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Abstract. Superpositions of periodic dot screens are largely used
in electronic imaging in the field of color printing. In such superpo-
sitions the interaction between the superposed layers may cause
new structures to appear which did not exist in any of the original
layers: macrostructures (also known as moiré patterns) and micro-
structures (also known as rosettes). While macrostructures are not
always generated in the superposition (cf. moiré-free superposi-
tions), microstructures exist practically in any superposition, except
for the most trivial cases. In fact, even the macrostructures, when-
ever they occur, consist of variations in the microstructure of the
superposition. In the present paper we investigate the microstruc-
tures that appear in the superposition of periodic structures and their
properties. We also find the conditions on the superposed layers
under which the microstructure of the superposition varies—or re-
mains invariant—when individual layers in the superposition are lat-
erally shifted with respect to each other. © 2002 SPIE and IS&T.
[DOI: 10.1117/1.1477442]

1 Introduction

When periodic layers~line gratings, dot screens, etc.! are
superposed, new structures of two distinct levels may
pear in the superposition, which do not exist in any of t
original layers:macrostructuresandmicrostructures.

The macrostructures, usually known asmoiré patterns,
are much coarser than the detail of the original layers,
they are clearly visible even when observed from a d
tance. The microstructures, on the contrary, are almos
small as the periods of the original layers~typically, just
2–5 times larger!, and, therefore, they are only visibl
when examining the superposition from a close distance
through a magnifying glass. These tiny structures are a
calledrosettesowing to the various flower-like shapes the
often form in the superposition of dot screens~Ref. 1, p.
339!.

While macrostructures~moiré effects! have been treated
over the years in a large number of references~see, for
example, in Refs. 2 and 3!, only a few studies have bee
devoted to the microstructures. However, in spite of th
tiny size, the microstructures which occur in the superpo
tion are very rich in detail, and their study appears to be
less fascinating than the study of the macrostructures
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we can see in Fig. 1, quite attractive rosette forms of
appear in the superposition, and a look through a magn
ing glass may reveal an amazing, subtle, and delicate
croworld, full of surprising geometrical forms.

We will see in this paper that macrostructures and m
crostructures may coexist in the same superposition. H
ever, while microstructures exist practically in any sup
position, except for the most trivial cases, macro mo´
effects are not always present~cf. stable and unstable
moiré-free states in Sec. 2.3 below!. In fact, we will see in
Sec. 4.1 that the macrostructures, whenever they exist
constructed from the microstructures of the superpositio

In the present paper we investigate the microstructu
generated in the superposition of periodic layers and th
properties both in the image domain and in the spec
domain. Our approach is completely general, and not o
limited to the rosette morphology in the classical case u
for color printing, the superposition of three screens 30°
60° apart, which has already been studied in Ref. 1, Re
pp. 57–59, and Ref. 5. We start in Sec. 2 by establishing
required terminology and mathematical framework for t
rest of the paper. We then discuss the behavior of the
crostructure in all the different types of superpositions: s
gular superpositions in Sec. 3, and nonsingular superp
tions in Sec. 4. Then, in the remaining sections we proc
to the formal explanation of these phenomena. This a
leads us to new, general results concerning the stability
the microstructure under layer shifts in the superpositi
We show that shifts of individual layers substantia
change the microstructure of the superposition~e.g., from
dot-centered rosettes to clear-centered rosettes or
versa! if and only if the superposition is singular. Sever
figures and examples taken from the printing world illu
trate our discussion throughout the paper.

2 Background and Basic Notions

In this introductory section we briefly review the basic n
tions and terminology that will be used throughout this p
per.

2.1 Properties of the Superposed Layers and Their
Fourier Spectra

First of all, let us mention that throughout this work we a
only concerned with monochrome, black and white imag
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Analysis of the microstructures
~or ‘‘layers’’ !. This means that each image can be rep
sented by areflectancefunction, which assigns to any poin
~x,y! of the image a value between 0 and 1 representing
light reflectance: 0 for black~i.e., no reflected light!, 1 for
white ~i.e., full light reflectance!, and intermediate value
for in-between shades. In the case of transparencies
reflectance function is replaced by atransmittancefunction
defined in a similar way. The superposition of such imag
can be done by overprinting, or by laying printed transp
encies on top of each other. Since the superposition
black and any other shade always gives black, this sugg
a multiplicative model for the superposition of mono
chrome images. Thus, whenm monochrome images ar
superposed, the reflectance of the resulting image is g
by theproductof the reflectance functions of the individu
images

r ~x,y!5r 1~x,y!r 2~x,y!...r m~x,y!. ~1!

Fig. 1 The superposition of periodic layers may yield very spectacu-
lar microstructures (rosettes). (a) A magnification of the three-grating
superposition of Fig. 4(h). Note the star-like rosettes which form the
bright areas of the macromoiré and the triangular microstructure
which forms the darker areas. (b) A magnification of a singular su-
perposition of three grids (56 gratings) with angles u150°, u2

536.8699°, u3563.4349°, and periods T15T2 , T351.118T1 . This
is an example of a periodic, singular superposition (Sec. 3.1).
-
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According to the convolution theorem~Ref. 6, p. 244!
the Fourier transform of the product function is the conv
lution of the Fourier transforms of the individual function
Therefore, if we denote the Fourier transform of each fu
tion by the respective capital letter and the two-dimensio
~2D! convolution by** , the spectrum of the superpositio
is given by

R~u,v !5R1~u,v !** R2~u,v !** ...** Rm~u,v !. ~2!

Second, we are basically interested inperiodic images
defined on the continuous~x,y! plane, such as line grating
or dot screens, and their superpositions. This implies
the spectrum of the image on the (u,v) plane is not a con-
tinuous one but rather consists of impulses, correspond
to the frequencies which appear in the Fourier series
composition of the image~Ref. 6, p. 204!. In the case of a
onefold periodic image, such as a line grating, the spect
consists of a one-dimensional~1D! ‘‘comb’’ of impulses
centered on the origin; in the case of a twofold period
image the spectrum is a 2D ‘‘nail bed’’ of impulses center
on the origin. Note that we will sometimes use the mo
general term ‘‘cluster’’ for a comb or a nail bed; this shou
not be confused, however, with terms such as ‘‘cluste
dot halftoning,’’ etc.

Each impulse in the 2D spectrum is characterized
three main properties: itslabel ~which is its index in the
Fourier series development!; its geometric location~or im-
pulse location!, and itsamplitude~see Fig. 2!. To the geo-
metric location of any impulse is attached afrequency vec-
tor f in the spectrum plane, which connects the spectr
origin to the geometric location of the impulse. This vect
can be expressed either by its polar coordinates (f ,u),
whereu is the direction of the impulse andf is its distance
from the origin~i.e., its frequency in that direction!; or by
its Cartesian coordinates (f u , f v), where f u and f v are the
horizontal and vertical components of the frequency.
terms of the original image, thegeometric locationof an
impulse in the spectrum determines the frequencyf and the
directionu of the corresponding periodic component in t
image, and theamplitudeof the impulse represents the in
tensity of that periodic component in the image.~Note that
if the original image is not symmetric about the origin, th
amplitude of each impulse in the spectrum may also hav
nonzero imaginary component!.

Fig. 2 The geometric location and amplitude of impulses in the 2D
spectrum. To each impulse is attached its frequency vector, which
points to the geometric location of the impulse in the spectrum plane
(u,v).
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 317



in

ua
tail

ow
fil
e
uch
s

ep
y
e
th

igh
el-
he
on
tio

ies

th

al

rea
h
e
an
he

th
al
op

al
im
im-
the

e
en
in-
im-
gu
ion

s-
eo

tal

pli-

e

es
-

the

or

the
n
ri-

he
a

e
a
-

each
ir of

dic

lse
in,
e

the

Amidror and Hersch
However, the question of whether or not an impulse
the spectrum represents avisibleperiodic component in the
image strongly depends on properties of the human vis
system. The fact that the eye cannot distinguish fine de
above a certain frequency~i.e., below a certain period! sug-
gests that the human visual system model includes a l
pass filtering stage. This is a bidimensional bell-shaped
ter whose form is anisotropic~since it appears that the ey
is less sensitive to small details in diagonal directions s
as 45°!.7 However, for the sake of simplicity this low-pas
filter can be approximated by thevisibility circle, a circular
step function around the spectrum origin whose radius r
resents thecutoff frequency~i.e., the threshold frequenc
beyond which fine detail is no longer detected by the ey!.
Obviously, its radius depends on several factors such as
contrast of the observed details, the viewing distance, l
conditions, etc. If the frequencies of the original image
ements are beyond the border of the visibility circle in t
spectrum, the eye can no longer see them; but if a str
enough impulse in the spectrum of the image superposi
falls inside the visibility circle, then a moire´ effect becomes
visible in the superposed image.~In fact, the visibility
circle has a hole in its center, since very low frequenc
cannot be seen, either.!

