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Abstract. Professionals in various

�elds such as medical imaging, biology

and civil engineering require rapid ac-

cess to huge amounts of pixmap im-

age data. Multimedia interfaces fur-

ther increase the need for large image

databases. In order to ful�ll these re-

quirements, the GigaView parallel im-

age server architecture relies on arrays

of intelligent disk nodes, each disk node

being composed of one processor and

one disk. This contribution reviews the

design of the GigaView hardware and

�le system, compares it to other stor-

age servers available on the market, and

evaluates �elds of applications for the

architecture.

1. Introduction

In the �elds of scienti�c modeling, medical imag-
ing, biology, civil engineering, cartography and
graphic arts, there is an urgent need for huge stor-
age capacities, fast access and real-time interac-
tive visualization of pixmap images.

While processing power and memory capacity
double every two years, disk bandwidth increases
at a much slower rate. Interactive real-time visu-
alization of full color pixmap image data requires
throughputs of 2 to 10 MBytes/s. Parallel in-
put/output devices are required in order to access
and manipulate image data at high speed.

A high-performance high-capacity image server
must provide users located on local or public net-
works with a set of adequate services for imme-
diate access to images stored on disk arrays. Ba-
sic services include real-time extraction of image
parts for panning purposes, resampling for zoom-
ing in and out, browsing through 3-d image cuts
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and accessing image sequences at the required res-
olution and speed.
Previous research focussed on increasing trans-

fer rates between CPU and disks by using Re-
dundant Arrays Of Inexpensive Disks (RAID) [1].
Access to disk blocks was parallelized, but block
and �le management continued to be handled by
a single CPU with limited processing power and
memory bandwidth. In a more recent research
project [2], the RAID concept was further ex-
tended to o�er very high bandwidth disk arrays
directly hooked onto high-speed networks (HIPPI
based networks).
In this paper, we use a di�erent approach: the

multiprocessor multidisk (MPMD) approach we
propose aims at associating disks and processors
into an array of intelligent disk nodes capable of
applying parallel local preprocessing operations
before sending data from the disk to the client
workstation. We have shown that such prepro-
cessing operations are highly valuable in the case
of image accesses: large pixmap images can be re-
duced into displayable size images at disk reading
speed [3, 4]. In the MPMD approach, pixmap im-
age data is partitioned into rectangular extents,
each extent having a size which minimizes global
access time. In order to ensure high throughput,
image extents are stored on a parallel array of
disk nodes. Each disk node includes one disk-
node processor (T800 transputer), cache memory
(6 MBytes) and one disk (400 to 1000 MBytes).
The authors have implemented a MPMD im-

age server, called the GigaView. Through its
SCSI-2 interface, it sustains throughputs of up to
5MBytes/sec., which allows to browse through im-
ages and maps of arbitrary size at the rate of three
to four 512-by-512 full color image visualization
windows per second [5].
This contribution describes the design of the Gi-

gaview image server : the hardware architecture,
the multi-dimensional �le system (MDFS), and
the server's data redundancy scheme. It analyzes
the performance of the architecture through sim-
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ulation and experimentation, and compares the
performance to existing storage servers. The mul-
timedia behavior of the GigaView has been stud-
ied in [6].
Section 2 describes the hardware architecture,

the MDFS �le system and the server's redundancy
scheme. Section 3 analyses the Gigaview perfor-
mance under single-request and multiple-request.
Section 4 compares the performance of the Gi-
gaView to existing storage servers. Section 5 de-
scribes two application �elds for the GigaView
parallel image server : geographical information
systems, and medical imaging. Section 6 summa-
rizes the results of this contribution and describes
the directions of future image server research.

2. GigaView design

2.1 Hardware architecture

The parallel image server consists of a server in-
terface processor connected through a crossbar
switch to an array of disk nodes (Figure 1). The
server interface processor provides the network in-
terface. Each disk node consists of a standard disk
connected through a SCSI-II bus to a local pro-
cessing unit. The disk-node processors are trans-
puters (T800 in the current versions, and T9000
when they become available). They provide both
processing power and communication links. The
number of links between the interface processor
and the disk array is 4, equal to the number of
links of a single transputer. The disk-node local
processor supports disk access, image part extrac-
tion, image reduction, data compression and de-
compression.

