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The best method for investigating moiré phenomena in the superposition of periodic layers is based on the
Fourier approach. However, superposition moiré effects are not limited to periodic layers, and they also occur
between repetitive structures that are obtained by geometric transformations of periodic layers. We present
in this paper the basic rules based on the Fourier approach that govern the moiré effects between such repeti-
tive structures. We show how these rules can be used in the analysis of the obtained moirés as well as in the
synthesis of moirés with any required intensity profile and geometric layout. In particular, we obtain the
interesting result that the geometric layout and the periodic profile of the moiré are completely independent of
each other; the geometric layout of the moiré is determined by the geometric layouts of the superposed layers,
and the periodic profile of the moiré is determined by the periodic profiles of the superposed layers. The moiré
in the superposition of two geometrically transformed periodic layers is a geometric transformation of the
moiré formed between the original layers, the geometric transformation being a weighted sum of the geometric
transformations of the individual layers. We illustrate our results with several examples, and in particular
we show how one may obtain a fully periodic moiré even when the original layers are not necessarily periodic.
© 1998 Optical Society of America [S0740-3232(98)00905-3]
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1. INTRODUCTION
The superposition moiré is a well-known phenomenon
that occurs when periodic or repetitive structures (line
gratings, dot screens, etc.) are superposed. It consists of
a visible pattern that is clearly observed at the superpo-
sition, although it does not appear in any of the original
structures. The moiré effect between superposed struc-
tures occurs because of the geometric distribution of dark
and bright areas in the superposed image: Areas in
which dark elements of the original structures cross each
other contain less black than areas where the original
structure elements fall between each other and fill the
white spaces better. The importance of this phenomenon
is clearly demonstrated by its vast number of applications
in many different fields.1–5

Although classical geometric or algebraic approaches
can be used to explain the superposition moiré phenom-
enon and its geometric properties,6,7 it has been shown
that the best approach for exploring phenomena related
to the superposition of periodic structures is the approach
based on the Fourier theory.8–10 Using the standard rep-
resentation of the intensity of each layer as a reflectance
(or transmittance) function ri(x, y) with values ranging
between 0 (for black) and 1 (for white), we can express the
layer superposition mathematically as the product of the
m individual layers:

r~x, y ! 5 r1~x, y ! . . . rm~x, y !.

In the case of periodic layers, each of the layers ri(x, y)
can be represented in the form of a Fourier series, and
hence this case lends itself in a natural way to an explo-
ration by means of the Fourier theory.10 However, su-
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perposition moiré effects are not limited to periodic lay-
ers, and they may also occur between various repetitive
layers that are not necessarily periodic.11 In the present
paper we will consider such structures as nonlinear geo-
metric transformations of periodic, two-dimensional (2D)
structures. We will present the basic rules that govern
the geometric layout and the intensity profile of moiré ef-
fects between such repetitive structures, and we will
show how these rules can be used in the analysis of the
obtained moirés as well as in the synthesis of moirés that
have any required intensity profile and geometric layout.
In particular, we will show how our approach permits us
to generalize classical results that are already known for
first-order moirés into the general cases of higher-order
moirés and moirés between 2D structures such as dot
screens.

The outline of this paper is as follows: In Section 2 we
introduce the basic notions about repetitive structures
that are not necessarily periodic (curvilinear gratings,
curved dot screens, etc.). In Section 3 we review the Fou-
rier decomposition of such repetitive structures, and in
Section 4 we present the basic notions related to the su-
perposition of repetitive layers and to their moiré effects.
The main results are presented in Section 5, first for the
simpler case of curvilinear gratings and then for the more
general case of curved dot screens. Section 6 concludes
the paper with a short review of the main results.

2. REPETITIVE STRUCTURES
Under the heading of ‘‘repetitive structures’’ one may
lump together many different types of structures, which,
1998 Optical Society of America
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although not necessarily periodic, still show some kind of
internal structural repetition that is governed by some
given rules.

We will restrict ourselves in this paper to the main type
of repetitive, nonperiodic structure, namely, coordinate-
transformed structures. As their name indicates, each of
these structures can be obtained from a certain initial pe-
riodic structure by the application of an appropriate non-
linear coordinate transformation. Curvilinear gratings,
straight gratings with varying frequency, curved line
grids, and curved dot screens all belong to this important
category. The best way to deal with each of these struc-
tures is to consider it as a nonlinear geometric transfor-
mation of a periodic, 2D structure. One may think of this
transformation as an operation that ‘‘bends,’’ or nonlin-
early stretches, the original periodic structure according
to a given mathematical rule.

We begin with the simplest case of coordinate-
transformed structures, that of curvilinear gratings. Let
r(x, y) (denoting the reflectance or the transmittance at
location x, y) be the curvilinear grating that is obtained
by bending the 2D onefold periodic grating p(x8), i.e., by
replacing x8 with the function g1(x, y): r(x, y)
5 p@g1(x, y)# (see various examples in Fig. 1). The in-
tensity profile of the original, uncurved periodic grating,
p(x8), or sometimes its one-dimensional (1D) section
along the x8 axis, is called the periodic profile of the cur-
vilinear grating r(x, y). The periodic profile of a curvi-
linear grating may be cosinusoidal, a square wave, a saw-
tooth wave, or any other periodic waveform. The
function x8 5 g1(x, y) that bends p(x8) into the curvilin-
ear grating r(x, y) is called the bending transformation.
Note that x8, y8 are the coordinates of the original, peri-
odic space, while x, y are the coordinates of the target,
transformed space; the bending transformation is there-
fore a backward mapping from the transformed coordi-
nates to the original coordinates.

A curvilinear grating r(x, y) 5 p@g1(x, y)# is therefore
characterized by two basic and independent properties:

1. Its geometric layout in the x, y plane, i.e., the locus
of the centers of its curvilinear corrugations in the x, y
plane, which is defined by the bending transformation
x8 5 g1(x, y).

2. The intensity behavior across each of the curvilin-
ear corrugations, which is determined by the periodic pro-
file p(x8).

Note that since in general the frequency of the curvilin-
ear grating r(x, y) varies throughout the plane, we may
arbitrarily choose any frequency for the periodic profile
p(x8). For the sake of convenience we will often choose
this frequency to be f 5 1 [or, equivalently, we may con-
sider f to be included within g1(x, y)]; in such cases the
term ‘‘normalized periodic profile’’ will be used.

