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Analysis of the microstructures (“rosettes”)
In the superposition of periodic layers
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Abstract. Superpositions of periodic dot screens are largely used
in electronic imaging in the field of color printing. In such superpo-
sitions the interaction between the superposed layers may cause
new structures to appear which did not exist in any of the original
layers: macrostructures (also known as moiré patterns) and micro-
structures (also known as rosettes). While macrostructures are not
always generated in the superposition (cf. moiré-free superposi-
tions), microstructures exist practically in any superposition, except
for the most trivial cases. In fact, even the macrostructures, when-
ever they occur, consist of variations in the microstructure of the
superposition. In the present paper we investigate the microstruc-
tures that appear in the superposition of periodic structures and their
properties. We also find the conditions on the superposed layers
under which the microstructure of the superposition varies—or re-
mains invariant—when individual layers in the superposition are lat-
erally shifted with respect to each other. © 2002 SPIE and IS&T.
[DOI: 10.1117/1.1477442]

1 Introduction
When periodic layergline gratings, dot screens, etare

superposed, new structures of two distinct levels may ap-
pear in the superposition, which do not exist in any of the

original layers:macrostructuresand microstructures
The macrostructures, usually known m®ire patterns
are much coarser than the detail of the original layers, an

they are clearly visible even when observed from a dis-
tance. The microstructures, on the contrary, are almost a

small as the periods of the original layeitypically, just
2-5 times larger and, therefore, they are only visible

when examining the superposition from a close distance o

through a magnifying glass. These tiny structures are als
calledrosettesowing to the various flower-like shapes they
often form in the superposition of dot screeffief. 1, p.
339.

While macrostructuregmoire effecty have been treated
over the years in a large number of referen¢sse, for

I
o

we can see in Fig. 1, quite attractive rosette forms often
appear in the superposition, and a look through a magnify-
ing glass may reveal an amazing, subtle, and delicate mi-
croworld, full of surprising geometrical forms.

We will see in this paper that macrostructures and mi-
crostructures may coexist in the same superposition. How-
ever, while microstructures exist practically in any super-
position, except for the most trivial cases, macro moire
effects are not always preseftf. stable and unstable
moire-free states in Sec. 2.3 belown fact, we will see in
Sec. 4.1 that the macrostructures, whenever they exist, are
constructed from the microstructures of the superposition.

In the present paper we investigate the microstructures
generated in the superposition of periodic layers and their
properties both in the image domain and in the spectral
domain. Our approach is completely general, and not only
limited to the rosette morphology in the classical case used
for color printing, the superposition of three screens 30° or
60° apart, which has already been studied in Ref. 1, Ref. 4,
pp. 57-59, and Ref. 5. We start in Sec. 2 by establishing the
required terminology and mathematical framework for the
rest of the paper. We then discuss the behavior of the mi-

gerostructure in all the different types of superpositions: sin-

gular superpositions in Sec. 3, and nonsingular superposi-

%ions in Sec. 4. Then, in the remaining sections we proceed

o the formal explanation of these phenomena. This also
leads us to new, general results concerning the stability of
the microstructure under layer shifts in the superposition.
show that shifts of individual layers substantially
change the microstructure of the superpositierg., from
dot-centered rosettes to clear-centered rosettes or vice
versa if and only if the superposition is singular. Several
figures and examples taken from the printing world illus-
trate our discussion throughout the paper.

We

example, in Refs. 2 and)3only a few studies have been 5 Background and Basic Notions

devoted to the microstructures. However, in spite of their L . . . .
tiny size, the microstructures which occur in the superposi- In this introductory section we briefly review the basic no-

tion are very rich in detail, and their study appears to be notions and terminology that will be used throughout this pa-
less fascinating than the study of the macrostructures. AsP€"
2.1 Properties of the Superposed Layers and Their

- Fourier Spectra
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First of all, let us mention that throughout this work we are
only concerned with monochrome, black and white images
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Fig. 2 The geometric location and amplitude of impulses in the 2D

RO easIuN spectrum. To each impulse is attached its frequency vector, which
A 435 points to the geometric location of the impulse in the spectrum plane
(u,v).
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According to the convolution theoreiiRef. 6, p. 244
EHL the Fourier transform of the product function is the convo-
5 lution of the Fourier transforms of the individual functions.
3 Therefore, if we denote the Fourier transform of each func-
N tion by the respective capital letter and the two-dimensional
(2D) convolution by**, the spectrum of the superposition
is given by

R(u,v)=Ry(U,v)** Ry(U,v)** ...x* R(u,v). 2

Vit STV SN
X ] K,

Second, we are basically interestedperiodic images
7 defined on the continuous,y) plane, such as line gratings
N or dot screens, and their superpositions. This implies that
A S L the spectrum of the image on the,{) plane is not a con-
@@ tinuous one but rather consists of impulses, corresponding
() o to the frequencies which appear in the Fourier series de-
composition of the imagéRef. 6, p. 204. In the case of a

Fig. 1 The superposition of periodic layers may yield very spectacu- onefold periodic image, such as a line grating, the spectrum

lar microstructures (rosettes). (a) A magnification of the three-grating consists of a one-dimension&lD) “comb” of impulses
superposition of Fig. 4(h). Note the star-like rosettes which form the

bright areas of the macromoiré and the triangular microstructure _Cemered on the origin, 1n t,he case ,,Of a twofold periodic
which forms the darker areas. (b) A magnification of a singular su- image the spectrum is a 2D “nail bed” of impulses centered
perposition of three grids (=6 gratings) with angles 6,=0°, 6, on the origin. Note that we will sometimes use the more
=36.8699°, §;=63.4349°, and periods T,;=T,, T;=1.118T,. This general term “cluster” for a comb or a nail bed; this should

is an example of a periodic, singular superposition (Sec. 3.1). not be confused, however, with terms such as “clustered

dot halftoning,” etc.
Each impulse in the 2D spectrum is characterized by

. N . . three main properties: itgbel (which is its index in the
(or “layers”). This means that each image can be repre-gqrier series developmentts geometric locatior(or im-
sented by qeflectance‘unctlon, which assigns to any point. pulse locatiop, and itsamplitude(see Fig. 2 To the geo-
(x,y) of the image a value between 0 and 1 representing itSmeric [ocation of any impulse is attachedraquency vec-
light reflectance: 0 for blacki.e., no reflected light 1 for 5 £ in the spectrum plane, which connects the spectrum
white (i.e., full light reflectancg and intermediate values qyigin to the geometric location of the impulse. This vector
for in-between shades. In the case of transparencies, the , pe expressed either by its polar coordinates)(
reflectance function is replaced byrransmittanceunction where @ is the direction of the impulse arfds its distance
defined in a similar way. The superposition of such images ., the origin(i.e., its frequency in that directionor by
can.be donte by c;verprrl]ntlrt]r?, Orsb.y Iayltrrllg printed tra.rt{spar-fits Cartesian cooroiinatesfl(,f ), wheref, andf, are the
encies on top of each other. Since the superposition of,_~ . . v v
black and any other shade always gives black, this suggest?ec;:%zggf lthaengri\g;?r:gf?rlngg;nptzgggﬁe?rfic”l]gcgtie(?r%?n;g. n
a multiplicative model for the superposition of mono- impulse in the spectrum detérmines the frequeinayd the

chrome images. Thus, whem monochrome images are . " . - S X
superposed, the reflectance of the resulting image is givendlrectloms? of the corresponding periodic component in the

; g image, and thamplitudeof the impulse represents the in-
by theproductof the reflectance functions of the individual tensity of that periodic component in the imagiiote that