For the sake of convenience, we may assume that
given images~gratings, grids, etc.! are symmetrically cen-
tered about the origin. As a result, we will normally de
with images~and image superpositions! which arereal and
symmetric, and whose spectra are, consequently, also
and symmetric~Ref. 6, pp. 14, 15!. This means that eac
impulse in the spectrum~except for the dc impulse at th
origin! is always accompanied by a twin impulse of
identical amplitude, which is symmetrically located at t
other side of the origin as in Fig. 2~their frequency vectors
aref and2f!. If the image is nonsymmetric~but, of course,
still real!, the amplitudes of the twin impulses atf and2f
are complex conjugates.

2.2 Spectrum Convolution and Superposition
Moirés

According to the convolution theorem@Eqs.~1!, ~2!#, when
m line gratings are superposed in the image domain,
resulting spectrum is the convolution of their individu
spectra. This convolution of combs can be seen as an
eration in which frequency vectors from the individu
spectra are added vectorially, while the corresponding
pulse amplitudes are multiplied. More precisely, each
pulse in the spectrum convolution is generated during
convolution process by the contribution ofone impulse
from eachindividual spectrum: its location is given by th
sum of their frequency vectors, and its amplitude is giv
by the product of their amplitudes. This permits us to
troduce an indexing method for denoting each of the
pulses of the spectrum convolution in a unique, unambi
ous way. The general impulse in the spectrum convolut
will be denoted the (k1 ,k2 ,...,km) impulse, wherem is the
number of superposed gratings, and each integerki is the
index ~harmonic!, within the comb~the Fourier series! of
the i th spectrum, of the impulse that thisi th spectrum con-
tributed to the impulse in question in the convolution. U
ing this formal notation we can, therefore, express the g
318 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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metric location of the general (k1 ,k2 ,...,km) impulse in the
spectrum convolution by the vectorial sum~or linear com-
bination!

fk1 ,k2 ,...,km
5k1f11k2f21...1kmfm ~3!

and its amplitude by

ak1 ,k2 ,...,km
5a~1!

k1
a~2!

k2
...a~m!

km
, ~4!

where f i denotes the frequency vector of the fundamen
impulse in the spectrum of thei th grating, andki f i and
a( i )

ki
are, respectively, the frequency vector and the am

tude of theki th harmonic impulse in the spectrum of thei th
grating.

The vectorial sum of Eq.~3! can also be written in terms
of its Cartesian components. Iff i are the frequencies of th
m original gratings andu i are the angles that they form
with the positive horizontal axis, then the coordinat
( f u , f v) of the (k1 ,k2 ,...,km) impulse in the spectrum con
volution are given by

f uk1 ,k2 ,...km
5k1f 1 cosu11k2f 2 cosu21...1kmf m cosum ,

~5!
f vk1 ,k2 ,...,km

5k1f 1 sinu11k2f 2 sinu21...1kmf m sinum .

Therefore, the frequency, the period, and the angle of
considered impulse~and of the moire´ it represents! are
given by the length and the direction of the vect
fk1 ,k2 ,...,km

as follows:

f 5Af u
21 f v

2 TM51/f wM5arctan~ f v / f u!. ~6!

Let us now say a word about the notations used for
superposition moire´s. We use a notational formulatio
which provides a systematic means for identifying the va
ous moiréeffects. As we have seen, a (k1 ,k2 ,...,km) im-
pulse of the spectrum convolution which falls close to t
spectrum origin, inside the visibility circle, represents
moiré effect in the superposed image~see Fig. 3!. We call
the m-grating moiré whose fundamental impulse is th
(k1 ,k2 ,...,km) impulse in the spectrum convolution
(k1 ,k2 ,...,km) moiré; the highest absolute value in the in
dex list is called theorder of the moiré. Note that in the
case of doubly periodic images, such as in dot screens,
image can be represented in the superposition by a pa
onefold periodic functions; hence,m in Eqs.~3!–~5! above
counts each doubly periodic layer as two onefold perio
structures.

2.3 Singular States; Stable Versus Unstable Moiré-
Free Superpositions

We have seen that if one or several of the new impu
pairs in the spectrum convolution fall close to the orig
inside the visibility circle, this implies the existence in th
superposed image of one or several moire´s with visible
periods@see, for example, Figs. 3~c! and 3~f!#. An interest-
ing special case occurs when some of the impulses of
convolution fall exactly on top of the dc impulse, at the



Analysis of the microstructures
Fig. 3 Line gratings (a) and (b) and their superposition (c) in the image domain; their respective
spectra are the infinite impulse combs shown in (d) and (e) and their convolution (f). Only impulse
locations are shown in the spectra, but not their amplitudes. The circle in the center of the spectrum (f)
represents the visibility circle. It contains the impulse pair whose frequency vectors are f12f2 and f2

2f1 and whose indices are (1,21) and (21,1); this is the fundamental impulse pair of the (1,21) moiré
seen in (c). The dotted line in (f) shows the infinite impulse comb which represents this moiré.
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spectrum origin. This happens, for instance, in the triv
superposition of two identical gratings in match, with
angle difference of 0° or 180°; or, more interestingly, wh
three identical gratings are superposed with angle dif
ences of 120° between each other~see second and thir
rows of Fig. 4!. As can be seen from the vector diagram
these are limit cases in which the vectorial sum of the f
quency vectors is exactly0. This means that the moire´ fre-
quency is 0~i.e., its period is infinitely large!, and, there-
fore, as shown in Figs. 4~d! and 4~g!, the moiré is not
visible. This situation is called asingular moiréstate. But,
although the moire´ effect in a singular state is not visible
this is a very unstable moire´-free state, since any sligh
deviation in the angle or in the frequency of any of t
superposed layers may cause the new impulses in the s
trum convolution to move slightly off the origin, thus cau
ing the moiréto ‘‘come back from infinity’’ and to have a
clearly visible period, as shown in Figs. 4~e! and 4~h!.
-

c-

It is important to understand, however, that not all t
moiré-free superpositions are singular~and hence unstable!.
For example, the superposition of two identical gratings
an angle of 90° is indeed moire´ free; however, it is not a
singular state, but rather astable moire´-free state: as shown
in the first row of Fig. 4, no moire´ becomes visible in this
superposition even when a small deviation occurs in
angle or in the frequency of any of the layers. The cor
sponding situation in the spectral domain is clearly illu
trated in Fig. 4~c!, which shows the vector diagram of th
superposition of Fig. 4~b!.

Formally, we say that a singular moire´ state occurs
whenever a (k1 ,...,km) impulse@other than~0,...,0!# in the
spectrum convolution falls exactly on the spectrum orig
i.e., when the frequency vectors of them superposed grat
ings, f1 ,...,fm , are such that( i 51

m ki f i50. This implies, of
course, that all the impulses of the (k1 ,...,km)-moiré comb
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 319



Amidror and Hersch
Fig. 4 Examples of stable and unstable (5singular) moiré-free states. First row: (a) the superposition
of two identical gratings at an angle difference of 90° gives a stable moiré-free state; small angle or
frequency deviations, as in (b), do not cause the appearance of any visible moiré. The spectral
interpretation of (b) is shown in the vector diagram (c). Second row: (d) the superposition of two
identical gratings at an angle difference of 0° gives a singular (unstable) moiré-free state. (e) A small
angle or frequency deviation in any of the layers causes the reappearance of the moiré with a very
significant visible period. The spectral interpretation of (e) is shown in the vector diagram (f); compare
to Fig. 3(f) which also shows impulses of higher orders. Third row: (g) the superposition of three
identical gratings with angle differences of 120° gives an unstable (singular) moiré-free state; again,
any small angle or frequency deviation may cause the reappearance of a very significant moiré, as
shown in (h) and in its vector diagram, (i).
320 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)



e

e
u-

nd

o
eir
on

tie

on
lus

us
ose
-
r-
ter
rm
tri
e

to
m-

e
es

an
nly
ro
the
oin
uc

f a
g
le

m-
two
pec
tio
up
s a
s
or

n 3
ne

-

ed

ri-

are
the

ster.
rpo-
d

ion.

the

the

d;

an
sin-

sed
ain
l-
of
in

that
eful
n.
ic
e
e
e
eens

on

st
istic

st-
ed

t of
l-

ars
ar

Analysis of the microstructures
fall on the spectrum origin. As can be easily seen,any
(k1 ,...,km) impulse in the spectrum convolution can b
made singular by sliding the vector sum( i 51

m ki f i to the
spectrum origin, namely: by appropriately modifying th
vectorsf1 ,...,fm ~i.e., the frequencies and angles of the s
perposed layers!. When the (k1 ,...,km) impulse is located
exactly on the spectrum origin we say that the correspo
ing (k1 ,...,km) moiré has become singular.