Example 1: Assume that we are given a 2D cosinusoi-
dal grating p(x8) 5 cos(2p f x8) over the x, y plane [Fig.
Fig. 1. Various curvilinear gratings r(x, y) that have a periodic profile waveform of cos(2p f x8): (a) straight cosinusoidal grating:
cos(2p f x), (b) rotated straight cosinusoidal grating: cos$2p f @x cos u 1 y sin u#%, (c) parabolic cosinusoidal grating: cos$2p f @ y
2 0.15x2#%, (d) circular cosinusoidal grating: cos(2p f Ax2 1 y2), (e) arg sinh(x)-shaped cosinusoidal grating: cos$2p f @ y
2 arg sinh(x)#%, (f ) cosinusoidally shaped grating: cos$2p f @ y 2 cos(2p f x/4)#%.
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Fig. 2. (a) Periodic binary line grid p(x8, y8) of example 3, (b) curved binary grid r(x, y) obtained by applying on p(x8, y8) the 2D
nonlinear transformation g (x, y) 5 @2x 2 arg sinh( y), y 2 arg sinh(x)#. Note that both line grids can be seen also as dot screens of
white dots on a black background.
1(a)] and that we bend its parallel straight corrugations
into parallel parabolas of the shape y 5 ax2 1 c without
changing their cosinusoidal profile form [see Fig. 1(c)].
This can be described mathematically as a nonlinear
transformation x8 5 g1(x, y) 5 y 2 ax2, where a is a
nonzero constant that defines the bending rate of the
parabolas.12 (Note that the level lines x8 5 n of the sur-
face x8 5 y 2 ax2 over the x, y plane are indeed the re-
quired parabolas y 5 ax2 1 n.) The parabolic cosinusoi-
dal grating obtained by applying this bending
transformation on the original grating p(x8) is given,
therefore, by r(x, y) 5 p( y 2 ax2) 5 cos@2p f ( y 2 ax2)#.
Its geometric layout is given by the locus of its maxima in
the x, y plane, namely, 2p f ( y 2 ax2) 5 2pk, k P Z,
and its normalized periodic profile is cos(2px8). j

Example 2: In the case of a circular grating with a co-
sinusoidal periodic profile [Fig. 1(d)], the original, un-
curved periodic wave (the periodic profile of the circular
grating) is again, this time using the letter r8 rather than
x8, p(r8) 5 cos(2p f r8). The circular grating r(x, y) is
obtained from p(r8) by replacing r8 with Ax2 1 y2:

r~x, y ! 5 p~Ax2 1 y2! 5 cos~2p fAx2 1 y2!. j

Let us proceed now to the case of curved dot screens (or
line grids). Assume that the curved dot screen r(x, y) is
obtained by bending a two-fold periodic dot screen
p(x8, y8), i.e., by replacing x8 and y8 with the functions
x8 5 g1(x, y) and y8 5 g2(x, y), respectively: r(x, y)
5 p@g1(x, y), g2(x, y)#. An example of such a curved
dot screen r(x, y) is shown in Fig. 2(b). The intensity
profile of the original, uncurved two-fold periodic screen
p(x8, y8) is called the periodic profile of the curved screen
r(x, y). The periodic profile of a curved screen may be
any two-fold periodic waveform; as in the case of curvilin-
ear gratings, we will use the term normalized periodic
profile whenever we choose p(x8, y8) to have a unit fre-
quency (to both directions). The functions x8 5 g1(x, y)
and y8 5 g2(x, y) that bend p(x8, y8) into the curved
screen r(x, y) are called the bending transformation.
A curved screen r(x, y) 5 p@ g1(x, y), g2(x, y)# is
therefore characterized by two basic and independent
properties: its geometric layout, which is determined by
the functions g1(x, y) and g2(x, y), and its intensity be-
havior within each ‘‘curved period,’’ which is determined
by the two-fold periodic profile p(x8, y8).

In fact, this bending process can be interpreted as a
mapping of R2 onto itself, or, equivalently, as a coordinate
change in R2 from the original x8, y8 coordinate system
into the x, y system.13 This 2D coordinate transforma-
tion is specified for each of the two original directions
separately by the bending functions x8 5 g1(x, y) and
y8 5 g2(x, y), which transform the new x, y coordinates
back into the original x8, y8 coordinates. The effect of
this 2D coordinate transformation can be expressed, then,
by

g: S x
y D → S x8

y8 D ,

where

S x8
y8 D 5 S g1~x, y !

g2~x, y ! D ,

or in a more compact vector notation: x8 5 g(x). Note
that g(x) is a mapping of R2 onto itself: g: R2 → R2; we
denote it by a boldface letter g since the value it returns,
g(x), is a vector. Clearly, in order that the image of
this mapping span the whole x, y plane R2, the two indi-
vidual coordinate transformations x8 5 g1(x, y) and
y8 5 g2(x, y) must be independent; i.e., there must exist
no function f (x8, y8) such that f @g1(x, y), g2(x, y)# 5 0
is satisfied for all (x, y).14 Equivalently, this means that
the Jacobian

J~x, y ! 5 U ]g1

]x
]g1

]y

]g2

]x
]g2

]y

U
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is not identically zero.15 In order to avoid unnecessary
mathematic complications, we will generally assume that
the bending transformation g(x) is a diffeomorphism on
R2, i.e., a one-to-one continuously differentiable mapping
of R2 onto itself whose inverse mapping is also continu-
ously differentiable. This ensures that the bending
transformation has no abrupt jumps or other troublesome
singularities.

Example 3: Assume that we are given a periodic bi-
nary line grid p(x8, y8) that is the superposition of a ver-
tical square-wave grating p1(x8, y8) 5 (m52`

` rect@(x8
2 mT)/t# and a horizontal square-wave grating
p2(x8, y8) 5 (n52`

` rect@(y8 2 nT)/t#, both having the
same period T and the same opening t ; that is,
p(x8, y8) 5 p1(x8, y8)p2(x8, y8) 5 (m52`

` (n52`
` rect@(x8

2 mT)/t#rect@( y8 2 nT)/t#. We define the 2D nonlin-
ear transformation g (x, y) as follows:

S x8
y8 D 5 g S x

y D 5 S g1~x, y !

g2~x, y ! D 5 S 2x 2 arg sinh~y !

y 2 arg sinh~x ! D .

By applying the nonlinear transformation g (x, y) on
the periodic binary line grid p(x8, y8), we obtain the
curved binary grid r(x, y), as shown in Fig. 2:

r~x, y ! 5 p@2x 2 arg sinh~y !, y 2 arg sinh~x !#

5 (
m52`

`

(
n52`

`

rectF2x 2 arg sinh~y ! 2 mT
t G

3 rectFy 2 arg sinh~x ! 2 nT
t G . j

3. FOURIER DECOMPOSITION OF
REPETITIVE STRUCTURES
Our next step in the analysis of repetitive structures with
a given periodic profile is based on the Fourier-series de-
velopment of their periodic profiles. We start, again,
with the case of curvilinear gratings. Assume that the
curvilinear grating r(x, y) is obtained by bending a peri-
odic grating p(x8), i.e., by replacing x8 with a function
x8 5 g1(x, y): r(x, y) 5 p@g1(x, y)#. A few examples
of curvilinear gratings r(x, y) with a square-wave
periodic-profile form p(x8) are shown in Fig. 3. We first
consider the Fourier development of the original grating
p(x8):

p~x8! 5 (
n52`

`

cn exp~i2pnfx8!. (1)

Then we replace x8 in this Fourier series with the func-
tion g1(x, y), which defines the curvilinear behavior of
the grating r(x, y) throughout the plane, keeping the
same coefficients cn as in the Fourier decomposition of
p(x8):

r~x, y ! 5 p@g1~x, y !# 5 (
n52`

`

cn exp@i2pnfg1~x, y !#.

(2)

This is therefore the Fourier decomposition of our curvi-
linear grating r(x, y). This approach has been intro-
duced in Ref. 16, where the periodic profile p(x8) was
taken as a binary square wave.

As we have already seen, this change of variables is in
fact equivalent to a coordinate change in the image do-
main [for example, in the case of Fig. 3(b), from polar to
Cartesian coordinates].

