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Loosely coupled multiprocessor systems communicate by message passsing. 
Traditional implementations of message passing architectures are based on 
communication controllers accessing local memory through DMA channels. This 
paper describes a completely new communication mechanism based on the 
transfer of messages through dual-port memories. The proposed architecture 
takes advantage of the dual-port nature of dynamic video-ram ICs in order to 
ensure efficient and deadlock-free transfer of messages between communicating 
processes. 
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1. Introduction 

Modern cost effective multiprocessors distinguish themselves from more traditional designs by 
making extensive use of powerful microprocessors [ 1 ] . One of the most important issues 
concerns the interconnection topology for efficient communication between tens, hundreds or 
thousands of microprocessors. A small number of processing units can be interconnected using 
industrial parallel buses like the VME bus [2]. More advanced very high throughput parallel 
buses can connect up to 30 processing units [3]. High cost and throughput bottlenecks of 
parallel buses led to the design of cube architectures. Conventional cube architectures are 
characterized by a more than linear increase of the number of communication channels 
relatively to the number of processing nodes. They allow graph- or tree-oriented problems to 
be mapped into the cube processors. 

Advances in VLSI logic led to the integration of communication channels within the central 
processing unit [4], [5]. These integrated circuits also provide the basis for very compact 
multiprocessor systems designs. However, these systems lack object code compatibility with 
common microprocessors, like the 68 '000 or the 8086 processor families. Therefore, 
applications running on mono-processor workstations cannot be easily moved to these new 
multiprocessor systems. 

The authors of this paper have taken an innovative approach by designing a new 
communication mechanism, which consists of a communication bus linking together dual-port 
memories, each belonging to another processing unit. This approach, materialized by the use of 
serial input/ output ports of Video-Rams, leads to the new concept of smart communication 
memories. 

A first implementation required 35 discrete circuits for the communication logic only. It is 
expected, however, that advances in VLSI should allow the integration of complete message 
communication and storage functionality into one circuit. 
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2. Video-Ram Multiprocessor Architecture 

One processing pool consists of a set of processing units (sites), each having a conventional 
32 bits CPU, a convenient amount of memory and input-output capabilities (figure 1 ) . In 
addition to these elements, each processing unit also contains a bank of Video-Rams and 
associated communication logic. 
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Fig. 1 Architecture of one processing unit 

The dual-port nature of Video-Rams [6] leads to a very convenient implementation of an 
independant communication channel responsible for the transfer of messages between processing 
units. Viewed from the CPU, a Video-Ram behaves, from its parallel access port, exactly like 
dynamic RAM. A message which is ready to be sent is stored by the local processor in one 
or more successive Kbyte blocks. 

The communication logic associated with the serial Video-Ram port is responsible for arbitrating 
access to the common bus (Vi bus), for generating message header information, for serializing 
the message data stored in Video-Ram and for transfering the message to the desired 
destination location. 

A message transfer is initialized by writing into the communication logic the type of transfer, 
the destination site, and the destination location corresponding to the receiving process. After 
parameter initialization by the local processor, the transmission logic automatically arbitrates its 
own access to Vi bus. Once the latter has been granted, the communication logic transmits the 
message header, reads the data from the serial Video-Ram port, serializes it and transmits it 
over the 8 bit wide Vi bus. The message, together with the header specifiying destination site, 
location and transfer type is stored at the right location by the communication logic of the 
receiving site. 

On the emitting side, an interrupt tells the processor that the message has been sent and that 
the corresponding buffer place has become free. On the receiving side, an interrupt signals the 
receipt of a new message. Associated header information specifying destination process and 
message type has been written in a FIFO memory. Therefore, incoming messages are served 
asynchronously by the receiving processor. 

Transmission of messages takes place over Vi bus. Vi bus is a reduced semi -synchronous byte 
wide bus for fast transfer of data blocks ( 4 to 1 024 bytes, 20 Mbytes/ s). One Vi bus 
transaction consists of an arbitration cycle, an addressing cycle, and several block transfer 
cycles. Arbitration is obtained via a self-selection circuit. At arbitration time, the 8 data lines 



vram2 

- 3 -

are used as priority lines. In the control phase following arbitration, the winning emitter places 
destination site and destination process identifiers on the bus. Finally, variable length data 
blocks are transmitted. Handshake signals 8/ockEnab/e and 8/ockWait synchronize the exchange 
of data blocks between devices. Within each data block, the transfer of bytes is done 
synchronously, using a strobe signal STB (figure 2). 
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Fig. 2 Message transfer through Vibus 

3. Communication control logic 
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The communication control logic must transfer the information from the Video-Ram to Vibus 
and vice versa, by receiving commands from the processor and starting Video-Ram access 
cycles. Before describing the control logic let us briefly introduce the concept of Video-Rams. 

A Video-Ram is a dynamic dual-port memory with a parallel port allowing random read and 
write accesses (RAM), and a serial port containing a shift register from which a whole row 
of memory can be sequentially read or written (SAM, serial access memory). 

