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ABSTRACT

Obtaining the listening rates of radio stations in function of time is an important instrument for determining the impact of
publicity. Since many radio stations are financed by publicity, the exact determination of radio listening rates is vital to their
existence and to their further development. Existing methods of determining radio listening rates are based on face to face
interviews or telephonic interviews made with a sample population. These traditional methods however require the coopera-
tion and compliance of the participants.

In order to significantly improve the determination of radio listening rates, special watches were created which incorporate a
custom integrated circuit sampling the ambient sound during a few seconds every minute. Each watch accumulates these
compresed sound samples during one full week. Watches are then sent to an evaluation center, where the sound samples are
matched with the sound samples recorded from candidate radio stations.

The present paper describes the processing steps necessary for computing the radio listening rates, and shows how this appli-
cation was parallelized on a cluster of PCs using the CAP Computer-aided parallelization framework. Since the application
must run in a production environment, the paper describes also the support provided for graceful degradation in case of tran-
sient or permanent failure of one of the system’s components.

The parallel sound matching server offers a linear speedup up to a large number of processing nodes thanks to the fact that
disk access operations across the network are done in pipeline with computations. 
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1  INTRODUCTION

Obtaining the listening rates of radio stations in function of time is an important instrument for determining the impact of
publicity. Since many radio stations are financed by publicity, the exact determination of radio listening rates is vital to their
existence and to their further development. Existing methods of determining radio listening rates are based on face to face
interviews or telephonic interviews made with a sample population. These traditional methods however require the coopera-
tion and compliance of the participants.

In order to significantly improve the determination of radio listening rates, special watches1 were created which incorporate
a custom integrated circuit sampling the ambient sound during a few seconds every minute. The sound samples are split into
sub-bands and converted into energy signals. Their envelopes are extracted, low-pass filtered and resampled at a much
lower rate. Sound compression allows to store a full week of one minute records within the limited memory space of a
watch. Watches are then sent to an evaluation center, where transformed sound samples are matched with the transformed
sound samples recorded from candidate radio stations. Based on the matching performance, reliable listening rate statistics
are established. Fig. 1 shows the complete data flow from the radio station emitter to the correlation center.

The evaluation center should be able to determine in real time the listening rates for a configuration of approximately 1000
watches and 100 radio stations. The computation of the listening rates for a single day (24h) should therefore take less then
one day.
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The present paper describes the processing steps necessary for computing the radio listening rates, and shows how this
application was parallelized on a cluster of PCs using the CAP Computer-aided parallelization framework2, 3. Since the
application must run in a production environment, the paper also describes the support for graceful degradation in case of
transient or permanent failure of one of the system’s components.

2  THE MATCHING PROBLEM

In order to obtain the listening rates of radio stations for a given hour within a given day, one must match the transformed
sound of the 1000 watches and of the 100 candidate radio stations. Each watch records the ambient sound during 4 seconds
every minute. Each radio station is recorded during 10 seconds every minute. In both cases, sound is sampled at 3KHz. A
small time shift may appear between sound acquisition in the watch and in the stationary unit, due to different transmission
modes (e.g. terrestrial, cable, satellite). In addition, the quartz inside the watch has a limited precision and the frequency
may vary due to temperature variations. To reduce the time shift, the watches are synchronized every week (when they are
sent back to the docking station) and a temperature sensor is incorporated in the watch to correct the clock deviation. In
order to take into account the time shift, the discrete correlation between the compressed sound from the watch and from the
stationary unit is done at successive 1 ms intervals, i.e. the matching is established by varying, millisecond per millisecond,
the time position of the 4 seconds of sound acquired by each watch within a time window of 10 seconds. The largest match
(correlation maximum) between watch and radio station is recorded for further evaluation, i.e. to determine for the consid-
ered minute and for a given watch whether the sound stems from one of the candidate radio stations. Figure 2 shows a
global scheme of the matching procedure.

