will be represented by its component a in
that direction (see Fig. 4).
Since psxd is periodic with the fundamental period vec-
tor T, psx 2 nT d is identical to psxd for any integer n, so
that a shift of psxd by an integer multiple of the vector
period T is indistinguishable from the unshifted function.
This fact suggests that any shift of psxd by a should be
considered as being composed of an integer number of pe-
riod vectors T plus a vectorial residue t (note that the vec-
tors T and a are collinear, since both of them are located
on the x0 axis; therefore the vector t is also collinear with
them):

a ­ nT 1 t , t ­ rT 0 # r , 1 ,

where only the residue t affects the phase of psx 2 ad, i.e.,

psx 2 ad ­ psx 2 nT 2 td ­ psx 2 td .

Consequently, we may introduce here the following no-
tational conventions as an extension of the 1-D case
(Subsection 3.B):

1. The total distance by which psxd has been displaced
will be called the shift or the displacement of psxd and
denoted by a [as in psx 2 ad].

2. The residue t ­ a mod T , where 0 # t , T (mean-
ing: t ­ rT , 0 # r , 1), will be called the effective shift
(or effective displacement) of psxd.

The shift and the effective shift of the periodic function
psxd may also be expressed in terms of periods rather
than in terms of distance units:

3. The shift of psxd expressed as a number (integer
or not) of periods T will be called the period phase of
psxd and denoted by f ­ jajyjT j. We have, therefore,
a ­ fT . Remembering that T ? T 21 ­ 1 [see Eq. (A5)
in Appendix A], we multiply both sides (in the sense of
scalar product) by T 21, and hence we obtain a ? T 21 ­ f,
which can be expressed, as an extension of the 1-D case,
as

f ­ f ? a (18)

[where f ­ T 21 is the fundamental frequency vector of the
1-fold periodic function psxd; see Eq. (A6) in Appendix A].

4. The residue r ­ jtjyjT j ­ f mod 1, a number be-
tween 0 and 1 denoting the fraction of T by which
psxd has been effectively shifted, will be called the ef-
fective period phase (or, in short, the effective phase)
of psxd.

Fig. 4. Schematic plot of a 1-fold periodic function psxd in the
image domain. A shift of a0 from the origin is equivalent to a
shift of a or to an effective shift of t.
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As in the 1-D case, we will continue to use the term
phase itself in the general sense, whenever there is no
need to specify which of the particular terms is meant.

As we can see, the influence of a shift of a on the phase
of the 1-fold periodic function psxd can be expressed in
terms of the period phase f as follows:

psx 2 ad ­
P̀

n­2`

cn expfi2pnf ? sx 2 adg

­
P̀

n­2`

cn expsi2pnf ? x 2 i2pnf ? ad

­
P̀

n­2`

cn expsi2pnf ? x 2 i2pnfd . (19)

The phase component of the nth impulse in the spectrum
of psx 2 ad is, therefore, fn ­ nf.

D. Phase Terminology for the General
Two-Dimensional Case: 2-Fold Periodic Functions
We proceed now to the generalization of the above phase
terminology to the general 2-D case. Assume that psxd
is a 2-fold periodic function (symmetric or not) whose
fundamental frequency vectors in the spectrum are f1

and f2. As shown in Appendix A, the periodic properties
of psxd can be expressed in the image domain in two
alternative ways: either in terms of the classical period
vectors P1 and P2, which are defined by

Pi ? fj ­

(
1 i ­ j
0 i fi j

,

or in terms of step vectors T1 and T2, which we define as
vectors collinear to f1 and f2 with reciprocal lengths:

Ti ­
1

jfij

fi

jfij
­

1
jfij2

fi .

Accordingly, the phase in the 2-D case can also be
presented in two ways (see Fig. 5). However, because of
the clear advantages of the step-vector notation, as shown
in Appendix A, we give here the phase terminology in
terms of step vectors only.

Let psxd be a 2-fold periodic function as above (see
Fig. 5). Consider the fundamental period parallelogram
of psxd defined by the vectors P1, P2, and let p1sxd and
p2sxd be two 1-fold periodic functions whose periods are
defined by the borders of this parallelogram (see the solid
and dotted gratings in Fig. 5). If the given 2-fold pe-
riodic function psxd is separable, i.e., if it can be pre-
sented as a product of two 1-D functions, then p1sxd and
p2sxd are simply the two 1-fold periodic components of
psxd: psxd ­ p1sxdp2sxd. If, however, psxd is insepara-
ble (like a screen with circular dots), we choose p1sxd and
p2sxd to be the two gratings defined by the parallelo-
gram borders (as in Fig. 5), and instead of the original
function psxd we consider the separable superposition
p0sxd ­ p1sxdp2sxd; we will call p1sxd and p2sxd the vir-
tual gratings of psxd. Note that the period vectors T1

and T2 of the 1-fold periodic functions p1sxd and p2sxd are
the step vectors of the 2-fold periodic function psxd.