Images if the original image is not symmetric about the origin, the
amplitude of each impulse in the spectrum may also have a
r(X,Y)=r(Xy)ra(x,y)...rm(x,y). (1) nonzero imaginary component
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However, the question of whether or not an impulse in metric location of the generak(,ks,,... k) impulse in the
the spectrum represents/sible periodic component in the  spectrum convolution by the vectorial sujor linear com-
image strongly depends on properties of the human visualbination
system. The fact that the eye cannot distinguish fine details
above a certain frequendgie., below a certain perigdug- fi K
gests that the human visual system model includes a low-
pass filtering stage. This is a bidimensional bell-shaped fil- gnd jts amplitude by
ter whose form is anisotropigince it appears that the eye
is less §ensmve to small details in diagonal directions suchakrk2 ’’’’’ k.= a(l)kla(2>k .am, (4)
as 459.” However, for the sake of simplicity this low-pass
filter can be approximated by thesibility circle, a circular oo denotes the frequency vector of the fundamental
step function around the spectrum origin whose radius rep-. lse in th f thih i dk f d
resents thecutoff frequencyi.e., the threshold frequency |rr(1i§)u se in the spectrum 0 grating, andxl; an )
beyond which fine detail is no longer detected by the)eye & ' are, respectively, the frequency vector and the ampli-
Obviously, its radius depends on several factors such as théude of thek;th harmonic impulse in the spectrum of tih
contrast of the observed details, the viewing distance, lightgrating.
conditions, etc. If the frequencies of the original image el-  The vectorial sum of Eq3) can also be written in terms
ements are beyond the border of the visibility circle in the of its Cartesian components. fif are the frequencies of the
spectrum, the eye can no longer see them; but if a strongm original gratings and¥, are the angles that they form

enough impulse in the spectrum of the image superpositionyjth the positive horizontal axis, then the coordinates
falls inside the visibility circle, then a moireffect becomes (¢t ) of the (k,k,... k) impulse in the spectrum con-

visible in the superposed imagén fact, the visibility volution are given by
circle has a hole in its center, since very low frequencies

o =Ky Kofot .. K 3)

cannot be seen, either. f, =Ky f; cosO;+kofocOSO,+ ...+ Kyf y COSOyy,
For the sake of convenience, we may assume that the i ka2 km
given imageggratings, grids, etg.are symmetrically cen- (5)

tered about the origin. As a result, we will normally deal kal‘kz
with images(and image superpositionghich arereal and
symmetric and whose spectra are, consequently, also realTherefore, the frequency, the period, and the angle of the
and symmetriqRef. 6, pp. 14, 15 This means that each considered impulséand of the moireit represents are
impulse in the spectruntexcept for the dc impulse at the given by the length and the direction of the vector
origin) is always accompanied by a twin impulse of an f_, " as follows:

identical amplitude, which is symmetrically located at the "*"2"""™m
other side of the origin as in Fig. @heir frequency vectors Ay
aref and—f). If the image is nonsymmetridut, of course, f=Viy+f, Tw=1f o¢u=arctarf,/f,). (6)
still real), the amplitudes of the twin impulses faand — f
are complex conjugates.

. =k,f1sinf;+Ksfosind,+...+ Ky f iy Sin .

Let us now say a word about the notations used for the
superposition moie We use a notational formulation
which provides a systematic means for identifying the vari-
ous moireeffects. As we have seen, &;(k,,...,Ky) im-
pulse of the spectrum convolution which falls close to the
. ) spectrum origin, inside the visibility circle, represents a
According to the convolution theorefigs.(1), (2)], when moire effect in the superposed imagsee Fig. 3 We call

m line gratings are superposed in the image domain, thethe m-grating moife whose fundamental impulse is the
resulting spectrum is the convolution of their individual (Ky ,Kz,... k) impulse in the spectrum convolution a

spectra. This convolution of combs can be seen as an op(k K
eration in which frequency vectors from the individual 1’2’
spectra are added vectorially, while the corresponding im-
pulse amplitudes are multiplied. More precisely, each im-
pulse in the spectrum convolution is generated during the
convolution process by the contribution ohe impulse
from eachindividual spectrum: its location is given by the
sum of their frequency vectors, and its amplitude is given
by the product of their amplitudes. This permits us to in- )
troduce an indexing method for denoting each of the im- 2.3  Singular States; Stable Versus Unstable Moire-
pulses of the spectrum convolution in a unique, unambigu- Free Superpositions

ous way. The general impulse in the spectrum convolution\e have seen that if one or several of the new impulse
will be denoted theK; ,kz,... ky) impulse wheremis the  pajrs in the spectrum convolution fall close to the origin,
number of superposed gratings, and each intégés the  inside the visibility circle, this implies the existence in the
index (harmonig, within the comb(the Fourier serigsof superposed image of one or several moiwith visible
theith spectrum, of the impulse that thith spectrum con-  periods[see, for example, Figs(® and 3f)]. An interest-
tributed to the impulse in question in the convolution. Us- ing special case occurs when some of the impulses of the
ing this formal notation we can, therefore, express the geo-convolution fall exactlyon top of the dc impulse, at the

2.2 Spectrum Convolution and Superposition
Moires

...Km) moirg the highest absolute value in the in-
dex list is called theorder of the moire Note that in the
case of doubly periodic images, such as in dot screens, each
image can be represented in the superposition by a pair of
onefold periodic functions; hence in Egs.(3)—(5) above
counts each doubly periodic layer as two onefold periodic
structures.
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Fig. 3 Line gratings (a) and (b) and their superposition (c) in the image domain; their respective
spectra are the infinite impulse combs shown in (d) and (e) and their convolution (f). Only impulse
locations are shown in the spectra, but not their amplitudes. The circle in the center of the spectrum (f)
represents the visibility circle. It contains the impulse pair whose frequency vectors are f;—f, and f,
—f, and whose indices are (1,—1) and (—1,1); this is the fundamental impulse pair of the (1,—1) moiré
seen in (c). The dotted line in () shows the infinite impulse comb which represents this moiré.

spectrum origin. This happens, for instance, in the trivial It is important to understand, however, that not all the
superposition of two identical gratings in match, with an moirefree superpositions are singul@and hence unstable
angle difference of 0° or 180°; or, more interestingly, when For example, the superposition of two identical gratings at
three identical gratings are superposed with angle differ-an angle of 90° is indeed moifeee; however, it is not a
ences of 120° between each otlieee second and third  singular state, but ratherstable moirefree stateas shown
rows of Fig. 4. As can be seen from the vector diagrams, in the first row of Fig. 4, no moirdecomes visible in this
these are limit cases in Which the vectorial sum qf_ the fre- superposition even when a small deviation occurs in the
quency vectors is exactly. This means that the moifee-  4ngje or in the frequency of any of the layers. The corre-
quency is 0(i.e., its period is infinitely large and, there-  g,0n4ing sjtuation in the spectral domain is clearly illus-

fore, as shown in Figs.(d) and 4g), the moireis not P : -
visible. This situation is called singular moirestate But, gj;eeep:gsi;gh?’F%hI&r; shows the vector diagram of the

although the moireffect in a singular state is not visible, Formally, we say that a singular moirstate occurs
this is a very unstable moikee state, since any slight ' . .
deviation in the angle or in the frequency of any of the whenever ak,,..., km) impulse[other than(0....,0] in the_ .
superposed layers may cause the new impulses in the Speépectrum convolution falls exactly on the spectrum origin,
trum convolution to move slightly off the origin, thus caus- -€-» When the frequency vectors of thesuperposed grat-
ing the moireto “come back from infinity” and to have a  ings, f1,....f, are such thak{ ;k;f;=0. This implies, of
clearly visible period, as shown in Figsie} and 4h). course, that all the impulses of thie(. .. k) -moire comb
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Fig. 4 Examples of stable and unstable (=singular) moiré-free states. First row: (a) the superposition
of two identical gratings at an angle difference of 90° gives a stable moiré-free state; small angle or
frequency deviations, as in (b), do not cause the appearance of any visible moiré. The spectral
interpretation of (b) is shown in the vector diagram (c). Second row: (d) the superposition of two
identical gratings at an angle difference of 0° gives a singular (unstable) moiré-free state. (e) A small
angle or frequency deviation in any of the layers causes the reappearance of the moiré with a very
significant visible period. The spectral interpretation of (e) is shown in the vector diagram (f); compare
to Fig. 3(f) which also shows impulses of higher orders. Third row: (g) the superposition of three
identical gratings with angle differences of 120° gives an unstable (singular) moiré-free state; again,
any small angle or frequency deviation may cause the reappearance of a very significant moire, as
shown in (h) and in its vector diagram, (i).
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fall on the spectrum origin. As can be easily seany nowhere continuousWe will illustrate the first case by the
(ky,...ky) impulse in the spectrum convolution can be singular (1, 2, —2, —1) moire between two identical
made singular by sliding the vector sub{_ ;kif; to the screens with angle difference af= grctan%~36.87°, and
spectrum origin, namely: by appropriately modifying the the second case by the singular mdetween three iden-
vectorsf, ,... f, (i.e., the frequencies and angles of the su- tical screens with equal angle differences of 80e., the
perposed layejsWhen the ki ,... k) impulse is located conventional singular screen combination traditionally used

exactly on the spectrum origin we say that the correspond-in color printing.
ing (Ky,...km) moire has become singular. ) o
3.1 Rosettes in Periodic Singular States
2.4 Impulse Clusters in the Spectrum Convolution; Let us consider the microstructure which occurs in a peri-
Moire Extraction odic singular case, such as tfle 2, —2, —1)-singular su-

