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A Real-time
Navigator for the
Visible Human
Adapting data transfer to network throughput enables

real-time interactive Web-based navigation of large 3D

anatomical data sets.

The Visible Human data set, pro-
duced by the National Library of
Medicine’s Visible Human Pro-

ject,1 provides researchers with digital
cross-sections of the human body.
Many institutions use the Visible
Human for research and teaching pur-
poses. However, working with the full
data set on a workstation is cumber-
some and requires advanced program-
ming skills. Storing the data on Web
servers and offering online access
allows many more students, profession-
als, and researchers can benefit.

The first Web-based application that
let researchers explore the images was
the Northeast Parallel Architectures
Center’s (NPAC) Visible Human Viewer
applet,2 developed in 1995, which
allowed extraction of slices perpendic-
ular to the human body’s main axes. The
Visible Human Slice and Surface Serv-
er, which went online in 1999, added

access to arbitrarily oriented and posi-
tioned slices and surfaces, as well as to
slice sequence animations.3 These appli-
cations require the user to define the
position and orientation of each slice;
each application takes a few seconds to
present the results.

To test the feasibility of letting users
interact with the data set in real time over
the Internet, we recently developed the
Visible Human Navigator (visiblehuman.
epfl.ch). We used a client-server architec-
ture for the application because the full
data set is too large (10 Gbytes) to trans-
fer to the client in a Web-based applica-
tion. The prototype can display several
slices per second on a standard PC con-
nected to the Internet. It also extracts and
incorporates anatomic labeling informa-
tion from the Classified and Labeled Vis-
ible Human data set (www.gsm.com/
docs/products/segclass.htm) into the
slices extracted at any position or orien-



tation. Because stan-
dard HTTP uses a text-
based request-response
model that creates
high overheads, we
had to use a custom
protocol based on TCP
sockets. And because
we wanted to let a
large audience access
the application, we
developed the client in
Java. 

This article focuses
mainly on network per-
formance and data-
encoding issues. We
describe our im-ple-
mentation and the
principles of slice and
label extraction. Eval-
uating the proposed
solution’s performance

and the server’s behavior when serving multiple
clients simultaneously points to several issues for
further exploration.

Navigator Interface
The user interface of the client applet, shown in
Figure 1, divides information into two parts: the
navigation pane and the current slice view. To

facilitate orientation and navigation within the
Visible Human data set, the navigation panel pro-
vides a 3D view of the human body from which
the current slice is cut. Three buttons let users
instantly return to planes with standard orienta-
tions (axial, coronal, and sagital), and two sliders
control the desired frame rate and the resultant
speed-to-quality trade off. The slice view displays
the current slice and highlights the current struc-
ture with labeling data.

The status bar (below the slice view) shows the
current position in the data set and the name of
the highlighted structure. To verify the current net-
work data rate and frame rate, the status bar also
provides the current effective network data rate,
the required network data rate (based on the
desired frame rate), and other related information.
The client applet updates these values in real time.

The navigator provides real-time interactive
navigation using a standard mouse. Navigating a
3D data set requires three degrees of freedom for
translation and three additional degrees of free-
dom for rotation around the main axes of the cur-
rent slice’s local coordinate system. The client
interface also allows the user to freely zoom in and
out of the slice.

To find specific anatomic structures, such as the
metatarsal bone, shown in Figure 2, you first move
along slices until part of the desired structure
becomes visible. Then you can rotate, zoom, and
make fine adjustments to the current position until
you find the structure you’re looking for.

Visible Human Slice Extraction
The Visible Man data set — a subset of the Visible
Human — is a collection of 1,871 color images,
each of size 2,048 × 1,212 pixels. The stacked
images form a volume of 682 × 404 × 1,871 mil-
limeters. Each voxel (graphic information that
defines a point in three-dimensional space) repre-
sents 0.33 × 0.33 × 1 mm of the body. The Visible
Human server stores each piece of data as small
cubic subvolumes called extents. As illustrated in
Figure 3, each extent consists of a stack of color
bytemaps of equal size extracted from full-size
axial slices.

For our Web-based navigator, we set the size of
the extents at 32 × 32 × 16 voxels to ensure that
an approximately constant amount of data will be
loaded for a given slice regardless of its orienta-
tion. In addition to the standard full-resolution
data set, our project stores multiple-resolution ver-
sions at reduction factors of 2, 4, 8, 16, and 32, as
shown in Figure 4 . This data set keeps the num-
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Figure 1. User interface of the Visible Human navigator.The left side
displays the navigation pane, and the right side shows an oblique
view across the mandible in the current slice view.