2.4 Impulse Clusters in the Spectrum Convolution;
Moiré Extraction

Figure 3~f! shows the spectrum of the superposition of tw
onefold periodic images, namely: the convolution of th
original nail bed spectra. As we can see, the spectrum c
volution consists of a ‘‘forest’’ of impulses~with real or
complex amplitudes, depending on the symmetry proper
in the image domain!. It has been shown8 that the oc-
curence of a moire´ phenomenon in the image superpositi
is associated with the appearance of impulse combs or c
ters in the spectrum, as in Fig. 3~f!. In particular, it has been
shown there that the main cluster, the infinite impulse cl
ter which is centered on the spectrum origin and wh
fundamental impulse is (k1 ,... ,km), represents in the spec
trum the (k1 ,... ,km)-moiré effect generated in the supe
position. And indeed, by extracting this impulse clus
from the spectrum and taking its inverse Fourier transfo
one obtains, back in the image domain, the isolated con
bution of the moire´ in question to the superposition, i.e., th
moiré intensity profile. Note that when a moire´ effect be-
comes singular each of its impulse clusters collapses in
single location in the spectrum, and all the cluster’s i
pulses fuse down into a single impulse, that we call acom-
pound impulse. The amplitude of a compound impuls
equals the sum of the amplitudes of its original impuls
~see Sec. 9.3 in Ref. 9!.

3 Rosettes in Singular States

Let us start by exploring the microstructure in moire´-free
singular cases, where the superposition looks uniform
no macromoire´s are visible. Since in these cases the o
structure which appears in the image domain is the mic
structure, it is clear that their spectra only represent
microstructure. Such cases will serve us as a starting p
for studying the spectral representation of the microstr
ture. The microstructure in the case ofstable moiré-free
superpositions will be discussed later, in Sec. 4.2.

As we have seen, each impulse in the spectrum o
singular state is, in fact, a compound impulse representin
full cluster of impulses which has collapsed into a sing
location. According to the algebraic structure of the co
pound spectrum, we can distinguish here between
types of singular cases: singular cases in which the s
trum support is a discrete lattice and the layer superposi
is periodic; and singular cases in which the spectrum s
port is a dense module and the layer superposition yield
almost-periodic image.~An explanation of these terms, a
well as the conditions for a superposition to be periodic
almost periodic, can be found in Ref. 9; see Propositio
on p. 127 there. As an illustration to the term ‘‘dense,’’ o
may think of the setQ of all rational numbers, which is
everywhere dense inR, and yet only countably infinite and
-
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nowhere continuous.! We will illustrate the first case by the
singular ~1, 2, 22, 21! moiré between two identical
screens with angle difference ofa5arctan3

4'36.87°, and
the second case by the singular moire´ between three iden
tical screens with equal angle differences of 30°~i.e., the
conventional singular screen combination traditionally us
in color printing!.

3.1 Rosettes in Periodic Singular States

Let us consider the microstructure which occurs in a pe
odic singular case, such as the~1, 2, 22, 21!-singular su-
perposition of two screens~Fig. 5!. As we can see, the
superposition in this case is periodic, and the rosettes
ordered in a perfectly repetitive pattern. And indeed,
spectrum of this superposition is a compound nail bed@Fig.
5~a!#, where each impulse represents a collapsed clu
Since the only structure which appears here in the supe
sition is the microstructure, it is clear that this nail be
represents the periodic microstructure of the superposit
And, indeed, the two fundamental~compound! impulses of
this nail bed~whose frequency vectorsg andh are a basis
of the lattice of clusters in the spectrum support! determine
the frequency and the direction of the microstructure in
image domain. In our example of the~1, 2, 22, 21!-
singular state the frequency of the microstructure is, by
Pythagoras theorem,g5 f 1 /A5 @see Fig. 5~a!#, and hence
its period isA5'2.236 times larger than the screen perio
its orientation isw5arctan(2)'63.435° with respect tof1
~see note a in Notes section!.

3.2 Rosettes in Almost-Periodic Singular States

Let us now consider the microstructure obtained in
almost-periodic singular case, such as the conventional
gular three-screen superposition~see Fig. 6!. Obviously, in
this case there is no rosette periodicity in the superpo
image. Rather, we can detect here in the image dom
‘‘almost’’ periodicities, and the rosette forms are only a
most repetitive. This explains the fuzzy and elusive look
the microstructure in this case: looking at any location
the superposition, the eye is tempted at first to believe
the rosette structures are repetitive; but after a more car
examination it realizes that this repetition is just an illusio

For example, let us look carefully at the almost-period
rosette pattern of Fig. 6~b!, in which the three screens ar
superposed in phase~i.e., they have a common dot at th
origin!. Clearly, apart from the origin, nowhere else in th
superposition does there occur again a precise three-scr
dot match~otherwise the superposition would be periodic!.
But at an infinite number of locations in the superpositi
there occurs an almost three-screens dot match@this may be
better perceived in the magnification shown in Fig. 13~c!#.
The farther we go from the origin, the better the almo
matches that we can find. This is, indeed, a character
property of almost-periodic functions.

In the spectral domain, the spectrum of an almo
periodic singular case is no longer a compound nail b
whose support is a discrete lattice, but rather a fores
compound impulses~each of which representing a co
lapsed cluster!, whose support is a dense module@see Fig.
6~a!#. And again, since the only structure which appe
here in the superposition is the microstructure, it is cle
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 321
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322 / Journal of El
Fig. 5 The singular (1,2,22,21)-superposition of two identical screens with angle difference of a

5arctan 3
4'36.87°. (a): The spectrum support; f1, . . . ,f4 are the fundamental frequency vectors of the

two original screens, and g and h are the fundamental compound impulses of the microstructure. The
circle in the center of the spectrum represents the visibility circle. (b), (c): The screen superposition in
the image domain: in-phase superposition in (b), and counter-phase superposition in (c). Note the
uniformity of the microstructure, and the difference between the rosette shapes in (b) and (c).
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that this ‘‘compound module’’ represents the almo
periodic microstructure of the superposition.

3.3 Influence of Layer Shifts on Rosettes in Singular
States

It has already been shown10 that shifts in the individual
superposed layers may cause, depending on the case,
a global shift ~a rigid motion! of the superposition as
whole, or a real modification in the microstructure of t
superposition. Figures 5~b! and 5~c! and 6~b! and 6~c! illus-
trate the microstructure modifications which occur due
such shifts in different singular screen superpositions; F
ectronic Imaging / July 2002 / Vol. 11(3)
er

.

5 shows a case in which the screen superposition is p
odic, and Fig. 6 shows a case in which the superpositio
almost periodic. It is important to note that when the sup
position is periodic, as in Fig. 5, the microstructure mo
fications that are caused by the shifts do not influence
periodicity or its orientation, but only the internal structu
within each period~namely, the rosette shapes!.

If we examine the forms of the rosettes which are ge
erated as the phase of the original layers is being modifi
we find two extreme types of rosettes, as well as all
possible intermediate types which occur between the
One extreme type occurs when the original layers are



Analysis of the microstructures
Fig. 6 The singular superposition of three identical screens at equal angle differences of 30°. (a): The
spectrum support (showing only impulses up to order three). (b), (c): The screen superposition in the
image domain: in-phase superposition in (b), and counter-phase superposition in (c). Note the unifor-
mity of the microstructure, and the difference between the rosette shapes in (b) and (c).
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perposed ‘‘in phase,’’ i.e., when each layer has a black
ement~dot or line! centered on the origin; and the oth
extreme type occurs when the original layers are sup
posed in counter phase. A gradual transition between th
extreme rosette forms occurs in the intermediate phase
sitions.

These two extreme rosette forms are illustrated in F
5~b! and 5~c! for the case of the periodic~1, 2, 22, 21!-
singular moire´, and in Figs. 6~b! and 6~c! for the almost-
periodic case of the classical three-screen superpos
with identical frequencies and angle differences.

