
THE VIDEO-RAM MULTIPROCESSOR ARCHITECTURE

R.D. Hersch, F. Maddalena, C. Nicks, M. Burki

Swiss Federal Institute of Technology, Lausanne

Loosely coupled multiprocessor systems communicate by message passsing.
Traditional implementations of message passing architectures are based on
communication controllers accessing local memory through DMA channels. This
paper describes a completely new communication mechanism based on the
transfer of messages through dual-port memories. The proposed architecture
takes advantage of the dual-port nature of dynamic video-ram ICs in order to
ensure efficient and deadlock-free transfer of messages between communicating
processes.

Keywords: multiprocessor, communication memory, message-passing hardware

1. Introduction

Modern cost effective multiprocessors distinguish themselves from more traditional designs by
making extensive use of powerful microprocessors [1] . One of the most important issues
concerns the interconnection topology for efficient communication between tens, hundreds or
thousands of microprocessors. A small number of processing units can be interconnected using
industrial parallel buses like the VME bus [2]. More advanced very high throughput parallel
buses can connect up to 30 processing units [3]. High cost and throughput bottlenecks of
parallel buses led to the design of cube architectures. Conventional cube architectures are
characterized by a more than linear increase of the number of communication channels
relatively to the number of processing nodes. They allow graph- or tree-oriented problems to
be mapped into the cube processors.

Advances in VLSI logic led to the integration of communication channels within the central
processing unit [4], [5]. These integrated circuits also provide the basis for very compact
multiprocessor systems designs. However, these systems lack object code compatibility with
common microprocessors, like the 68 '000 or the 8086 processor families. Therefore,
applications running on mono-processor workstations cannot be easily moved to these new
multiprocessor systems.

The authors of this paper have taken an innovative approach by designing a new
communication mechanism, which consists of a communication bus linking together dual-port
memories, each belonging to another processing unit. This approach, materialized by the use of
serial input/ output ports of Video-Rams, leads to the new concept of smart communication
memories.

A first implementation required 35 discrete circuits for the communication logic only. It is
expected, however, that advances in VLSI should allow the integration of complete message
communication and storage functionality into one circuit.

fabienne
R.D. Hersch, F. Maddaleno, C. Nicks, M. Bürki, "The Video-Ram Multiprocessor Architecture", Proceedings Euromicro 88, Zürich, (Winter, Schumny, Eds.), Elsevier Science Publ., 1988, 503-510

vraml

- 2 -

2. Video-Ram Multiprocessor Architecture

One processing pool consists of a set of processing units (sites), each having a conventional
32 bits CPU, a convenient amount of memory and input-output capabilities (figure 1) . In
addition to these elements, each processing unit also contains a bank of Video-Rams and
associated communication logic.

DRAM

SEL ROM
FPU CPU
M68881 M6802 DEK 64K

Fig. 1 Architecture of one processing unit

The dual-port nature of Video-Rams [6] leads to a very convenient implementation of an
independant communication channel responsible for the transfer of messages between processing
units. Viewed from the CPU, a Video-Ram behaves, from its parallel access port, exactly like
dynamic RAM. A message which is ready to be sent is stored by the local processor in one
or more successive Kbyte blocks.

The communication logic associated with the serial Video-Ram port is responsible for arbitrating
access to the common bus (Vi bus), for generating message header information, for serializing
the message data stored in Video-Ram and for transfering the message to the desired
destination location.

A message transfer is initialized by writing into the communication logic the type of transfer,
the destination site, and the destination location corresponding to the receiving process. After
parameter initialization by the local processor, the transmission logic automatically arbitrates its
own access to Vi bus. Once the latter has been granted, the communication logic transmits the
message header, reads the data from the serial Video-Ram port, serializes it and transmits it
over the 8 bit wide Vi bus. The message, together with the header specifiying destination site,
location and transfer type is stored at the right location by the communication logic of the
receiving site.

On the emitting side, an interrupt tells the processor that the message has been sent and that
the corresponding buffer place has become free. On the receiving side, an interrupt signals the
receipt of a new message. Associated header information specifying destination process and
message type has been written in a FIFO memory. Therefore, incoming messages are served
asynchronously by the receiving processor.

Transmission of messages takes place over Vi bus. Vi bus is a reduced semi -synchronous byte
wide bus for fast transfer of data blocks (4 to 1 024 bytes, 20 Mbytes/ s). One Vi bus
transaction consists of an arbitration cycle, an addressing cycle, and several block transfer
cycles. Arbitration is obtained via a self-selection circuit. At arbitration time, the 8 data lines

vram2

- 3 -

are used as priority lines. In the control phase following arbitration, the winning emitter places
destination site and destination process identifiers on the bus. Finally, variable length data
blocks are transmitted. Handshake signals 8/ockEnab/e and 8/ockWait synchronize the exchange
of data blocks between devices. Within each data block, the transfer of bytes is done
synchronously, using a strobe signal STB (figure 2).