Figure 2. Oblique view of the
right foot.This slice view shows a
highlighted metatarsal bone.



ber of bytes for each extent constant across all
resolutions. Lower-resolution extents therefore
represent a larger volume of the data set.

Our slice-extraction algorithm can produce an
arbitrarily oriented and positioned slice from the
data set. As Figure 5  shows, three vectors define
each slice. The system extracts the slice and
resamples it using an incremental fixed-point
algorithm.4 The algorithm begins rendering at the
top-left corner of the slice and evaluates for each
pixel the 3D coordinates of the corresponding
point. The algorithm then retrieves the nearest
voxel (using nearest-neighbor interpolation) or
surrounding voxels (using trilinear interpolation)
from the data set.

The algorithm traverses the requested slice
incrementally from the current coordinate using
the right and up vectors of the slice visualization
parameters. To provide acceptable speed, the sys-
tem stores the extents in a memory cache.
Caching this data turns out to be an effective
technique because the position and orientation of
slices varies in small increments during interac-
tive navigation.

The classified and labeled Visible Human data
set contains labeling information for each
cryosection voxel. The extents store this labeling
information in addition to the color data. Each
label includes a 16-bit number to indicate which
anatomical structure contains each voxel. We use
the labels to highlight selected anatomical struc-
tures on the cross-section or to indicate the name
of the structure over which the user is currently
holding the cursor. In Figure 6 (next page), for
example, our system uses labeling information to
highlight the carotid artery leaving the aortic arch.

Client-Server
Application Partitioning
We considered several possible mechanisms for
slice compression, including the JPEG and emerg-
ing JPEG 2000 (based on wavelet compression)
standards. Although JPEG 2000 can provide high-
er quality at an identical compression ratio,5 it
also requires greater processing capacity. Standard
JPEG compression is relatively easy to use, encod-
ing libraries are readily available, and JPEG com-
pression can be decoded quickly with pure Java.
Also, JPEG’s independent macroblock structure
provides a simple mechanism for streaming small
or partial images from server to client.

At application start-up, the server transmits
the JPEG header information, which contains the
Huffman tables and other static information and
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Figure 3. Extents in the Visible Human project. Each piece of data is
stored as an extent (small cubic subvolumes), which consists of a
stack of equal-sized bytemaps extracted from full-size axial slices.

Figure 4. Multiple-resolution versions of the images. Subdividing vol-
ume data sets into extents of decreasing resolution keeps the num-
ber of bytes for each extent constant across all resolutions.
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Figure 5. Slice definition.Three vectors define the
position and orientation of each slice in 3D space.
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consists of only 574 bytes of data. The server
transmits image data as blocks of 16 × 16 pixels.
That corresponds to groups of six JPEG mac-
roblocks with four 8 × 8 pixel macroblocks for
the luminance channel at full resolution and two
8 × 8 pixel macroblocks for the two chrominance
channels at half resolution.

The server compresses these blocks, on average,
from 768 bytes down to 37 bytes. We reached this
compression ratio of 20 with the Independent
JPEG Group’s (IJG) libjpeg compression library
(www.ijg.org) by using a quality of 75 on the IJG
JPEG quality scale (which ranges from 0 to 100).
The instant compression ratio that we obtain
depends on the source data because the JPEG com-
pressor strives for constant quality rather than for
constant compression ratio. The source data con-
sists of the complete Visible Human data set with
all areas outside the body removed.

Decompression happens on the client with a
custom Java applet based on code developed at
USC,6 but which we modified to accommodate
the JPEG block-based streaming decompression
required by our application. Tests have shown
that the quality loss caused by compression is
not noticeable.

Client-Server Interaction
Figure 7  shows the basic client-server interaction
pipeline. The sequence must let the client display
slices that match the user’s positioning requests as
quickly as possible and with a relatively constant
frame rate. To guarantee optimal use of the avail-
able network bandwidth and to avoid sending out-

dated information, the server must transmit exact-
ly the amount of data that it can transfer in the
time interval between two displayed frames on the
client. 

The interval between requests corresponds to
the user’s desired frame rate. The requests con-
tain the parameters for the currently requested
slice, including the three vectors that define posi-
tion and orientation, as well as an identifier and
the viewport parameters. (The client issues a
shorter request when no parameters have
changed.) The request also contains the maxi-
mum allowable message size for the reply. The
user can adjust the allowed reply size to provide
the best trade off between response time and
image quality.