Clearly, p0sxd and psxd have the same periods and the
same phases, and, in fact, they differ in their Fourier
series representations by only their coefficients cm,n [see
Eq. (9)]. Therefore, as far as periodicity and phases are
concerned, psxd and p0sxd are equivalent, and we may
represent the inseparable function psxd by the separable
function p0sxd. For the sake of simplicity we will proceed
with the discussion below using p0sxd; in the case of a
separable function psxd we may simply replace p0sxd by
psxd itself.

Now the idea is to look at each of the two superposed
1-fold periodic virtual gratings separately: Obviously,
any shift of p0sxd by a can be considered as a simultaneous
shift of both p1sxd and p2sxd by a. However, as we have
seen in Subsection 3.C, a shift of p1sxd by a is equivalent
to a shift of p1sxd by a1 ­ projsadT1 ; and a shift of p2sxd by
a is equivalent to a shift of p2sxd by a2 ­ projsadT2 . For
example, in the case shown in Fig. 5 we have a1 ­ 2.5T1

and a2 ­ 3.5T2.
We see that the shift of p0sxd by a is identical to a shift

of the grating p1sxd by a1 ­ f1T1 and a shift of the grating
p2sxd by a2 ­ f2T2. This is equivalent, in turn, to an
effective shift of the grating p1sxd by t1 ­ r1T1 and an
effective shift of the grating p2sxd by t2 ­ r2T2 (where r1

and r2 represent the fractional parts of f1 and f2).

Fig. 5. Schematic plot of the unshifted 2-fold periodic function
psxd in the image domain: (a) a vector a, expressed in terms
of the period vectors P1, P2; (b) the same vector a, expressed in
terms of the step vectors T1, T2.
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As we can see, we reduced here the phase of the 2-fold
periodic function into the phases of its two 1-fold periodic
virtual gratings, and hence we can simply use here the
phase terminology of Subsection 3.C, applied to each of
the virtual gratings separately. Consequently, we may
introduce here the following notational conventions as an
extension of the 1-fold periodic case:

1. The total distance by which psxd has been displaced
is called the shift or the displacement of psxd and denoted
by a [as in psx 2 ad]. As we have seen, this is equivalent
to shifts of a1 and a2 in the virtual gratings p1sxd and
p2sxd, where a1 and a2 are the projections of the vector a
in the directions of T1 and T2.

2. The residue t, called the effective shift (or effective
displacement) of psxd, can be expressed in a similar way
by t1 and t2, where t1 and t2 are the effective shifts of
the virtual gratings p1sxd and p2sxd (see convention 2 of
Subsection 3.C): t1 ­ a1 mod T1, t2 ­ a2 mod T2. In
other words, t1 and t2 are the projections of the vector
t in the directions of T1 and T2.

The shift and the effective shift of psxd may also be
expressed in terms of periods rather than in terms of
distance units:

3. The shift of psxd expressed as a pair of numbers
(integer or not) representing the number of periods T1, T2

of p1sxd and p2sxd is called the period phase of psxd and
denoted by fff ­ sf1, f2d, where f1 and f2 are the period
phases of each of the two virtual gratings p1sxd and p2sxd
(see convention 3 of Subsection 3.C).

4. The residue r ­ sr1, r2d, a pair of numbers between
0 and 1 denoting the fractions of T1, T2 by which p1sxd
and p2sxd have been effectively shifted, is called the ef-
fective period phase (or, in short, the effective phase)
of psxd.

Now the influence of a shift a on the phase of the
2-fold periodic function p0sxd can be expressed in terms
of the period phases f1 and f2 of p1sxd and p2sxd as
follows:

p0sx 2 ad ­ p1sx 2 a1dp2sx 2 a2d

­

( P̀
m­2`

cs1d
m expfi2pmf1 ? sx 2 a1dg

)

3

( P̀
n­2`

cs2d
n expfi2pnf2 ? sx 2 a2dg

)

­

" P̀
m­2`

cs1d
m expsi2pmf1 ? x 2 i2pmf1 ? a1d

#

3

" P̀
n­2`

cs2d
n expsi2pnf2 ? x 2 i2pnf2 ? a2d

#

­
P̀

m­2`

P̀
n­2`

cs1d
m cs2d

n expfi2psmf1 1 nf2d ? x

2 i2psmf1 ? a1 1 nf2 ? a2dg

­
P̀

m­2`

P̀
n­2`

cs1d
m cs2d

n expfi2psmf1 1 nf2d ? x

2 i2psmf1 1 nf2dg , (20)

where f1 ­ f1 ? a1 ­ ja1jyjT1j and f2 ­ f2 ? a2 ­ ja2jyjT2j
are the period phases of the two shifted 1-fold periodic
functions p1sx 2 a1d and p2sx 2 a2d [see Eq. (18)].