Figure 3f) shows the spectrum of the superposition of two Perposition of two screengFig. 5. As we can see, the
onefold periodic images, namely: the convolution of their superposition in this case is per|0d|c, and the_rosettes are
original nail bed spectra. As we can see, the spectrum conPrdered in a perfectly repetitive pattern. And indeed, the
volution consists of a “forest” of impulsegwith real or  SPectrum of this superposition is a compound nail j&d.

complex amplitudes, depending on the symmetry properties5(_a)]' where each impulse represents a collapsed cluster.
in the image domain It has been shovénthat the oc- Since the only structure which appears here in the superpo-

curence of a moirphenomenon in the image superposition sition is the micro_strt_;cture, it is clear that this nail be_:d
is associated with the appearance of impulse combs or clust€Presents the periodic microstructure of the superposition.
ters in the spectrum, as in Figf8 In particular, it has been And, indeed, the two fundamentalompound impulses of
shown there that the main cluster, the infinite impulse clus- thiS nail bed(whose frequency vectogandh are a basis
ter which is centered on the spectrum origin and whose©f the lattice of clusters in the spectrum suppaktermine
fundamental impulse isk( ,... Ky), represents in the spec- nggqggr?qgnanﬂ tr;irdZi;t#])&:f;?eﬂgcrgstruzcturel;n the
gg;?tig;f g;d ' 'ir;lén;,)e(ro,]Okl)ri g(fgcgﬁge{ﬁf?r%gjgi SéJIS:trer singular state the frequency of the m.icrostructure is, by the
from the spectrum and taking its inverse Fourier transform, _Pythag‘”a_s theoreng = _fl/‘E [see Fig. &], and hencg
one obtains, back in the image domain, the isolated contri-itS Period is\5~2.236 times larger than the screen period;
bution of the moirén question to the superposition, i.e., the its orientation is¢ =arctan(2)~63.435° with respect té;
moire intensity profile. Note that when a moieffect be-  (see note a in Notes sectjon

comes singular each of its impulse clusters collapses into a

single location in the spectrum, and all the cluster’s im- 3.2 Rosettes in Almost-Periodic Singular States

pulses fuse down into a single impulse, that we calben- Let us now consider the microstructure obtained in an

2832& ;g‘gﬂj&Tgfethaémgmgﬁti dgfs %f Ci?smgr(i)g;jiggl Iim?)ﬂllzis almost-periodic singular case, such as the con'ventlor)al sin-
(see Sec. 9.3 in Ref)9 gqlar three—scre_en superposm(Bee Fig. 6._ObV|oust, in

e : this case there is no rosette periodicity in the superposed

s image. Rather, we can detect here in the image domain
3 Rosettes in Singular States “almost” periodicities, and the rosette forms are only al-
Let us start by exploring the microstructure in meiree most repetitive. This explains the fuzzy and elusive look of
singular cases, where the superposition looks uniform andthe microstructure in this case: looking at any location in
no macromoire are visible. Since in these cases the only the superposition, the eye is tempted at first to believe that
structure which appears in the image domain is the micro-the rosette structures are repetitive; but after a more careful
structure, it is clear that their spectra only represent theexamination it realizes that this repetition is just an illusion.
microstructure. Such cases will serve us as a starting point For example, let us look carefully at the almost-periodic
for studying the spectral representation of the microstruc-rosette pattern of Fig.(B), in which the three screens are
ture. The microstructure in the case sthble moire-free superposed in phadgee., they have a common dot at the
superpositions will be discussed later, in Sec. 4.2. origin). Clearly, apart from the origin, nowhere else in the
As we have seen, each impulse in the spectrum of asuperposition does there occur again a precise three-screens

singular state is, in fact, a compound impulse representing adot match(otherwise the superposition would be perigdic
full cluster of impulses which has collapsed into a single But at an infinite number of locations in the superposition
location. According to the algebraic structure of the com- there occurs an almost three-screens dot mdkis may be
pound spectrum, we can distinguish here between twobetter perceived in the magnification shown in Fig(clB
types of singular cases: singular cases in which the specThe farther we go from the origin, the better the almost
trum support is a discrete lattice and the layer superpositionmatches that we can find. This is, indeed, a characteristic
is periodic; and singular cases in which the spectrum sup-property of almost-periodic functions.
port is a dense module and the layer superposition yields an In the spectral domain, the spectrum of an almost-
almost-periodic imagelAn explanation of these terms, as periodic singular case is no longer a compound nail bed
well as the conditions for a superposition to be periodic or whose support is a discrete lattice, but rather a forest of
almost periodic, can be found in Ref. 9; see Proposition 3compound impulsegeach of which representing a col-
on p. 127 there. As an illustration to the term “dense,” one lapsed clustgr whose support is a dense mod{gee Fig.
may think of the set) of all rational numbers, which is 6(a)]. And again, since the only structure which appears
everywhere dense iR, and yet only countably infinite and here in the superposition is the microstructure, it is clear
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Fig. 5 The singular (1,2,—2,—1)-superposition of two identical screens with angle difference of «

=arctan %~36.87°. (a): The spectrum support; f1, . . . ,f, are the fundamental frequency vectors of the
two original screens, and g and h are the fundamental compound impulses of the microstructure. The
circle in the center of the spectrum represents the visibility circle. (b), (c): The screen superposition in
the image domain: in-phase superposition in (b), and counter-phase superposition in (c). Note the
uniformity of the microstructure, and the difference between the rosette shapes in (b) and (c).

that this “compound module” represents the almost- 5 shows a case in which the screen superposition is peri-
periodic microstructure of the superposition. odic, and Fig. 6 shows a case in which the superposition is
almost periodic. It is important to note that when the super-
3.3 Influence of Layer Shifts on Rosettes in Singular  position is periodic, as in Fig. 5, the microstructure modi-
States fications that are caused by the shifts do not influence this
It has already been showhthat shifts in the individual  periodicity or its orientation, but only the internal structure
superposed layers may cause, depending on the case, eithefithin each periodnamely, the rosette shapes

a global shift(a rigid motion of the superposition as a If we examine the forms of the rosettes which are gen-
whole, or a real modification in the microstructure of the erated as the phase of the original layers is being modified,
superposition. FiguregB) and 5c) and 6b) and €c) illus- we find two extreme types of rosettes, as well as all the

trate the microstructure modifications which occur due to possible intermediate types which occur between them.
such shifts in different singular screen superpositions; Fig. One extreme type occurs when the original layers are su-
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(b) (©)

Fig. 6 The singular superposition of three identical screens at equal angle differences of 30°. (a): The
spectrum support (showing only impulses up to order three). (b), (c): The screen superposition in the
image domain: in-phase superposition in (b), and counter-phase superposition in (c). Note the unifor-
mity of the microstructure, and the difference between the rosette shapes in (b) and (c).

perposed “in phase,” i.e., when each layer has a black el-state. Most famous are the rosette forms obtained in the
ement(dot or ling centered on the origin; and the other classical superposition of three identical screens with equal
extreme type occurs when the original layers are super-angle differences; these rosette forms are well known in the
posed in counter phase. A gra_dual transition _between thes%rinting industry and they have been widely described in
extreme rosette forms occurs in the intermediate phase POliterature(Ref. 1, pp. 339—341; Ref. 4, pp. 57—59; Re¥. 5
sitions. . . As illustrated in Fig. 6b), when the three screens are su-
These two extreme rosette forms are illustrated in Figs. ! . .
perposed in phase, i.e., with a black dot centered on the