We proceed now to the 2D case of a curved dot screen
(or a curved line grid). Assume that the curved dot
screen r(x, y) is obtained by bending a 2D periodic dot
screen p(x8, y8), i.e., by replacing x8 and y8 with
functions x8 5 g1(x, y) and y8 5 g2(x, y): r(x, y) 5
p@g1(x, y), g2(x, y)#. An example of such a curved dot
screen r(x, y) is shown in Fig. 2(b). According to the
present approach, we first consider the Fourier develop-
ment of the original 2D periodic dot screen p(x8, y8):

p~x8, y8! 5 (
m52`

`

(
n52`

`

cm,n

3 exp@i2p~mx8/Tx8 1 ny8/Ty8!#. (3)

Then we replace x8 and y8 in this Fourier series with the
functions g1(x, y) and g2(x, y), which define the curved
behavior of the grating r(x, y) throughout the plane,
keeping the same coefficients cm,n as in the Fourier de-
composition of p(x8, y8):
Fig. 3. Some examples of curvilinear gratings r(x, y) having a square-wave periodic profile (with opening ratio t/T 5 0.6) and a bend-
ing transformation g1(x,y). (a) Parabolic grating: g1(x, y) 5 y 2 0.15x2, (b) circular grating: g1(x, y) 5 Ax2 1 y2, (c) circular zone
grating: g1(x, y) 5 (x2 1 y2)/8.
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r~x, y ! 5 p@g1~x, y !, g2~x, y !#

5 (
m52`

`

(
n52`

`

cm,n exp$i2p@mg1~x, y !/Tx8

1 ng2~x, y !/Ty8#%. (4)

This is therefore the Fourier decomposition of our curved
dot screen r(x, y).

Remark: We will usually prefer to choose p(x8, y8) as
a normalized periodic profile with Tx8 5 1, Ty8 5 1; and
if Tx8 Þ 1 or Ty8 Þ 1, we will consider them to be in-
cluded within the functions g1(x, y), g2(x, y), leaving
p(x8, y8) itself normalized. Therefore Tx8 and Ty8 will
usually be omitted from Eq. (4).

Equation (2) or its 2D counterpart, Eq. (4), are simply a
formal Fourier decomposition of the curved layer r(x, y)
into a sum of curvilinear exponentials [or cosines, if
p(x8, y8) is symmetric], which were all subjected to the
same coordinate transformation g (x, y) as r(x, y) itself.
This decomposition is simply an alternative representa-
tion of the curvilinear layer r(x, y) in the image domain.

4. SUPERPOSITION MOIRÉS BETWEEN
REPETITIVE LAYERS
Let us start once again with the simpler case of curvilin-
ear gratings. Suppose that the original repetitive layers
are given by the curvilinear gratings

r1~x, y ! 5 (
m52`

`

cm
~1 ! exp@i2pmg1~x, y !#,

r2~x, y ! 5 (
n52`

`

cn
~2 ! exp@i2png2~x, y !#.

Their superposition is expressed therefore by the product

r1~x, y !r2~x, y ! 5 H (
m52`

`

cm
~1 ! exp@i2pmg1~x, y !#J

3H (
n52`

`

cn
~2 ! exp@i2png2~x, y !#J

5 (
m52`

`

(
n52`

`

cm
~1 !cn

~2 ! exp$i2p@mg1~x, y !

1 ng2~x, y !#%. (5)

We call the term in this double sum whose indices are m
and n the (m, n) term.

Consider now the partial sum that consists of all the
terms of this double sum that are spanned by the (k1 , k2)
term. This partial sum consists of all the m(k1 , k2)
terms (m P Z), i.e., all the terms whose indices are mk1
and mk2 :

mk1,k2
~x, y ! 5 (

m52`

`

cmk1

~1 ! cmk2

~2 !

3 exp$i2pm@k1 g1~x, y ! 1 k2 g2~x, y !#%.

(6)
This partial sum corresponds to a repetitive structure
that is present in the superposition r1(x, y)r2(x, y) but is
not present in either of the original layers r1(x, y) and
r2(x, y) themselves. This structure is called the (k1 , k2)
moiré; this moiré becomes visible in the superposition
whenever its amplitude is sufficiently strong and its fre-
quency is smaller than the maximum frequency that can
be resolved by the eye at the corresponding viewing con-
ditions.

As an example, the (1, 21) moiré is defined by the par-
tial sum consisting of all the terms of the double sum [Eq.
(5)] whose indices are m and 2m, namely,

m1,21~x, y ! 5 (
m52`

`

cm
~1 !c2m

~2 !

3 exp$i2pm@g1~x, y ! 2 g2~x, y !#%.

(7)

Figure 4 schematically shows the (1, 21) moiré be-
tween two straight gratings and between two curvilinear
gratings. Other examples of moiré between periodic lay-
ers have been presented in Ref. 10.

Note that in the case where g1(x, y) and g2(x, y) are
linear functions of x and y, g1(x, y) 5 u1x 1 n1 y,
g2(x, y) 5 u2x 1 n2 y, the layers r1(x, y) and r2(x, y)
are periodic, and their frequencies are given, respectively,
by the vectors f1 5 (u1 , n1) and f2 5 (u2 , n2) in the spec-
trum. The (k1 , k2) moiré [Eq. (6)] is, in this case, a pe-
riodic function whose frequency is k1f1 1 k2f2 . For ex-
ample, the (1, 21) moiré has the frequency f1 2 f2 , the
(1, 1) moiré has the frequency f1 1 f2 , the (2, 21) moiré
has the frequency 2f1 2 f2 , etc. These moirés corre-
spond, indeed, to the difference beat, the sum beat, and
the various higher-order beats that are generated in the
superposition, and Eq. (6) gives their Fourier-series de-
composition. As we can see, our systematic formalism
for denoting the moiré effects indeed covers all possible
cases.

Now all the substructures of the superposition that are
defined by the (k1 , k2) moirés exist in the superposition
simultaneously (they are, in fact, partial sums of the
Fourier-series decomposition of the superposition). How-
ever, depending on whether their frequency vectors k1f1
1 k2f2 fall in the spectrum inside or outside the range of
visible frequencies, any of these moirés may be visible or

Fig. 4. Schematic illustration of a (1, 21) moiré (a) between two
straight periodic gratings, (b) between two curvilinear gratings.
The dotted lines in (a), which represent the (2, 21) moiré, have
been omitted in (b) for the sake of clarity.
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invisible. For example, if the difference frequency
f1 2 f2 falls inside the visible frequency range but the
sum frequency f1 1 f2 falls beyond the visible frequency
range, then the (1, 21) moiré (the difference beat) is vis-
ible in the superposition but the (1, 1) moiré (the sum
beat) is not visible. This has been explained in detail in
Ref. 10. In the case of curved gratings, in which the fre-
quency vector of each layer is no longer constant but
rather varies throughout the x, y plane, we consider at
any point (x, y) the local frequency vectors f1(x, y),
f2(x, y), etc. The same visibility rule applies here as
above—but this time it applies locally, i.e., at any point
(x, y) of the superposition individually. Therefore in the
case of curved layers any of the moiré effects may be vis-
ible in some zones of the x, y plane and invisible in other
zones.

Proceeding now to the superposition of curved dot
screens, suppose that the original curved layers r1(x, y)
and r2(x, y) are given by the curved dot screens

r1~x, y ! 5 (
m52`

`

(
n52`

`

cm,n
~1 !