K._____j BCL
BB*

Block

Block

STB

-

ct.naOIE

Waih

INF i

~ ~

*

priority processor
address

memory
address

r---

\._ _J

\.....F\.....F\

RA~SAM

::1

block transfer

RAM~ SAM
SAM~ RAM

Fig. 2 Message transfer through Vibus

3. Communication control logic

2

block transfer

Cl

pseudo
write

SAM~ RAM

The communication control logic must transfer the information from the Video-Ram to Vibus
and vice versa, by receiving commands from the processor and starting Video-Ram access
cycles. Before describing the control logic let us briefly introduce the concept of Video-Rams.

A Video-Ram is a dynamic dual-port memory with a parallel port allowing random read and
write accesses (RAM), and a serial port containing a shift register from which a whole row
of memory can be sequentially read or written (SAM, serial access memory).

The serial access memory can be loaded in parallel with the contents of a RAM row, or it
can be copied into a RAM row. This shift register can also be serially read or written from
the serial port. The copy operation from RAM to SAM is named Read Transfer. It puts the
shift register into output mode. The transfer from SAM into a RAM row is named Write
Transfer and puts the shift register into input mode. A Pseudo-write operation allows the shift
register to be placed into input mode without destroying the contents of any memory row.
The Read, Write and Pseudo-write operations are controlled by special Video-Ram cycles
carried out on its parallel port.

The Video-Ram circuit used in this implementation are organized in 64 kbytes by 4 bits (256
memory rows). The SAM is 256 words long and 4 bits wide. The SAM is accessed through
the serial port in accordance to a serial clock and a serial enable signal.

The hardware which handles communications over Vibus can be decomposed into the following
functional blocks (Figure 3):

- Video-Rams

- processor interface

- Vibus arbiter

- transmitter controller

- receiver controller

- Video-Ram serial port controller

- Video-Ram parallel port controller

INTERRUPT

MICROPR. INTERF
STAT & CONT

WANT
WIN
SELECT

MICROPROCESSOR

VIDEORAMS
8 CHIPS•64K•4 BITS

VIBUS

- 4 -

READ TRANSF
PARALLEL

DATA (32)

SERIAL
DATA (8)

Fig. 3 Block diagram of the control logic

Eight 64k * 4 bits Video-Rams enable us to build a 32 bit wide memory (processor side).
On the serial side, the SAM registers are connected to obtain an 8 bit wide data path. The
processor interface contains the control and status registers and the interrupt logic. In order to
prepare a transmission request, the processor first programs the message source address and
its length. Then the processor writes into a second register the identifier of the destination
processor and the message destination address. To start the message transmission, the
processor interface activates the WANT signal asking the Vi bus arbiter to request the bus.

The bus arbiter is controlled by a finite state machine which rules arbitration and site
addressing. The arbitration cycle is synchronous with the clock signal BCLK and lasts one
clock period (200 ns). The Bus Busy signal (BB) indicates that a transaction is taking place
on Vibus.

In the BCLK clock period following the arbitration, the winner places on the data lines the
address of the destination processor(s), using geographical addressing. In the following BCLK
period it issues the message destination address

After these operations, the arbiter issues a signal to the Transmitter Controller (TXC) indicating
that the transmission can start. TXC asks the parallel port controller to copy a specified row
of the RAM memory to SAM. It then activates the BlockEnable bus signal, waits for
BlockWait signal inactive, and starts data transmission. In order to feed the 8 bit wide
Videobus, two Video-Ram chips are read at the same time. Multiplexing is carried out by the
serial controller. At the end of a row, TXC checks whether there are other rows to send. If
necessary, it requests further Read Transfers and data transmissions.

On the receiving side, the arbiter also acts as the Vi bus address decoder. When selected, it
asks the Receiver Controller (RXC) to store the destination address. After being selected, RXC
immediately requests the parallel controller to perform a Pseudo-write Transfer in order to put
the Video-Rams in input mode. At that point the system is ready to accept the first row of
data which enters the SAM. The routing of incoming bytes into the Video-Rams and the
generation of Video-Rams' serial control signals are provided by the serial controller. At the
end of a row (indicated by BlockEnable becoming inactive), RXC requests a Write Transfer at
the address indicated in the previous addressing phase. During the Pseudo-write and the Write
Transfers, the receiver prevents the transmitter from sending data by activating the BlockWait
signal. The receiver recognizes the end of a transfer since Bus Busy once again becomes
inactive. After the data reception, RXC places in the FIFO the start address of the newly

- 5 -

arrived message and sends (through the processor interface) an interrupt request. The processor
may fetch the message address from the FIFO.