5(b) and Hc) for the case of the periodid, 2, —2, —1)- o
singular moife and in Figs. 6) and Gc) for the almost- origin, a perfec'_[ r_natch_ of one screen dot fr_om each layer
periodic case of the classical three-screen superpositior?CCUrS at the origin. This generates at the origin the form of

with identical frequencies and angle differences. a “dot-centered” rosette. Due to the almost periodicity,

The precise rosette shapes and their variations due toalmost-perfect” copies of this dot-centered rosette can be
lateral shifts in the superposed layers are characteristidound at any distance from the origin, thus generating a
properties(like “fingerprints”) of each particular singular  uniform microstructure with almost-dot-centered rosettes
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throughout. However, when the screens are superposed iits magnification in Fig. @a]. This is, in fact, the micro-
counter phase, a “clear-centered” rosette pattern is generscopic interpretation of the macroscopic maiatterns. |
ated[see Fig. €&)]. It should be emphasized, however, that ~ However, this is not yet all. Looking carefully at the
the rosette shapes obtained in other singular states may bgicrostructure of any given macromairee discover that
completely different; and as we can see in the case of thethe relationship between the micro- and the macrostructures
singular(1, 2, —2, —1) moires [Figs. b) and Hc)], even  js even deeper than what is stated in Proposition 1. In fact,
the terms “dot-centered” and “clear-centered” may Nno e have:
longer be appropriate for the in-phase and counter-phase proposition 2: The microstructure alternations which
rosettes. . - . make up a macromoirare, to a very close approximation,

It is interesting to ask now how do such variations in the othing else but the microstructure forms which are ob-
rosette shapes due to layer shifts in the superposition reflec ained at the singular state of that macrordiseall pos-

in the spectrum of the singular case? And, furthermore, : : p
why in some singular cases the difference between the twoSlble phase shifts. The two extreme in-phase and “counter

extreme rosette types is very significant, while in other sin- phase” microstructurese.g., the dot-centered and the

gular cases the difference is hardly distinguishable? As We“clear-centered" r.olsettes in the case of the class@cal th_ree-
in thesCreen superpositiprgenerate the two extreme intensity

spectrum of a singular superpositiére., the amplitude of levels of the visible mac_romoiréts brightest and darkest
each compound impulsés the sum of the amplitudes of all areas, and the mtermed@te forms between them generate
the individual impulses which collapsed onto the same lo- all the in-between intensity levels of the macromaisee
cation. On the other hand, according to the shift theoremnote b in Notes section u
(Ref. 6, p. 104 a shift in any of the superposed layers This can be clearly illustrated for th&,2,—2,—1) moire
modifies the complex amplitudes of the impulses in its own by comparing Fig. {b) with Figs. b) and 5c), and for the
spectrum. The answer to the above questions is foundgclassical three-screen superposition by comparing k. 8
therefore, in the way in which variations in the complex with Figs. &b) and €c).

amplitudes of the individual impulses within each collapsed It should be emphasized, however, that Proposition 2 is
cluster influence the summed-up complex amplitude of theonly a close approximation. The reason is that as the angles
resulting compound impulse: in some cases the variationsor the frequencies are slightly modified in order to move
in the summed-up amplitudes may be significant, while in our macromoireslightly away from its singular state, the
other cases they may be cancelled out. The variations in thenjcrostructures are also slightly modified. However, the

complex amplitudes of the compound impulses due to thecjoser the macromoiris to its singular state, the better the
shifts in the superposed layers reflect, therefore, the varia-,nnroximation provided by Proposition 2.

tions in the rosette shapes as a function of the shifts in the
individual layers.

4 Microstructure in Nonsingular States 4.2 Microstructure in Stable Moiré-free
After having explored the microstructure behavior in singu- Superpositions

lar superpositions, we arrive now to the case of nonslngularl_et Us now consider the microstructures which occur in

states. We will first discuss the microstructure §I|ghtly off a stable moirefree superpositions, such as the superposition
singular state, where a macromoiseclearly visible, and of two identical screens with an anale differen f B9
then we will proceed to the case of stable mdiee super- . . : p gie direrence o €
positions, away from any visible macromoieéfect. Fig. 9. Just like smg_ular molréree s_tgtes{Sec. 3. st_able
moire-free superpositions have no visible macromsj@nd
they show a uniform-looking microstructure. However, this
is also where the similarity between these two types of
moire-free superpositions ends. Stable mdiee cases are
not singular superpositions, and, therefore, their tolerance
to layer rotations, scalings, and shifts is significantly higher.
This means that in all the neighboring layer combinations
which are still included within the tolerance limiis.e.,
within a certain reasonable interval of angles and frequen-

4.1 Microstructure Slightly off a Singular State

As we already know, when we slightly move away from the
singular state of a given moir¢his moirebecomes visible

in the superposition in the form of a moiedfect with a

large, visible period. Looking now at this superposition
through a magnifying glass, we discover that, in fact, the
visible macrostructures are constructed from the micro-
structures of the superposition. The key point in the rela-

tionship between macro- and microstructures in the Super_c!eilarour;dhthe given super;f)osn)omo_ macromoirs a_?a
position can be stated as follows: visible, and hence, in terms of Proposition 1, no significant

Proposition 1: When the microstructures of the super- Microstructure variations occur in the superposition. The
position are similar and uniformly distributed throughout Microstructure of such cases seems to be “uniformly disor-
the superposed image, the resulting superposition looksdered,” meaning that it consists of a uniform but nonperi-
from a distance uniform and smooth, and no maireis- odic blend of various types of rosettes. Moreover, although
ible (see, for instance, Figs. 5 andl 6lowever, if different  this microstructure varies when the superposed layers are
types of rosettes are generated in alternate areas of the sijotated or scaled within the tolerance limits, its overall look
perposed image, the eye observes a different gray level inemains unchanged. In particular, no visible rosette-type
each of these aredslue to the different surface-covering changes occur in such cases owing to layer shifts; this can
rates of the dots in the different rosette typemd a mac-  be clearly seen in Figs.(8) and dc), in contrast to Figs. 5
romoirebecomes visiblgsee Figs. 7 and 8, or Fig(# and and 6 where rosette-type changes owing to layer shifts
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20

15}

10t

-15¢

Fig. 7 The (1,2,—2,—1) moire of Fig. 5 slightly off its singular state; (a) shows the corresponding

spectrum (only impulses up to the fourth harmonic are shown). The scale in the spectral domain was

changed for the sake of clarity.
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Fig. 8 The classical three-screen moiré of Fig. 6 slightly off its singular state; (a) shows

an enlarged
view of the central part of the corresponding spectrum (only impulses up to order three are shown).
The scale in the spectral domain was changed for the sake of clarity.
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(b) (©)

Fig. 9 The stable moiré-free superposition of two identical screens with angle difference of a=30°.
(a): The spectrum support (showing only impulses up to order five). (b), (c): The screen superposition
in the image domain: in-phase superposition in (b), and counter-phase superposition in (c). Note the
uniformity of the microstructure; however, unlike in Fig. 6, no visible differences exist between the
rosette shapes in (b) and (c). The spectrum support (a) is the same as in the singular three-screen
superposition of Fig. 6(a), but this time it consists of simple impulses and not of compound impulses
(collapsed clusters).

are clearly visible. This curious difference in the micro- own distinct location, and different impulses do not fall
structure behavior between singular and nonsingular moire together on the same point. This fact provides, indeed, the
free cases will be fully elucidated in the sections which gpaciral domain interpretation of the microstructure invari-

follow. . ; .
The difference between singular and stable fnéiee ance under layer shifts in stable mofree superpositions

superpositions is also remarkable in the spectral domain:(S€€ last paragraph in Sec. B.3 -

while in singular states each impulse in the spectrum is, in An example of a three-screen stable mdiee superpo-
fact, a compound impulse representing a full cluster of im- sition is shown in Ref. 11, Fig. 19, or in Ref. 14, p. 76. Its
pulses which have collapsed into a single location, in stablemicrostructure has, again, the same basic properties: it
moirefree cases each impulse in the spectrum has itslooks uniformly disordered, and it does not present substan-
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Fig. 10 A magnified view of the superposition of two identical square grids with an angle difference of
a=arctan %%36.87° (compare with Fig. 5). The period coordinates of point x in the superposition are

