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Dot trajectories in the superposition of random
screens: analysis and synthesis
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Moiré effects that occur in the superposition of aperiodic layers such as correlated random dot screens are
known as Glass patterns. One of the most interesting properties of such moiré effects, which clearly distin-
guish them from their periodic counterparts, is undoubtedly the appearence in the superposition of intriguing
microstructure dot alignments, also known as dot trajectories. These dot trajectories may have different geo-
metric shapes, depending on the transformations undergone by the superposed layers. In the case of simple
linear transformations such as layer rotations or layer scalings, the resulting dot trajectories are rather simple
(circular, radial, spiral, elliptic, hyperbolic, linear, etc.); but in more complex layer transformations the dot tra-
jectories can have much more interesting and surprising shapes. A full mathematical analysis of the dot tra-
jectories, their morphology, and their various properties is provided. Furthermore, it is shown how the ap-
proach also allows us to synthesize correlated random screens that give in their superposition dot trajectories
having any desired geometric shapes. Finally, it is also explained why such dot trajectories are visible only in
superpositions of aperiodic screens but not in superpositions of periodic screens. © 2004 Optical Society of
America

OCIS codes: 120.4120.
1. INTRODUCTION
It is a well-known fact that the superposition of periodic
layers (such as line gratings or dot screens) may give rise
to new periodic structures that do not exist in any of the
individual layers [see, for example, Fig. 1(d)]. These pe-
riodic structures, called moiré effects, have been thor-
oughly studied in the past,1–3 and their mathematical
foundations are today fully understood.4 The same is
also true for moiré effects between repetitive layers (i.e.,
between geometric transformations of periodic layers).5–10

It is also known that the superposition of aperiodic layers,
such as random dot screens, may give rise to a different
type of moiré pattern, which consists of a single structure
resembling a top-viewed funnel or a distant galaxy in the
night sky [see, for example, Figs. 1(c) and 1(e)]. This
phenomenon is known in literature as a Glass pattern, af-
ter Leon Glass, who described it in the late 1960s.11,12

These Glass patterns are often surrounded by typical mi-
crostructure dot arrangements, known as dot trajectories,
that have various shapes such as circles, radial lines, spi-
rals, hyperbolas, and ellipses, depending on the case (see
Fig. 1).

Glass patterns in the superposition of random dot
screens remained for a long period much less under-
stood than moiré effects that occur between periodic or
repetitive layers, partly because they did not easily
lend themselves to the same mathematical tools that so
nicely explained the classical moiré effects between
periodic or repetitive layers (geometric considerations,
indicial equations, Fourier series developments, etc.).
Only recently has it been shown that in spite of their dif-
ferent appearance, moiré patterns between periodic or re-
petitive layers and Glass patterns between aperiodic lay-
ers are, in fact, particular cases of the same basic
1084-7529/2004/081472-16$15.00 ©
phenomenon, and all of them satisfy the same fundamen-
tal rules.13–15

These recent results basically concern the macroscopic
phenomena that occur in the layer superpositions (the
Glass or moiré patterns, their behavior under layer trans-
formations, and their intensity profiles as determined by
the Fourier theory). Nevertheless, several questions con-
cerning the microstructure dot arrangements (the dot tra-
jectories) that accompany these phenomena in the super-
position still remain open. These questions concern, in
particular, the mathematical interpretation of the dot tra-
jectories, their morphology, and the reasons that they are
visible only in superpositions of aperiodic screens and not
in superpositions of periodic screens.

In the present paper we focus our attention on these
dot trajectories, and a mathematical explanation is pro-
vided regarding their origin, their nature, their morphol-
ogy, and their various properties. Furthermore, it will be
shown how our mathematical understanding of these phe-
nomena allows us not only to analyze the dot trajectories
that appear in any given superposition but also to synthe-
size dot screens that give in their superposition dot tra-
jectories having any desired morphology. Finally, on the
basis of our results it will also be explained why such dot
trajectories are not visible in superpositions of periodic
layers.

It should be noted that in the present study we are not
interested in the dot shapes of the individual layers and
in their influence on the macroscopic moiré intensity pro-
files, as described in Ref. 15, and we concentrate only on
the dot trajectories that accompany these phenomena.
These two approaches are therefore complementary, and
they can be used either independently of each other or
combined (for example, for synthesizing a Glass pattern
2004 Optical Society of America



Isaac Amidror Vol. 21, No. 8 /August 2004 /J. Opt. Soc. Am. A 1473
Fig. 1. (continues on next page). Glass patterns between aperiodic dot screens and their moiré counterparts between periodic dot
screens. The aperiodic dot screen (a) and its periodic counterpart (b) were used for generating all the superpositions shown in this
figure. (c) The superposition of two identical copies of aperiodic dot screen (a) with a small angle difference gives a Glass pattern about
the center of rotation. Note the Glass pattern’s typical microstructure consisting of concentric circular dot trajectories. (d) When the
superposed layers are periodic, a periodic moiré pattern is generated instead of the Glass pattern. (e) Same as (c), but with a small
scaling difference rather than a small angle difference between the superposed layers. In this case the microstructure consists of radial
dot trajectories. (f) The periodic counterpart of (e).
having a specified intensity profile, which is surrounded
by dot trajectories with a given morphology).
The present paper is structured as follows: Section 2
introduces the terminology and the basic notions that will
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Fig. 1. (continued). (g) Same as (c) and (e), but with both a small angle and a small scaling difference between the superposed layers.
In this case the microstructure consists of spiral dot trajectories. (h) The periodic counterpart of (g). (i) Same as (e), but here the scaled
layer undergoes unequal scaling rates in the x and y directions (0 , sx , 1, sy . 1). Note the hyperbolic dot trajectories in the super-
position. (j) The periodic counterpart of (i). (k) Same as (i), but with a small angle difference, too, between the superposed layers. In
this case the microstructure consists of elliptic dot trajectories. (l) The periodic counterpart of (k).
be needed for the rest of the paper. Section 3 describes
the superposition of aperiodic layers and explains its
main properties. Then, Sections 4 and 5 explain the
mathematical meaning of the dot trajectories and show
how to analyze and how to synthesize them. Finally, Sec-
tion 6 explains why dot trajectories are observed only in
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aperiodic superpositions and not in their periodic counter-
parts, and Section 7 presents the main conclusions.

Remark: The PostScript files that generate the dot
screens used in the figures of this paper are available on
the internet.16 They can be downloaded and printed on
transparencies by using any standard PostScript printer.
Superposing these transparencies manually with varying
orientations, shifts, etc., can give a vivid demonstration of
the Glass patterns and their dynamic behavior in the su-
perposition, beyond the few static figures that illustrate
this paper.