Figure 1. Complete data flow from the radio emitter to the correlation center

Figure 2.  Global scheme describing the matching process
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2.1  Storage

The data required to perform the matching between ambient sound samples and radio station sound is organized in files.
There is one radio station file per hour, which contains 60 minute records incorporating each 10 seconds of uncompressed
sound. Each minute record takes 60 KB. Therefore each hourly file has a size of 3.5 MB. Since we want to establish the lis-
tening rate for a full day (24 hours) and 100 radio station, we need 8.2 GB.

(1)

(2)

(3)

The watch file contains all minute records comprising 4 seconds of highly compressed sound for a full day, i.e. 24x60
records of 95 Bytes. Therefore each daily watch file takes 134 KB. Since we have 1000 watches, the total space required for
the watch files is 134 MB.

(4)

(5)

(6)

Correlating one watch record with one radio station record produces a new result record of 8 Bytes (correlation maximum).
Each result file contains all the result records for one hour, one radio station and all the 1000 watches. Therefore one result
files has a size of 470 KB. Since there are 24x100 result files, the total required space for the result files is 1.1 GB.

(7)

(8)

(9)

By considering the total radio station file size (3), the total watch file size (6) and the total result file size (9), the total
amount of data used to establish the listening rate for a full day (24 hours), 100 radio stations and 1000 watches is about
10 GB.

(10)

The radio station files, the watch files and the result file are all stored on a single PC file server. The correlation processes
can freely access (read and write) this file server. Remote access to the file is achieved thanks to the NTFS distributed file
system, which allows to share the physical hard drives of the file server over the local network. The full matching process
for one day needs to transfer from the file server over the network a total amount of data of about 10 GB. The file server and
the correlation process computer run under WindowsNT 4.0 and are connected through a Fast Ethernet network
(100Mbits/sec) using the TCP/IP protocol.

2.2  Serial correlation algorithm

In serial processing mode, in order to obtain the result for one hour, 100 radio stations, and 1000 watches, the matching pro-
gram incorporates the following steps :

1. Open and seek within each of the 1000 watch files to get the required target single hour records, i.e. 60 consecutive
minute records of 95 Bytes (see (4)) from each watch file. This requires 1000 disk accesses, each one for reading

.

2. For all the 100 radio stations :

2a. Load the hourly radio station file for the current hour. This step consists of a single disk access of 3.5 MB
(see (2)).

2b. Correlate the corresponding records from the hourly radio station file and the 1000 watch files. Since there
are 60 records in the radio station file (one per minute) and each must be correlated with the corresponding
minute record of each of the 1000 watches, i.e. 60x1000 = 60000 correlations need to be carried out. All the
resulting match values (correlation maxima) are stored in local memory.

one radio station minute record size 10 sec 3 KHz 2 Bytes 60=×× KB=

one hourly radio station file size 60 60 3.5 MB≅×=

total radio station file size 3.5 24 100× 8.2 GB≅×=

one watch minute record size 95 Bytes=

one dayly watch file size 95 24 60× 134 KB≅×=

total watch file size 134 1000 134 MB≅×=

one result record size 8 Bytes=

one hourly result files size 8 60 1000× 470 KB≅×=

total result file size 470 24× 100 1.1 GB≅×=

otal size 8.2
134

1024
------------ 1.1 9.4 GB≅+ +=

95 60 5.5 KB≅×



2c. Flush the resulting match values from the local memory to the remote result file on the file server. This step
consists of a single write disk access of 470 KB (see (8)).

To establish the listening rate for a full day (24 hours), we need to repeat the steps listed above 24 times.

2.3  Serial performance analysis/measurements

The following serial performance measurements have been done with one Pentium-II PC 400 MHz file server and one Pen-
tium-II PC 400 MHz correlation computer, both running under WindowsNT 4.0 and connected through a Fast Ethernet
network (100 Mbits/sec). Let us analyse the time taken by each step described in the previous section. Step 1 requires 1000
disk accesses of 5.5 KB each. Since the data size is small and seek time is predominant, we obtain an effective throughput of
550 KB/sec, i.e. 10 sec are needed to complete step (1).