&= % &= % &= % and &,= f%. For the sake of simplicity we chose the x’,,y’; coordinates to
coincide with the x and y axes of the x,y plane.

tial changes under layer shiftas well as under layer rota- systemx’;,y’; of the first grid, as well as in terms of the
tions and scalings within the specified tolerance limits coordinate system’,,y’, of the second grid. However, we

) o will find it advantageous to express poitin the coordi-

5 Algebraic Formalization nate system of each of these square grids in terms of the
Having described the various interesting phenomena relatedyrid’s own periodT;. Hence, for each square giidn the

to the microstructure of the superposition, we are readysuyperposition i(=1,2) we define theperiod-coordinates
now to introduce an algebraic formalization that will help . and¢,. at the poinx as the coordinates of poimtin

us to elucidate these phenomena. the coordinate system’;,y’; of that grid, expressed in

Let us start with a simple example to illustrate our line : . . .
of thought and to motivate our algebraic approach. terms of periods;. Table 1 gives the period coordinates of

Example 1: Consider the superposition of two identical the two grids of Fig. 10 at various poinis=(x,y) in the
square gridsor dot screenswith an angle difference of  SUperposition, along with a verbal description of the micro-

R - . . structure of the superposition at these points.
a=arctani~36.87°, as in Fig. 3see the magnified view . .
in Fig. 10. Clearly, each point in thex,y plane(i.e., in the Note that the period-coordinate should not be con-

superpositioncan be expressed in terms of the coordinate USéd with the period-shifts; (see Ref. 10 The period-
shifts ¢; have been introduced for expressisigfts of pe-

riodic layers in terms of number of periods. The period-

Table 1 The period coordinates of the two grids in Fig. 10 at various coordinatefi , for their part, express in terms of number of
points x=(x,y). periods the coordinates of any pointvithin a static super-
position. Note that when a layer shift occurs the origin and
() (£1.62.63.44) Microstructure at (x,y): the coordinate system of the shifted layers are displaced

within the x,y plane, so that the period-coordinateof any

(0,0) (0,0,0,0) Center of a dot-centered rosette . . o ; .
3.1 313 1 Center of a clear-centered rosette point x in the superposition is decremented by the period-
(27.27) (5'15' 5"15) shift ¢; which corresponds to that layer shift. For instance,
1.1 (21.1.3) assume that the second grid of our example is shifted by

(T.2T) (1,2,2,1) Center of a dot-centered rosette half a period in each of its two main directions; this layer
shift is expressed by the period shift$b(, d»,P3,P4)
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Fig. 11 A schematic view of layer /in the superposition, showing x;,

the projection of point x=(x,y) on axis x’;. 0; is the orientation of

axis x';, and «; is the angle formed between the direction of point x

and axis x’;. The coordinates of point x; are (x;,y,) in terms of the

X,y plane, and (x’;,0) in terms of the x’;,y’; coordinates of the ith

layer. The period coordinate of point x with respect to axis x'; is &;
5

=3.

=(0,03,3). Therefore, at any point in the superposition

the new period coordinates after the shift are given by

(£1,62,€3.€0)new=(€1,2,€3,€0) 01d— (D1, 02, D3, Pa).

By analogy with the phase terminology we call the vec-
tor (¢1,€,,€3,¢&4) the period-coordinate vector of the su-
perpositionat the point(x,y). As we can see, the period-
coordinate vector &;,&,,£5,£,) at any point (x,y) is
strongly related to the local microstructure of the superpo-
sition at that point. For example, wheneve, (£,,£3,€,)
is purely integer, i.e..4; ,&,,£3,&,4) € 24, the superposition
at(x,y) contains a meeting point of full periods in all layers,
which means that poir(k,y) is the center of a dot-centered
rosette. Similarly, whenever th& values are all half inte-
gers(i.e., &=k + 3, k € Z), the point(x,y) in the superpo-
sition is the center of a clear-centered rosette.

Now, if we run throughout all the pointx(y) € R? (i.e.,
throughout the whole superpositipavhich parts ofd* will
be occupied by the corresponding poin{s £5,£5,84)? It
is clear that* will not be completely filled; for instance, in
the present superpositigeee Fig. 1Dthe point(0, 0, — 3,

— 1) cannot be obtained—it can only be obtained when the

second layer is shifted by half a period in each of its two
main directions. In order to investigate thjand other
questions, we find it useful to define a transformation
Z:R?— R4, which gives for any pointx,y) in the superpo-
sition plane its corresponding poingy(,&,,£5,&,) in R%.
And, indeed, we will see below that the investigation of this
transformation and of its properties will shed a new light

Having explained the motivation for the proposed alge-
braic formalization, we are ready now to go back to the
general case and to introduce our new formal approach.

Let pi(X),...,pm(X) be m onefold periodic functions
(gratingg given in their initial phase, so that their origins
coincide with the origin of thex,y plane, and letp(x)
=p1(X)-...- pm(X) be their superpositior{Note that a pair
of onefold periodic functions may represent in the superpo-
sition one twofold periodic function, such as a dot screen.
We remember that the main periodicity direction of tlte
grating is the directiory; along which the grating has the
smallest periott0. Now, letx be a point in thex,y super-
position plane. For each gratingof the superposition we
define the period-coordinatg at pointx as the number
(integer or nox of periodsT; between the grating origin and
X;, the projection ofx on the axis defining the main peri-
odicity direction of grating. In other words¢; is the 1D
coordinate of the poink on this axis, expressed in period
units (see Fig. 11 If «; is the angle formed between the
direction of pointx and the main periodicity direction of
gratingi we have, therefore

_|X|C05ai B |l
ST

and hencex;= ¢ T;. Remembering thal;-T, " 1=1 (see
Ref. 10, pp. 979 and 987%ve multiply both sidegin the
sense of scalar prodicby T;"!, and hence we obtain
x;i°Ti 1=¢ . Usingfj=T; ! [see Ref. 10, EA6)], where
f; is the frequency vector of the onefold periodic function
pi(X), we obtain
&=fi-x. (7
Now, we remember that the scalar proddce., inner
produc) v-w can be understood as a number which gives

the product of the length of vectar by the length of the
projection of vectow on the direction of/ (or vice versi?

v-w=v|[proj(w)y|.
This means that for any pointin the x,y plane we have

fi-x=f-x, 8
wherey; is the projection ok on the direction of; . There-
fore Eq.(7) can be reformulated as
&=fi-x. )
The period-coordinat&; can be also expressed in the
form &=g;(x,y) as a function of the plane coordinatey.
Let x=(x,y) be a point in the plane, and let txé; axis
through the origin represent the main periodicity direction
0, of theith grating. We also denote hy; the axis per-
pendicular tox’; through the origin(see Fig. 11 The co-
ordinates of poink in terms of the rotated axes;, y’'; are

onto the microstructure and the phase relationships of the

layer superposition. [ |

X{ =X €0Ss6;+Yy sin 6;
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y{ =—xsin#;+y cosé,

and, therefore, the projection of the poibn thex’; axis
is given in terms of these rotated coordinates By:
=(x';,0). This means th&f; is explicitly given in the form
&=0i(xy) by

X{  cos#,

fi:gi(X,y):%:X sno

(10

wherex’;=|x;| andT;=|T;|.
As we can see, for each layeof the superposition, the
period-coordinates; is uniquely defined at any point

=(x,y) of the plane. Therefore, we may define a transfor-

mation Z:R?>—R™, called theperiod-coordinate function
which gives for any poink=(X,y) in the plane the period-
coordinate¢; of this point in each of them superposed
onefold periodic layers

(11

E(X’y):(fi 1"'1§m)'