2. BACKGROUND AND BASIC NOTIONS
In this introductory section we briefly review the basic no-
tions and terminology that will be used later. Since we
will be dealing throughout this paper with layers and
layer superpositions, let us start by explaining these no-
tions and their main properties. In fact, a ‘‘layer’’ (or ‘‘im-
age’’) is the most general term we use to cover ‘‘anything’’
in the image domain. It can be periodic or not, continu-
ous or binary, etc. However, we still need to make some
basic assumptions regarding our layers.

First of all, we limit ourselves here to monochrome,
black-and-white images. This means that each image
can be represented by a reflectance function r(x, y),
which assigns to any point (x, y) of the image a value be-
tween 0 and 1 representing its light reflectance: 0 for
black (i.e., no reflected light), 1 for white (i.e., full light re-
flectance), and intermediate values for in-between
shades. In the case of transparencies, the reflectance
function is replaced by a transmittance function defined
in a similar way.

A superposition of such images can be obtained by over-
printing or by laying printed transparencies on top of
each other. Since the superposition of black and any
other shade always gives black, this suggests a multipli-
cative model for the superposition of monochrome images.
Thus, when two monochrome images are superposed, the
reflectance of the resulting image is given by the product
of the reflectance functions of the individual images:
r(x, y) 5 r1(x, y)r2(x, y).

Let us now explain what we mean by periodic and by
aperiodic or stochastic layers. A one-dimensional func-
tion f(x) is said to be periodic if there exists a nonzero
number p such that for any x P R, f(x 1 p) 5 f(x).
Similarly, a two-dimensional (2D) layer r(x, y) is said to
be periodic if there exists a nonzero vector p 5 ( p1 , p2)
such that for any (x, y) P R2, r(x 1 p1 , y 1 p2)
5 r(x, y). If there exist two independent vectors having
this property, r(x, y) is said to be two-fold periodic. A
layer r(x, y) is said to be aperiodic if it is not periodic.
For example, the image of a human portrait or a natural
landscape is aperiodic. A random dot screen consisting of
randomly positioned black dots is also aperiodic. Note,
however, that this random dot screen may also be re-
garded as a stochastic layer, from a more statistical point
of view, if we consider the screen in question as just one
possible realization of a stochastic process that has some
given statistical distribution. In the context of random
dot screens we often use the terms aperiodic layer, sto-
chastic layer, and random layer as synonyms.
Next, let us introduce the notions of macrostructure
and microstructure. It is well known that when periodic
layers (line gratings, dot screens, etc.) are superposed,
new structures of two distinct levels may appear in the
superposition that do not exist in any of the original lay-
ers: macrostructures and microstructures (Ref. 4, Chap.
8). The macrostructures, also known as moiré patterns,
are much coarser than the detail of the original layers,
and they are clearly visible even when observed from a
distance. The microstructures, on the contrary, are al-
most as small as the periods of the original layers (typi-
cally, just 2–5 times larger), and therefore they are visible
only when one is examining the superposition from a close
distance or through a magnifying glass. These tiny
structures are also called rosettes, owing to the various
flowerlike shapes they often form in the superposition of
periodic dot screens. Similar phenomena exist also in
the superposition of aperiodic or stochastic layers, where
both macrostructures and microstructures may become
visible. Here, too, macrostructures can be clearly seen
when observed from a distance, whereas microstructure
dot arrangements (such as dot trajectories; see Section 3
below) are visible only when one is examining the super-
position from a close distance.

Note that the distinction between macrostructures and
microstructures may seem at first quite artificial and sub-
jective. But in reality, macrostructures and microstruc-
tures are simply two different facets of the same phenom-
enon in the layer superposition. In fact, they only
represent two different scales at which we consider the
same phenomenon: In the macroscopic scale we consider
the global, average behavior of the phenomenon (much
like the rules of classical physics), whereas in the micro-
scopic scale we study the behavior of the same phenom-
enon from the point of view of the individual screen ele-
ments and the interactions between them (much like the
study of the same physical rules through the behavior of
molecules and atoms).17

Finally, for the sake of simplicity we consider here only
layers having a uniform distribution of their microstruc-
ture elements (and hence a constant mean gray level), al-
though our results hold also in more complex structures
such as halftone gradations and halftoned images with
varying gray levels.

3. SUPERPOSITION OF APERIODIC
LAYERS
While the superposition of two similar periodic layers
generates moiré effects that are themselves periodic, the
superposition of two similar aperiodic layers generates an
aperiodic moiré effect known as a Glass pattern (compare
the right- and the left-hand-side images in each row of
Fig. 1). This moiré pattern is typically concentrated
around a certain point in the superposition (which is the
fixed point of the underlying layer transformation13), and
unlike periodic moirés, it gradually disappears as we go
farther away from this point. Depending on whether it
was obtained by rotation of one of the superposed layers,
by a scaling transformation, or by a combination of the
two, it gives rise to an intriguing ordering of the micro-
structure elements in the superposition in dot trajectories
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having a circular, radial, or spiral shape [see Figs. 1(c),
1(e), and 1(g)].12 Other layer transformations may give
rise to Glass patterns having elliptic, hyperbolic, or other
geometrically shaped trajectories [Figs. 1(i) and 1(k)].12

However, when we rotate one of the aperiodic layers by
180° [see Figs. 2(a) and 2(b)], the Glass pattern disap-
pears.

As already explained by Glass, this phenomenon occurs
thanks to the local correlation between the structures of
the two superposed layers; in fact, its intensity can be
used as a visual indication of the degree of correlation be-
tween the two layers at each point of the superposition.
Thus, when two identical layers having the same arbi-
trary structure are slightly rotated on top of each other
[see Fig. 1(c)], a visible Glass pattern is generated around
the center of rotation (the fixed point), indicating the high
correlation between the two layers in this area. Within
the center of this Glass pattern the corresponding ele-
ments from the two layers fall almost exactly on top of
each other, but slightly away from the center they fall just
next to each other, generating circular trajectories of
point pairs. Farther away from the center the correla-
tion between the two layers becomes smaller and smaller,
and the elements from both layers fall in an arbitrary,
noncorrelated manner; in this area the Glass pattern is
no longer visible. This explains why the Glass pattern
gradually decays and disappears as we go away from its
center. Note, however, that when the two superposed
layers are not at all correlated, no Glass pattern appears
in the superposition [this is, indeed, what happens when
we rotate one of the aperiodic transparencies by 180° on
top of its identical copy, as shown in Fig. 2(a)]. In inter-
mediate cases, where the two superposed layers are only
partially correlated, the Glass pattern becomes weaker
and less perceptible, depending on the degree of the cor-
relation that still remains between the superposed layers.