The precise rosette shapes and their variations du
lateral shifts in the superposed layers are character
properties~like ‘‘fingerprints’’ ! of each particular singula
-

-
e
-

.

n

o
c

state. Most famous are the rosette forms obtained in
classical superposition of three identical screens with eq
angle differences; these rosette forms are well known in
printing industry and they have been widely described
literature~Ref. 1, pp. 339–341; Ref. 4, pp. 57–59; Ref. 5!.
As illustrated in Fig. 6~b!, when the three screens are s
perposed in phase, i.e., with a black dot centered on
origin, a perfect match of one screen dot from each la
occurs at the origin. This generates at the origin the form
a ‘‘dot-centered’’ rosette. Due to the almost periodici
‘‘almost-perfect’’ copies of this dot-centered rosette can
found at any distance from the origin, thus generating
uniform microstructure with almost-dot-centered roset
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 323
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Amidror and Hersch
throughout. However, when the screens are superpose
counter phase, a ‘‘clear-centered’’ rosette pattern is ge
ated@see Fig. 6~c!#. It should be emphasized, however, th
the rosette shapes obtained in other singular states ma
completely different; and as we can see in the case of
singular~1, 2, 22, 21! moirés @Figs. 5~b! and 5~c!#, even
the terms ‘‘dot-centered’’ and ‘‘clear-centered’’ may n
longer be appropriate for the in-phase and counter-ph
rosettes.

It is interesting to ask now how do such variations in t
rosette shapes due to layer shifts in the superposition re
in the spectrum of the singular case? And, furthermo
why in some singular cases the difference between the
extreme rosette types is very significant, while in other s
gular cases the difference is hardly distinguishable? As
have seen in Sec. 2.4, the amplitude of each impulse in
spectrum of a singular superposition~i.e., the amplitude of
each compound impulse! is the sum of the amplitudes of a
the individual impulses which collapsed onto the same
cation. On the other hand, according to the shift theor
~Ref. 6, p. 104! a shift in any of the superposed laye
modifies the complex amplitudes of the impulses in its o
spectrum. The answer to the above questions is fou
therefore, in the way in which variations in the compl
amplitudes of the individual impulses within each collaps
cluster influence the summed-up complex amplitude of
resulting compound impulse: in some cases the variat
in the summed-up amplitudes may be significant, while
other cases they may be cancelled out. The variations in
complex amplitudes of the compound impulses due to
shifts in the superposed layers reflect, therefore, the va
tions in the rosette shapes as a function of the shifts in
individual layers.

4 Microstructure in Nonsingular States

After having explored the microstructure behavior in sing
lar superpositions, we arrive now to the case of nonsing
states. We will first discuss the microstructure slightly of
singular state, where a macromoire´ is clearly visible, and
then we will proceed to the case of stable moire´-free super-
positions, away from any visible macromoire´ effect.

4.1 Microstructure Slightly off a Singular State

As we already know, when we slightly move away from t
singular state of a given moire´, this moirébecomes visible
in the superposition in the form of a moire´ effect with a
large, visible period. Looking now at this superpositi
through a magnifying glass, we discover that, in fact,
visible macrostructures are constructed from the mic
structures of the superposition. The key point in the re
tionship between macro- and microstructures in the su
position can be stated as follows:

Proposition 1: When the microstructures of the supe
position are similar and uniformly distributed througho
the superposed image, the resulting superposition lo
from a distance uniform and smooth, and no moire´ is vis-
ible ~see, for instance, Figs. 5 and 6!. However, if different
types of rosettes are generated in alternate areas of th
perposed image, the eye observes a different gray leve
each of these areas~due to the different surface-coverin
rates of the dots in the different rosette types!, and a mac-
romoirébecomes visible@see Figs. 7 and 8, or Fig. 4~h! and
324 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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its magnification in Fig. 1~a!#. This is, in fact, the micro-
scopic interpretation of the macroscopic moire´ patterns.j

However, this is not yet all. Looking carefully at th
microstructure of any given macromoire´, we discover that
the relationship between the micro- and the macrostructu
is even deeper than what is stated in Proposition 1. In f
we have:

Proposition 2: The microstructure alternations whic
make up a macromoire´ are, to a very close approximation
nothing else but the microstructure forms which are o
tained at the singular state of that macromoire´ by all pos-
sible phase shifts. The two extreme in-phase and ‘‘coun
phase’’ microstructures~e.g., the dot-centered and th
‘‘clear-centered’’ rosettes in the case of the classical thr
screen superposition! generate the two extreme intensi
levels of the visible macromoire´ ~its brightest and darkes
areas!, and the intermediate forms between them gene
all the in-between intensity levels of the macromoire´ ~see
note b in Notes section!. j

This can be clearly illustrated for the~1,2,22,21! moiré
by comparing Fig. 7~b! with Figs. 5~b! and 5~c!, and for the
classical three-screen superposition by comparing Fig. 8~b!
with Figs. 6~b! and 6~c!.

It should be emphasized, however, that Proposition 2
only a close approximation. The reason is that as the an
or the frequencies are slightly modified in order to mo
our macromoire´ slightly away from its singular state, th
microstructures are also slightly modified. However, t
closer the macromoire´ is to its singular state, the better th
approximation provided by Proposition 2.

4.2 Microstructure in Stable Moiré-free
Superpositions

Let us now consider the microstructures which occur
stable moire´-free superpositions, such as the superposit
of two identical screens with an angle difference of 30°~see
Fig. 9!. Just like singular moire´-free states~Sec. 3!, stable
moiré-free superpositions have no visible macromoire´s, and
they show a uniform-looking microstructure. However, th
is also where the similarity between these two types
moiré-free superpositions ends. Stable moire´-free cases are
not singular superpositions, and, therefore, their tolera
to layer rotations, scalings, and shifts is significantly high
This means that in all the neighboring layer combinatio
which are still included within the tolerance limits~i.e.,
within a certain reasonable interval of angles and frequ
cies around the given superposition! no macromoire´s are
visible, and hence, in terms of Proposition 1, no significa
microstructure variations occur in the superposition. T
microstructure of such cases seems to be ‘‘uniformly dis
dered,’’ meaning that it consists of a uniform but nonpe
odic blend of various types of rosettes. Moreover, althou
this microstructure varies when the superposed layers
rotated or scaled within the tolerance limits, its overall lo
remains unchanged. In particular, no visible rosette-ty
changes occur in such cases owing to layer shifts; this
be clearly seen in Figs. 9~b! and 9~c!, in contrast to Figs. 5
and 6 where rosette-type changes owing to layer sh



Analysis of the microstructures
Fig. 7 The (1,2,22,21) moiré of Fig. 5 slightly off its singular state; (a) shows the corresponding
spectrum (only impulses up to the fourth harmonic are shown). The scale in the spectral domain was
changed for the sake of clarity.
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 325
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Fig. 8 The classical three-screen moiré of Fig. 6 slightly off its singular state; (a) shows an enlarged
view of the central part of the corresponding spectrum (only impulses up to order three are shown).
The scale in the spectral domain was changed for the sake of clarity.
ctronic Imaging / July 2002 / Vol. 11(3)



Analysis of the microstructures
Fig. 9 The stable moiré-free superposition of two identical screens with angle difference of a530°.
(a): The spectrum support (showing only impulses up to order five). (b), (c): The screen superposition
in the image domain: in-phase superposition in (b), and counter-phase superposition in (c). Note the
uniformity of the microstructure; however, unlike in Fig. 6, no visible differences exist between the
rosette shapes in (b) and (c). The spectrum support (a) is the same as in the singular three-screen
superposition of Fig. 6(a), but this time it consists of simple impulses and not of compound impulses
(collapsed clusters).
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are clearly visible. This curious difference in the micr
structure behavior between singular and nonsingular mo´-
free cases will be fully elucidated in the sections whi
follow.

The difference between singular and stable moire´-free
superpositions is also remarkable in the spectral dom
while in singular states each impulse in the spectrum is
fact, a compound impulse representing a full cluster of i
pulses which have collapsed into a single location, in sta
moiré-free cases each impulse in the spectrum has
:

s

own distinct location, and different impulses do not fa
together on the same point. This fact provides, indeed,
spectral domain interpretation of the microstructure inva
ance under layer shifts in stable moire´-free superpositions
~see last paragraph in Sec. 3.3!.

An example of a three-screen stable moire´-free superpo-
sition is shown in Ref. 11, Fig. 19, or in Ref. 14, p. 76. I
microstructure has, again, the same basic properties
looks uniformly disordered, and it does not present subs
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 327
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Fig. 10 A magnified view of the superposition of two identical square grids with an angle difference of

a5arctan 3
4'36.87° (compare with Fig. 5). The period coordinates of point x in the superposition are

j15
3
2, j25

1
2, j35

3
2, and j452

1
2. For the sake of simplicity we chose the x81 ,y81 coordinates to

coincide with the x and y axes of the x,y plane.
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tial changes under layer shifts~as well as under layer rota
tions and scalings within the specified tolerance limits!.