In other words, this transformation gives for any point
x=(x,y) in the superposition plane its coordinates in the

main direction of each of then layers, in terms of each
layer’s period. Since each of the functiogis=g;(x,y) is
linear, i.e., §=ax+by [see Eq.(10)] it follows that
(&1,...,&m) too is linear inx andy, so thatE is a linear
transformation. Therefore, the image &fis a linear sub-
space withinR™ whose dimension is 2, namels: maps the
X,y superposition plane into a plane Enwithin R™ which

passes through the origin. Note that the subspacé)m(

may have a lower dimension than 2 if the transformafbn
is degenerate; for example, if all tnesuperposed gratings
have the same orientation, so that,... &, are constant
multiples of &;, then all the vectorsqy,...,&,) € R™ are

collinear and dimImE)=1. Such degenerate cases will

generally be ignored in the discussions which folltsee
note c in Notes sectign

Let us now consider the plane I&) which is defined
by the transformatiottZ) within R™. Points ¢,,...,&y) in

within the spaceR™ the latticeLCIm(Z) may have rank
=2 (in the case ofm=3 this happens, for instance, if the
plane ImE) contains both thex andy axes ofR®); rank
=1 (e.g., if the plane only contains theaxis of R® but
forms an irrational angle with thg and z axes; or rank
=0 [if the only integral point in the plane is the origin
(,...,0].

xample 2: Consider the superposition of two identical
periodic square gridéor dot screenswhich are rotated by
angles 0 andy, respectively. The transformatid is given
in this case by

& X
=X _ & _E y
“ly/ 7| & T| xcosa+ysina
N —XSina+y cosa
'
1y
== Tl (12)
M
'

whereM is the 2< 2 matrix which represents a rotation by

anglea
cosa  Sina

M= . .
—SIha COSa

If tana is rational (as in the case ofa=arctand
~36.87°; see Example 1 and Fig) then rankL=2 and
infinitely many points(x,y) in the superposition possess an
integer vector §;,&,,&3,&4); the superposition in this case
is twofold periodic. Note that since an integer vector
(&1,&,,85,€,) represents in the superposition a meeting
point of full periods, its corresponding poiitk,y) in the
superposition is a center of a dot-centered rosette. The ef-
fect of varying anglex (i.e., of rotating the second grid in
the superpositionis a rotation of ImE) within its own
plane in the spac&*, about the origin.

If, however, tanx is irrational, as in the case ok

Im(E) which are only composed of integer values have a =30° (see Fig. 9, then rank =0 and the plane In)
special significance, since they indicate that the correspondd0€s not contain any integeé(,¢,,¢3,&,) except for the
ing point (x,y) in the superposition is located on a junction origin (0....,0. This means that at no poif,y) in the su-

of full periods from the origin in all of the superposed Perposition except for the origin is a precise dot-centered
layers. Since we have assumed that the onefold periodigosette formed. For similar reasons H)( contains no

functions p1(X),...,pm(X) are given in their initial phase,

we know that the plane I&) contains at least the point
(0,...,0; but does it contain any other integer point

(K.
(K.
lattice L defined by the integer multiple¥(k,,... k), and
the superposition is onefold periodic; and if E)(contains
two integer points K ,... k(M) #(0,..,0) and

Kkm)? Clearly, if ImE) contains an integer point

(k$?,... k) (0,...,0) which are not on the same line

through the origin, then it contains the whole 2D lattice
defined by their integer linear
ik, k) +j (k... k2, and the superposition is

twofold periodic. Depending on the plane inclinations
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Kn) #(0,...,0), then it also contains the whole 1D

combinations:

points (¢1,£,,£3,&4) with half integers in all coordinates,
meaning that at no pointx,y) in the superposition does
there exist a meeting point of half periods, i.e., a clear-
centered rosette. However, in the case of irrationabttdre
superposition contains infinitely many approximations of
such rosettesof either type (see note d in Notes sectipn
this can be clearly seen in Fig. 9. In such cases the screen
superposition is not periodic but rather almost periodic; and
indeed, as we have already seen, this type of microstructure
is a characteristic property of almost-periodic functidlils.

Let us see now a few properties of the transformafon
that are related to lateral shifts of the superposed layers.

Proposition 3: Assume that the grating;(x) in the su-
perposition is laterally shifted by a vectar this shift can
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be expressed, as we have seen in Ref. 10, by the period¢s, ... &,) which used to be in InE) before the rigid
shift ¢; = |&|/Ti|, wherea; is the projection ofion the axis  transformation will still remain in In€), but now it will
defining the direction of periodicity ofi(x), andT; isthe  correspond in the superposition to the poink,y)
period of pi(x). Therefore, as a result of this shift, the _(x v} rather than to the poinx,y).
period-coordinate; of any point(x,y) in the superposition
is decremented by the period-shift. This means that the ) ) )
plane Im= is shifted withinR™ by ¢; along the axis of the 6 Microstructures in the Conventional
ith dimension. u Three-Screen Superposition
This result may be restated more formally as follows: A particularly interesting case occurs in the conventional
Let Z(x,y) be the period-coordinate function which three-screen superposition used for color printing, i.e., the
corresponds to the grating superpositipf{X) ... pm(X). sqperposition of th'ree identical dot screéossquare .griq)s
Suppose now that the gratings(x),....pm(X) undergo  With equal angle differenceor example, at orientations of
shifts of aj,....a,, respectively. Then, the period- ¢1=30°, =—30°, andf;=0°). As we have seen in Sec.

coordinate function which corresponds to the superposition3:2: in this case the in-phase superposition generates an
after the shift is given by almost-periodic pattern of dot-centered roseftese Fig.

6(b)]; but when one of the superposed layers is shifted by
— = _ half a period in each of its two main directions, the micro-
EAXY) =B (XY) = SAXY) = (&1, m) = (1, 1m), structure of the superposition changes into a pattern of
) clear-centered rosettgsee Fig. 6c)]. How can we explain

. this interesting phenomenon mathematically, using our new
where A denotes the multi-vectory,....an). Note that  5igepraic formulation? And why, as we have seen in Fig. 9,
¢i=Ti-a (see Ref. 10, p. 97%nd §=f;-X;, wherex; is  does this phenomenon not occur when only two of the three
the projection of the poink on the direction off;, the layers are superposed?
periodicity direction of the gratingp;(x). The function The transformatiorE is defined for this three-layer in-
Sa:R2—R™ which defines the period shifts of the grat- phase superposition by
ings, Sa(X,¥Y)=(d¢1,...,¢,), is called the period-shift

functionr note that it returns the same constant vector for & Mg X
every pointx in the superposition. & y
For example, if the second square giid dot screenof =X | G| _ 1 M X)
Example 2 above is shifted by half a period in each of its Y & T T %y
two main directions, the transformatid® becomes &s | X)
&6 y
& X 0 Vi1
M(X>_ &) 1 y B 0 2%y
Syl Tl & T M(X) 2 1 V3
& y 1 XY
1 V3 1
The pgriod goorplinate of the superposition at the origin =7 2% 2Y | (14)
(0,0) will be, in this case(0, 0, — 3, — ). Clearly, if before 1 v
the shift the plane InH) contained integer points df*, SXT Sy
then after this shift ImE) will contain none: the superpo-

sition will have no dot-centered rosettes.
Proposition 4: If grating p;(x) is shifted by an integer
number of its periods, the superpositip(x) and its micro-
structure remain, of course, unchanged. This is expressed in
R™ by the fact that the plane If) is shifted along théth ~ whereM g, andM _ 5 are the matrices which represent ro-
axis of R™ by an integer number, so that the relative loca- tations by 30° and-30°, respectively, andlis the identity
tion of the plane with respect to points 8 remains un- ~ Matrix
changed. | .
Proposition 5: Assume that each of the individual grat- _ [ cosé  sing (10
ings pi(x) is shifted by a noninteger number of periods. ¢ | —sing cose/ = " ° |0 1/
The combination of their shifts gives a rigid motion of the
superposition as a whol@nd hence only a lateral shift of Transformationg maps, therefore, they superposition
the microstructurgiff these shifts cause the plane H)(to plane into a plane In¥) within R®. Note that except for
be shifted into itself inR™ (or in other wordsiff the plane  the point(0,0,0,0,0,0 the plane ImE) contains no integer
Im(E) is shifted withinR™ by a vector which is included in  point of Z8, since, according to Eq14), wheneverés and
this plane. | &g are integerséq, &,, &3, &, are irrational numbers. This
This result is easy to understand, since a rigid motion of is not surprising, since we already know that our three-
the superposition by Xg,yg) implies that every point  screen superposition is not periodic, but rather almost peri-
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®)