As we can see, the explanation above is based on an ob-
servation of the individual elements of the original layers
and their behavior in the superposition. We say, there-
fore, that this explanation is based on the microstructure.
To obtain the point of view of the macrostructure, we have
to look at the layers and their superposition from a
greater distance, where the individual elements of the
layers are no longer discerned by the eye and what we see
is only an integrated gray-level average of the microstruc-
ture in each area of the superposition. From the point of
view of the macrostructure, the center of the Glass pat-
tern consists of a brighter gray level than areas farther
away (owing to the partial overlapping of the microstruc-
ture elements of the two layers in this area); farther away,
the macroscopic gray level is darker (because elements
from the two layers are more likely to fall side by side,
thus increasing the covering rate and the macroscopic
gray level). This means that the Glass pattern is not just
an optical illusion, and it corresponds, indeed, to the
physical reality. In fact, just like in the periodic case (see
Proposition 8.1 in Ref. 4), moiré patterns are simply the
macroscopic interpretation of the variations in the micro-
structures throughout the superposition.

On the other hand, the ordering of the microstructure
elements within a Glass pattern into circular, radial, or
spiral dot trajectories is no longer visible from far away
(try to observe the images in the left column of Fig. 1 from
a distance of 3–4 m, where the individual elements of the
layers are no longer discerned by the eye). These dot tra-
jectories are not part of the macrostructure description,
and they belong to the microstructure of the superposi-
tion, just like rosettes in the periodic case. And indeed,
from the point of view of the macrostructure there is no
distinction between gray levels obtained when the neigh-
boring elements in the superposition are located on circu-
lar trajectories, owing to rotation, or on radial trajecto-
ries, owing to a scaling transformation: What counts in
both cases is the resulting mean coverage rate, which de-
termines the overall gray level, and not the specific geo-
metric arrangement of the dots.

In the present paper we focus our attention on the mi-
crostructure of the Glass patterns and on the arrange-
ment of the individual dots into dot trajectories. It is im-
portant to note that Fourier analysis methods are not
applicable here, since they treat only the global aspects of
the superposition but do not go down to the level of the
Fig. 2. (a) and (b) Same as (c) and (e) in Fig. 1, but with one of the layers being rotated by 180°; in this case the Glass patterns disappear
completely.
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individual screen dots and their local behavior.18 In the
following section we will see what mathematical tools can
be used to investigate these microscopic phenomena.

4. MORPHOLOGY OF THE
MICROSTRUCTURES: ANALYSIS OF DOT
TRAJECTORIES
One of the most interesting aspects of aperiodic moiré ef-
fects, first mentioned by Glass,12 concerns the morphology
of the microstructures that are generated in the superpo-
sition of aperiodic screens. As we can see in many of the
figures throughout the present paper, fixed points in the
superposition of aperiodic screens are often surrounded
by dot trajectories having various geometric shapes, such
as circles, ellipses, hyperbolas, or spirals, etc., depending
on the case. For example, a fixed point that occurs as a
result of a rotation of one of the superposed layers is typi-
cally surrounded by circular dot trajectories [Fig. 1(c)],
while a fixed point due to a uniform scaling transforma-
tion is typically surrounded by radial dot trajectories [Fig.
1(e)]. Spiral dot trajectories, on their part, are typical of
intermediate cases involving both rotation and scaling
[Fig. 1(g)], and hyperbolic dot trajectories typically occur
around the fixed point in scaling transformations involv-
ing expansion along one direction and contraction along a
different direction [Fig. 1(i)]. Some interesting dot tra-
jectories that are generated by nonlinear transformations
of the original aperiodic layers are shown in Fig. 3. Note
that dot trajectories may appear even in superpositions
where no fixed points exist [see, for example, Fig. 3(d)].
This large versatility in the dot trajectories and in their
shapes certainly deserves investigation. It is therefore
our aim here to study the dot trajectories, their morphol-
ogy, and their various properties.

Suppose, to begin with, that we superpose two identical
aperiodic screens exactly on top of each other and that we
apply to one of the superposed screens a transformation
g(x, y) given by

x8 5 g1~x, y !, y8 5 g2~x, y !. (1)

(Note that x8 and y8 do not represent derivatives but
rather a different coordinate system in the plane.) As a
simple example, we may think of the linear transforma-
tion:

x8 5 a1x 1 b1y, y8 5 a2x 1 b2y. (2)

The dot trajectories that are generated in these super-
positions are physically made of pairs of dots, one dot
from each layer. Each such pair in the superposition rep-
resents, in fact, two successive locations of the same dot,
namely, the dot’s location before and after the layer trans-
formation g(x, y) has been applied. Let us try to see
how these dot trajectories can be analyzed mathemati-
cally.

A. Dot Trajectories As Solution Curves of a System of
Differential Equations
A first attempt to interpret such dot trajectories has al-
ready been presented in Ref. 12. According to this ap-
proach, we consider the finite transformation g(x, y) as
an iteration of an infinitesimal transformation. This rea-
soning leads one from Eqs. (1) to a pair of first-order dif-
ferential equations that correspond to our infinitesimal
transformation:

d

dt
x~t ! 5 g1(x~t !, y~t !),

d

dt
y~t ! 5 g2(x~t !, y~t !).

(3)
For example, in the particular case of linear transforma-
tion (2), we get

d

dt
x~t ! 5 a1x~t ! 1 b1y~t !,

d

dt
y~t ! 5 a2x~t ! 1 b2y~t !. (4)

The solution of system (3) consists of a family of curves
in the x, y plane, whose members differ from each other
by some constants c (Ref. 19, pp. 180–186). The para-
metric representation of each of these curves is
@x(t), y(t)#, where the parameter t may be thought of as
time. Each of these solution curves is called a trajectory
since it traces out the evolution of the curve as t is being
varied.

According to this reasoning,12 the dot trajectories ob-
served in the superposition of aperiodic dot screens sim-
ply represent the trajectories (i.e., the solution curves) of
this underlying pair of differential equations.20 And, in-
deed, this explanation agrees with experimental evidence
in various cases.

However, a deeper examination of the question shows
that this reasoning is not always true. This is clearly
demonstrated by the following examples.