(11)

Step 2a is just a single disk access of 3.5 MB. At an effective throughput of 2 MB/sec, it takes about 1.75 sec. Since this
step is repeated for all the radio station, we get the following total time :

(12)

The match time of two records is highly data dependent due to optimizations in the correlation procedure. Nevertheless, the
mean time to correlate two records is 1.85 milliseconds. This value is correct for normal ambient sound. Step 2b requires
60000 correlations and therefore needs 111 sec to complete. Since this step is repeated 100 times, we get :

(13)

Step 2c is just a single disk write access of 470 KB. At an effective write throughput of 2 MB/sec it takes 0.23 sec. Since
this step is repeated 100 times :

(14)

The total time to establish the listening rate for 24 hours, 100 radio stations and 1000 watches is obtained by adding the pre-
vious results and multiplying them by 24 :

(15)

Since the I/O time represents less than 2% of the total time, the process is compute bound and no significant gain could be
achieved by pipelining step 2a, step 2b and step 2c (i.e. making asynchronous accesses to the file server) in the serial imple-
mentation. Therefore the total processing time is approximately proportional to the number of watches multiplied by the
number of radio stations, i.e. it can be deduced from equation (13).

(16)

The practical measurements are consistent with the previous analysis. The total computation time to produce the listening
rate for one day exceeds the 24 hours limit. Therefore parallelization is needed.

3  PARALLELIZATION

3.1  The Computer-Aided Parallelization (CAP) framework

The CAP Computer-Aided Parallelization framework2,3 is specially well suited for the parallelization of applications hav-
ing significant I/O bandwidth requirements. Application programmers specify at a high level of abstraction the set of threads
present in the application, the processing operations offered by these threads, and the flow of data and parameters between
operations. Such a specification is precompiled into a C++ source program which can be compiled and run on a cluster of
distributed memory PCs. The compiled application is executed in a completely asynchronous manner : each thread has a
queue of input tokens† containing the operation execution requests and its parameters. Disk I/O operations are executed

†  A token according to the CAP terminology designates a serializable C++ data structure

total time for step 1
1000 5.5×

550
------------------------- 10 sec==

total time for step 2a 100
3.5
2

-------× 175 sec==

total time for step 2b 100 60000 0.00185×× 11100 sec==

total time for step 2c 100
470

2 1024×
---------------------× 23 sec≅=

total serial time 24 10 175 11100 23+ + +( )× 75.3 hours≅=

total serial time approx 24 60 0.00185×× nb× Watches nbRadioStations
2.664 1000 100 74 hours=××

=×=



asynchronously, i.e. while data is being transferred to or from disk, other operations can be executed concurrently by the
corresponding processor. In a pipeline of disk access and process operations, CAP allows therefore to hide the time taken by
the disk access operations if the process is compute bound. A configuration file specifies the mapping between CAP threads
and operating system processes possibly located on different PCs. This configuration file is used by the run-time system to
launch the parallel application. A Remote Shell Daemon (rshd) is located on each target computer to launch processes
remotely and carrying out I/O redirection. The CAP framework works on several architecture (32 bits, 64 bits), several OS
(WindowsNT, Unix, Linux) and uses TCP-IP sockets for communication.

3.2  Parallel correlation algorithm

The correlation application has been parallelized in a master-slave fashion (see Figure 3). The master only distributes jobs to
the slaves, which are the effective workers. Since the master is idle most of the time, he resides on the file server computer.
The n slaves are connected to the master through a Fast Ethernet network (100 Mbits/sec) using the TCP/IP protocols. All
the computers are Pentium-II 400 MHz PCs running under WindowsNT 4.0. The radio station files, watch files and result
files (total 10 GB) are stored in an array of Ultra Wide SCSI-II disks connected to the file server. The disks offer an effec-
tive throughput of 2 MB/sec each, the SCSI bus has a maximal throughput of 40 MB/sec and the Fast Ethernet network does
not support more than 8 MB/sec.