The controller handling accesses to the parallel Video-Ram port is basically an arbiter
implemented with a state machine. It arbitrates between 3 different requests (in increasing
order of priority):

- processor access (default winner)

- refresh

- Read, Write or Pseudo-write Transfer

This arbiter also controls the circuitry generating RAS, CAS and other Video-Ram signals.

All the controllers are implemented with PALs, mostly working with the same 20 MHz clock.
Great care has been taken to synchronize the asynchronous inputs in order to limit the
probability and risks of metastable states. The current implementation requires about 35
integrated circuits. The different state machines as well the pointers and counters could easily
be integrated into an application specific integrated circuit, thus dramatically reducing the
number of required integrated circuits.

Vi bus bus does not use any kind of pipelining: this choice reduces the number of bus lines
and drivers, but it increases the total time required for consecutive (queued) transactions. This
is not a serious drawback, since queued bus transactions are not frequent. Moreover, the
arbitration and selection cycles require about 600 ns. Data transfer takes for each byte 50
ns. If the transferred block is longer than 16 bytes, the total transaction time is mainly given
by the data transfer time.

Vi bus allows broadcast cycles. This feature is obtained by using geographical addressing and
suitable handshaking signals. For this purpose, BlockWait is an active low signal controlled by
open collector drivers permitting the slowest receiver to delay the bus transfers.

4. Buffer allocation

In a multiprocessor multi-tasking environment, buffer allocation for synchronisation and
communication is critical. Deadlock free communication between any pair of tasks should be
ensured. The software concept for task intercommunication is based on the SendAndWaitRep/y
primitive [7], which is itself derived from the V -Kernel interprocess communication primitives
[8].

The following communication primitives are used:

SendAndWaitRep/y (in: DestProcess, in: DestSite, in: MessageContent, out: AnswerContent)

The client process, executing on SrcSite sends a message to the server process
DestProcess located on site DestSite. After having sent its message, the client
process is suspended.

Receive (out :SrcProcess, out :SrcSite, out: Message Type, out: MessageContent)

The server process is suspended until the arrival of a message meant for it. After
arrival and consumption of the message, an acknowledge is sent back to the client
process. The server process resumes execution.

Reply (in :SrcSite, in :SrcProcess, in :AnswerContent)

The server process sends an answer message to its client process. This answer
message allows the client process to resume execution.

- 6 -

Each process can be a client or a server process. Therefore, a buffer organisation is
proposed, which allows any process running on any site to communicate with any other
process.

For sending messages, exactly one emission buffer is allocated on each site. The emission
buffer will only be used, if the client process is sure that the message can be received on
the server's process site. A ReceptionBufferStatusTable located on each site allows the local
processes to maintain exact knowledge of the state of the receiving buffers on the other sites.
This table contains the empty /full status for each receiving buffer of server processes able to
communicate with the considered site. Response buffers provide the space to store answer
messages for each resident client process.

Each local server process must be able to receive messages from any other process located on
any other site. It is only necessary to allocate one buffer per communicating site for each
server process. Communication from two client processes residing on the same site to one
server process on another site will take place sequentially. Reception buffers allow the
storage of messages from each site for each local server process.

Let us consider a multiprocessor system with k sites S0 , S1 , ... Sk_ 1 each running m
processes P 0 , P 1 , ... P m- 1 . On each site, there will be one em1ss1on buffer, m response
buffers, one ReceptionBufferStatus Table with k·m entries, and k·m reception buffers (fig. 4).

YRAMBUF

EMISSION
[1]

RECEPTION
BUFFER

[k.m]

RECEPTION
BUFFER
STATUS
TABLE

[k.m entries]

RESPONSE
BUFFER

[m]

Site S2
Process P1

- 7 -

CD
if s3.p2 free

ack:

(SendAnd
WaitReply)

message
received
reception
buffer
free

(receive)

Site S3
Process Pz

~:.:~:.:~:.:~:.:~:.:~:.:~:.:~:.:~:.:~:::~:.:~:.:~:.:~:.

CD SENDANDWAITREPL y FROM (S 2 ,P1) TO (S 3 ,P2)

RECEIVE

REPLY

Fig. 4 Buffer allocation on sites 5 2, 5 3

so.Po
so.P1

s1 ·Po
s1 ·P1

sz·Pz

These communication primitives are currently being tested on the target multiprocessor
hardware.