5 Algebraic Formalization

Having described the various interesting phenomena rel
to the microstructure of the superposition, we are rea
now to introduce an algebraic formalization that will he
us to elucidate these phenomena.

Let us start with a simple example to illustrate our li
of thought and to motivate our algebraic approach.

Example 1: Consider the superposition of two identic
square grids~or dot screens! with an angle difference o

a5arctan3
4'36.87°, as in Fig. 5~see the magnified view

in Fig. 10!. Clearly, each pointx in thex,yplane~i.e., in the
superposition! can be expressed in terms of the coordin

Table 1 The period coordinates of the two grids in Fig. 10 at various
points x5(x,y).

(x,y) (j1 ,j2 ,j3 ,j4) Microstructure at (x,y):

(0,0) (0,0,0,0) Center of a dot-centered rosette

( 3
2T, 1

2T) ( 3
2, 1

2, 3
2,2 1

2) Center of a clear-centered rosette

( 1
2T,T) ( 1

2,1,1, 1
2) ¯

(T,2T) (1,2,2,1) Center of a dot-centered rosette
ctronic Imaging / July 2002 / Vol. 11(3)
d

systemx81 ,y81 of the first grid, as well as in terms of th
coordinate systemx82 ,y82 of the second grid. However, w
will find it advantageous to express pointx in the coordi-
nate system of each of these square grids in terms of
grid’s own periodTi . Hence, for each square gridi in the
superposition (i 51,2) we define theperiod-coordinates
j2i 21 andj2i at the pointx as the coordinates of pointx in
the coordinate systemx8 i ,y8 i of that grid, expressed in
terms of periodsTi . Table 1 gives the period coordinates
the two grids of Fig. 10 at various pointsx5(x,y) in the
superposition, along with a verbal description of the mic
structure of the superposition at these points.

Note that the period-coordinatesj i should not be con-
fused with the period-shiftsf i ~see Ref. 10!. The period-
shifts f i have been introduced for expressingshiftsof pe-
riodic layers in terms of number of periods. The perio
coordinatesj i , for their part, express in terms of number
periods the coordinates of any pointx within a static super-
position. Note that when a layer shift occurs the origin a
the coordinate system of the shifted layers are displa
within thex,y plane, so that the period-coordinatej i of any
point x in the superposition is decremented by the perio
shift f i which corresponds to that layer shift. For instanc
assume that the second grid of our example is shifted
half a period in each of its two main directions; this lay
shift is expressed by the period shifts (f1 ,f2 ,f3 ,f4)
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Analysis of the microstructures
5(0,0,12,
1
2). Therefore, at any pointx in the superposition

the new period coordinates after the shift are given by

~j1 ,j2 ,j3 ,j4!new5~j1 ,j2 ,j3 ,j4!old2~f1 ,f2 ,f3 ,f4!.

By analogy with the phase terminology we call the ve
tor (j1 ,j2 ,j3 ,j4) the period-coordinate vector of the su
perpositionat the point~x,y!. As we can see, the period
coordinate vector (j1 ,j2 ,j3 ,j4) at any point ~x,y! is
strongly related to the local microstructure of the super
sition at that point. For example, whenever (j1 ,j2 ,j3 ,j4)
is purely integer, i.e., (j1 ,j2 ,j3 ,j4)PZ4, the superposition
at ~x,y! contains a meeting point of full periods in all layer
which means that point~x,y! is the center of a dot-centere
rosette. Similarly, whenever thej i values are all half inte-
gers~i.e., j i5ki1

1
2, kiPZ!, the point~x,y! in the superpo-

sition is the center of a clear-centered rosette.
Now, if we run throughout all the points (x,y)PR2 ~i.e.,

throughout the whole superposition!, which parts ofR4 will
be occupied by the corresponding points (j1 ,j2 ,j3 ,j4)? It
is clear thatR4 will not be completely filled; for instance, in
the present superposition~see Fig. 10! the point~0, 0, 2 1

2,
2 1

2! cannot be obtained—it can only be obtained when
second layer is shifted by half a period in each of its t
main directions. In order to investigate this~and other!
questions, we find it useful to define a transformati
J:R2→R4, which gives for any point~x,y! in the superpo-
sition plane its corresponding point (j1 ,j2 ,j3 ,j4) in R4.
And, indeed, we will see below that the investigation of th
transformation and of its properties will shed a new lig
onto the microstructure and the phase relationships of
layer superposition. j

Fig. 11 A schematic view of layer i in the superposition, showing x i ,
the projection of point x5(x,y) on axis x8 i . u i is the orientation of
axis x8 i , and a i is the angle formed between the direction of point x
and axis x8 i . The coordinates of point x i are (xi ,yi) in terms of the
x,y plane, and (x8 i,0) in terms of the x8 i ,y8 i coordinates of the ith
layer. The period coordinate of point x with respect to axis x8 i is j i

5
5
2.
e

Having explained the motivation for the proposed alg
braic formalization, we are ready now to go back to t
general case and to introduce our new formal approach

Let p1(x),...,pm(x) be m onefold periodic functions
~gratings! given in their initial phase, so that their origin
coincide with the origin of thex,y plane, and letp(x)
5p1(x)•...•pm(x) be their superposition.~Note that a pair
of onefold periodic functions may represent in the super
sition one twofold periodic function, such as a dot scree!
We remember that the main periodicity direction of thei th
grating is the directionu i along which the grating has th
smallest period.0. Now, letx be a point in thex,y super-
position plane. For each gratingi of the superposition we
define the period-coordinatej i at point x as the number
~integer or not! of periodsT i between the grating origin an
xi , the projection ofx on the axis defining the main per
odicity direction of gratingi. In other words,j i is the 1D
coordinate of the pointx on this axis, expressed in perio
units ~see Fig. 11!. If a i is the angle formed between th
direction of pointx and the main periodicity direction o
grating i we have, therefore

j i5
uxucosa i

uT i u
5

uxi u
uT i u

and hence:xi5j iT i . Remembering thatT i "T i
2151 ~see

Ref. 10, pp. 979 and 987! we multiply both sides~in the
sense of scalar product! by T i

21, and hence we obtain
xi "T i

215j i . Usingf i5T i
21 @see Ref. 10, Eq.~A6!#, where

f i is the frequency vector of the onefold periodic functio
pi(x), we obtain

j i5f i•xi . ~7!

Now, we remember that the scalar product~i.e., inner
product! v"w can be understood as a number which giv
the product of the length of vectorv by the length of the
projection of vectorw on the direction ofv ~or vice versa!12

v•w5uvuuproj~w!vu.

This means that for any pointx in thex,y plane we have

f i•x5f i•xi , ~8!

wherexi is the projection ofx on the direction off i . There-
fore Eq.~7! can be reformulated as

j i5f i•x. ~9!

The period-coordinatej i can be also expressed in th
form j i5gi(x,y) as a function of the plane coordinatesx,y:
Let x5(x,y) be a point in the plane, and let thex8 i axis
through the origin represent the main periodicity directi
u i of the i th grating. We also denote byy8 i the axis per-
pendicular tox8 i through the origin~see Fig. 11!. The co-
ordinates of pointx in terms of the rotated axesx8 i , y8 i are

xi85x cosu i1y sinu i
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 329
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Amidror and Hersch
yi852x sinu i1y cosu i

and, therefore, the projection of the pointx on thex8 i axis
is given in terms of these rotated coordinates by:xi

5(x8 i ,0). This means thatj i is explicitly given in the form
j i5gi(x,y) by

j i5gi~x,y!5
xi8

Ti
5x

cosu i

Ti
1y

sinu i

Ti
, ~10!

wherex8 i5uxi u andTi5uT i u.
As we can see, for each layeri of the superposition, the

period-coordinatej i is uniquely defined at any pointx
5(x,y) of the plane. Therefore, we may define a transf
mation J:R2→Rm, called theperiod-coordinate function,
which gives for any pointx5(x,y) in the plane the period
coordinatej i of this point in each of them superposed
onefold periodic layers

J~x,y!5~j i ,...,jm!. ~11!

In other words, this transformation gives for any po
x5(x,y) in the superposition plane its coordinates in t
main direction of each of them layers, in terms of each
layer’s period. Since each of the functionsj i5gi(x,y) is
linear, i.e., j i5aix1biy @see Eq. ~10!# it follows that
(j1 ,...,jm) too is linear inx and y, so thatJ is a linear
transformation. Therefore, the image ofJ is a linear sub-
space withinRm whose dimension is 2, namely:J maps the
x,y superposition plane into a plane ImJ within Rm which
passes through the origin. Note that the subspace ImJ)
may have a lower dimension than 2 if the transformationJ
is degenerate; for example, if all them superposed grating
have the same orientation, so thatj2 ,...,jm are constant
multiples of j1 , then all the vectors (j1 ,...,jm)PRm are
collinear and dim Im(J)51. Such degenerate cases w
generally be ignored in the discussions which follow~see
note c in Notes section!.