Example 1. Consider the identity transformation
g(x, y) 5 (x, y), which is a particular case of Eqs. (2)
with a1 5 b2 5 1 and a2 5 b1 5 0. Obviously, in this
case the two layers perfectly coincide on top of each other,
and no dot trajectories are generated. However, the so-
lution of the corresponding system of differential equa-
tions (4) with a1 5 b2 5 1 and a2 5 b1 5 0 gives the
family of straight lines y 5 cx for any constant c, and its
solution curves (trajectories) consist of radial lines ema-
nating from the origin (see Ref. 19, p. 168). While such
radial dot trajectories can be expected in the layer super-
position when the mapping being applied to one of the
screens is a scaling by s Þ 1 [see Fig. 1(e)], it is clear that
in our present case, where s 5 1, no dot trajectories will
appear in the superposition. j

Example 2. Suppose that we apply to one of the two
superposed layers a rotation by a small angle a, as illus-
trated in Fig. 1(c). This linear transformation is clearly a
particular case of Eqs. (2), with a1 5 cos a, b1 5 2sin a,
a2 5 sin a, and b2 5 cos a. According to Fig. 1(c) we
would expect the solution curves of differential equations
(4) to consist of circular trajectories about the center of ro-
tation. However, a short verification shows that this is
not always the case. Although for a 5 90°, where a1
5 b2 5 0, a2 5 1 and b1 5 21, the differential equa-
tions do have circular trajectories as expected, it turns out
that for a 5 0° (the identity transformation, where a1
5 b2 5 1 and a2 5 b1 5 0) the solution curves of the
differential equations consist of a family of radial lines
emanating from the origin. Furthermore, for
all intermediate rotation angles 0° , a
, 90° the solution curves consist of a family of spirals
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Fig. 3. (a) Aperiodic dot screen that has undergone the parabolic transformation g(x, y) 5 (x 1 ay2, y). (b) The superposition of two
identical aperiodic dot screens, one of which has undergone the parabolic transformation g(x, y). Since this transformation does not
involve layer shifts, the two layers clearly coincide along the x axis. (c) The superposition of two identical aperiodic dot screens, one of
which has undergone the parabolic transformation g(x, y) 5 (x 1 ay2, y), while the untransformed screen has been slightly shifted by
x0 . A pair of linear Glass patterns is generated in their superposition. (d) Same as in (c) but with a slight layer shift of (x0 , y0) rather
than x0. (e) The superposition of two identical aperiodic dot screens, one of which has undergone the parabolic transformation
g(x, y) 5 (x 1 ay2, y), while the untransformed layer has been slightly scaled up. (f) An example with four fixed points: the super-
position of two identical aperiodic dot screens, one of which has undergone a vertical parabolic transformation plus a slight vertical shift
of y0 downward, while the other has undergone a horizontal parabolic transformation plus a slight horizontal shift of x0 to the left. Note
the two circular and the two hyperbolic Glass patterns that are clearly visible about the fixed points in the superposition.
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(see, for example, Ref. 21, p. 144); as a → 90° these spi-
rals gradually approach circles, but as a → 0°, i.e., for
small rotation angles, the spirals straighten out and
gradually approach radial straight lines. This result
does not agree with our expectations based on Fig. 1(c).j

These examples clearly show that the traditional ap-
proach based on the system of differential equations (4)
does not correctly correspond to the dot trajectories that
appear in our layer superposition when the mapping (2) is
applied to one of the superposed layers. The reasons for
this failure as well as ways to overcome it will become
clear shortly.

B. Dot Trajectories As a Vector Field
A better understanding of this problem can be obtained by
considering the situation from another point of view. As
explained in Appendix A, any two-dimensional transfor-
mation g(x, y) can be also interpreted as a vector field
that assigns to each point (x, y) in the x, y plane the vec-
tor g(x, y). This vector field can be illustrated graphi-
cally by drawing starting from each point (x, y) an arrow
having the length and the orientation of the vector
g(x, y). This interpretation has the important advan-
tage of clearly showing in a visual way the effect of the
transformation g(x, y) on any point of the x, y plane. It
should be noted that the system of differential equations
(3) is simply a different representation of the same vector
field g(x, y), since its solution curves @x(t), y(t)# express
the field lines (trajectories) of the vector field g(x, y) (see
Appendix A).

Now, remember that the dot trajectories in our super-
position of two aperiodic dot screens consist of pairs of
dots, which represent the location of a screen dot before
and after the layer transformation g(x, y) has been ap-
plied. These dot pairs can be represented, therefore, as a
vector field, which assigns to each point (x, y) P R2 a vec-
tor that connects (x, y) to its new location g(x, y) P R2

under the transformation g.22 It is important to note,
however, that the vector field of the transformation
g(x, y) itself does not have this property; that is, the vec-
tor it assigns to (x, y) does not connect (x, y) to its des-
tination g(x, y) but rather to the point (x, y) 1 g(x, y).
For example, if we consider the identity transformation
g(x, y) 5 (x, y) (see example 1), it is clear that in this
case the vector attached to each point (x, y) is the vector
(x, y) itself, which points, therefore, to the point (2x, 2y)
and not to the destination point under g, which is the
point (x, y).

Therefore, in order to obtain a vector field that correctly
represents our dot trajectories, we must consider, instead
of the transformation g(x, y) itself (the transformation
that has been applied to one of the superposed layers), the
relative transformation between the two layers, which is
given by

h~x, y ! 5 g~x, y ! 2 ~x, y !. (5)

And, indeed, if we draw the vector field representation
of this transformation, we obtain exactly what we desired:
The vector field of h(x, y) assigns to each point (x, y) the
vector g(x, y) 2 (x, y), which connects the original point
(x, y) to its destination under the layer transformation g,
the point g(x, y).
If we take one step further and allow both of the super-
posed layers to be transformed, one by a mapping g1(x, y)
and the other by a mapping g2(x, y), then the relative
transformation between the two layers becomes

h~x, y ! 5 g1~x, y ! 2 g2~x, y !. (6)

Note, however, that in this case the dot pairs that make
up the dot trajectories in the superposition no longer rep-
resent a dot’s location before and after the layer transfor-
mation has been applied but rather the new locations of
the same original dot under the transformation g1(x, y)
and under the transformation g2(x, y).

It should be also mentioned that since the two dots that
compose each dot pair in the layer superposition are iden-
tical, the dot pairs (and hence the dot trajectories) remain
unchanged when we interchange the transformations un-
dergone by the two layers. In other words, the dot tra-
jectories in the superposition do not show the direction
(the positive or negative sense) of the difference vectors.