5. Multi -pool systems

Only a limited number of processing units can reasonably be hooked on a common byte-wide
parallel bus like Vi bus. Further extensions of the number of processing units require bridges
between processor pools. A bridge is a processing unit having two or more Video-Ram
communication ports. Bridges are responsible for message passing between processor pools.

Many possible connection schemes could be proposed for the interconnection of processing
pools. Cube architectures represent interesting interconnection structures for solving different
kind of graph- and tree-oriented problems [4]. By considering one processor pool as a cube
edge, it becomes possible to build a mixed architecture consisting of parallel common buses
for communication on the pool level and of cube vertices for interpool message passing. A
3-dimensional cube can be constructed with 12 pools (edges) and 8 bridges (vertices)
(figure 5).

vram4

- 8 -

Fig. 5 Optimised three-dimensional pool-cube topology

The optimised pool-cube topology provides a framework for 72 processing units distributed in
12 pools interconnected by 8 bridge processors. A maximum of 2 intermediate bridge
processors is required to pass a message from any processing unit to any other processing
unit.

6. Distributed processing

The previously described multi-processor system is to be used as the basic hardware of a
multi -processor workstation. Operating system and applications running in today' s distributed
environment (figure 6) consisting of mono-processor workstations interconnected by local area
networks [9] should also run without modifications on the currently developed multi -processor
workstation (figure 7).

Fig. 6 Interconnected mono-processor workstations

- 9 -

bridge

~~~~essing~ ____________ -~--~-~--~-f-~. -~-~~~~~~~~-~~~~k~-.-:-.. ::-:~:-----------
. M 

Vi bus Vi bus 
L • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Fig. 7 Network of multiprocessor workstations 

Our home made operating system [1 0] supports network-wide system calls by message passing 
and message forwarding mechanisms. The Vi bus communication facility appears to the kernel 
like any other network. Each processing unit contains a copy of the real-time kernel, the file 
operating system and the required 1/0 drivers. Only the network driver must be changed to fit 
Vi bus functionality. In a first approach, tasks are statically distributed by the command line 
interpreter running on the processing unit responsible for human input-output. A description 
associated with each task specifies the required resources in terms of memory space, 
processor type and input-output needs. At task distribution time, the system load is checked 
and the task is assigned to the processing unit matching the basic needs of the process and 
currently carrying the lightest load. 

7. Conclusions 

The new proposed multiprocessor message passing mechanism is based upon smart 
communication memories. Communication memories contain the logic to transmit stored messages 
or to receive messages from other locations through a common narrow high-speed bus 
structure. This new architectural concept releases the processor from low-level communication 
tasks and does not require processing power for communication purposes. Unlike most DMA 
communication channels, communication through smart memories does not slow the local 
processor down. The proposed communication scheme ensures reliable transmission of 
messages. Message buffer organization and communication protocols allow deadlock-free 
non-repetititive single message transmission [7]. 

Pools of processing units are interconnected by bridge-processors communicating with two or 
more pools. Bridge processors can be the vertices and processor pools the edges of multi-pool 
cube structures. 

Today's implementation of smart communication memories is based on dual-port Video-Rams. 
The associated communication logic requires about 35 integrated circuits. 



- 10 -

Acknowledgments 

We would like to thank Prof. Nicoud for his initial ideas concerning the usefulness of 
Video-Rams. We would also like to thank Prof. Schiper and Roland Simon for the 
specification of the software communication protocol. 

References: 

[1] J. Bond, "Parallel-processing concepts finally come together in real systems", Computer 
Design, June 1987, pp 51-74. 

[2] "VME bus Specification Manual," rev C, VITA group, 1985 

[3] R.A. Olsen, et al, "Messages and Multiprocessing in the ELXI System 6400," Compean 
1983, San Francisco, 1983 

[4] J.P. Hayes, et al., "A Microprocessor-based Hypercube Supercomputer", IEEE Micro, 
October 1986, pp. 6-17 

[5] Paul Walker, "The Transputer," Byte, May 1985, pp. 219-235 

[6] J.D. Nicoud, "Structure and Applications of Videorams", IEEE Micro, February 1988, 
pp. 8-27 

[7] A. Schiper, et al., "Efficient implementation of rendez-vous", Internal Report, Dept. 
Mathematics, EPFL, May 1988, submitted to the British Computer Journal 

[8] D. Cheriton, "The V Kernel, A Software Base for Distributed Systems", IEEE Software, 
April 1984, pp. 19-42 

[9] R. Sommer, "A real-time protocol for a sub-local network", Local Networks and 
Distributed Office Systems, Online Conference Proceedings, London, May 1981 

[1 0] D. Dumoulin, D. Raux, "FOS," published by Epsitec-System SA, Belmont, Switzerland 