Fig. 12 (a) In-phase superposition of two identical dot screens at angles 6, =30° and 6,=—30°. (b)
Counter-phase superposition of the same screens. (c) In-phase superposition of a third identical
screen with angle #;=0° on top of (a); the period shifts of the screens are (0,0,0,0,0,0). (d) Counter-
phase superposition of a third identical screen with angle 6;=0° on top of (a); the period shifts of the
screens are (0,0,0,0,%,%). (e) Counter-phase superposition of a third identical screen with angle 65
=0° on top of (b); the period shifts of the screens are (%, %%%%%) (f) Half period shifted superposition
cl)f a third identical screen with angle #;=0° on top of (a); the period shifts of the screens are (0,0,0,0,

3,0).

odic (in the language of Ref. 9: the six frequency-vectors uniformly distributed throughout the superposition plane,

f1=(%.2, f=(-39), f=(%-9, .=G%2), fs
=(1,0), andfg=(0,1) span within thei,v plane a module
with rank=4, sincef,, f,, f3 andf, are linearly indepen-
dent overZ, but f;=f,—f, andfg=f;—f3) (see note e in
notes section

In order to better understand the microstructure of the

giving to the eye the impression of a uniform, regular mi-
crostructure. This situation is shown again in Fig(@2nd

in its magnified version in Fig. 18). Figures 12 and 13
also show in detail what happens when we superpose the
third dot screen on top of this two-screen superposition
(keeping our convention that in the initial phase of each

conventional three-screen superposition with equal anglel2yer a black dot is centered on the origin

differences of 30%or 609, let us return for a moment to the

1. If the third dot screen is superposed in phase with the

superposition of two identical screens with an angle differ- first two screens, so that all screens have a black dot cen-
ence of 30%or 609. As we have seen in Example 2 above tered on the origin, then wherever there used to be in the
and in Fig. 9, this superposition is characterized by the two-screen superposition an almost-dot-centered rosette or

presence of approximate rosettes of all tyfast centered,
clear centered, and all intermediate varianighich are

332/ Journal of Electronic Imaging / July 2002 / Vol. 11(3)

an almost-clear-centered rosette, the third screen contrib-
utes a new dot of its own. This strengthens all the already
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Fig. 13 A magnified view of the screen superpositions of Fig. 12, where the dots of each layer are
represented by circles of a different size, thus permitting us to distinguish between the different layers
and their precise dot locations.

existing dot-centered rosettes, but destroys all the two-comes dominated by almost-clear-centered rosé¢tes-
screen clear-centered rosettes. As a result, the three-laygare the two layers in Figs. & and 13a) with the three
superposition no longer contains almost-clear-centered rodayers in Figs. 1@) or 13(d), respectively.
settes, and the microstructure becomes dominated by 3. If all of the three screens are centered on the origin in
almost-dot-centered rosettésompare the two layers in  counter phasé.e., with a white space centered on the ori-
Figs. 12a) and 13a) with the three layers in Figs. 1@ or gin), the addition of the third layer on top of the two-screen
13(c), respectively. superposition has the same effect as in d@&dcompare

2. If the third dot-screen is superposed in counter phasethe two layers in Figs. 1B) and 13b) with the three layers
with respect to the first two screens, i.e., with a white spacein Figs. 12e) or 13(e), respectively.
centered on the origin, then wherever there used to be inthe As we can see, the addition of the third layer signifi-
two-screen superposition an almost-clear-centered rosetteantly modifies the microstructure behavior of the superpo-
or an almost dot-centered rosette, the third screen contribsition: While in the two-screen superposition almost ro-
utes a white spac@vhich is obviously surrounded by four settes of all types are uniformly distributed throughout the
black dot$. This strengthens all the already existing clear- plane, when the third layer is added on top, one type of
centered rosettes, but destroys all the dot-centered rosetteslmost rosettes becomes dominant. Furthermore, in contrast
As a result, the three-layer superposition no longer containsto the two-screen superposition, where shifts of the indi-
almost-dot-centered rosettes, and the microstructure bevidual screens do not modify the nature of the microstruc-
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ture [see Figs. 1@) and 12b)], in the three-screen super-
position a shift of any of the layers may alter the dominant
type of rosettes in the superposition and thus visibly modify
the texture of the microstructufsee Figs. 1&) to 12(f)].
Although this behavior may seem surprising at first
sight, in fact, there is nothing mysterious about it. As we
already know, the plane If&) within R* that contains all
the period-coordinates &(,&5,£5,£4) of the two dot
screens at 30° and 30° is irrational, and, therefore, it con-
tains no integer points of* except for(0,0,0,0—but it
passes withik* as close as we wish to integer points/6f

and to half integer points of*+(3,33,3) (which corre-

Hersch

spond, respectively, to dot-centered or to clear-centered ro-

settes in the two-screen superposijiddow, when we su-
perpose a new dot screen at 0° on top of the first two

screens, we increase the dimension of the period-coordinatel

vectors by 2, from  §,&,65,6) R to
(é1,60,63,64,E5,&5) € R®. Denoting byZ’ the extension

of the transformatiorE to R, it is clear that ImE’) re-
mains a 2D plane within the extended period-coordinate
spaceR®, where the first four coordinates, &,, &5, &, of
each point are the same as in B)(before. Let us see now
what happens, for example, in cas above: In this case,
wherever inR* our plane ImE) was closgsay, up toe) to

a half integer point, there come the two new coordingtes
andég and destroy the candidacy of that point as an almost-
half integer withinR®. As we will show below, this hap-
pens since the two new coordinat®&sand &g arenot inde-
pendentof their predecessor§;, &, &3, &4: as can be
seen from Eq(14) above, for any pointx,y) in the super-
position plane we havés=¢,— &, and ég=&,— &5. Note
that if &4,...,&s were all independent of each other, then
some of the almost-half integer pointsIi¥f would be, in-
deed, destroyed b¥s and &g, but infinitely many other
almost-half integer points would still remain almost-half
integer points ink®, too.

vi 1 V3 1
2 2 |/x 2 2 (x) (m)
T 1 v3lly | 12 v3|ly| In)
2 2 2 2
1/ 0 1\/x m)
T\—1 0/\y nj’
1y~m)
Tl—=x/ \n/
and, therefore
XI5 with k1ez 16
Tlyl =l wi leZ. (16

Now, if the third, 0° screen is superposed in phise,
with a black dot centered on the origin, like in Fig.(&d,
then Eq.(16) means(see note f in Notes sectipn

&5
&6

This shows, therefore, that at any poimty) in the su-
perposition which satisfies conditigh5), and in particular,
at any point(x,y) where¢,,...,&, are almost integergiv-
ing a two-layer almost-dot-centered rosgtbe almost-half
integers(giving a two-layer almost-clear-centered rosgtte
the period-coordinate§s, &g of the third, 0° screen are
necessarily almost integer. This means that the third screen
contributes to the superposition a black dot of its own very
close to(x,y). This strengthens all the already existing dot-
centered rosettes, but destroys all the two-screen clear-
centered rosettes. As a result, the three-layer superposition
no longer contains almost-clear-centered rosettes, and the

7

)m(f) with k,l e Z.

Let us see now how we can explain cases 1-3 abovemicrostructure becomes dominated by almost-dot-centered

mathematically, using our new algebraic formulation.

Let us first consider the two superposed screens which

are oriented to angles 30° ane30°. Assume at first that
both screens have a black dot centered on the ofgge
Fig. 12a)]. Since the superposition of these two screens is
almost periodic, at no poinix,y) in the superposition ex-
cept for the origin a precise dot superposition may occur;
but at infinitely many points(x,y) we have an almost-
perfect dot superposition, whegg, &,, &3, &4 are almost
integers, or an almost-perfect white space superposition
whereé;, &, &, &, are almost-half integers. Léx,y) be
such a pointof either typg; this means, therefore, that at
this point

&)

31
&

&3
&4

m
f~v( n) where m,ne 7, (15

namely
1 X X m
$M30y—M—3oy “lnl
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rosettes. This explains, indeed, case 1 above.