Let us now consider the plane Im(J) which is defined
by the transformation~J! within Rm. Points (j1 ,...,jm) in
Im(J) which are only composed of integer values have
special significance, since they indicate that the correspo
ing point ~x,y! in the superposition is located on a junctio
of full periods from the origin in all of the superpose
layers. Since we have assumed that the onefold peri
functions p1(x),...,pm(x) are given in their initial phase
we know that the plane Im(J) contains at least the poin
~0,...,0!; but does it contain any other integer poi
(k1 ,...,km)? Clearly, if Im(J) contains an integer poin
(k1 ,...,km)Þ(0,...,0), then it also contains the whole 1
latticeL defined by the integer multiplesn(k1 ,...,km), and
the superposition is onefold periodic; and if Im(J) contains
two integer points (k1

(1) ,...,km
(1))Þ(0,...,0) and

(k1
(2) ,...,km

(2))Þ(0,...,0) which are not on the same lin
through the origin, then it contains the whole 2D latticeL
defined by their integer linear combination
i (k1

(1) ,...,km
(1))1 j (k1

(2) ,...,km
(2)), and the superposition i

twofold periodic. Depending on the plane inclinatio
330 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
-

c

within the spaceRm the latticeL,Im(J) may have rank
52 ~in the case ofm53 this happens, for instance, if th
plane Im(J) contains both thex and y axes ofR3!; rank
51 ~e.g., if the plane only contains thex axis of R3 but
forms an irrational angle with they and z axes!; or rank
50 @if the only integral point in the plane is the origi
~0,...,0!#.

Example 2: Consider the superposition of two identic
periodic square grids~or dot screens! which are rotated by
angles 0 anda, respectively. The transformationJ is given
in this case by

JS x
yD5S j1

j2

j3

j4

D 5
1

T S x
y

x cosa1y sina
2x sina1y cosa

D
5

1

T S S x
yD

M S x
yD D , ~12!

whereM is the 232 matrix which represents a rotation b
anglea

M5S cosa sina

2sina cosa D .

If tana is rational ~as in the case ofa5arctan3
4

'36.87°; see Example 1 and Fig. 5! then rankL52 and
infinitely many points~x,y! in the superposition possess a
integer vector (j1 ,j2 ,j3 ,j4); the superposition in this cas
is twofold periodic. Note that since an integer vect
(j1 ,j2 ,j3 ,j4) represents in the superposition a meeti
point of full periods, its corresponding point~x,y! in the
superposition is a center of a dot-centered rosette. The
fect of varying anglea ~i.e., of rotating the second grid in
the superposition! is a rotation of Im(J) within its own
plane in the spaceR4, about the origin.

If, however, tana is irrational, as in the case ofa
530° ~see Fig. 9!, then rankL50 and the plane Im (J)
does not contain any integer (j1 ,j2 ,j3 ,j4) except for the
origin ~0,...,0!. This means that at no point~x,y! in the su-
perposition except for the origin is a precise dot-cente
rosette formed. For similar reasons Im(J) contains no
points (j1 ,j2 ,j3 ,j4) with half integers in all coordinates
meaning that at no point~x,y! in the superposition doe
there exist a meeting point of half periods, i.e., a cle
centered rosette. However, in the case of irrational tana the
superposition contains infinitely many approximations
such rosettes~of either type! ~see note d in Notes section!;
this can be clearly seen in Fig. 9. In such cases the sc
superposition is not periodic but rather almost periodic; a
indeed, as we have already seen, this type of microstruc
is a characteristic property of almost-periodic functions.j

Let us see now a few properties of the transformationJ
that are related to lateral shifts of the superposed layer

Proposition 3: Assume that the gratingpi(x) in the su-
perposition is laterally shifted by a vectora; this shift can
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Analysis of the microstructures
be expressed, as we have seen in Ref. 10, by the pe
shift f i5uai u/T i u, whereai is the projection ofa on the axis
defining the direction of periodicity ofpi(x), andT i is the
period of pi(x). Therefore, as a result of this shift, th
period-coordinatej i of any point~x,y! in the superposition
is decremented by the period-shiftf i . This means that the
plane ImJ is shifted withinRm by f i along the axis of the
i th dimension. j

This result may be restated more formally as follows
Let J(x,y) be the period-coordinate function whic

corresponds to the grating superpositionp1(x)•...•pm(x).
Suppose now that the gratingsp1(x),...,pm(x) undergo
shifts of a1 ,...,am , respectively. Then, the period
coordinate function which corresponds to the superposi
after the shift is given by

JA~x,y!5J~x,y!2SA~x,y!5~j1 ,...,jm!2~f1 ,...,fm!,
~13!

where A denotes the multi-vector (a1 ,...,am). Note that
f i5f i•ai ~see Ref. 10, p. 979! and j i5f i•xi , wherexi is
the projection of the pointx on the direction off i , the
periodicity direction of the gratingpi(x). The function
SA :R2→Rm which defines the period shifts of them grat-
ings, SA(x,y)5(f1 ,...,fm), is called the period-shift
function; note that it returns the same constant vector
every pointx in the superposition.

For example, if the second square grid~or dot screen! of
Example 2 above is shifted by half a period in each of
two main directions, the transformationJ becomes

JAS x
yD5S j1

j2

j3

j4

D 5
1

T F S x
yD

M S x
yD G2S 0

0
1
2

1
2

D .

The period coordinate of the superposition at the ori
~0,0! will be, in this case,~0, 0,2 1

2, 2 1
2!. Clearly, if before

the shift the plane Im(J) contained integer points ofZ4,
then after this shift Im(J) will contain none: the superpo
sition will have no dot-centered rosettes.

Proposition 4: If grating pi(x) is shifted by an integer
number of its periods, the superpositionp(x) and its micro-
structure remain, of course, unchanged. This is expresse
Rm by the fact that the plane Im(J) is shifted along thei th
axis of Rm by an integer number, so that the relative loc
tion of the plane with respect to points ofZm remains un-
changed. j

Proposition 5: Assume that each of the individual gra
ings pi(x) is shifted by a noninteger number of period
The combination of their shifts gives a rigid motion of th
superposition as a whole~and hence only a lateral shift o
the microstructure! iff these shifts cause the plane Im(J) to
be shifted into itself inRm ~or in other words:iff the plane
Im(J) is shifted withinRm by a vector which is included in
this plane!. j

This result is easy to understand, since a rigid motion
the superposition by (x0 ,y0) implies that every point
d-

in

f

(j1 ,...,jm) which used to be in Im(J) before the rigid
transformation will still remain in Im(J), but now it will
correspond in the superposition to the point (x,y)
2(x0 ,y0) rather than to the point~x,y!.

6 Microstructures in the Conventional
Three-Screen Superposition

A particularly interesting case occurs in the conventio
three-screen superposition used for color printing, i.e.,
superposition of three identical dot screens~or square grids!
with equal angle differences~for example, at orientations o
u1530°, u25230°, andu350°!. As we have seen in Sec
3.2, in this case the in-phase superposition generate
almost-periodic pattern of dot-centered rosettes@see Fig.
6~b!#; but when one of the superposed layers is shifted
half a period in each of its two main directions, the micr
structure of the superposition changes into a pattern
clear-centered rosettes@see Fig. 6~c!#. How can we explain
this interesting phenomenon mathematically, using our n
algebraic formulation? And why, as we have seen in Fig
does this phenomenon not occur when only two of the th
layers are superposed?

The transformationJ is defined for this three-layer in
phase superposition by

JS x
yD5S j1

j2

j3

j4

j5

j6

D 5
1

T S M30S x
yD

M 230S x
yD

I S x
yD D

5
1

T 1
)

2
x1

1

2
y

2
1

2
x1
)

2
y

)

2
x2

1

2
y

1

2
x1
)

2
y

x

y

2 , ~14!

whereM30 andM 230 are the matrices which represent r
tations by 30° and230°, respectively, andI is the identity
matrix

M u5S cosu sinu

2sinu cosu D I 5M05S 1 0

0 1D .