3 exp$i2p@mg1~x, y ! 1 ng2~x, y !#%,

r2~x, y ! 5 (
m52`

`

(
n52`

`

cm,n
~2 !

3 exp$i2p@mg3~x, y ! 1 ng4~x, y !#%.

Their superposition is expressed therefore by the product

r1~x, y !r2~x, y !

5 X (
m52`

`

(
n52`

`

cm,n
~1 ! exp$i2p@mg1~x, y ! 1 ng2~x, y !#%C

3X (
m52`

`

(
n52`

`

cm,n
~2 ! exp$i2p@mg3~x, y ! 1 ng4~x, y !#%C

5 (
n152`

`

(
n252`

`

(
n352`

`

(
n452`

`

cn1,n2

~1 ! cn3 ,n4

~2 !

3 exp$i2p@n1 g1~x, y ! 1 n2 g2~x, y ! 1 n3 g3~x, y !

1 n4 g4~x, y !#%. (8)

We call the term in this sum whose indices are n1 , n2 ,
n3 , and n4 the (n1 , n2 , n3 , n4) term.

Consider the 2D partial sum that consists of all the
terms of this quadruple sum that are spanned by the
(k1 , k2 , k3 , k4) term and its orthogonal counterpart, the
(2k2 , k1 , 2k4 , k3) term [note that the indices
(k1 , k2 , k3 , k4) and (2k2 , k1 , 2k4 , k3) are orthogonal
since their inner product is zero]. This 2D partial sum
consists of all the terms whose indices are mk1 2 nk2 ,
mk2 1 nk1 , mk3 2 nk4 , and mk4 1 nk3 , since

m~k1 , k2 , k3 , k4! 1 n~2k2 , k1 , 2k4 , k3!

5 ~mk1 2 nk2 , mk2 1 nk1 , mk3 2 nk4 , mk4 1 nk3!,

and it is therefore given by
mk1 ,k2 ,k3 ,k4
~x, y !

5 (
m52`

`

(
n52`

`

cmk1 2 nk2 ,mk2 1 nk1

~1 ! cmk3 2 nk4 ,mk4 1 nk3

~2 !

3 exp$i2p@~mk1 2 nk2!g1~x, y !

1 ~mk2 1 nk1!g2~x, y ! 1 ~mk3 2 nk4!g3~x, y !

1 ~mk4 2 nk3!g4~x, y !#%

5 (
m52`

`

(
n52`

`

cmk1 2 nk2 ,mk2 1 nk1

~1 ! cmk3 2 nk4 ,mk4 1 nk3

~2 !

3 exp(i2p$m@k1 g1~x, y ! 1 k2 g2~x, y ! 1 k3 g3~x, y !

1 k4 g4~x, y !# 1 n@2k2 g1~x, y !

1 k1 g2~x, y ! 2 k4 g3~x, y ! 1 k3 g4~x, y !#%). (9)

This partial sum corresponds to a 2D repetitive structure
that is present in the superposition r1(x, y)r2(x, y) but is
not present in either of the original layers r1(x, y) and
r2(x, y) themselves. This 2D structure is called the
(k1 , k2 , k3 , k4) moiré.

As an example, the (1, 0, 21, 0) moiré is defined by the
partial sum consisting of all the terms of the quadruple
sum [Eq. (8)] whose indices are m, n, 2m, 2n, namely,

m1,0,21,0~x, y !

5 (
m52`

`

(
n52`

`

cm,n
~1 ! c2m,2n

~2 ! exp$i2p@mg1~x, y !

1 ng2~x, y ! 2 mg3~x, y ! 2 ng4~x, y !#%

5 (
m52`

`

(
n52`

`

cm,n
~1 ! c2m,2n

~2 ! exp(i2p$m@g1~x, y !

2 g3~x, y !# 1 n@g2~x, y ! 2 g4~x, y !#%). (10)

This is indeed the 2D equivalent of the difference beat be-
tween two gratings, the (1, 21) moiré [see Eq. (7)].

Actual examples of such moirés are given in the next
section. Note that the above definitions of the (k1 , k2)
moiré between two curvilinear gratings or the
(k1 , k2 , k3 , k4) moiré between two curved dot screens
are in fact generalizations of the respective definitions in
the periodic case: In the periodic case each term in the
sums (5) or (8) corresponds to an impulse in the spectrum
of the superposition, and each moiré effect is represented
by a partial cluster of impulses in that spectrum (see Ref.
10).

5. MOIRÉ EXTRACTION IN THE
SUPERPOSITION OF REPETITIVE LAYERS
A. Moiré Extraction in the Superposition of
Curvilinear Gratings
We arrive now at the main part of our paper. We start
by presenting the T-convolution theorem in terms of Fou-
rier series17:

T-convolution theorem: Let p1(x) and p2(x) be peri-
odic functions of the period T integrable on a one-period
interval (0, T), and let their Fourier series representa-
tions be
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p1~x ! 5 (
m52`

`

cm
~1 ! exp~i2pmx/T !

p2~x ! 5 (
n52`

`

cn
~2 ! exp~i2pnx/T !.

Then their T convolution

h~x ! 5 p1~x ! * p2~x ! 5
1
T
E

T
p1~x 2 x8!p2~x8!dx8

is also periodic with the same period T, and its Fourier
series representation is

h~x ! 5 (
m52`

`

cm
~1 !cm

~2 ! exp~i2pmx/T !. j

Now let r1(x, y) and r2(x, y) be two curvilinear gratings
given by

r1~x, y ! 5 p1@g1~x, y !# 5 (
m52`

`

cm
~1 ! exp@i2pmg1~x, y !#,

r2~x, y ! 5 p2@g2~x, y !# 5 (
n52`

`

cn
~2 ! exp@i2png2~x, y !#,

where p1(x8) 5 (m52`
` cm

(1) exp(i2p mx8) and p2(x8)
5 (n52`

` cn
(2) exp(i2p nx8) are the onefold periodic profiles

of the gratings r1(x, y) and r2(x, y), normalized to the
period T 5 (1, 0), and g1(x, y) and g2(x, y) are the coor-
dinate transformations that transform p1(x8) and p2(x8)
into the gratings r1(x, y) and r2(x, y), respectively.

As we have seen in Section 4 [see Eq. (5)], the super-
position of the two gratings is expressed by the product

r1~x, y !r2~x, y ! 5 (
m52`

`

(
n52`

`

cm
~1 !cn

~2 !

3 exp$i2p@mg1~x, y ! 1 ng2~x, y !#%,

(11)

and the partial sum that corresponds to the (1, 21) moiré
consists of all the terms of this double sum whose indices
are m and 2m, namely [see Eq. (7)],

m1,21~x, y ! 5 (
m52`

`

cm
~1 !c2m

~2 !

3 exp$i2pm@g1~x, y ! 2 g2~x, y !#%.

Let us denote by p1,21(x8) the periodic profile [normal-
ized to the same period T 5 (1, 0)] of m1,21(x, y):

p1,21~x8! 5 (
m52`

`

cm
~1 !c2m

~2 ! exp~i2pmx8!.