The serial processing operations described in the previous section are parallelized by having different processors (n proces-
sors) working on different radio station files. The only change resides in step 2. Instead of making a simple loop over the
100 radio stations, each slave receives and computes a different iteration of the loop, i.e. works on a different hourly radio
station file. Each slave reads a new radio station file and computes a new result file. This implies that the radio station and
result files are read/written once during the whole program execution. When a slave starts to compute a new hour, he loads
the corresponding watch minute records within the 1000 watch files. This correspond to step 1 and is done on every n slaves
each time a new hour computation starts, i.e. each watch minute record is accessed n times, once by each slave. Therefore
the watch files are loaded n times during the program execution. Equations (3) and (9) remain unchanged, but equation (6)
must be multiplied by n. If n is small (near 10) the total amount of data transferred from the disks over the network will not
increase more than 20%, which is acceptable. Equation (6) and (10) become respectively for :

(17)
(18)

Since there are 100 radio stations and 24 hours, the master distributes 2400 jobs to the slaves representing a total computa-
tion time of about 75.3 hours (see (15)). The CAP framework helps the programmer to distribute these jobs intelligently.
When the computation starts, each slave receives a job from the master and starts computing it. Immediately after this first
job distribution, i.e. while the slaves are still busy with their first job, the master sends a second job to all the slaves. This
new job is not executed immediately but inserted in a job queue in each slave. As soon as a slave finishes computing his
first job, he starts processing the second job (no idle time). During the execution of the second job, the master sends a third
job to the slave and the whole process is repeated. This job distribution mechanism ensures that the slaves are never waiting
for a new job, i.e. are always busy, and that the total computation time is load balanced between the slaves. Since each slave

Figure 3.  Parallel architecture

slave 1
Pentium-II 400 MHz PC

WindowsNT 4.0

slave 2
Pentium-II 400 MHz PC

WindowsNT 4.0

slave n
Pentium-II 400 MHz PC

WindowsNT 4.0

master / file server
Pentium-II 400 MHz PC

WindowsNT 4.0

Fast Ethernet network
100 Mbits/sec

Ultra Wide SCSI-II

n 10=

total watch file transfered size n 134 MB×  10 134 1.31 MB≅×==
total transfered size 8.2 1.31 1.1 10.6 GB≅+ +=



receives a new job when he finishes computing the previous one, each slave works at its own speed; a faster slave will
receive more jobs than a slower slave and since the jobs do not exactly require the same computation time, a slave can (for
example) receive 2 large jobs while another receives 3 small jobs during the same time interval.

Since the radio station, watch and result files reside on a single computer, the file server treats the slaves read/write requests
sequentially. In the previous section, equations (11), (12) and (14) shows that the total access time to the file server is

. This time is insignificant when compared with the 75.5 hours (see (15)) required to estab-
lish the listening rates in serial execution mode, but it may become significant in parallel execution mode, as stipulated by
Amdahl’s law. Therefore it is important to access asynchronously to the file server, i.e. read/write accesses should be hid-
den by the slaves computation time. The CAP framework helps the programmers in this task. CAP allows to assign the steps
2a, 2b and 2c to three different threads. This enables the execution of the three steps in a pipeline. While a job is requiring
computation power and keeping the slave processor busy at step 2b, another job can make accesses to the file server (step 2a
or 2c). In a totally transparent manner for the programmer, CAP ensures the correct data flow through the operations of the
pipeline. Figure 4 shows the slave activity and resource occupation during the correlation process.

3.3  Parallel performance analysis/measurements

Within a single processor, disk accesses are asychronous and executed in parallel with processing operations. After initial-
ization of the pipeline, only the processing time, i.e. the correlation between radio station files and watch records determines
the overall processing time. Therefore the time to perform the steps 1, 2a and 2c described by equations (11), (12) and (14)
is hidden behind the processing time. Only the processing time of step 2b described by equation (13) remains. The total par-
allel time on n slaves and when doing asynchronous I/O accesses is given by :

(19)

Figure 5 shows the computation time when increasing the number of slaves. The measurements have been done for 24
hours, 100 radio stations and 1000 watches on Pentium-II 400 MHz PCs. The performance results show a linear speedup,

Figure 4. Slave activity during the correlation process : the thick line represents the processor occupation on the slave, and the thin lines
represent the file server accesses
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i.e. processing time which is 74 hours on a single computer decreases to 24.7 hours with 3 PCs, 18.5 hours with 4 PCs (i.e.
under 24 hours limit) and 14.8 hours with 5 PCs which is under the 16 hours time constraint imposed by the industrial speci-
fication. When the number of slaves becomes larger (above 20) the speed-up will not remain linear since the share file
server will become the bottleneck.