If, however, the third, 0° screen is superposed in counter
phase with respect to the 30°- and th@&0°-screengi.e.,
with a white space centered on the origin, like in Fig.
12(d)], then we have from Eq16)

X

B

This means that at any poiiix,y) in the superposition
where ¢4, &, &3, &, are almost integerggiving a two-
layer almost-dot-centered rosetter almost-half integers
(giving a two-layer almost-clear-centered rosgttéhe
period-coordinategs, &g of the third, 0° screen are neces-
sarily almost-half integer, so that the third screen contrib-
utes a white-space centered very close (fgy). This
strengthens all the already existing clear-centered rosettes,
but destroys all the dot-centered rosettes. As a result, the
three-layer superposition no longer contains almost-dot-
centered rosettes, and the microstructure becomes domi-
nated by almost-clear-centered rosettes. This is, indeed, the
explanation of case 2 above.

N

k )
(I) with k,l eZ.

N[
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(b)

Fig. 14 The superposition of four identical screens with equal angle
differences of 22.5°: (a) in-phase superposition; (b) counter-phase
superposition.

Finally, in case 3, where the three screens are super-
posed with a white space centered on the origin, the dem-

onstration remains the same as in case 2.

layers are not independent of each other. And indeed,
whenever the superposed layers are independent—as in the
case of the two-screen superposition at 0° and 30°—all
types of almost rosettes are simultaneously present in the
superposition, and no substantial microstructure changes
occur when individual layers are shifted. Restated more
formally, the superposition undergoes substantial micro-
structure changes under shifts of individual layéfsthe
superposed layers are dependent on each other, i.e., for
some given integerg; (not all zeroes we have for all
pointsx=(x,y) in the superpositiorzk;;=0.

It should be noted that during the discussion until now
we considered the linear dependen@e independende
overZ of the scalarg; . However, this is fully equivalent to
the linear dependender independengeover Z of the fre-
quency vectorsf;, since: 2kifi=0 & Vx (Zk;f;)-x
=0 & Vx Zkifi-x=0 & Vx 2k &=0 [by Eqg. (9)]. We
obtain, therefore, the following general resigdée note g in
Notes section

Proposition 6: A nontrivial shift of individual layers in
the superposition causes a substantial change in the micro-
structure of the superpositidff their frequency vector§
are linearly dependent ové&, i.e., iff there existk; e Z not
all of them 0 such thakk;f;=0. But this precisely means
that the superposition isingular. |

Example 3: Let us illustrate this result with a few sin-
gular or nonsingular cases:

i A two-screen periodic, singular cas&he peri-
odic two-screen superposition of Example 1
above is singular, and, therefore, layer shifts may
cause substantial changes in its microstructure
[see also Sec. 3.1 and Figgbband 5c¢)].

ii. A three-screen almost-periodic, singular case:
The conventional three-screen superposition is
singular, and, indeed, as we have seen above,
layer shifts may cause substantial changes in its
microstructure(see Fig. 6.

iii. A two-screen almost-periodic, non-singular case:
A stable moirefree two-screen superposition, like
the superposition of two identical screens with
angle difference of 30°, is nonsingular; therefore,
its microstructure consists of a uniform blend of
rosettes of all types, and it is not substantially
influenced by layer shiftésee Fig. 9.

iv. A three-screen almost-periodic, honsingular case:
A stable moirefree three-screen superposition,
like the screen combination discussed in Ref. 11
(see Fig. 19 thepe is nonsingular; therefore, its
microstructure consists of a uniform blend of ro-

Note, however, that if the third screen were independent
of the first two superposed screens, then the microstructure
in the three-screen superposition would remain uniformly
disordered and invariant under layer shifts, as in the origi-
nal two-screen superposition.

7 Behavior of Microstructure Under Layer Shifts

As we can see, the microstructure of the conventional
three-screen superposition is not invariant under shifts of
the individual layers because in this case the superposed

settes of all types, and it is not substantially influ-
enced by layer shifts.

A four-screen almost-periodic, nonsingular case:
The superposition of four identical screens with
equal angle differences of 22.%8ee Fig. 14is

nonsingular. Therefore its microstructure consists
of a blend of rosettes of all types, and it is not
substantially influenced by layer shifts: Although
each layer shift is distinct, all rosette types are
equally represented in all the different layer shifts,
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and there is no predominance of one particular
rosette type in each layer shift. [ |

It should be noted, however, that even when substantial
microstructure modifications do occur, i.e., when the super-
position is singular, they still may be more visible or less
visible; but Proposition 6 does not say which cases give
more significant or less significant modifications and why.
In general, a moiravhich is clearly visible with a strong
amplitude has, by Propositions 1 and 2, significantly differ-
ent in-phase and counter-phase microstructure. Therefore,
when it becomes singular the microstructure variafioe-
tween in-phase and counter-phase rosgttke to layer
shifts will be clearly visible. However, the higher the order
of the singular state, the less visible are its microstructure
changes in the superposition, and, therefore, the rosette-
type changes which arise due to layer shifts in the singular
state (see Proposition )2 are almost unperceptible—
although they do exist according to Proposition 6.

8 Summary

In the superposition of periodic layers such as dot screens,
new structures may appear that did not exist in any of the
original layers. These new structures may include both
macrostructuregmoire effecty and microstructuregro-
sette$. But while microstructures exist practically in any
superposition, except for the most trivial cases, macromoire
effects are not always present; and moreover, whenever
they do exist, they are, in fact, built from the microstruc-
tures of the superposition.

In view of the important role of the microstructures in
superpositions of periodic layers, we investigate their be-
havior and their properties both in the image domain and in
the spectral domain. We first explore the behavior of the
microstructure in the different types of singular and non-
singular superpositions. Then, we provide an algebraic for-
malization which gives us the mathematical tools for un-
derstanding the various properties of the microstructures.
This formalization also leads us to new, general results con-
cerning the stability of the microstructure under layer shifts
in the superposition. In particular, we show that shifts of
individual layers substantially change the microstructure of
the superpositioiiff the superposition is singular.

Remark: Parts of this manuscript have been used for
preparing Chapter 8 in Ref. 14.

Notes

a. Obviously, the period of the microstructure is al-
ways greater than or equal to the original screen
periods: Since the impulses of the original screen
frequencied; are included in the compound nail
bed, it is clear that the fundamental impulses of
the compound nail bed can either coincide with
the original screen frequencids, or fall even
closer to the d¢as in the(1,2,—2,—1) moire see
Fig. 5@].

b. Singular states in which there is no clear visual
distinction between in-phase and counter-phase
microstructures do not produce off the singular
state a visible macromoira the superposition.
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This often happens in moiseof high orders, or in
moires involving many superposed layers.

C. It is interesting to note that if the superposition in
the (x,y) plane consists of nonlinearly curved lay-
ers (i.e., nonlinear transformations of periodic
functions; see Ref. 13then the image oE is a
curved 2D surface withiR™.

d. More precisely: for any positive, be it as small
as we may desire, we can find in the superposi-
tion rosettes(or either type with a mismatch
smaller thane, provided that we go far enough
from the origin.

e. It is interesting to note that the superposition of
the third screen on top of the initial two-screen
superposition does not add new impulse locations
in the spectrum suppoftompare the two-screen
spectrum support in Fig. (8 with the three-
screen spectrum support in Figafl. The reason
is that the new frequency vectofs and fg are
linear combinations of the original frequency vec-
torsfy, f,, f5, f4, and therefore, all the new con-
volution impulses which are generated in the
spectrum owing to the superposition of the third
screen are located on top of already existing im-
pulses. Thus, each impulse in the spectrum of the
two-screen superposition turns intocampound
impulsein the spectrum of the three-screen super-
position, and the nonsingular two-screen superpo-
sition turns into a singular three-screen superpo-
sition.

f. Note that if one already observed from HG4)
that é&s=§,— &, and §g=&,— &3, then Eq.(17)
can be directly deduced from E(L5).

g. Another interesting result of this equivalence is
that, just as the spectral interpretation of a
(Kq,...ky)-singular superposition iEk;f;=0, its
image-domain interpretation is that, for any point
x in thex,y plane,Zk;&=0 (provided that all the
superposed layers are given in their initial phase
For example, in Fig. 10, which illustrates(d,2,
—2,—1)-singular superposition, any poirtin the
X,y plane satisfiesé; +2¢&,—2&3—£,=0. (In the
spectral domain we have, of coursh,+2f,

-2 f3_ f4: 0)
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