We see, therefore, by the T-convolution theorem that
p1,21(x8) is simply the T convolution

p1,21~x8! 5 p1~x8! * p2~2x8!, (12)

where x8 5 g1(x, y) 2 g2(x, y) is the coordinate trans-
formation that brings p1,21(x8) into the geometric layout
of the (1, 21) moiré. In other words, we obtain the fol-
lowing:
Result 1: The (1, 21) moiré m1,21(x) in the super-
position of two curvilinear gratings r1(x) 5 p1@g1(x)#
and r2(x) 5 p2@g2(x)# is given by m1,21(x)
5 p1,21@g1,21(x)#, where

1. p1,21(x), the normalized periodic profile of the
(1, 21) moiré, is the T convolution of the normalized pe-
riodic profiles of the original gratings:

p1,21~x8! 5 p1~x8! * p2~2x8!;

2. g1,21(x), the coordinate transformation that brings
p1,21(x8) into the (1, 21) moiré m1,21(x), is given by

g1,21~x! 5 g1~x! 2 g2~x!. j

Using less formal language, we may formulate this result
as follows:

Result 2: The (1, 21) moiré m1,21(x, y) generated in
the superposition of the two curvilinear gratings
r1(x, y) 5 p1@g1(x, y)# and r2(x, y) 5 p2@g2(x, y)# can
be seen as the result of a three-stage process:

1. Normalization of the original curvilinear gratings
by replacing in each of them gi(x, y) with x8 [i.e., by ap-
plying to each of them the inverse coordinate transforma-
tion gi(x, y) → x8], in order to straighten them into un-
curved, normalized periodic gratings that have identical
periods T 5 (1, 0).

2. T convolution of these normalized periodic line
gratings. This gives the uncurved, normalized periodic
profile of the (1, 21) moiré, with the same period T
5 (1, 0).

3. Bending this normalized periodic profile of the
moiré into the actual curvilinear geometric layout of the
moiré, by replacing x8 with g1(x, y) 2 g2(x, y) (i.e., by
applying the nonlinear coordinate transformation x8
→ g1@(x, y) 2 g2(x, y)#. j

More generally, we have seen in Section 4 that the par-
tial sum of Eq. (11) that corresponds to the (k1 , k2) moiré
consists of all the terms of the double sum whose indices
are mk1 and mk2 , namely [see Eq. (6)],

mk1 ,k2
~x, y ! 5 (

m52`

`

cmk1

~1 ! cmk2

~2 !

3 exp$i2pm@k1 g1~x, y ! 1 k2 g2~x, y !#%.

If we denote by pk1 ,k2
(x8) the periodic profile of

mk1 ,k2
(x, y) [normalized to the period T 5 (1, 0)],

pk1 , k2
~x8! 5 (

m52`

`

cmk1

~1 ! cmk2

~2 ! exp~i2pmx8!,

then we see by the T-convolution theorem that pk1 ,k2
(x8)

is simply the T convolution,

pk1 , k2
~x8! 5 subk1

@ p1~x8!# * subk2
@ p2~x8!#, (13)

where subk@ p(x8)# is the k-sub-Fourier series of p(x8),
i.e., the periodic function (with period T 5 (1, 0)) whose
Fourier series contains only every kth coefficient from the
Fourier series p(x8) 5 (m52`

` cm exp(i2pmx8):

subk@ p~x8!# 5 (
m52`

`

dm exp~i2pmx8!,

with
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dm 5 ckm ,

and x8 5 k1 g1(x, y) 1 k2 g2(x, y) is the coordinate
transformation that brings pk1 ,k2

(x8) into the geometric
layout of the (k1 , k2) moiré. In other words, we obtain
the following:

The fundamental moiré theorem (for the superposition
of two curvilinear gratings): The (k1 , k2) moiré
mk1 ,k2

(x) in the superposition of two gratings r1(x)
5 p1@g1(x)# and r2(x) 5 p2@g2(x)# is given by mk1 ,k2

(x)
5 pk1 ,k2

@gk1 ,k2
(x)#, where

1. pk1 ,k2
(x8), the normalized periodic profile of the

(k1 , k2) moiré, is given by
pk1 , k2

~x8! 5 subk1
@p1~x8!# * subk2

@p2~x8!#.

2. gk1 ,k2
(x), the coordinate transformation that brings

pk1 ,k2
(x8) into the (k1 , k2) moiré mk1 ,k2

(x), is given by

gk1 , k2
~x! 5 k1 g1~x! 1 k2 g2~x!.

In other words, the geometric transformation gk1 ,k2
(x) of

the (k1 , k2) moiré is a weighted sum of the geometric
transformations of the individual gratings, where the
weighting coefficients are the moiré indices ki . j

Using less formal language, we may formulate this
theorem as follows:

Result 3: The (k1 , k2) moiré mk1 ,k2
(x, y) generated in

the superposition of the two curvilinear gratings
r1(x, y) 5 p1@g1(x, y)# and r2(x, y) 5 p2@g2(x, y)# can
be seen from the image-domain point of view as the result
of a three-stage process:

1. Normalization of the original curvilinear gratings
by, in each of them, replacing gi(x, y) with x8 [i.e., by ap-
plying to each of them the inverse coordinate transforma-
tion gi(x, y) → x8]) in order to straighten them into un-
curved, normalized periodic gratings having identical
periods T 5 (1, 0).

2. T convolution of the k1-sub-Fourier series of the
first normalized grating with the k2-sub-Fourier series of
the second normalized grating. This gives the uncurved,
normalized periodic profile of the (k1 , k2) moiré, with the
same period T 5 (1, 0).

3. Bending this normalized periodic profile of the
moiré into the actual curvilinear geometric layout of the
moiré by replacing x8 with k1 g1(x, y) 1 k2 g2(x, y) [i.e.,
by applying the nonlinear coordinate transformation x8
→ k1 g1(x, y) 1 k2 g2(x, y)]. j

An interesting consequence of the above theorem is
that to synthesize a (k1 , k2) moiré whose geometric lay-
out is given by a certain required function g(x, y), all
that we have to do is to choose two original layers whose
bending functions g1(x, y) and g2(x, y) satisfy the condi-
tion

k1 g1~x, y ! 1 k2 g2~x, y ! 5 g~x, y !. (14)

In the case of a (1, 21)-moiré this condition is simplified
into18

g1~x, y ! 2 g2~x, y ! 5 g~x, y !.

In particular, it may also happen that the superposi-
tion gives a periodic moiré even when the original layers
are curved. Using Eq. (14), we can say now exactly when
the (k1 , k2) moiré in the superposition of two curvilinear
gratings is periodic: This occurs iff the coordinate trans-
formation k1 g1(x, y) 1 k2 g2(x, y) is affine, namely,

k1 g1~x, y ! 1 k2 g2~x, y ! 5 ax 1 by 1 c.

In the case of a (1, 21) moiré this condition becomes

g1~x, y ! 2 g2~x, y ! 5 ax 1 by 1 c.

Example 1: A periodic moiré that is generated by the
lateral shift of two identical layers on top of each other:
This kind of situation occurs when the bending function
g(x, y) (which is common to both layers) happens to have
the property

;x1 , x2 , g@~x 1 x1!, y# 2 g@~x 2 x2!, y#

5 a0x 1 b0 y 1 c0 .

For instance, in the superposition of two identical, later-
ally shifted zone gratings whose bending function is
g(x, y) 5 ax2 1 by2 (see Fig. 5), we have

g@~x 1 x1!, y# 2 g@~x 2 x2!, y#

5 @a~x 1 x1!2 1 by2# 2 @a~x 2 x2!2 1 by2#

5 a~x2 1 2xx1 1 x1
2 2 x2 1 2xx2 2 x2

2!