Once we have obtained the phase of the separable
2-fold periodic function p0sxd ­ p1sxdp2sxd after the shift,
all that we need to do in order to obtain the equivalent ex-
pression for the original, inseparable function psxd itself
is to replace in Eq. (20) the Fourier coefficients cs1d

m cs2d
n that

belong to p0sxd by the inseparable Fourier coefficients cm,n

of the original function psxd. We obtain

psx 2 ad ­
P̀

m­2`

P̀
n­2`

cm,n expfi2psmf1 1 nf2d ? x

2 i2psmf1 1 nf2dg . (21)

Comparing this expression with Eq. (16), which was
directly obtained by the shift theorem, we see that the
phase component of the sm, ndth impulse in the spec-
trum of psx 2 ad is fm,n ­ mf1 1 nf2, where f1, f2

are the period phases of the two shifted virtual gratings
p1sx 2 a1d and p2sx 2 a2d. This is the 2-D equivalent of
fn ­ nf in the 1-D case and in the 1-fold periodic case
(see at the end of Subsections 3.B and 3.C).

Note that the above generalization of the phase con-
cepts from scalar quantities in the 1-D case (Sub-
section 3.B) to the equivalent vectorial quantities in the
2-D case, with scalar product replacing the simple num-
ber multiplication (e.g., f ­ f ? a replacing f ­ fa), was
made possible thanks to the step-vector approach (see
Appendix A).

4. PHASES IN THE SUPERPOSITION
When we superpose two or more periodic functions in
their initial phase, we obtain the initial phase of the
superposition (and of its moirés). Note that the initial
phase is simply distinguished by the absence of a phase
component in the exponent of the Fourier series (the ini-
tial phase being incorporated in the coefficients cm,n).
What happens now if we shift one or more of the su-
perposed layers, i.e., if we modify their phase with re-
spect to their initial phase? It should be noted, first,
that since phase shifts in any individual layer do not in-
fluence the impulse locations in its own spectrum, they
do not influence the impulse locations in the spectrum
convolution, either. Therefore we obtain the following
result:

Result 1: Phase shifts in any of the superposed lay-
ers have no influence on the support of the spectrum of
the superposition and on its algebraic structure. In par-
ticular, such phase shifts have no influence on the spec-
trum support of any moiré generated in the superposition,
meaning that the period and angle of the moiré remain
unchanged. j

Let us now see in detail the influence of shifts in the
individual superposed layers on their superposition.

Let p1sxd, . . . , pmsxd be m 1-fold periodic functions
given in their initial phases, and let psxd ­ p1sxd · · ·
pmsxd be their superposition (in its initial phase). Note
that each pair of 1-fold periodic functions may represent
in the superposition one 2-fold periodic function, such as
a dot screen. We have, therefore,
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psxd ­ p1sxd · · · pmsxd

­

" P̀
k1­2`

cs1d
k1 expsi2pk1f1 ? xd

#
3 · · ·

3

" P̀
km­2`

csmd
km expsi2pkmfm ? xd

#

­
P̀

k1­2`

· · ·
P̀

km­2`

cs1d
k1 · · · csmd

km expfi2psk1f1 1 · · ·

1 kmfmd ? xg . (22)

The sk1, . . . , kmd moiré extracted from this superposi-
tion (see the end of Subsection 2.B) contains only the im-
pulses of the sk1, . . . , kmd comb, i.e., the snk1, . . . , nkmd
impulses for any integer n and is therefore given by

mk1,...,km sxd ­
P̀

n­2`

cs1d
nk1 · · · csmd

nkm expfi2psk1f1 1 · · ·

1 kmfmd ? xg . (23)

Assume now that each of the layers pisxd is shifted
from its initial position by ai (for any layer i that remains
unshifted we simply take ai ­ 0). We have, therefore,

p1sx 2 a1d · · · pmsx 2 amd

­

( P̀
k1­2`

cs1d
k1 expfi2pk1f1 ? sx 2 a1dg

)
3 · · ·

3

( P̀
km­2`

csmd
km expfi2pkmfm ? sx 2 amdg

)