TransformationJ maps, therefore, thex,y superposition
plane into a plane Im(J) within R6. Note that except for
the point~0,0,0,0,0,0! the plane Im(J) contains no integer
point of Z6, since, according to Eq.~14!, wheneverj5 and
j6 are integers,j1 , j2 , j3 , j4 are irrational numbers. This
is not surprising, since we already know that our thre
screen superposition is not periodic, but rather almost p
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 331
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Fig. 12 (a) In-phase superposition of two identical dot screens at angles u1530° and u25230°. (b)
Counter-phase superposition of the same screens. (c) In-phase superposition of a third identical
screen with angle u350° on top of (a); the period shifts of the screens are (0,0,0,0,0,0). (d) Counter-
phase superposition of a third identical screen with angle u350° on top of (a); the period shifts of the
screens are (0,0,0,0, 1

2, 1
2). (e) Counter-phase superposition of a third identical screen with angle u3

50° on top of (b); the period shifts of the screens are ( 1
2, 1

2, 1
2, 1

2, 1
2, 1

2). (f) Half period shifted superposition
of a third identical screen with angle u350° on top of (a); the period shifts of the screens are (0,0,0,0,
1
2,0).
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odic ~in the language of Ref. 9: the six frequency-vecto

f15( )2 , 1
2), f25(2 1

2,
)
2 ), f35( )2 ,2 1

2), f45( 1
2,
)
2 ), f5

5(1,0), andf65(0,1) span within theu,v plane a module
with rank54, sincef1 , f2 , f3 and f4 are linearly indepen-
dent overZ, but f55f42f2 and f65f12f3! ~see note e in
notes section!.

In order to better understand the microstructure of
conventional three-screen superposition with equal an
differences of 30°~or 60°!, let us return for a moment to th
superposition of two identical screens with an angle diff
ence of 30°~or 60°!. As we have seen in Example 2 abo
and in Fig. 9, this superposition is characterized by
presence of approximate rosettes of all types~dot centered,
clear centered, and all intermediate variants!, which are
ctronic Imaging / July 2002 / Vol. 11(3)
e

uniformly distributed throughout the superposition plan
giving to the eye the impression of a uniform, regular m
crostructure. This situation is shown again in Fig. 12~a! and
in its magnified version in Fig. 13~a!. Figures 12 and 13
also show in detail what happens when we superpose
third dot screen on top of this two-screen superposit
~keeping our convention that in the initial phase of ea
layer a black dot is centered on the origin!:

1. If the third dot screen is superposed in phase with
first two screens, so that all screens have a black dot c
tered on the origin, then wherever there used to be in
two-screen superposition an almost-dot-centered rosett
an almost-clear-centered rosette, the third screen con
utes a new dot of its own. This strengthens all the alrea



Analysis of the microstructures
Fig. 13 A magnified view of the screen superpositions of Fig. 12, where the dots of each layer are
represented by circles of a different size, thus permitting us to distinguish between the different layers
and their precise dot locations.
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existing dot-centered rosettes, but destroys all the t
screen clear-centered rosettes. As a result, the three-
superposition no longer contains almost-clear-centered
settes, and the microstructure becomes dominated
almost-dot-centered rosettes@compare the two layers in
Figs. 12~a! and 13~a! with the three layers in Figs. 12~c! or
13~c!, respectively#.

2. If the third dot-screen is superposed in counter ph
with respect to the first two screens, i.e., with a white sp
centered on the origin, then wherever there used to be in
two-screen superposition an almost-clear-centered ros
or an almost dot-centered rosette, the third screen con
utes a white space~which is obviously surrounded by fou
black dots!. This strengthens all the already existing cle
centered rosettes, but destroys all the dot-centered rose
As a result, the three-layer superposition no longer conta
almost-dot-centered rosettes, and the microstructure
-
er
-
y

e

e
te
-

s.
s
-

comes dominated by almost-clear-centered rosettes@com-
pare the two layers in Figs. 12~a! and 13~a! with the three
layers in Figs. 12~d! or 13~d!, respectively#.

3. If all of the three screens are centered on the origin
counter phase~i.e., with a white space centered on the o
gin!, the addition of the third layer on top of the two-scre
superposition has the same effect as in case~2! @compare
the two layers in Figs. 12~b! and 13~b! with the three layers
in Figs. 12~e! or 13~e!, respectively#.

As we can see, the addition of the third layer signi
cantly modifies the microstructure behavior of the super
sition: While in the two-screen superposition almost r
settes of all types are uniformly distributed throughout t
plane, when the third layer is added on top, one type
almost rosettes becomes dominant. Furthermore, in con
to the two-screen superposition, where shifts of the in
vidual screens do not modify the nature of the microstr
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 333
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Amidror and Hersch
ture @see Figs. 12~a! and 12~b!#, in the three-screen supe
position a shift of any of the layers may alter the domina
type of rosettes in the superposition and thus visibly mod
the texture of the microstructure@see Figs. 12~c! to 12~f!#.

Although this behavior may seem surprising at fi
sight, in fact, there is nothing mysterious about it. As w
already know, the plane Im(J) within R4 that contains all
the period-coordinates (j1 ,j2 ,j3 ,j4) of the two dot
screens at 30° and230° is irrational, and, therefore, it con
tains no integer points ofZ4 except for ~0,0,0,0!—but it
passes withinR4 as close as we wish to integer points ofZ4

and to half integer points ofZ41( 1
2,

1
2,

1
2,

1
2) ~which corre-

spond, respectively, to dot-centered or to clear-centered
settes in the two-screen superposition!. Now, when we su-
perpose a new dot screen at 0° on top of the first t
screens, we increase the dimension of the period-coordi
vectors by 2, from (j1 ,j2 ,j3 ,j4)PR4 to
(j1 ,j2 ,j3 ,j4 ,j5 ,j6)PR6. Denoting byJ8 the extension
of the transformationJ to R6, it is clear that Im(J8) re-
mains a 2D plane within the extended period-coordin
spaceR6, where the first four coordinatesj1 , j2 , j3 , j4 of
each point are the same as in Im(J) before. Let us see now
what happens, for example, in case~a! above: In this case
wherever inR4 our plane Im(J) was close~say, up to«! to
a half integer point, there come the two new coordinatesj5

andj6 and destroy the candidacy of that point as an almo
half integer withinR6. As we will show below, this hap-
pens since the two new coordinatesj5 andj6 arenot inde-
pendentof their predecessorsj1 , j2 , j3 , j4 : as can be
seen from Eq.~14! above, for any point~x,y! in the super-
position plane we havej55j42j2 and j65j12j3 . Note
that if j1 ,...,j6 were all independent of each other, th
some of the almost-half integer points inR4 would be, in-
deed, destroyed byj5 and j6 , but infinitely many other
almost-half integer points would still remain almost-ha
integer points inR6, too.

Let us see now how we can explain cases 1–3 ab
mathematically, using our new algebraic formulation.

Let us first consider the two superposed screens wh
are oriented to angles 30° and230°. Assume at first tha
both screens have a black dot centered on the origin@see
Fig. 12~a!#. Since the superposition of these two screen
almost periodic, at no point~x,y! in the superposition ex
cept for the origin a precise dot superposition may occ
but at infinitely many points~x,y! we have an almost
perfect dot superposition, wherej1 , j2 , j3 , j4 are almost
integers, or an almost-perfect white space superposit
wherej1 , j2 , j3 , j4 are almost-half integers. Let~x,y! be
such a point~of either type!; this means, therefore, that a
this point

S j1

j2
D2S j3

j4
D'S m

n D where m,nPZ, ~15!

namely

1

T FM30S x
yD2M 230S x

yD G'S m
n D ,
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2
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2

)

2

D S x
yD2S )2 2

1

2

1

2

)

2

D S x
yD G'S m

n D ,

1

T S 0 1

21 0D S x
yD'S m

n D ,

1

T S y
2xD'S m

n D ,

and, therefore

1

T S x
yD'S k

l D with k,l PZ. ~16!

Now, if the third, 0° screen is superposed in phase@i.e.,
with a black dot centered on the origin, like in Fig. 12~c!#,
then Eq.~16! means~see note f in Notes section!

S j5

j6
D'S k

l D with k,l PZ. ~17!

This shows, therefore, that at any point~x,y! in the su-
perposition which satisfies condition~15!, and in particular,
at any point~x,y! wherej1 ,...,j4 are almost integers~giv-
ing a two-layer almost-dot-centered rosette! or almost-half
integers~giving a two-layer almost-clear-centered rosett!,
the period-coordinatesj5 , j6 of the third, 0° screen are
necessarily almost integer. This means that the third scr
contributes to the superposition a black dot of its own ve
close to~x,y!. This strengthens all the already existing do
centered rosettes, but destroys all the two-screen cl
centered rosettes. As a result, the three-layer superpos
no longer contains almost-clear-centered rosettes, and
microstructure becomes dominated by almost-dot-cente
rosettes. This explains, indeed, case 1 above.