5 2a~x1 1 x2!x 1 a~x1
2 2 x2

2!.

Note that the (1, 21) moiré obtained in such cases re-
mains periodic for any lateral shifts x1 , x2 in the original
layers.

Example 2: When the two layers have an identical
bending function g(x, y) that does not have the above
property, we can still force the superposed layers to give a
periodic moiré by slightly modifying one or even both of
them. For example, if we slightly modify the bending
function of the first layer into g(x, y) 1 x/8, the differ-
ence g1(x, y) 2 g2(x, y) now becomes x/8 and the moiré
obtained in their superposition consists of periodic verti-
cal bands [Fig. 6(a)]. However, unlike in the case of ex-
ample 1, the (1, 21) moiré in this case is periodic only
when the two layers are superposed center on center
without any shifts; the slightest shift (or rotation) be-
tween the two layers will destroy the periodicity of this
moiré, as shown in Figs. 6(b) and 6(c).

Remark: The geometric layout of the curvilinear
(k1 , k2) moiré in the x, y plane, i.e., the locus of the cen-
ters of its curvilinear corrugations in the x, y plane, is de-
termined by the coordinate transformation gk1 ,k2

(x). In
other words, the reflectance (or transmittance) function of
the isolated (k1 , k2) moiré is constant along the curves
gk1 ,k2

(x) 5 constant. A general notion about the geo-
metric layout of the (k1 , k2) moiré can already be ob-
tained from the first harmonic term of the curvilinear
Fourier-series development of mk1 ,k2

(x, y),
cos@2p gk1 ,k2

(x, y)#, by drawing the locus of its maxima,
namely, the curves gk1 ,k2

(x, y) 5 m, m P Z, where the
cosine 5 1.

The generalization of results 2 and 3 and of the funda-
mental moiré theorem to any (k1 , ..., km) moiré between
m superposed curvilinear gratings are straightforward.
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Fig. 5. Two circular zone gratings with raised cosinusoidal periodic profiles (1/2)cos(2p f r) 1 1/2, which have been horizontally shifted
from the origin to the points x 5 1 (a), x 5 21 (b), and their superposition (c). The (1, 21) moiré is clearly seen in the superposition
(c) in the form of periodic vertical bands.

Fig. 6. Superposition of two curvilinear gratings whose bending functions are g1(x, y) 5 arg sinh(x) 1 x/8 and g2(x, y) 5 arg sinh(x) so
that g1(x, y) 2 g2(x, y) 5 x/8. The (1, 21) moiré obtained in their superposition consists of periodic vertical bands as shown in (a).
However, this moiré is periodic only when the two layers are superposed center on center, and the slightest shift or rotation between the
two layers destroys the periodicity of the moiré, as shown in (b) and (c). Note that the moiré bands seem to be darker in the center of
each drawing; this happens because, for practical reasons, the curvilinear gratings were drawn here with a constant linewidth [compare
with the correct, varying linewidths in Fig. 2(b)]. (Weak parasite moirés are a result of the production process.)
B. Moiré Extraction in the Superposition of Curved Dot
Screens
The (k1 , k2 , k3 , k4) moiré generated between two super-
posed dot screens (see Section 4) is a case of particular in-
terest. Owing to its special importance, this case will
now be analyzed separately, although it is already cov-
ered by the above generalization taking m 5 4.

We start by presenting the 2D T-convolution theorem
in terms of Fourier series:

2D T-convolution theorem: Let p1(x, y) and p2(x, y)
be doubly periodic functions of the period Tx ,Ty inte-
grable on a one-period interval (0 < x < Tx , 0 < y
< Ty), and let their Fourier series representations be

p1~x, y ! 5 (
m52`

`

(
n52`

`

cm,n
~1 !

3 exp@i2p~mx/Tx 1 ny/Ty!#,

p2~x, y ! 5 (
m52`

`

(
n52`

`

cm,n
~2 !

3 exp@i2p~mx/Tx 1 ny/Ty!#.
Then their T convolution

h~x, y ! 5 p1~x, y ! ** p2~x, y !

5
1

TxTy
EE

TxTy

p1~x 2 x8, y 2 y8!

3 p2~x8, y8!dx8dy8

is also periodic with the same period Tx ,Ty , and its Fou-
rier series representation is

h~x, y ! 5 (
m52`

`

(
n52`

`

cm,n
~1 ! cm,n

~2 !

3 exp@i2p~mx/Tx 1 ny/Ty!#. j

Using this Fourier series formalism, we now derive the
counterpart of result 1 for the case of curved dot screens:

Let r1(x, y) and r2(x, y) be curved dot screens. We
have, therefore,
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r1~x, y ! 5 p1@g1~x, y !, g2~x, y !#

5 (
m52`

`

(
n52`

`

cm,n
~1 !

3 exp$i2p@mg1~x, y ! 1 ng2~x, y !#%,

r2~x, y ! 5 p2@g3~x, y !, g4~x, y !#

5 (
m52`

`

(
n52`

`

cm,n
~2 !

3 exp$i2p@mg3~x, y ! 1 ng4~x, y !#%,

where p1(x8, y8) 5 (m52`
` (n52`

` cm,n
(1) exp@i2p (mx8 1 ny8)#

and p2(x8, y8) 5 (m52`
` (n52`

` cm,n
(2) exp@i2p (mx8 1 ny8)#

are the periodic profiles of the dot screens r1(x, y) and
r2(x, y), normalized to a 2D period of (Tx8 , Ty8)
5 (1, 1), and

S x8
y8 D 5 S g1~x, y !

g2~x, y ! D , S x8
y8 D 5 S g3~x, y !

g4~x, y ! D
[or in vector notation x8 5 g 1(x) and x8 5 g 2(x)] are the
nonlinear coordinate transformations that transform
p1(x8, y8) and p2(x8, y8) into the curved dot screens
r1(x, y) and r2(x, y), respectively.

As we have seen in Section 4 [see Eq. (8)], the superpo-
sition of the two dot screens is expressed by the product

r1~x, y !r2~x, y !

5 (
n152`

`

(
n252`

`

(
n352`

`

(
n452`

`

cn1 ,n2

~1 ! cn3 ,n4

~2 !

3 exp$i2p@n1 g1~x, y ! 1 n2 g2~x, y !

1 n3 g3~x, y ! 1 n4 g4~x, y !#%, (15)

and the partial sum that corresponds to the (1, 0, 21, 0)
moiré consists of all the terms of this double sum whose
indices are m, n, 2m, and 2n, namely [see Eq. (10],

m1,0,21,0~x, y !

5 (
m52`

`

(
n52`

`

cm,n
~1 ! c2m,2n

~2 ! exp(i2p$m@g1~x, y !

2 g3~x, y !# 1 n@g2~x, y ! 2 g4~x, y !#%).

Let us denote by p1,0,21,0(x8, y8) the periodic profile
[normalized to the 2D period (Tx8 , Ty8) 5 (1, 1)] of
m1,0,21,0(x, y):

p1,0,21,0~x8, y8! 5 (
m52`

`

(
n52`

`

cm, n
~1 ! c2m,2n

~2 !

3 exp@i2p~mx8 1 ny8!#.