­

( P̀
k1­2`

cs1d
k1 expfi2pk1f1 ? x 2 i2pk1f1 ? a1g

)
3 · · ·

3

" P̀
km­2`

csmd
km expsi2pkmfm ? x 2 i2pkmfm ? amd

#

­
P̀

k1­2`

· · ·
P̀

km­2`

cs1d
k1 · · · csmd

km expfi2psk1f1 1 · · ·

1 kmfmd ? x 2 i2psk1f1 ? a1 1 · · · 1 kmfm ? amdg

­
P̀

k1­2`

· · ·
P̀

km­2`

cs1d
k1 · · · csmd

km expfi2psk1f1 1 · · ·

1 kmfmd ? x 2 i2psk1f1 1 · · · 1 kmfmdg . (24)
Fig. 6. Two-grating (1, 21) moiré of Figs. 3(a) and 3(b) and its phase shifts that are due to a shift in grating A. The origin of
each image is indicated by a cross. (a) Both gratings and the moiré are in their initial phase. (b) Grating A is shifted by 1y4
period to the right; the moiré is consequently shifted 1y4 moiré period downward. (c) Grating A is shifted by 1y2 period to the
right; the moiré is consequently shifted 1y2 moiré period downward. (d) Grating A is shifted by 3y4 period to the right; the moiré
is consequently shifted 3y4 moiré period downward.
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Fig. 7. (1, 21) and (1, 22) moirés between two gratings and
their plase shifts that are due to a shift in grating B. (a) Both
gratings and the moirés are in their initial phase. (b) Grating B
is shifted by 1y4 period to the right; consequently, the (1, 21)
moiré is shifted by 1y4 of its period, while the (1, 22) moiré is
shifted by 1y2 of its period (note that the cross and the lines
indicating the moiré directions have not been moved).

It should be noted that if an inseparable 2-fold periodic
function (such as a screen with circular dots) takes part
in the superposition, instead of two of the 1-fold periodic
functions, then the only difference in Eq. (24) is that two
of the coefficients, csid

ki and c
s j d
kj , will be replaced by a single

inseparable coefficient, c
si,j d
ki ,kj .

The sk1, . . . , kmd moiré extracted from this superposi-
tion contains only the impulses of the sk1, . . . , kmd comb
and is therefore given by

P̀
n­2`

cs1d
nk1 · · · csmd

nkm expfi2pnsk1f1 1 · · ·

1 kmfmd ? x 2 i2pnsk1f1 1 · · · 1 kmfmdg . (25)

Comparing this expression with Eq. (23), we see that
the exponent here is simply shifted by i2pnsk1f1 1 · · · 1

kmfmd, where the expression in parentheses is a con-
stant number. This suggests, by the shift theorem, that
expression (25) simply represents a shifted version of
Eq. (23); therefore, if we denote by bk1, ..., km the unknown
shift that the sk1, . . . , kmd moiré mk1, ..., km sxd itself has un-
dergone, we can rewrite expression (25) as

mk1,...,km sx 2 bk1,...,km d

­
P̀

n­2`

cs1d
nk1 · · · csmd

nkm expfi2pnsk1f1 1 · · ·

1 kmfmd ? x 2 i2pnsk1f1 1 · · · 1 kmfmdg . (26)

On the other hand, according to Eq. (12) the effect of
shifting mk1, ..., km sxd [Eq. (23)] by bk1, ..., km is
mk1,...,km sx2bk1,...,km d

­
P̀

n­2`

cs1d
nk1 · · · csmd

nkm expfi2pnsk1f1 1 · · ·

1 kmfmd ? sx 2 bk1,...,km dg

­
P̀

n­2`

cs1d
nk1 · · · csmd

nkm expfi2pnsk1f1 1 · · ·

1 kmfmd ? x

2 i2pnsk1f1 1 · · · 1 kmfmd ? bk1,...,km g . (27)

By comparing the exponents in Eqs. (26) and (27), we
find that for every n, i.e., for every term in the summation,
we have

sk1f1 1 · · · 1 kmfmd ? bk1,...,km ­ k1f1 1 · · · 1 kmfm .