These results can be therefore summarized as follows:
Proposition 1. Suppose that we are given two identical

aperiodic dot screens that are superposed on top of each
other in full coincidence, dot on dot. When we apply to
one of the layers a transformation g(x, y), we obtain in
the superposition dot trajectories that correspond to the
vector field h(x, y) 5 g(x, y) 2 (x, y) [or, equivalently,
to the vector field h(x, y) 5 (x, y) 2 g(x, y)]. Simi-
larly, if we apply g1(x, y) to one of the layers and g2(x, y)
to the other layer, where both g1(x, y) and g2(x, y) are
weak transformations, we obtain in the superposition dot
trajectories that correspond to the vector field h(x, y)
5 g1(x, y) 2 g2(x, y) [or, equivalently, to the vector field
h(x, y) 5 g2(x, y) 2 g1(x, y)]. j

It should be understood, however, that although such
dot trajectories are theoretically generated in the super-
position in all cases, they can be clearly visible [and cor-
respond to the vector field h(x, y)] only if the layer trans-
formations g(x, y), g1(x, y), and g2(x, y) are not too
‘‘violent.’’ Otherwise, the correlation between the super-
posed layers is strongly reduced, and the visual effect in
the layer superposition may be lost and no longer corre-
spond to the vector field.

Let us now see a few examples to illustrate how this ap-
proach explains the dot trajectories obtained in our ape-
riodic screen superpositions. We start with the two cases
that caused us trouble in examples 1 and 2.

Example 3. Suppose that one of the superposed
screens, say, the first one, is scaled by s . 0. In order not
to lose the correlation between the two screens, we as-
sume that s ' 1. The relative transformation between
the two layers is given in this case by

h~x, y ! 5 ~sx, sy ! 2 ~x, y ! 5 ~s 2 1 !~x, y !.

Regarding this linear transformation as a vector field,
we see that it assigns to any point (x, y) in the x, y plane
a vector (s 2 1)(x, y). Clearly, if s . 1 this vector field
consists of radial trajectories emanating from the origin
[see Fig. 4(b)], whereas if 0 , s , 1 it consists of radial
trajectories pointing to the origin [Fig. 4(d)]. The origin
itself is a fixed point of this vector field. And, indeed, this
fully agrees with the radial dot trajectories that we ob-
serve in the screen superposition in both of these cases.
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Fig. 4. Vector field representation of the relative transformation h(x, y) 5 g(x, y) 2 (x, y) where g(x, y) (the transformation under-
gone by the first layer) is (a) a slight rotation; (b) a slight scaling (sx, sy) with s . 1; (c) both a slight rotation and a slight scaling with
s . 1; (d) a slight scaling with 0 , s , 1; (e) a slight scaling with 0 , sx , 1, sy . 1; (f) both a slight scaling with 0 , sx , 1, sy. 1
and a small rotation. Compare with Figs. 1(c), 1(e), 1(g), 1(i), and 1(k).
Note, however, that the dot trajectories in the screen su-
perposition [Fig. 1(e)] do not show the direction along the
trajectories [which is indicated by the arrowheads of Figs.
4(b) and 4(d)].
Finally, let us examine the case of s 5 1, which caused
us trouble in example 1. In this case (scaling by 1) our
vector field h(x, y) assigns to each point (x, y) in the x, y
plane the zero vector; hence this transformation has no
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fixed points and no trajectories—exactly as we would ex-
pect when the two identical screens fully coincide on top
of each other. Thus by considering the vector field of the
relative layer transformation h(x, y) we have overcome
our troubles from example 1. j

Example 4. Let us now consider the linear mapping
that corresponds to a rotation of the first layer about the
origin by a small angle a. In this case the vector field
h(x, y) 5 g(x, y) 2 (x, y) assigns to each point (x, y) in
the x, y plane a vector that connects it to its new location
after the rotation. This vector field consists of a circular
arrangement of arrows (dot pairs) about the origin, as we
can see in Fig. 4(a). This agrees, indeed, with the dot
trajectories that are generated in the screen superposi-
tion, as shown in Fig. 1(c). j

These examples show clearly that by considering the
vector field of the relative layer transformation h(x, y),
we have overcome our troubles from examples 1 and 2.
Now, remember that the system of differential equations
(3) is simply a different representation of the vector field
g(x, y), since its solution curves @x(t), y(t)# express the
field lines (trajectories) of the vector field g(x, y). It can
be expected, therefore, that by using the relative layer
transformation h(x, y) instead of g(x, y) in Eqs. (3) we
can also ‘‘cure’’ the differential-equation approach of Sub-
section 4.A and make it work properly. A short investi-
gation of this point shows indeed that in general the tra-
jectories of the modified differential equations,

d

dt
x~t ! 5 h1(x~t !, y~t !),

d

dt
y~t ! 5 h2(x~t !, y~t !),

correspond well to our dot trajectories in the superposi-
tion; and yet, in some cases there still exist some minor
discrepancies between them. It turns out that the arrow
representation of the vector field h(x, y) fully corre-
sponds to our dot trajectories, because each of the arrows
connects the location of the same screen dot in the first
and in the second transformed layers. But the solution
curves (trajectories) of the modified system of differential
equations do not correspond to the motion of a screen dot
under the given layer transformation: Although the so-
lution curves of this system of differential equations ex-
press mathematically the field lines of the relative layer
transformation h(x, y), these field lines are not always
precisely what we are looking for but only a close approxi-
mation. This subject is discussed further in Appendix B.
It should be mentioned, however, that since we in any
case must restrict ourselves to weak layer transforma-
tions (in order not to destroy the correlation in the super-
position), this discrepancy is marginal and it can be ne-
glected for all practical needs (as we will see, for instance,
in example 6 below).

To further illustrate our mathematical interpretation of
the dot trajectories in the superposition as a vector field,
Figs. 4 and 5 provide a graphical representation of the
vector field h(x, y) for some of the most interesting super-
positions shown in Figs. 1 and 3. These cases include
both linear and nonlinear layer transformations, and they
illustrate dot trajectories that occur around one or more
fixed points, as well as dot trajectories that are generated
when no fixed points exist in the superposition. Note the
perfect agreement between the dot trajectories in each of
the superpositions and the arrows showing the dot dis-
placements in the corresponding vector field h(x, y).

These examples clearly show how the vector field ap-
proach presented above explains the dot trajectories that
are generated in the superposition of aperiodic screens.
It should be remembered, however, that the dot trajecto-
ries are visible in the layer superposition owing to the cor-
relation between the superposed layers. Hence if the
original layers are not sufficiently correlated, or if the
transformations g(x, y) are too ‘‘violent’’ and destroy the
correlation between the layers, no dot trajectories will be
seen in the superposition (even if the corresponding vec-
tor field still includes visible solution curves).