The serial access memory can be loaded in parallel with the contents of a RAM row, or it 
can be copied into a RAM row. This shift register can also be serially read or written from 
the serial port. The copy operation from RAM to SAM is named Read Transfer. It puts the 
shift register into output mode. The transfer from SAM into a RAM row is named Write 
Transfer and puts the shift register into input mode. A Pseudo-write operation allows the shift 
register to be placed into input mode without destroying the contents of any memory row. 
The Read, Write and Pseudo-write operations are controlled by special Video-Ram cycles 
carried out on its parallel port. 

The Video-Ram circuit used in this implementation are organized in 64 kbytes by 4 bits (256 
memory rows). The SAM is 256 words long and 4 bits wide. The SAM is accessed through 
the serial port in accordance to a serial clock and a serial enable signal. 

The hardware which handles communications over Vibus can be decomposed into the following 
functional blocks (Figure 3): 

- Video-Rams 

- processor interface 

- Vibus arbiter 

- transmitter controller 

- receiver controller 

- Video-Ram serial port controller 

- Video-Ram parallel port controller 
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Fig. 3 Block diagram of the control logic 

Eight 64k * 4 bits Video-Rams enable us to build a 32 bit wide memory (processor side). 
On the serial side, the SAM registers are connected to obtain an 8 bit wide data path. The 
processor interface contains the control and status registers and the interrupt logic. In order to 
prepare a transmission request, the processor first programs the message source address and 
its length. Then the processor writes into a second register the identifier of the destination 
processor and the message destination address. To start the message transmission, the 
processor interface activates the WANT signal asking the Vi bus arbiter to request the bus. 

The bus arbiter is controlled by a finite state machine which rules arbitration and site 
addressing. The arbitration cycle is synchronous with the clock signal BCLK and lasts one 
clock period (200 ns). The Bus Busy signal (BB) indicates that a transaction is taking place 
on Vibus. 

In the BCLK clock period following the arbitration, the winner places on the data lines the 
address of the destination processor(s), using geographical addressing. In the following BCLK 
period it issues the message destination address 

After these operations, the arbiter issues a signal to the Transmitter Controller (TXC) indicating 
that the transmission can start. TXC asks the parallel port controller to copy a specified row 
of the RAM memory to SAM. It then activates the BlockEnable bus signal, waits for 
BlockWait signal inactive, and starts data transmission. In order to feed the 8 bit wide 
Videobus, two Video-Ram chips are read at the same time. Multiplexing is carried out by the 
serial controller. At the end of a row, TXC checks whether there are other rows to send. If 
necessary, it requests further Read Transfers and data transmissions. 

On the receiving side, the arbiter also acts as the Vi bus address decoder. When selected, it 
asks the Receiver Controller (RXC) to store the destination address. After being selected, RXC 
immediately requests the parallel controller to perform a Pseudo-write Transfer in order to put 
the Video-Rams in input mode. At that point the system is ready to accept the first row of 
data which enters the SAM. The routing of incoming bytes into the Video-Rams and the 
generation of Video-Rams' serial control signals are provided by the serial controller. At the 
end of a row (indicated by BlockEnable becoming inactive), RXC requests a Write Transfer at 
the address indicated in the previous addressing phase. During the Pseudo-write and the Write 
Transfers, the receiver prevents the transmitter from sending data by activating the BlockWait 
signal. The receiver recognizes the end of a transfer since Bus Busy once again becomes 
inactive. After the data reception, RXC places in the FIFO the start address of the newly 
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arrived message and sends (through the processor interface) an interrupt request. The processor 
may fetch the message address from the FIFO. 

The controller handling accesses to the parallel Video-Ram port is basically an arbiter 
implemented with a state machine. It arbitrates between 3 different requests (in increasing 
order of priority): 

- processor access (default winner) 

- refresh 

- Read, Write or Pseudo-write Transfer 

This arbiter also controls the circuitry generating RAS, CAS and other Video-Ram signals. 

All the controllers are implemented with PALs, mostly working with the same 20 MHz clock. 
Great care has been taken to synchronize the asynchronous inputs in order to limit the 
probability and risks of metastable states. The current implementation requires about 35 
integrated circuits. The different state machines as well the pointers and counters could easily 
be integrated into an application specific integrated circuit, thus dramatically reducing the 
number of required integrated circuits. 

Vi bus bus does not use any kind of pipelining: this choice reduces the number of bus lines 
and drivers, but it increases the total time required for consecutive (queued) transactions. This 
is not a serious drawback, since queued bus transactions are not frequent. Moreover, the 
arbitration and selection cycles require about 600 ns. Data transfer takes for each byte 50 
ns. If the transferred block is longer than 16 bytes, the total transaction time is mainly given 
by the data transfer time. 

Vi bus allows broadcast cycles. This feature is obtained by using geographical addressing and 
suitable handshaking signals. For this purpose, BlockWait is an active low signal controlled by 
open collector drivers permitting the slowest receiver to delay the bus transfers. 

4. Buffer allocation 

In a multiprocessor multi-tasking environment, buffer allocation for synchronisation and 
communication is critical. Deadlock free communication between any pair of tasks should be 
ensured. The software concept for task intercommunication is based on the SendAndWaitRep/y 
primitive [7], which is itself derived from the V -Kernel interprocess communication primitives 
[8]. 