Since k1f1 1 · · · 1 kmfm is the frequency vector fk1, ..., km

of the sk1, . . . , kmd impulse [­ the fundamental impulse
of the sk1, . . . , kmd moiré], we obtain

fk1,...,km ? bk1,...,km ­ k1f1 1 · · · 1 kmfm . (28)

Remembering now that f ? f21 ­ 1 (see Appendix A),
we multiply both sides (in the sense of scalar product) by
sfk1, ..., km d21:

bk1,...,km ­ sfk1,...,km d21sk1f1 1 · · · 1 kmfmd ,

Fig. 8. Three-grating (1, 1, 1) moiré of Figs. 3(c) and 3(d) and its
phase shifts that are due to a shift in grating A. (a) The three
gratings and the moiré are in their initial phase. (b) Grating A
is shifted by 1y4 period to the right; consequently, the moiré
is shifted 1y4 moiré period in the main direction of the moiré.
(c) Grating A is shifted by 1y2 period to the right; consequently,
the moiré is shifted 1y2 moiré period in the main direction of
the moiré. (d) Grating A is shifted by 3y4 period to the right;
consequently, the moiré is shifted 3y4 moiré period in the main
direction of the moiré.
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which by Eq. (A6) becomes

bk1,...,km ­ Tk1,...,km sk1f1 1 · · · 1 kmfmd , (29)

where Tk1, ..., km is the step vector of the sk1, . . . , kmd moiré
in the image domain and fi ­ jaijyjTij. The shift that
the sk1, . . . , kmd moiré undergoes is given, therefore, by
the period of the moiré multiplied by the scalar coefficient
k1f1 1 · · · 1 kmfm, which is a linear combination of the
period phases f1, . . . , fm of the individual superposed
gratings. Note the similarity with a ­ fT in the case
of a single grating (convention 3 of Subsection 3.C).

Furthermore, denoting the period phase of the sk1, . . . ,
kmd impulse [the period phase of the sk1, . . . , kmd moiré]
by fk1, ..., km , we obtain from Eqs. (18) and (28) the
expression

fk1,...,km ­ k1f1 1 · · · 1 kmfm . (30)

We obtain, therefore, the following important result:

Result 2: When the original m superposed layers
p1sxd, . . . , pmsxd are shifted by a1, . . . , am, respectively,
each of the sk1, . . . , kmd moirés generated in the super-
position merely undergoes a shift of bk1, ..., km , which is
a multiple of its step vector by a scalar, as given by
Eq. (29). The size and the direction of the shift are
therefore different for each of the sk1, . . . , kmd moirés in
the superposition. j

Example 1: In the particular case of the (1, 21) moiré
between m ­ 2 gratings we have

b1,21 ­ T1,21sf1 2 f2d , (31)

f1,21 ­ f1 2 f2 . (32)

Figure 6 illustrates what happens to the phase of the
(1, 21) moiré between two superposed gratings when
we shift the first grating (A) along its main direction
(­ horizontally) while keeping the second grating (B) at
its initial phase (so that a2 ­ 0): When a1 ­ 0, we ob-
tain b1,21 ­ 0 and the moiré is in phase; and as we
gradually increase the shift a1 from 0 to T1 ­ f1

21 (one
full period of the first grating), the moiré is gradually
shifted along its main direction from b1,21 ­ 0 to b1,21 ­
T1,21 (namely, one full period of the moiré). Note that
the shift of the moiré is larger than the shift of the
grating (in the same proportion as their periods) and
is in a different direction (the direction of the moiré
period).

Example 2: Consider the (1, 21) and (1, 22) moirés of
Fig. 7(a), between m ­ 2 gratings. If we shift grating B
along its main direction by 1y4 period sa2 ­ T2y4d
while keeping grating A at its initial phase sa1 ­ 0d,
we find from Eq. (29) that the (1, 21) moiré is shifted
by 1y4 moiré period sb1,21 ­ 2T1,21y4d, while the (1,
22) moiré is shifted by 1y2 moiré period (b1,22 ­
2T1,22y2, since k2 ­ 2). This is indeed confirmed in
Fig. 7(b).

An example with the three-grating (1, 1, 1) moiré is
shown in Fig. 8, and an example with the (1, 0, 21, 0)
and (0, 1, 0, 21) moirés between m ­ 4 gratings is given
in Fig. 9.
It is important to note, however, that the overall su-
perposition in the image domain after the original lay-
ers have been shifted by a1, . . . , am is not, in general, a
shifted version (a rigid motion) of the original superposi-
tion, and the microstructure of the superposition may be
modified (see, for example, Fig. 10). In fact, we can say
the following:

It is clear that every shift a of the superposition
p1sxd · · · pmsxd can be seen as a combination of indi-
vidual shifts a1, . . . , am of the gratings p1sxd, . . . , pmsxd
along their main directions. However, the converse is
not necessarily true: Let, for example, a1, a2, a3 be
the individual shifts of the gratings p1sxd, p2sxd, p3sxd
that correspond to the shift a of the whole superposition
p1sxdp2sxdp3sxd. Obviously, a1, a2, and a3 are linearly
dependent, since once a1 and a2 [the components of a in
the main directions of p1sxd and p2sxd] have been fixed, a3

must join them in order that the superposition be shifted
as a whole. Therefore a3 is a linear combination of a1

and a2: a3 ­ s1a1 1 s2a2 (with some fixed constants
s1, s2 [ R). However, if we choose a3 differently, the su-
perposition p1sxdp2sxdp3sxd will not be shifted as a whole,
but rather it will be modified. We have, therefore, the
following result:

Result 3: Nontrivial shifts of a1, . . . , am in the grat-
ings p1sxd, . . . , pmsxd in their respective main directions
(i.e., nonidentical shifts a1, . . . , am that are not inte-

Fig. 9. Perpendicular (1, 0, 21, 0) and (0, 1, 0, 21) moirés
between two grids (four gratings) and their phase shifts that
are due to a shift in the first grid (gratings A and B). (a) Both
grids and the two perpendicular moirés are in their initial phase.
(b) The first grid (gratings A and B) is shifted by 1y2 period to
the right; consequently, the horizontal moiré is shifted 1y2 moiré
period downward. (c) The first grid (gratings A and B) is shifted
by 1y2 period upward; consequently, the vertical moiré is shifted
1y2 moiré period to the right. (d) The first grid (gratings A and
B) is shifted by 1y2 period to the right and 1y2 period upward;
consequently, the horizontal moiré is shifted 1y2 moiré period
downward, and the vertical moiré is shifted 1y2 period to the
right.
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Fig. 10. Magnification of the superposition of three grids (six
gratings) with identical periods and equal angle differences of
30±. This is an example of an almost-periodic superposition.
In (a) all the grids are superposed in their initial phase, while
in (b) the grid A has been shifted by 1y2 period in its two
primary directions; note the substantial change in the form of
the microstructure that is due to this phase shift.

gral linear combinations of T1, . . . , Tm) do not, in gen-
eral, correspond to a shift a of the whole superposition
p1sxd · · · pmsxd. They do, however, if and only if (iff) the
shifts ai are projections of the same vector a on the main
directions of pisxd or, in other words, iff the normal lines
defined by each of the shifts ai perpendicularly to the
main axis of pisxd [Fig. 5(b)] meet in a single point a. j

For example, in the case of m . 2 gratings, shifting just
one layer (by a nontrivial shift) does not correspond to a
shift of the whole superposition, and it rather modifies the
superposition microstructure. Note that in the case of
m ­ 2 gratings the conditions of Result 3 can be simplified
as follows: Nontrivial shifts of a1 in p1sxd and of a2 in
p2sxd in their respective main directions correspond to a
shift a in the whole superposition p1sxdp2sxd iff p1sxd and
p2sxd (i.e., T1 and T2) are not collinear.

Note that Results 2 and 3 may seem at first sight con-
tradictory: Suppose that p1sxd and p2sxd are two super-
posed gratings (with noncollinear T1, T2). How can it be
that shifts of a1 and a2 in p1sxd and p2sxd cause a shift
of the whole superposition by a, while, on the other hand,
each of the different sk1, k2d moirés that are present in
that superposition undergoes a different shift and in a
different direction? In fact, as we can also see in Figs. 6
and 7, there exists no contradiction here: The whole su-
perposition is indeed shifted by the same vector a, but
as we have seen in Subsection 3.C (see Fig. 4), this com-
mon shift is then translated into the proper language of
each individual moiré by considering its projection on the
moiré’s own main direction.

The strength of Result 2 is that it remains valid in all
cases: each of the sk1, . . . , kmd moirés in the superposi-
tion is individually shifted (without changing its period,
angle, or profile form), even when the shifts of the indi-
vidual gratings do not correspond to a rigid motion of the
whole superposition but rather modify its microstructure.