Upon receiving the request, the server process-
es it and starts sending data back as soon as pos-
sible. The response contains only as many bytes as
the maximum set by the client’s request. Any
excess data would arrive after the client had sent
its next request, which would produce a backlog
of data in the client’s input buffers and an addi-
tional delay between the client request and the
display of the corresponding slice. To prevent data
transfer backlogs, the client stops sending requests
when there are more than two unanswered
requests in circulation. This mechanism lowers the
frame display rate when network transfers cannot
keep up with client requests.

The server carries out all transfers using TCP
sockets. While UDP might be better suited for mul-
timedia streaming applications — where low laten-
cy is more critical than reliability7 — UDP is unre-
liable in unsigned Java applets. Also, firewalls do
not generally let UDP traffic pass.

Slice Transfer
Because the server carries out all processing,
transferring compressed slices between server and
client is extremely simple. When the server
receives a request, it extracts the slice from the
data set, compresses it, and sends it back to the
client. The client then decompresses and displays
the slice to the user.

The data set resides on the server in extents of
32 × 32 × 16 voxels at resolutions ranging from
full to 1:32. At the lowest resolution, the complete
data set fits into 2 × 1 × 4 extents, and individual
voxels have a size of 10.56 × 10.56 × 16 mm. The
server selects the extracted slice’s resolution
according to the client’s request. For a new request,
the server extracts the slice at a resolution set to
fit into the maximum reply size. For a continua-
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Figure 6. Sample cross-section from the cryosec-
tion data set.The labeling information is used to
highlight the carotid artery in blue.



tion request, the server extracts a full resolution
slice and sends it back in parts distributed across
successive reply messages.

The client always displays whatever data it
receives after decompression, which means that
the final high-resolution slice is built progressive-
ly. If the server receives a request for a new slice
before completing a transmission, it aborts the
transfer of the full-resolution slice and instead
transmits a new low-resolution slice.

The server sends all slices as collections of JPEG
blocks; the headers indicate to which request each
block corresponds. When the slice has to fit into a
single reply message, the client computes its res-
olution based on an estimated compression ratio
of 14:1, yielding a JPEG block size of 55 bytes. The
size must also be a multiple of 16 pixels to ensure
optimal use of the JPEG macroblocks. Assuming a
square aspect ratio, the formula for calculating the
transmitted slice size is

(1)

For a square aspect ratio image and a reply size
of 4,000 bytes, for example, the transmitted slice
has a resolution of 128 × 128 pixels. The Java
client then scales this lower-resolution image to
fill the user’s window.

When the user stops moving the slice frame, the
server transmits a full-resolution image that takes
as many reply slots as required. For a full-resolu-

tion slice of 384 × 384 pixels and a reply size of
4,000 bytes, the complete transmission of the full
frame typically takes six reply slots, so the client
sees the high-resolution image building up over
six frames. For the same quality factor, high-reso-
lution slices achieve higher compression than low
resolution ones.

This server-client transmission mechanism
gives the shortest possible response time when
the user moves the slice frame. When the user
stops moving the slice, the highest resolution
version immediately starts building up on the
display. The response time is the sum of the
delays induced by the system, which can
include network latency, server processing, and
client processing.

Labeled Data
To make the labeled data available to the client,
the server extracts the labels simultaneously
with the high-resolution slice and compresses
the label using the deflate-compression algo-
rithm implemented in zlib (http://www.gzip.org/
zlib/). This lossless algorithm provides a com-
pression ratio of 50:1, resulting in a label slice
size of approximately 6 Kbytes for a typical slice
of 384 × 384 pixels.

The client decompresses the labeled slices using
standard Java libraries. The server simply trans-
fers the compressed label slice after the full reso-
lution slice when the user has stopped moving the
slice frame. When the server finishes transferring

  
slicesize floor

replysize
= ⋅16

55
( )
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Figure 7. Client-server interaction pipeline model.Yellow represents the time for sending data and blue
represents the processing time. The arrows represent packets transmitted between client and server.
Numbers indicate the sequence of operations.



the labeled data, the highlighting features become
available on the client’s display.