5. SYNTHESIS OF DOT TRAJECTORIES
Having succeeded in analyzing the dot trajectories that
occur in the superposition of aperiodic screens, we may
ask now whether we can also synthesize such effects. In
other words, can we synthesize, for any given vector field
h(x, y), two aperiodic dot screens that generate in their
superposition dot trajectories corresponding to h(x, y)?

Suppose that we are given a vector field h(x, y) or,
equivalently, a system of differential equations

d

dt
x~t ! 5 h1(x~t !, y~t !),

d

dt
y~t ! 5 h2(x~t !, y~t !).

We wish to synthesize an aperiodic screen superposition
whose dot trajectories visually illustrate our given vector
field (or system of differential equations).

We start by superposing two identical aperiodic dot
screens on top of each other in full coincidence. As we al-
ready know from the first part of proposition 1, if we ap-
ply a transformation g(x, y) to one of the layers we obtain
in the superposition the dot trajectories that correspond
to h(x, y) 5 g(x, y) 2 (x, y) [or equivalently to h(x, y)
5 (x, y) 2 g(x, y)]. Therefore, in order to obtain in the
superposition dot trajectories which correspond to
h(x, y), we may apply to one of the superposed layers the
transformation g(x, y) 5 (x, y) 1 h(x, y) [or equiva-
lently, g(x, y) 5 (x, y) 2 h(x, y)], while the other layer
remains unchanged.

Similarly, it follows from the second part of proposition
1 that by applying a transformation g1(x, y) to one of the
superposed layers and a transformation g2(x, y) to the
other layer, where both g1(x, y) and g2(x, y) are weak
transformations, we obtain in the superposition the dot
trajectories of h(x, y) 5 g1(x, y) 2 g2(x, y). This gives
us an alternative way to synthesize dot trajectories that
correspond to h(x, y), by applying to both of the super-
posed layers transformations g1(x, y) and g2(x, y) whose
difference gives h(x, y). For example, we may distribute
the deformation in equal parts between the two layers as
follows:

g1~x, y ! 5 ~x, y ! 1
1
2 h~x, y !,

g2~x, y ! 5 ~x, y ! 2
1
2 h~x, y !,

which gives, again, g1(x, y) 2 g2(x, y) 5 h(x, y).
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Having understood these basic principles, let us now il-
lustrate the synthesis of dot trajectories by a few ex-
amples.

Example 5. Suppose we wish to synthesize an aperi-
odic screen superposition whose dot trajectories visually
illustrate the vector field h(x, y) defined by

h~x, y ! 5 ~2xy, y2 2 x2!

[see Fig. 6(a)]. As we have just seen, this can be done, for
example, by applying to the layers the following transfor-
mations g1(x, y) and g2(x, y), which distribute the defor-
mation h(x, y) in equal parts between the two layers:

g1~x, y ! 5 ~x, y ! 1
1
2 h~x, y !

5 ~x 1 xy, y 1
1
2 y2 2

1
2 x2!,

g2~x, y ! 5 ~x, y ! 2
1
2 h~x, y !

5 ~x 2 xy, y 2
1
2 y2 1

1
2 x2!.

And indeed, if we apply the transformations g1(x, y)
and g2(x, y), respectively, to the two superposed layers,
we obtain in the superposition dot trajectories that corre-
spond to the given vector field h(x, y). This is clearly il-
lustrated in Fig. 7(a). To improve the visual effect, the
transformations g1(x, y) and g2(x, y) can be softened by
replacing h(x, y) in both equations by «h(x, y), where « is
a small positive fraction; this guarantees that the corre-
lation between the two superposed layers remains strong
enough to give clearly visible dot trajectories. j

Example 6. As a second example, let us choose a sys-
tem of two differential equations that is well known in
physics, such as the nonlinear system describing the be-
havior of a free undamped pendulum (see, for example,
Ref. 19, pp. 181–182 or Ref. 23, pp. 11–17). The system
of differential equations is given in this case by

d

dt
x~t ! 5 y~t !,

d

dt
y~t ! 5 2k sin@x~t !#,

where k is a positive constant. The solution curves
@x(t), y(t)# of this system are illustrated in Figs. 6(b) and
6(c). Since the solution curves of this system are the field
lines of the vector field h(x, y) 5 ( y, 2k sin x) (see Ap-
pendix A), we consider the two layer transformations:
Fig. 5. Vector field representation of the relative transformation h(x, y) 5 g1(x, y) 2 g2(x, y), where (a) g1(x, y) is a slight parabolic
transformation and g2(x, y) is a slight horizontal shift of x0 , (b) g1(x, y) is a slight parabolic transformation and g2(x, y) is a slight shift
of (x0 , y0), (c) g1(x, y) is a slight parabolic transformation and g2(x, y) is a slight linear scaling, (d) g1(x, y) is a slight vertical parabolic
transformation with a vertical shift of y0 downward, and g2(x, y) is a slight horizontal parabolic transformation with a horizontal shift
of x0 to the left Compare with Figs. 3(c), 3(d), 3(e) and 3(f).
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Fig. 6. (a) Vector field representation of the nonlinear transformation h(x, y) 5 (2xy, y2 2 x2). (b) Vector field representation of the
nonlinear system of differential equations describing the behavior of a free undamped pendulum. (c) Solution curves of the system of
differential equations of (b), drawn in a larger scale for clarity.

Fig. 7. Examples of synthesized aperiodic layers that give in their superposition dot trajectories having a given desired shape. (a) Dot
trajectories that show the flow lines of the vector field h(x, y) 5 (2xy, y2 2 x2), (b) dot trajectories that illustrate the nonlinear system
of differential equations describing the behavior of a free undamped pendulum. The transformations applied to the original layers in (a)
are g1(x, y) 5 (x, y) 1

1
2 h(x, y) and g2(x, y) 5 (x, y) 2

1
2 h(x, y), and in (b) they are g1(x, y) 5 (x, y) 1

1
2 ( y, 2k sin x) and

g2(x, y) 5 (x, y) 2
1
2 ( y, 2k sin x). Note the agreement with the vector fields shown in Fig. 6.
g1~x, y ! 5 ~x, y ! 1
1
2 h~x, y ! 5 ~x 1

1
2 y, y 2

1
2 k sin x !,

g2~x, y ! 5 ~x, y ! 2
1
2 h~x, y ! 5 ~x 2

1
2 y, y 1

1
2 k sin x !.