We see, therefore, by the 2D T-convolution theorem that
p1,0,21,0(x8, y8) is simply the 2D T convolution

p1,0,21,0~x8, y8! 5 p1~x8, y8! ** p2~2x8, 2y8!, (16)

where

S x8
y8 D 5 S g1~x, y ! 2 g3~x, y !

g2~x, y ! 2 g4~x, y ! D ,
or, in vector notation, x8 5 g 1(x) 2 g 2(x), is the 2D co-
ordinate transformation that brings p1,0,21,0(x8, y8) into
the geometric layout of the (1, 0, 21, 0) moiré. In other
words, we obtained the following result:

Result 4: The (1, 0, 21, 0) moiré m1,0,21,0(x) in the su-
perposition of two curved dot screens r1(x) 5 p1@g 1(x)#
and r2(x) 5 p2@g 2(x)# is given by m1,0,21,0(x)
5 p1,0,21,0@g 1,0,21,0(x)#, where

1. p1,0,21,0(x), the normalized periodic profile of the
(1, 0, 21, 0) moiré, is the T convolution of the normalized
periodic profiles of the original dot-screens:

p1,0,21,0~x8! 5 p1~x8! ** p2~2x8!;

2. g 1,0,21,0(x), the bending transformation of the
(1, 0, 21, 0) moiré, is given by

g 1,0,21,0~x! 5 g 1~x! 2 g 2~x!. j

More generally, we have seen in Section 4 that the par-
tial sum of (15) that corresponds to the (k1 , k2 , k3 , k4)
moiré consists of all the terms of the double sum whose
indices are mk1 2 nk2 , mk2 1 nk1 , mk3 2 nk4 , and
mk4 1 nk3 , namely [see Eq. (9)],

mk1 ,k2 ,k3 ,k4
~x, y !

5 (
m52`

`

(
n52`

`

cmk12nk2 ,mk21nk1

~1 ! cmk32nk4 ,mk41nk3

~2 !

3 exp(i2p$m@k1 g1~x, y ! 1 k2 g2~x, y !

1 k3 g3~x, y ! 1 k4 g4~x, y !# 1 n@2k2 g1~x, y !

1 k1 g2~x, y ! 2 k4 g3~x, y ! 1 k3 g4~x, y !#%).

If we denote by pk1 ,k2 ,k3 ,k4
(x8, y8) the periodic profile

of mk1 ,k2 ,k3 ,k4
(x, y) [normalized to the 2D period

(Tx8 , Ty8) 5 (1, 1)],

pk1 ,k2 ,k3 ,k4
~x8, y8!

5 (
m52`

`

(
n52`

`

cmk12nk2 ,mk21nk1

~1 ! cmk32nk4 ,mk41nk3

~2 !

3 exp@i2p~mx8 1 ny8!#,

then we see by the 2D T-convolution theorem that
pk1 ,k2 ,k3 ,k4

(x8, y8) is simply the 2D T convolution

pk1 ,k2 ,k3 ,k4
~x8, y8!

5 subk1 ,k2
@ p1~x8, y8!# ** subk3 ,k4

@ p2~x8, y8!#, (17)

where subr,s@ p(x8, y8)# is the (r, s)-sub-Fourier series of
p(x8, y8), i.e., the periodic function [with 2D period
(Tx8 , Ty8) 5 (1, 1)] whose Fourier series contains only
every (r, s)th coefficient from the 2D Fourier series
p(x8, y8) 5 (m52`

` (n52`
` cm,n exp@i2p (mx8 1 ny8)#:

subr,s@ p~x8, y8!# 5 (
m52`

`

(
n52`

`

dm,n

3 exp@i2p~mx8 1 ny8!#,

with

dm,n 5 cmr2ns,ms1nr ,

and where
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Fig. 7. Continued on facing page.
S x8
y8 D 5 S k1 g1~x, y ! 1 k2 g2~x, y ! 1 k3 g3~x, y ! 1 k4 g4~x, y !

2k2 g1~x, y ! 1 k1 g2~x, y ! 2 k4 g3~x, y ! 1 k3 g4~x, y ! D
is the 2D coordinate transformation that brings
pk1 ,k2 ,k3 ,k4

(x8, y8) into the geometric layout of the
(k1 , k2 , k3 , k4) moiré. Note that this bending transfor-
mation can be rearranged in the form

S x8
y8 D 5 F k1 k2

2k2 k1
G S g1~x, y !

g2~x, y ! D 1 F k3 k4

2k4 k3
G S g3~x, y !

g4~x, y ! D ,
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Fig. 7. Dot-screen superposition illustrating example 1 of Section 5.B. (a) Curved dot screen r1(x, y) consisting of distorted 1’s, (b)
curved dot screen r2(x, y) consisting of small pinholes. The two layers have been distorted by the same nonlinear coordinate transfor-
mation g (x, y) 5 (2xy, x2 2 y2). As shown in (c), the (1, 0, 21, 0) moiré generated when r2(x, y) is laterally shifted on top of r1(x, y)
is purely periodic, although both r1(x, y) and r2(x, y) are not periodic; this periodic moiré consists of a screen of magnified 1’s, whose
period and orientation depend on the shift. Note that rotations destroy the periodicity of the moiré, as illustrated in (d).
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from which we obtain its vector form

x8 5 K1g 1~x! 1 K2g 2~x!,

where K1 and K2 denote the matrices @2k2

k1
k1

k2# and

@2k4

k3
k3

k4#, respectively. We therefore obtain the follow-
ing:

The fundamental moiré theorem (for the superposition
of two curved dot screens): The (k1 , k2 , k3 , k4) moiré
mk1 ,k2 ,k3 ,k4

(x) in the superposition of two curved dot
screens r1(x) 5 p1@g 1(x)# and r2(x) 5 p2@g 2(x)# is given
by mk1 ,k2 ,k3 ,k4

(x) 5 pk1 ,k2 ,k3 ,k4
@g k1 ,k2 ,k3 ,k4

(x)#, where

1. pk1 ,k2 ,k3 ,k4
(x), the normalized periodic profile of

the (k1 , k2 , k3 , k4) moiré, is given by
pk1 ,k2 ,k3 ,k4

~x8! 5 subk1 ,k2
@ p1~x8!# ** subk3 ,k4

@ p2~x8!#;

2. g k1 ,k2 ,k3 ,k4
(x), the bending transformation of the

(k1 , k2 , k3 , k4) moiré, is given by
g k1 ,k2 ,k3 ,k4

~x! 5 K1g 1~x! 1 K2g 2~x!. j

The generalization of this theorem to any (k1 , ..., k2m)
moiré in the superposition of m curved dot screens is
straightforward.