5. SUMMARY
The superposition of any number m of periodic layers
(such as line gratings, dot screens, etc.) and the phe-
nomena related thereto, such as the superposition moiré
effects, can be fully explained by means of the spectral
approach, which is based on the Fourier theory. After
a short presentation of this approach we proceed, in the
main part of the paper, to show how this approach al-
lows one, in a simple and elegant way, to cope also with
the various questions related to the phases between sev-
eral superposed layers. We show how phase shifts in the
superposed layers influence the superposition as a whole
and how it affects each moiré in the superposition indi-
vidually. The key point is that a shift of any periodic
function in the image domain influences in the spectral
domain only the phases of the impulses and not their geo-
metric locations or the absolute value of their amplitudes.
We show that nontrivial shifts of each of the individual
superposed layers may result either in a global shift (rigid
motion) of the whole superposition or in a modification of
its microstructure. Regarding the moiré effects in the su-
perposition, we show that shifts in one or more of the indi-
vidual superposed layers do not influence the periods, the
angles, and the profile shapes of any of the moirés. The
only effect of such shifts on the moirés resides in a shift of
each of the sk1, . . . , kmd moirés in the superposition. The
size and the direction of the shift are different for each of
the moirés in the superposition, and they are given by
Eq. (29). This result holds in all cases, even when the
individual layer shifts do not cause a global shift of the
whole superposition but rather modify its microstructure.

APPENDIX A: PERIOD VECTORS
PiPiPi VERSUS STEP VECTORS TiTiTi

In this appendix we introduce an alternative formalism
for describing the relationship between periodicities in
the image domain and the frequencies in the spectral
domain, which is based on the new notion of step vectors
rather than on the classical period vectors. The distinct
advantages of this formalism in the case of periodic layer
superpositions are discussed and illustrated.
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Fig. 11. Schematic plot of (a) the 2-fold periodic (skew-periodic)
function psx, yd in the image domain and (b) its skewed impulse
nailbed in the spectral domain. The gray parallelogram A in the
image domain represents a one-period element (tile) of psx, yd.
P1 and P2 are segments of this parallelogram that coincide with
the period vectors P1 and P2. It can be shown that the areas of
parallelograms A and B are reciprocal: B ­ 1yA.

A function psx, yd is called 2-fold periodic if there exist
two nonzero and noncollinear vectors P1 ­ sx1, y1d and
P2 ­ sx2, y2d so that, for all sx, yd [ R2,

psx 1 x1, y 1 y1d ­ psx, yd psx 1 x2, y 1 y2d ­ psx, yd .

The vectors P1 and P2 are called periods or period vec-
tors of psx, yd. (As in the case of frequency vectors, we
always consider period vectors as radius vectors emanat-
ing from the origin, and hence the period parallelograms
that they define are attached to the origin.) Note that
psx, yd is completely determined from its values in the
period parallelogram A defined by P1 and P2, which re-
peats itself through the sx, yd plane [see Fig. 11(a)].

It is therefore customary to describe the periodicity of
a 2-fold periodic function psx, yd in R2 by means of two
period vectors P1 and P2. As is well known,15 the period
vectors P1, P2 of the function psx, yd are obtained from
the fundamental frequency vectors f1, f2 in the spectrum
of psx, yd [see Eq. (11)] by

Pi ? fj ­

(
1 i ­ j
0 i fi j

. (A1)

This can also be expressed in matrix notation, as follows
(for n dimensions):
0BBB@
P1
...

Pn

1CCCAsf1, . . . , fnd ­

264P1 ? f1 · · · P1 ? fn

· · · · · · · · ·
Pn ? f1 · · · Pn ? fn

375

­

26641 0
. . .

0 1

3775
(note that each vector Pi or fi represents here an
n-tuple of coordinates, so that we are dealing with n 3 n
matrices). It follows that if the matrix sf1, . . . , fnd is
invertible, i.e., nonsingular (which is true iff the vectors
f1, . . . , fn are linearly independent over R),16 then0BBB@

P1
...

Pn

1CCCA ­ sf1, . . . , fnd21. (A2)

However, the period-vector notation is valid only when
the frequency vectors f1, . . . , fn are linearly independent.
When the frequency vectors f1, . . . , fn are linearly depen-
dent, the matrix on the right-hand side of Eq. (A2) is sin-
gular, i.e., noninvertible, and no corresponding Pi vectors
exist in the image domain. This means that the period
vectors Pi are inappropriate for our study of the layer su-
perpositions, because layer superpositions may well occur
even with f1, . . . , fn linearly dependent. (And, in fact,
in the case of our 2-D spectrum this necessarily occurs
whenever the number of superposed layers is larger than
2.) Therefore, instead of the vectors Pi, in the image do-
main we will consider only the periods Ti of the n indi-
vidual gratings (see Fig. 11). Note that a 2-fold periodic
layer psx, yd in the superposition (say, a dot screen) will
contribute two values Ti, which are the periods of the two
virtual gratings defined by the borders of the fundamental
period parallelogram of that layer [see the solid and dot-
ted gratings in Fig. 11(a)].17 And indeed, even the clas-
sical moiré formulas, such as Eqs. (7) and (8), are based
on only the grating periods Ti. If we consider these grat-
ing periods as vectors Ti emanating from the origin of the
image domain at the grating directions ui (see Fig. 12)
and call them step vectors, we find that the relationship
between each step vector Ti and its counterpart fi in the
spectral domain is straightforward:

1. The vectors Ti and fi (for every i) are collinear, i.e.,
they have the same angle ui.

2. Their lengths are reciprocal, namely, for every i,
jTij ­ 1yjfij.

Fig. 12. Magnified view of the main period parallelogram of
Fig. 11(a), showing the period vectors Pi and the step vectors Ti .



I. Amidror and R. D. Hersch Vol. 13, No. 5 /May 1996/J. Opt. Soc. Am. A 987
This means that for every i we have Ti ­ sjTijyjfijdfi ­
s1yjfij

2dfi. In other words, we obtain

T1 ­
1

jf1j2
f1

...
Tn ­

1
jfnj2

fn .

(A3)

As we can see, this relationship holds between any pair
Ti, fi individually; and moreover, it exists in all cases and
for any number n of superposed layers—even if f1, . . . , fn

are linearly dependent.
To formulate better the relationship between the vector

pair Ti, fi, we introduce the following definition:
Definition: For any vector v fi 0 the reciprocal vector

of v (with respect to scalar product) is defined as

v21 ­
1

jv j2
v . (A4)

This definition requires a short explanation. Although
it is clear that the vector v21 is reciprocal to v with respect
to scalar product,

v21 ? v ­ v ? v21 ­
1

jv j2
v ? v ­ 1 , (A5)

v21 is not the unique vector with this property. In fact,
the locus of all the vectors x that satisfy x ? v ­ 1 con-
sists (in the case of R3) of the whole plane perpendicular
to the vector v, whose distance from the origin (along the
line spanned by v) is 1yjv j. Therefore the uniqueness of
v21 in this definition is obtained only through the require-
ment, implicit in Eq. (A4), that the reciprocal vector v21

be collinear with the vector v.
Using this definition and in view of relationships 1 and

2 above and Eq. (A3), we can now reformulate the rela-
tionship between the vector pair Ti and fi as follows:

3. For every i the vector Ti in the image domain is
the reciprocal vector (with respect to scalar product) of
the frequency vector fi in the spectral domain:

Ti ­
1

jfij2
fi ­ fi

21 . (A6)

This is, in fact, the 2-D vectorial generalization of the
relation T ­ 1yf between period and frequency in the
1-D case.

Returning now to our vector comparison, the main dif-
ference between the step vectors Ti and the period vec-
tors Pi (all of which subsist in the image domain) is
that each vector Ti depends only on a single frequency
vector fi, while, as we have seen in Eqs. (A1) and (A2),
each of the vectors Pi depends on all of the n frequency
vectors f1, . . . , fn. In the first case we speak about reci-
procity (with respect to scalar product) between the indi-
vidual vectors Ti and fi, but in the second case we speak
about reciprocity between vector n-tuples, P1, . . . , Pn and
f1, . . . , fn, or between the lattices LP and Lf spanned by
them. And while the vectors Pi exist only when the vec-
tors f1, . . . , fn are linearly independent, the vectors Ti, to
the contrary, exist for any vectors f1, . . . , fn with no re-
strictions, since every vector Ti is dependent only on its
own counterpart fi, and no matrix inversion is involved.
Note that when the vector frequencies f1, . . . , fn are all
orthogonal to each other (in the n-dimensional spectrum),
the vectors Ti and Pi si ­ 1, . . . , nd coincide in the image
domain. In particular, in any 1-fold periodic function the
vectors T and P coincide.

Finally, it should be emphasized that in spite of the
apparent symmetry between the frequency lattice Lf and
the period lattice LP (or between the frequency vectors
f1, . . . , fn and the period vectors P1, . . . , Pn) that is due
to Eqs. (A1) and (A2), there exists a substantial differ-
ence between them: While the spectrum support Lf is
a fundamental property of any superposition of n peri-
odic functions, the period lattice LP (and the period vec-
tors P1, . . . , Pn) are only derived properties, and they exist
only conditionally: iff the vectors f1, . . . , fn are linearly
independent (i.e., iff the superposition in the image do-
main is periodic in n dimensions).
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vier, Amsterdam, 1993).
2. O. Kafri and I. Glatt, The Physics of Moiré Metrology (Wiley,
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