And indeed, as shown in Fig. 7(b), if we apply these
transformations to our superposed aperiodic screens, we
obtain in the superposition dot trajectories that corre-
spond to Fig. 6(b). j

These examples illustrate, indeed, how our results can
be used to synthesize aperiodic screen superpositions hav-
ing any desired dot trajectories. It should be repeated,
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however, that the dot trajectories can be visible in the su-
perposition only when the transformations that we apply
to the two layers are not too ‘‘violent’’; otherwise, the cor-
relation between the layers is strongly reduced, and the
visual effect is lost.

Finally, it should be noted that this synthesis of dot tra-
jectories is completely independent of the synthesis of
Glass patterns having a predetermined intensity profile
(gray level distribution), which was described earlier in
Ref. 15. That previous contribution explained how to
design two random dot screens having an identical dot
distribution but different dot shapes (for example,
‘‘1’’-shaped dots in one layer and tiny pinholes on a black
background in the other layer), which generate in their
superposition a Glass pattern having a given macroscopic
intensity profile (in this example, a Glass pattern having
the shape of a considerably magnified ‘‘1’’). In the
present paper, on the contrary, we are not interested in
the shape of the individual dots in the superposed layers
nor in the macroscopic intensity profile of the resulting
Glass pattern in the superposition. Rather, we are inter-
ested in the geometric transformations that are applied to
each of the superposed layers and in their influence on
the resulting shapes of the microstructures (dot trajecto-
ries) that are generated around the Glass pattern. Obvi-
ously, the two approaches can be used independently of
each other and can even be combined in order to synthe-
size in the superposition a Glass pattern having a given
intensity profile that is surrounded by any desired dot
trajectories.

6. DOT TRAJECTORIES IN PERIODIC,
REPETITIVE, AND APERIODIC CASES
We now return to the intriguing question that we have al-
ready mentioned earlier: Why do we observe dot trajec-
tories only in aperiodic superpositions and not in their
corresponding periodic or repetitive superpositions (com-
pare, for example, the left and right cases in each row of
Fig. 1)? A careful examination, under a magnifying
glass, of the microstructure in a periodic or a repetitive
superposition [for example, in Fig. 1(d)] will reveal that
similar circular, elliptical, or hyperbolic arrangements of
dot pairs do exist about the fixed points in such cases, too.
However, in periodic or repetitive cases the dot locations
are strongly constrained by an imposed ordering, which
limits the degrees of freedom in the microstructure and
makes the dot trajectories much less conspicuous than in
aperiodic superpositions. Furthermore, this imposed or-
dering also generates in the superposition a highly visible
moiré structure whose presence obscurs the arrange-
ments of the correlated dot pairs in the microstructure.
In aperiodic cases the microstructure ordering is not per-
turbed by any other imposed structures, and therefore the
dot trajectories can manifest themselves freely in the su-
perposition.

Note, however, that the dot trajectories are less visible
when the correlation between the superposed layers is
lower (for example, when a certain amount of random
noise is added to the original layers) or when each of the
superposed layers consists of elements of a different
shape (for example, ‘‘1’’-shaped elements in one layer and
tiny pinholes in the other layer, as in Ref. 15).

7. CONCLUSIONS
In the present paper we concentrate on the microstruc-
ture dot alignments, known as dot trajectories, that ap-
pear in the superpositions of correlated aperiodic dot
screens. We show that these dot trajectories visually ex-
press the vector field representation of the relative layer
transformation h(x, y) between the two superposed lay-
ers, and we show why the explanations based on the ab-
solute layer transformations do not work. Having under-
stood this phenomenon, we then go the other way around
and show how one can synthesize aperiodic dot screens
that give in their superposition dot trajectories that cor-
respond to any desired vector field h(x, y) or system of
differential equations

d

dt
x~t ! 5 h1(x~t !, y~t !),

d

dt
y~t ! 5 h2(x~t !, y~t !).

Finally, we also explain why dot trajectories are clearly
visible in superpositions of aperiodic screens but not in
superpositions of periodic screens.

APPENDIX A: MATHEMATICAL
INTERPRETATIONS OF A
TWO-DIMENSIONAL MAPPING g(x, y)
Consider a system of two equations in two independent
variables x and y,

u 5 g1~x, y !, v 5 g2~x, y !, (A1)

or, in vector notation,

u 5 g~x!, (A2)

where x 5 (x, y), u 5 (u, v), and g(x, y)
5 @ g1(x, y), g2(x, y)#. Clearly, g(x, y) is a vector func-
tion, i.e., a function that returns for each point (x, y)
P R2 a new point (u, v) P R2.

The mathematical relationship defined by Eqs. (A1) [or
alternatively by Eq. (A2)] can be interpreted in several
different yet completely equivalent ways, as explained be-
low. Because all of these interpretations are mathemati-
cally equivalent, we are free in each case to use any of
them, according to our best judgment.

In a first interpretation, we may consider the vector
function g(x, y) of Eq. (A2) a mapping from the x, y plane
onto itself.

Alternatively, we may interpret system (A1) or its vec-
tor representation (A2) as a change of coordinates in the
plane, whereby a new curvilinear coordinate system u, v
is defined instead of the original Cartesian coordinate sys-
tem x, y.

Finally, another useful interpretation is obtained by
considering the vector function g(x, y) of (A2) as a vector
field. A vector field in R2 is a function g(x, y) that as-
signs to each point (x, y) in the x, y plane a vector
(u, v) 5 g(x, y). Well-known examples in physics are
electric or magnetic fields and the gravitation field of the
earth, all of which are vector fields (that are defined in the
three-dimensional space R3).

A vector field in R2 can be illustrated graphically by
drawing an arrow emanating from each point (x, y) of the
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x, y plane (or, more practically, from some representative
points defined on a given grid within the x, y plane),
where the length and the orientation of each arrow indi-
cate the length and the orientation of the vector that has
been assigned by g(x, y) to the point (x, y) [see Fig. 8(a)].
It is important to note, however, that this arrow does not
connect the point (x, y) to its destination g(x, y) under
the transformation g but rather to the point (x, y)
1 g(x, y).