server
interface
processor

standard network
interface

newly
developed
technology

standard
SCSI-2 disks

disk node

local
processors

crossbar
switch

SCSI-II, ATM, FDDI

Figure 1: GigaView 8-disk architecture

2.2 Multi-dimensional �le system

In order to access images in parallel, images
are partitioned into rectangular extents (Fig-
ure 2). The Multi-Dimensional File System
(MDFS) stores 1-dimensional (1-D), 2-D and 3-
D images divided into 1-D, 2-D and 3-D extents

respectively, and provides excellent access perfor-
mance, regardless of the size of the accessed �le
and of the architecture on which it is executed [4].
Image access performances are heavily in
uenced
by how extents are distributed onto a disk array.
In a previous publication [3], we show that the ex-
tent size should be between 12 and 48 Kbytes, and
describe algorithms to allocate extents e�ciently
on a disk array.
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Figure 2: Division of an image into extents

The server interface processor runs the image
server master process receiving image access re-
quests from the network and issuing image access
calls to the parallel image �le server. The parallel
�le server includes a �le system master process re-
sponsible for maintaining overall parallel �le sys-
tem coherence (directories, �le index tables, �le
extent access tables) and extent serving processes
running on disk node processing units. Extent
serving processes are responsible for serving ex-
tent access requests, for maintaining the free block
lists and for managing local extent caches. Lo-
cal image processing tasks required for image pre-
sentation such as image data reduction for zoom-
ing purposes are located on disk node processing
units.

The parallel low-level �le system supports a sin-
gle directory containing all the �les stored on one
MPMD cluster. Files are accessed through a di-
rectory entry which points to the �le distribution

information block (DIB). The DIB contains infor-
mation relative to the �le size, the �le extension in
x and y dimension, the extent width and height,
the number of continuous extents per disk, the
number of disks, a table with the successive disk
numbers contributing to this �le, and for each
disk, a pointer to the �le local extent index ta-

ble (FLEIB) containing the local pointers to the
data extent blocks (Fig. 3). At �le opening time,
the �le system returns part of the content of the
DIB. Directories and DIB have a �xed, maximal
size. For safety reasons, they are duplicated on
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each of the disks in the cluster.

Figure 3: File system organization

At �le opening time, each extent process reads
the DIB and the FLEIB from its disk. Once the
DIB and FLEIB are stored in memory, read and
write operations on a given �le can be executed
at the rate of one disk access per extent. With
an extent size between 12Kbytes to 48Kbytes, the
throughput between disk and extent server is close
to the maximal disk transfer rate.

2.3 Redundancy scheme

The redundancy scheme on the Gigaview server
di�ers from the approach taken on RAID servers.
RAID servers compute the redundancy informa-
tion as the data is stored on the disk. This costs a
write-access delay penalty (4 disk accesses are re-
quired for every user write operation), but ensures
almost complete reliability. The GigaView server
takes into account the improved reliability of sin-
gle devices | up to 1,000,000 hours mean-time
between failure (MTBF) for modern disk drives
| to design a less restrictive redundancy scheme.
The delayed parity scheme (DPS) implemented

on the GigaView enables the redundancy infor-
mation to be computed sometime after the data
has been written on disk. This assumes that the
single-disk reliability is high, and that some re-
cently written data may be lost in the event of a
single disk failure. The following analysis will jus-
tify the DPS approach. The mean-time to data-
loss for a RAID-5 server is given by the following
formula [7] :

MTTDL =
MTTF

N

1
MTTR

(MTTFN�1 )

where MTTDL is the disk-array Mean Time To
Data Loss,MTTF is a single-disk Mean Time Be-
tween Failure, N is the number of disks in the ar-
ray (including the parity disk) on which the data
is distributed and MTTR is the single-disk Mean
Time To Repair. The formula is written as the

product of the MTBF of the array without redun-
dancy MTTF

N
, multiplied by a term showing the

e�ect of the parity scheme. Considering a MTTR
of 1 hour, 8 disks in the array, and a MTBF of
1,000,000 hour, we get a MTTDL of 13.89 billion
hours, or 1.5 million years. Even without redun-
dancy, the MTBF of an 8-disk array is 125,000
hours or 14 years. The MTTDL of a disk-array
featuring delayed parity is given by the following
formula :

MTTDL =
MTTF

N

1

PTR

�
MTTR

(MTTFN�1 )

�
+ (1 � PTR)

where PTR (Parity Time Ratio) measures the
fraction of time during which the parity informa-
tion is available for the whole data. For example a
90%-PTR disk array is an array for which parity
on the whole data is available 90% of the time.
In this formula, the correction term consists of
two parts, corresponding to periods of time where
parity is (resp. is not) available. Considering a
PTR of 0.1, the MTTDL for an 8-disk array is
1.1 million hour, similar to the MTBF of a single
disk (over a hundred years), which is more than
su�cient.
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Figure 4: Data loss prob. vs. PTR