The following communication primitives are used: 

SendAndWaitRep/y (in: DestProcess, in: DestSite, in: MessageContent, out: AnswerContent) 

The client process, executing on SrcSite sends a message to the server process 
DestProcess located on site DestSite. After having sent its message, the client 
process is suspended. 

Receive (out :SrcProcess, out :SrcSite, out: Message Type, out: MessageContent) 

The server process is suspended until the arrival of a message meant for it. After 
arrival and consumption of the message, an acknowledge is sent back to the client 
process. The server process resumes execution. 

Reply (in :SrcSite, in :SrcProcess, in :AnswerContent) 

The server process sends an answer message to its client process. This answer 
message allows the client process to resume execution. 
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Each process can be a client or a server process. Therefore, a buffer organisation is 
proposed, which allows any process running on any site to communicate with any other 
process. 

For sending messages, exactly one emission buffer is allocated on each site. The emission 
buffer will only be used, if the client process is sure that the message can be received on 
the server's process site. A ReceptionBufferStatusTable located on each site allows the local 
processes to maintain exact knowledge of the state of the receiving buffers on the other sites. 
This table contains the empty /full status for each receiving buffer of server processes able to 
communicate with the considered site. Response buffers provide the space to store answer 
messages for each resident client process. 

Each local server process must be able to receive messages from any other process located on 
any other site. It is only necessary to allocate one buffer per communicating site for each 
server process. Communication from two client processes residing on the same site to one 
server process on another site will take place sequentially. Reception buffers allow the 
storage of messages from each site for each local server process. 

Let us consider a multiprocessor system with k sites S0 , S1 , ... Sk_ 1 each running m 
processes P 0 , P 1 , ... P m- 1 . On each site, there will be one em1ss1on buffer, m response 
buffers, one ReceptionBufferStatus Table with k·m entries, and k·m reception buffers (fig. 4). 
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These communication primitives are currently being tested on the target multiprocessor 
hardware. 

5. Multi -pool systems 

Only a limited number of processing units can reasonably be hooked on a common byte-wide 
parallel bus like Vi bus. Further extensions of the number of processing units require bridges 
between processor pools. A bridge is a processing unit having two or more Video-Ram 
communication ports. Bridges are responsible for message passing between processor pools. 

Many possible connection schemes could be proposed for the interconnection of processing 
pools. Cube architectures represent interesting interconnection structures for solving different 
kind of graph- and tree-oriented problems [4]. By considering one processor pool as a cube 
edge, it becomes possible to build a mixed architecture consisting of parallel common buses 
for communication on the pool level and of cube vertices for interpool message passing. A 
3-dimensional cube can be constructed with 12 pools (edges) and 8 bridges (vertices) 
(figure 5). 
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Fig. 5 Optimised three-dimensional pool-cube topology 

The optimised pool-cube topology provides a framework for 72 processing units distributed in 
12 pools interconnected by 8 bridge processors. A maximum of 2 intermediate bridge 
processors is required to pass a message from any processing unit to any other processing 
unit. 

6. Distributed processing 

The previously described multi-processor system is to be used as the basic hardware of a 
multi -processor workstation. Operating system and applications running in today' s distributed 
environment (figure 6) consisting of mono-processor workstations interconnected by local area 
networks [9] should also run without modifications on the currently developed multi -processor 
workstation (figure 7). 

Fig. 6 Interconnected mono-processor workstations 
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Fig. 7 Network of multiprocessor workstations 

Our home made operating system [1 0] supports network-wide system calls by message passing 
and message forwarding mechanisms. The Vi bus communication facility appears to the kernel 
like any other network. Each processing unit contains a copy of the real-time kernel, the file 
operating system and the required 1/0 drivers. Only the network driver must be changed to fit 
Vi bus functionality. In a first approach, tasks are statically distributed by the command line 
interpreter running on the processing unit responsible for human input-output. A description 
associated with each task specifies the required resources in terms of memory space, 
processor type and input-output needs. At task distribution time, the system load is checked 
and the task is assigned to the processing unit matching the basic needs of the process and 
currently carrying the lightest load. 

7. Conclusions 

The new proposed multiprocessor message passing mechanism is based upon smart 
communication memories. Communication memories contain the logic to transmit stored messages 
or to receive messages from other locations through a common narrow high-speed bus 
structure. This new architectural concept releases the processor from low-level communication 
tasks and does not require processing power for communication purposes. Unlike most DMA 
communication channels, communication through smart memories does not slow the local 
processor down. The proposed communication scheme ensures reliable transmission of 
messages. Message buffer organization and communication protocols allow deadlock-free 
non-repetititive single message transmission [7]. 

Pools of processing units are interconnected by bridge-processors communicating with two or 
more pools. Bridge processors can be the vertices and processor pools the edges of multi-pool 
cube structures. 

Today's implementation of smart communication memories is based on dual-port Video-Rams. 
The associated communication logic requires about 35 integrated circuits. 
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