To better visualize a vector field, one may draw its tra-
jectories (also known as field lines). Loosely speaking,
these are the curves obtained by following the arrows in
Fig. 8(a) and joining them into continuous curves in the x,
y plane [see Fig. 8(b)]. More precisely, trajectories (or
field lines) are curves for which the tangent vector to the
curve at each point (x, y) is exactly g(x, y). Thus, at ev-
ery point (x, y), the direction in which the trajectory runs
is determined by the vector g(x, y). Note that except for
points where g(x, y) is not defined or where g(x, y)
5 0, every point in the plane belongs to one and only one
trajectory.
In Cartesian coordinates, the trajectories of a vector
field g(x, y) are given in parametric form by a family of
curves @x(t), y(t)# that are solutions of the system of dif-
ferential equations (see Ref. 24, p. 526),

d

dt
x~t ! 5 g1(x~t !, y~t !),

d

dt
y~t ! 5 g2(x~t !, y~t !),

(A3)

where t is the parameter of each of the curves.
Ways of solving systems of differential equations such

as Eqs. (A3) can be found, along with many illustrative
examples and figures showing their trajectories, in Chap.
4 of Ref. 19. A complete classification of the different tra-
jectory shapes for linear differential equation systems, in-
cluding nodes, saddle points, center points, and spirals,
can be found in Ref. 19, pp. 176–178; Ref. 25, pp. 551–
567; and Sec. 1.4 of Ref. 23. A similar classification for
nonlinear differential equation systems can be found in
Ref. 25, pp. 586–602.
Fig. 8. (a) Vector field representation of the nonlinear transformation h(x, y) 5 (x 1 ay2, y) 2 (sx, sy) with a 5 0.001 and s
5 1.0005. (b) Some field lines (trajectories) of this vector field.

Fig. 9. (a) The arrow (vector) connecting point (x, y) to its new location g(x, y) after the application of the rotation transformation g is
not tangential to the circle but rather a chord. Therefore the field line emanating from (x, y) slightly spirals inward, and it is not purely
circular. (b) Clearly, the smaller the rotation angle a, the closer the field line follows the circle. The rotation angles used in (a) and (b)
are, respectively, 45° and 5°.



1486 J. Opt. Soc. Am. A/Vol. 21, No. 8 /August 2004 Isaac Amidror
APPENDIX B: DOT TRAJECTORIES AND
THE DIFFERENTIAL EQUATIONS
Suppose that we are given two identical aperiodic dot
screens that are superposed precisely on top of each other
and that we apply a slight geometric transformation
g(x, y) to one of the two layers and observe the dot tra-
jectories in the resulting superposition. We have seen in
Subsection 4.B that the vector field of the relative layer
transformation h(x, y) 5 g(x, y) 2 (x, y) (unlike that of
the absolute layer transformation g(x, y)] fully corre-
sponds to the dot trajectories that are generated in the
screen superposition. The reason is, of course, that the
arrows of this vector field connect the departure and the
destination points of each screen dot under the transfor-
mation g(x, y).

Now, we remember that the system of differential equa-
tions (3) is simply a different representation of the vector
field g(x, y), since its solution curves @x(t), y(t)# express
the field lines (trajectories) of the vector field g(x, y) (see
Appendix A). Therefore, by rewriting the system of dif-
ferential equations (3) for the relative layer transforma-
tion h(x, y) rather than for the absolute layer transfor-
mation g(x, y), we obtain a new system of differential
equations,

d

dt
x~t ! 5 h1(x~t !, y~t !),

d

dt
y~t ! 5 h2(x~t !, y~t !),

whose solution curves correspond to the field lines of the
vector field h(x, y) 5 g(x, y) 2 (x, y). It can be ex-
pected, therefore, that the solution curves of this system
of differential equations, unlike those of the original sys-
tem (3), do correspond to the dot trajectories observed in
the superposition. However, it turns out that the result-
ing solution curves do not always fully agree with the dot
trajectories in the superposition. For example, when the
layer transformation g(x, y) is a rotation by angle a, the
solution curves of the system of differential equations be-
longing to h(x, y) 5 g(x, y) 2 (x, y) consist of spirals
that converge to the center of rotation (see Ref. 21,
p. 144), while the dot trajectories we observe in the screen
superposition [Fig. 1(c)] as well as the arrow alignment of
the vector field h(x, y) [Fig. 4(a)] consist of circles sur-
rounding the center of rotation. This discrepancy is ex-
plained as follows.

By definition, the field line at each point (x, y) of a vec-
tor field is tangent to the arrow emanating from the same
point. However, the arrow connecting the point (x, y) to
its rotated location g(x, y) is not tangential to the circle’s
arc traced by the rotating point; rather, it is a chord con-
necting the points (x, y) and g(x, y) on the circumference
of the circle. Therefore the field line passing through
point (x, y) follows the direction of the chord emanating
from (x, y), and hence it is not tangent to the circle but
rather oriented slightly inward [see Fig. 9(a)]. This ex-
plains why the field lines in this case are, indeed, spirals
that converge into the center of rotation, although the ar-
rows of the vector field h(x, y) are arranged circularly.
But such a spiral obviously does not trace out the motion
of a screen dot under the rotation transformation g(x, y),
since each dot clearly moves along the circumference of
the circle. In other words, although the modified system
of differential equations with h(x, y) rather than g(x, y)
does express the field lines of our vector field h(x, y),
these field lines simply do not represent the circular dot
trajectories that we observe in the layer superposition
[Fig. 1(c)]. It should be noted, however, that when the ro-
tation angle a is small, the spiral field lines are in fact
very close to perfect circles and the discrepancy is negli-
gible [compare the spiral field lines in Figs. 9(a) and 9(b)
that correspond, respectively, to a 5 45° and a 5 5°].
The difference between the spiral field lines and the cir-
cular dot trajectories becomes significant only for large
angles a, but in these cases the visual effect of the dot tra-
jectories is lost anyway, because the correlation between
the superposed layers is strongly reduced. On the other
hand, the graphic representation of the vector field
h(x, y) in terms of arrows connecting the departure and
the destination points of each screen dot under the rota-
tion g(x, y) [Fig. 4(a)] always remains faithful to the dot
trajectories in the superposition (as long as they are vis-
ible, as explained in the paragraph following proposition
1 in Subsection 4.B).

Finally, it should be also mentioned that, in general,
following the arrows of a vector field by hand in order to
get an idea of the shape of the field lines (the solution
curves) is not always as easy as it sounds, and it may be
sometimes quite misleading. In our present case, for ex-
ample, one may be tempted to guess from the circular na-
ture of the vector field that by following the arrows, one
obtains circular solution curves, although in reality the
solution curves are spirals (that just slightly deviate from
perfect circles). More details on this point, as well as sev-
eral illustrated examples, can be found in Ref. 26, pp.
39–42 and 69.
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