If, however, the third, 0° screen is superposed in coun
phase with respect to the 30°- and the230°-screens@i.e.,
with a white space centered on the origin, like in F
12~d!#, then we have from Eq.~16!

S j5

j6
D2S 1

2

1
2

D 'S k
l D with k,l PZ.

This means that at any point~x,y! in the superposition
where j1 , j2 , j3 , j4 are almost integers~giving a two-
layer almost-dot-centered rosette! or almost-half integers
~giving a two-layer almost-clear-centered rosette!, the
period-coordinatesj5 , j6 of the third, 0° screen are nece
sarily almost-half integer, so that the third screen contr
utes a white-space centered very close to~x,y!. This
strengthens all the already existing clear-centered rose
but destroys all the dot-centered rosettes. As a result,
three-layer superposition no longer contains almost-d
centered rosettes, and the microstructure becomes d
nated by almost-clear-centered rosettes. This is, indeed
explanation of case 2 above.
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Analysis of the microstructures
Finally, in case 3, where the three screens are su
posed with a white space centered on the origin, the d
onstration remains the same as in case 2.

Note, however, that if the third screen were independ
of the first two superposed screens, then the microstruc
in the three-screen superposition would remain uniform
disordered and invariant under layer shifts, as in the or
nal two-screen superposition.

7 Behavior of Microstructure Under Layer Shifts

As we can see, the microstructure of the conventio
three-screen superposition is not invariant under shifts
the individual layers because in this case the superpo

Fig. 14 The superposition of four identical screens with equal angle
differences of 22.5°: (a) in-phase superposition; (b) counter-phase
superposition.
r-
-

t
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layers are not independent of each other. And inde
whenever the superposed layers are independent—as i
case of the two-screen superposition at 0° and 30°—
types of almost rosettes are simultaneously present in
superposition, and no substantial microstructure chan
occur when individual layers are shifted. Restated m
formally, the superposition undergoes substantial mic
structure changes under shifts of individual layersiff the
superposed layers are dependent on each other, i.e.
some given integerski ~not all zeroes! we have for all
pointsx5(x,y) in the superposition(kij i50.

It should be noted that during the discussion until no
we considered the linear dependence~or independence!
overZ of the scalarsj i . However, this is fully equivalent to
the linear dependence~or independence! over Z of the fre-
quency vectors f i , since: (ki f i50 ⇔ ;x ((ki f i)•x
50 ⇔ ;x (ki f i•x50 ⇔ ;x (kij i50 @by Eq. ~9!#. We
obtain, therefore, the following general result~see note g in
Notes section!:

Proposition 6: A nontrivial shift of individual layers in
the superposition causes a substantial change in the m
structure of the superpositioniff their frequency vectorsf i

are linearly dependent overZ, i.e., iff there existkiPZ not
all of them 0 such that(ki f i50. But this precisely means
that the superposition issingular. j

Example 3: Let us illustrate this result with a few sin
gular or nonsingular cases:

i. A two-screen periodic, singular case:The peri-
odic two-screen superposition of Example
above is singular, and, therefore, layer shifts m
cause substantial changes in its microstruct
@see also Sec. 3.1 and Figs. 5~b! and 5~c!#.

ii. A three-screen almost-periodic, singular cas
The conventional three-screen superposition
singular, and, indeed, as we have seen abo
layer shifts may cause substantial changes in
microstructure~see Fig. 6!.

iii. A two-screen almost-periodic, non-singular cas
A stable moire´-free two-screen superposition, lik
the superposition of two identical screens wi
angle difference of 30°, is nonsingular; therefor
its microstructure consists of a uniform blend
rosettes of all types, and it is not substantia
influenced by layer shifts~see Fig. 9!.

iv. A three-screen almost-periodic, nonsingular cas
A stable moire´-free three-screen superpositio
like the screen combination discussed in Ref.
~see Fig. 19 there!, is nonsingular; therefore, its
microstructure consists of a uniform blend of r
settes of all types, and it is not substantially infl
enced by layer shifts.

v. A four-screen almost-periodic, nonsingular cas
The superposition of four identical screens wi
equal angle differences of 22.5°~see Fig. 14! is
nonsingular. Therefore its microstructure consi
of a blend of rosettes of all types, and it is n
substantially influenced by layer shifts: Althoug
each layer shift is distinct, all rosette types a
equally represented in all the different layer shif
Journal of Electronic Imaging / July 2002 / Vol. 11(3) / 335
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Amidror and Hersch
and there is no predominance of one particu
rosette type in each layer shift. j

It should be noted, however, that even when substan
microstructure modifications do occur, i.e., when the sup
position is singular, they still may be more visible or le
visible; but Proposition 6 does not say which cases g
more significant or less significant modifications and w
In general, a moire´ which is clearly visible with a strong
amplitude has, by Propositions 1 and 2, significantly diff
ent in-phase and counter-phase microstructure. There
when it becomes singular the microstructure variation~be-
tween in-phase and counter-phase rosettes! due to layer
shifts will be clearly visible. However, the higher the ord
of the singular state, the less visible are its microstruct
changes in the superposition, and, therefore, the ros
type changes which arise due to layer shifts in the sing
state ~see Proposition 2! are almost unperceptible—
although they do exist according to Proposition 6.

8 Summary

In the superposition of periodic layers such as dot scre
new structures may appear that did not exist in any of
original layers. These new structures may include b
macrostructures~moiré effects! and microstructures~ro-
settes!. But while microstructures exist practically in an
superposition, except for the most trivial cases, macroḿ
effects are not always present; and moreover, whene
they do exist, they are, in fact, built from the microstru
tures of the superposition.

In view of the important role of the microstructures
superpositions of periodic layers, we investigate their
havior and their properties both in the image domain and
the spectral domain. We first explore the behavior of
microstructure in the different types of singular and no
singular superpositions. Then, we provide an algebraic
malization which gives us the mathematical tools for u
derstanding the various properties of the microstructu
This formalization also leads us to new, general results c
cerning the stability of the microstructure under layer sh
in the superposition. In particular, we show that shifts
individual layers substantially change the microstructure
the superpositioniff the superposition is singular.

Remark: Parts of this manuscript have been used
preparing Chapter 8 in Ref. 14.

Notes

a. Obviously, the period of the microstructure is a
ways greater than or equal to the original scre
periods: Since the impulses of the original scre
frequenciesf i are included in the compound na
bed, it is clear that the fundamental impulses
the compound nail bed can either coincide w
the original screen frequenciesf i , or fall even
closer to the dc@as in the~1,2,22,21! moiré; see
Fig. 5~a!#.

b. Singular states in which there is no clear visu
distinction between in-phase and counter-ph
microstructures do not produce off the singu
state a visible macromoire´ in the superposition.
336 / Journal of Electronic Imaging / July 2002 / Vol. 11(3)
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This often happens in moire´s of high orders, or in
moirés involving many superposed layers.

c. It is interesting to note that if the superposition
the ~x,y! plane consists of nonlinearly curved lay
ers ~i.e., nonlinear transformations of period
functions; see Ref. 13!, then the image ofJ is a
curved 2D surface withinRm.

d. More precisely: for any positivee, be it as small
as we may desire, we can find in the superpo
tion rosettes~or either type! with a mismatch
smaller thane, provided that we go far enoug
from the origin.

e. It is interesting to note that the superposition
the third screen on top of the initial two-scree
superposition does not add new impulse locatio
in the spectrum support@compare the two-scree
spectrum support in Fig. 9~a! with the three-
screen spectrum support in Fig. 6~a!#. The reason
is that the new frequency vectorsf5 and f6 are
linear combinations of the original frequency ve
tors f1 , f2 , f3 , f4 , and therefore, all the new con
volution impulses which are generated in th
spectrum owing to the superposition of the thi
screen are located on top of already existing i
pulses. Thus, each impulse in the spectrum of
two-screen superposition turns into acompound
impulsein the spectrum of the three-screen sup
position, and the nonsingular two-screen super
sition turns into a singular three-screen superp
sition.

f. Note that if one already observed from Eq.~14!
that j55j42j2 and j65j12j3 , then Eq.~17!
can be directly deduced from Eq.~15!.

g. Another interesting result of this equivalence
that, just as the spectral interpretation of
(k1 ,...,km)-singular superposition is(ki f i50, its
image-domain interpretation is that, for any poi
x in thex,y plane,(kij i50 ~provided that all the
superposed layers are given in their initial phas!.
For example, in Fig. 10, which illustrates a~1,2,
22,21!-singular superposition, any pointx in the
x,y plane satisfies:j112j222j32j450. ~In the
spectral domain we have, of course,f112 f2

22 f32f450.!
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