We obtain, therefore, as an immediate consequence of
this theorem,

Result 5: The geometric layout of the moiré (which is
determined by its bending transformation) and the peri-
odic profile of the moiré are completely independent of
each other: The geometric layout of the moiré is influ-
enced only by the geometric layout of the superposed lay-
ers, and the periodic profile of the moiré depends only on
the periodic profiles of the superposed layers. j

Using less formal language than in the theorem, we
can now state the counterpart of result 3 for the superpo-
sition of two curved dot screens as follows:

Result 6: Let r1(x, y) and r2(x, y) be two curved dot
screens, which are obtained from two twofold periodic dot
screens by the nonlinear coordinate transformations

g 1 : S x
y D → S g1~x, y !

g2~x, y ! D , g 2 : S x
y D → S g3~x, y !

g4~x, y ! D ,

respectively. The (k1 , k2 , k3 , k4) moiré
mk1 ,k2 ,k3 ,k4

(x, y) generated in the superposition of these
curved dot screens can be seen from the image-domain
point of view as the result of a three-stage process:

1. Normalization of the original curved dot screens by,
in each of them, replacing @ gi(x, y), gi11(x, y)# with
(x8, y8) $i.e., by applying to each of them the inverse co-
ordinate transformation @gi(x, y), gi11(x, y)#
→ (x8, y8)% in order to straighten them into uncurved,
normalized 2D periodic dot screens that have identical pe-
riods (Tx8 , Ty8) 5 (1, 1).

2. T-convolution of the 2D (k1 , k2)-sub-Fourier series
of the first normalized dot screen with the 2D
(k3 , k4)-sub-Fourier series of the second normalized dot
screen. This gives the uncurved, normalized periodic
profile of the (k1 , k2 , k3 , k4) moiré, with the same pe-
riod (Tx8 , Ty8) 5 (1, 1).

3. Bending this normalized periodic profile of the
moiré into the actual curved geometric layout of the
moiré, by replacing (x8, y8) with @k1 g1(x, y)
1 k2 g2(x, y) 1 k3 g3(x, y) 1 k4 g4(x, y), 2k2 g1(x, y)
1 k1 g2(x, y) 2 k4 g3(x, y) 1 k3 g4(x, y)], i.e., by apply-
ing the nonlinear coordinate transformation

Sx8
y8D → S k1 g1~x, y! 1 k2 g2~x, y! 1 k3 g3~x, y! 1 k4 g4~x, y!

2k2 g1~x, y! 1 k1 g2~x, y! 2 k4 g3~x, y! 1 k3 g4~x, y!D.
j

It is interesting to note, as we have already seen for
curvilinear gratings, that in certain cases the coordinate
transformation in step (3) may give a 2D periodic moiré
even when the original layers are curved, i.e., when the
coordinate transformations gi(x, y) of the individual lay-
ers are not linear. In the particular case of the
(1, 0, 21, 0) moiré (see result 4), where the coordinate
transformation of step (3) is simplified into

S x8
y8 D → S g1~x, y ! 2 g3~x, y !

g2~x, y ! 2 g4~x, y ! D , (18)

this happens iff the coordinate transformation (18) is an
affine transformation, namely,

g1~x, y ! 2 g3~x, y ! 5 a1x 1 b1 y 1 c1 ,

g2~x, y ! 2 g4~x, y ! 5 a2x 1 b2 y 1 c2 .

Example 1: Let p1(x8, y8) be a periodic dot screen
whose period consists of the digit 1, and let r1(x, y) be the
curved dot screen obtained by applying to p1(x8, y8) the
coordinate transformation

S x8
y8 D 5 S 2xy

x2 2 y2 D .

If we laterally shift on top of this curved dot screen a sec-
ond dot screen that was subject to the same coordinate
transformation, we obtain a twofold periodic moiré since

@2~x 1 x0!y# 2 @2~x 2 x0!y# 5 4x0 y,

@~x 1 x0!2 2 y2# 2 @~x 2 x0!2 2 y2# 5 4x0 x.

Now, if the second layer consists of small pinholes, we
obtain in the superposition a periodic (1, 0, 21, 0) moiré
whose normalized periodic profile is, according to result 4,
a T convolution of the shape of 1 with the pinhole, which
gives again a 1-shaped periodic profile. We obtain there-
fore a periodic (1, 0, 21, 0) moiré whose period consists of
a magnified digit 1, even though the two superposed
screens are not periodic. This is illustrated in Fig. 7. j

More generally, to synthesize a (k1 , k2 , k3 , k4) moiré
whose geometric layout is given by the two independent
functions g (1)(x, y) and g (2)(x, y), all that we have to do
is to choose two original layers whose bending functions
g1(x, y), g2(x, y), g3(x, y), and g4(x, y) satisfy the con-
dition

k1 g1~x, y ! 1 k2 g2~x, y ! 1 k3 g3~x, y ! 1 k4 g4~x, y !

5 g ~1 !~x, y !,

2k2 g1~x, y ! 1 k1 g2~x, y ! 2 k4 g3~x, y ! 1 k3 g4~x, y !

5 g ~2 !~x, y !.

In the case of a (1, 0, 21, 0) moiré, this condition is sim-
plified into
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g1~x, y ! 2 g3~x, y ! 5 g ~1 !~x, y !,

g2~x, y ! 2 g4~x, y ! 5 g ~2 !~x, y !.

The periodic profile of the synthesized moiré will depend
only on the periodic profiles of the superposed layers.

Finally, note that the second part of the fundamental
moiré theorem remains true even when the original peri-
odic layers p1(x8, y8) and p2(x8, y8) are not normalized
and have different periods and orientations. This allows
us to interpret the second part of the theorem as follows:

Result 7: When the two original, uncurved periodic
layers p1(x8) and p2(x8) are transformed into curved lay-
ers r1(x) 5 p1@g 1(x)# and r2(x) 5 p2@g 2(x)# by transfor-
mations g 1(x) and g 2(x), respectively, the periodic
(k1 , k2 , k3 , k4) moiré between the original non-
curved layers is transformed into a curved moiré by the
geometric transformation g k1 ,k2 ,k3 ,k4

(x) 5 K1g 1(x)
1 K2g 2(x). j

6. CONCLUSIONS
In this paper we explore the moiré effects generated in
the superposition of geometrically transformed periodic
structures (repetitive structures). We show that the geo-
metric transformation undergone by any (k1 , ..., kn)
moiré between repetitive structures is a weighted sum of
the geometric transformations of the individual layers,
where the weighting coefficients are given by the moiré
indices ki . The intensity profile of the moiré, for its part,
can be interpreted by virtue of the T-convolution theorem
as a normalized T convolution of the original superposed
structures (or of the sub-Fourier series thereof ). These
results are first demonstrated for moirés in the superpo-
sition of curvilinear gratings and then for the more gen-
eral 2D case of moirés between curved dot screens.
These fundamental results offer a full quantitative and
qualitative analysis of any moiré in the superposition of
repetitive structures. In particular, we obtain the inter-
esting result that the geometric layout and the periodic
profile of the moiré are completely independent of each
other; the geometric layout of the moiré is influenced only
by the geometric layout of the superposed layers, and the
periodic profile of the moiré depends only on the periodic
profiles of the superposed layers.

Moreover, in addition to the full analysis of the geomet-
ric layout and the intensity profile of any moiré in the su-
perposition of repetitive layers, our results also enable us
to synthesize moirés with any given geometric layout and
with any required periodic profile. We show how one
should design the original layers in order to obtain the de-
sired moiré effect, and in particular we show how one may
obtain a fully periodic moiré even if the original layers are
repetitive but not necessarily periodic.

Finally, it should be noted that although for the sake of
simplicity our results have been presented throughout
this paper for the case of two superposed layers, our re-
sults are general, and their extension to moiré effects be-
tween any m superposed repetitive structures is straight-
forward.
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terpretation of moiré patterns,’’ J. Opt. Soc. Am. 54, 169–
175 (1964).
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