4  GRACEFUL DEGRADATION IN CASE OF FAILURE

Since the presented application should work in a production environment, it is highly important to provide support for
graceful degradation in case of transient of permanent failure of one of the system’s components (failure of a slave PC for
example). This support is based on the checkpoint and restart paradigm4. A watchdog process running in the master com-
puter checks that at least once every 20 minutes, new results are written to the result file. If this is not the case, the radio
listening rate computation process is killed on every compute node, the network is checked to verify which PC’s are work-
ing, and a new configuration file is generated incorporating only those PCs which are currently living. The application is
relaunched on the new configuration. The application first determines if the result file exists and which were the last consis-
tent records written on file. The application then resumes the computation in order to generate the next matching records.

Figure 6 shows a typical configuration file for the radiocontrol parallel application. This configuration file runs the applica-
tion (Radiocontrol.exe) on one master operating system process (M) and two slave operating system processes (S1, S2). In
the present example, we have one thread in the master (MasterThread) and three threads on each slave (on

Figure 5.  Speed-up diagram

Figure 6.  Typical configuration file for the radiocontrol parallel application.
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configuration {
pools :

MasterLocation{ 123.456.78.00 };
SlavePool {123.456.78.01, 123.456.78.02};

processes :
M (MasterLocation, Radiocontrol.exe);
S1 (SlavePool, Radiocontrol.exe);
S2 (SlavePool, Radiocontrol.exe);

threads :
MasterThread (M);
Slave[0].ComputeThread (S1);
Slave[0].IOThread[0] (S1);
Slave[0].IOThread[1] (S1);
Slave[1].ComputeThread (S2);
Slave[1].IOThread[0] (S2);
Slave[1].IOThread[1] (S2);

};



S1 :Slave[0].ComputeThread, Slave[0].IOThread[0], Slave[0].IOThread[1]). The master is launched at the IP-address given
by MasterLocation. The slaves are launched on any of IP-address in the SlavePool. If both computers from the SlavePool
are living, S1 is launched on the first and S2 on the second. If one computer from the SlavePool is down then S1 and S2 are
launched on the other living computer. This configuration allows the system to work properly in the case of one slave com-
puting node failure. The master remains a critical resource (since it’s the file server). Other configurations are possible.

5  CONCLUSIONS

In order to compute the listening rates of radio stations, we developed a parallel sound correlation program running on a
cluster of PCs interconnected by Fast Ethernet. The parallel sound matching server offers a linear speedup up to a large
number of PCs thanks to the fact that disk access operations across the network are done in parallel with computations. Sup-
port is provided for graceful degradation of the sound matching server. In the case of failure of slave computation PCs, the
current computation is stopped, contributing processes are killed, the network is checked for living PCs and the application
is automatically restarted on the new configuration. 

The Swiss Radio company decided to adopt this system to measure the listening rates of radio stations in Switzerland7. The
system listens to 120 radio stations and 30 televisions in 17 different studio locations. There are 800 test persons equipped
with the special watch. The correlation is done with 9 slave PC’s and 1 master PC, each one a Pentium-III 500 MHz com-
puter. Commercial contacts with other countries have been established. A test panel has already been installed in Paris.

The project was a large collaborative effort with the contribution of many partners : the Institute of Microtechnics, Univ. of
Neuchatel, for developing the custom integrated circuits (very low power A/D-converter) for sound acquisition and the com-
pression in the watch8, EPFL for parallelizing the sound matching algorithms9, IBW AG for integrating all the software into
the evaluation system10, Liechti AG for creating the general concept and building the watches11 and University of Zurich,
Martin Bichsel, for creating the first version of the sound acquisition and compression software5.
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