Performance
The performance of the slice-based model is
straightforward. For a given network data rate ndr
(the sustained throughput available on the client’s
network connection in the server-client direction)
and a client’s requested frame rate fps, we can
evaluate the reply size rs as

(2)
We compute the resolution of the image pro-

duced during the interactive frame movement —
which fits into the reply message size — accord-
ing to Equation 1. Both Equations 1 and 2 show
that the system has to make a fundamental com-
promise between image quality (depending direct-
ly on the reply size rs) and frame rate. The net-
work data rate ndr cannot be controlled, since it
depends on the network infrastructure between
client and server. Our system leaves the trade-off
to the user’s discretion by providing a slider that
lets the user specify a position between high inter-
activity (reply size 1 Kbyte) and high quality
(reply size 32 Kbytes). Figure 8 shows the expect-

ed frame rates for various network data rates and
reply sizes (the frame rate has an upper bound of
10 frames per second).

Three factors limit the effective frame rate users
can achieve: the network bandwidth between
client and server, the time required to decompress
a frame, or the client’s desired frame display rate.
The interaction response time on the client is the
sum of the following intervals:

■ Network latency for sending the request and
the reply. The interval ranges from less than 1
millisecond on a local area network to more
than 100 ms on a slow connection (typically 70
to 80 ms for long distances).

■ Request transfer from the client to the server.
The interval depends on the effective network
throughput (typically 2 to 3 ms for 48-byte
requests with a data rate of 128 Kbps).

■ Request processing (slice extraction and com-
pression). The interval depends on the server
processing power and disk throughput (typi-
cally 10 to 20 ms to serve a request from the
server’s memory cache on a Pentium III run-
ning at 733 MHz).

■ Reply transfer from the server to the client.
Again, the interval depends on the effective
network throughput.

A Pentium III at 733 MHz can decompress 1,000
JPEG blocks per second (roughly 40 Kbytes of
incoming data, depending on the compression
ratio), and decompression starts as soon as the
first data chunk arrives. Because decompression
is generally quicker than network data transfer,
decompression can occur simultaneously with
the transfer.

Experiments have shown that even latencies of
250 ms still provide acceptable responsiveness
levels. Because the client displays frames after
slice arrival and no more than two requests can
be pending at any time, the effective frame rate
adapts itself to instantaneous network through-

 
rs

ndr
fps

=
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Figure 8. Frame display rate for various network
data rates and reply sizes.

Table 1. Image quality during navigation
across the Visible Human data set.

Network data rate Reply size Frame rate Extracted slice size RMS error
(Kbit/s) (bytes) (frames (pixels) (scale 0.255)

per second)
128 4,000 4 128 × 128 13.00
1,000 8,000 16 192 × 192 8.87
1,000 32,000 4 384 × 384 3.30
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put. Table 1 shows the image quality when navi-
gating at a fixed speed of 3.33 mm/s across the
Visible Human data set for different connection
types and reply sizes. The root-means-squared
(RMS) error denotes the distance between the
actual displayed slice and a full-resolution
uncompressed slice.

Multiple-Client Performance
Because our slice-based system places a high load
on the server, it currently supports a rather limited
number of users. A client that moves the slice
frame continuously, requesting six slices per sec-
ond, for example, places a 17 percent processor
load on the server for a single Pentium III at 733
MHz. Such a server can accommodate at most five
clients simultaneously.

Other factors that can influence server perfor-
mance in multiclient scenarios include the total
available bandwidth on the server’s network con-
nection, the server’s memory size, and its disk
throughput. The total bandwidth requirement is
not much of a problem for high-throughput insti-
tutional network connections, which generally
provide between 35 and 155 Mbps. The disk
throughput and memory size are critical, howev-
er, because the server cannot load the complete
data set into memory at one time. To avoid hav-
ing to reload data from disk with every trans-
ferred slice, the server must be able to hold at
least enough extents for all the slices the clients
are currently viewing. A typical 384 × 384 pixel
slice requires from 160 to 300 extents, for exam-
ple, or a maximum of 15 Mbytes of memory. The
server can thus support all five clients with 100
Mbytes of RAM. 

Future Work
Interactive navigation makes it possible for
researchers to follow complex, twisted anatom-
ic structures and move through organs in any
given direction. With real-time interaction, a
user can position slices at odd angles across
structures to find the optimal observation direc-
tion. The present implementation shows that
usable real-time navigation is feasible on cur-
rently available networks. The performance
remains lower than what we can obtain with a
local data set on DVD.8

The next step in our research involves creating
scalable server architectures using clusters of PCs
as server systems. Such systems would be of par-
ticular interest for extracting information from ter-
abyte data sets. To situate detailed slice informa-

tion within larger 3D anatomic structures, we
intend to combine the real-time navigation service
with the 3D visualization of anatomic organs con-
structed from the labeled data set.
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