This theoretical analysis assumes that the loss of
a single bit amounts to a data loss. However, al-
though the delayed parity scheme does not guar-
antee total data integrity, it guarantees that most
of the data (and in most cases, the whole data)
can be recovered in the event of a single disk fail-
ure. Only some recently written data may be lost
as a result of a single disk failure.
This analysis justi�es the delayed parity redun-

dancy scheme adopted in the GigaView design.
Another approach is to study the e�ect of exter-
nal causes on data integrity. For this analysis, we
assume that an external cause (e. g. power supply
breakdown) increases the probability of disk fail-
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ure. In an n-disk system where each disk has a
probability p to fail, the probability that exactly f
disk fail P (F = f) is given by the binomial prob-
ability law : P (F = f) = Cf

np
f (1� p)n�f .

Without parity, the data loss probability is the
probability that one or more disks fail. With par-
ity (RAID server approach), the data loss prob-
ability is the probability that two or more disks
fail. With delayed parity (GigaView approach),
the data loss probability is the weighted average
of the with-parity and without-parity data loss
probabilities. We plot as a function of the sin-
gle disk failure the array data-loss loss probabil-
ity, with and without redundancy scheme. Fig-
ure 4 shows the array data loss probability in three
cases, no parity (0%-PTR), 90%-PTR, and 100%-
PTR (equivalent to RAID-5 parity). In the case
of a failure due to external causes, it con�rms that
the reliability of a GigaView with 90%-PTR is al-
most as good as a Raid server reliability.

3. GigaView performance analysis

This section analyzes through simulation the per-
formance of the GigaView image server. It de-
scribes the simulation model (section 3.1). The
performance under single request is modeled in
terms of throughput and latency (section 3.2).
The performance under multiple-request is shown
to be dependent on the single request delay and
the single request utilization (section 3.3).

3.1 Simulation model

Figure 5 describes the modeled behavior of the
GigaView. Reading a visualization window from
the GigaView consists of decomposing a window
request into extent requests. As soon as an extent
request is generated by the interface processor,
it is transferred down the appropriate transputer
link to the disk where the extent is located. The
extent is fetched from the disk and transferred up
a transputer link back to the interface processor,
where it is merged with the other extents to form
the visualization window.
The simulation model assumes that the disk

access-time, the transputer-link transfer-time,
and the transputer memory-to-memory copy-
operations obey simple linear formulas of the form
Delay = Latency + (DataSize=Throughput).

3.2 Single-request behavior

This section shows by simulation that it is possi-
ble to describe the behavior of a parallel storage

server using two numbers, latency and through-
put. This is similar to the way secondary storage
devices are described by two numbers, seek-time
and throughput.

component GigaView is
InterfaceT Interface ;
LinkT DownLink[NUMBER_OF_LINKS] ;
LinkT UpLink[NUMBER_OF_LINKS] ;
DiskT Disk[NUMBER_OF_DISKS] ;
procedure Read (WindowT window) ;

end GigaView ;

procedure GigaView.Read (WindowT window) is
begin

Interface.Decompose (window, ERs) ;
foreach ER in ERs do

-- ER : extent request
DownLink[ER.Link].Transfer (ER) ;
Disk[ER.Disk].Access (ER, Ext) ;
UpLink[ER.Link].Transfer (Ext) ;
Interface.Merge (Ext, window) ;

end foreach ;
end GigaView.Read ;

Figure 5: Simulation model

The approach is to measure the delay of the paral-
lel storage server for increasing visualization win-
dow sizes, to linearize the delay using a least-
square �t (Mathematica), and get a formula of
the type :

AccessTime = Latency +
RequestSize

Throughput

The GigaView architecture performance is sensi-
tive to the extent allocation scheme. In particu-
lar, the extent size and the row o�set have to be
chosen carefully to reach the best performance.
As shown in section 2.4., an extent size of 128-
by-128 pixels and an extent row o�set of 3 are
e�ective for a wide range of visualization win-
dow sizes and optimum for a visualization win-
dow size of 512-by-512 pixels. In this experiment,
the T800 transputers are modeled with a memory
bandwidth of 18MBytes/s and each communica-
tion link has a throughput of 1.6MBytes/sec. The
disks are T800-Quantum-SCSI2, whose seek-time
and throughput have been measured experimen-
tally at respectively 20msec. and 2.28MBytes/sec.
The linearization approach has proved partic-

ularly e�ective, regardless of the data allocation
and the architecture of the system. Using the lin-
ear model of the performance of the GigaView, it
is easy to demonstrate the e�ect of the number of
disk-nodes in the architecture on the performance
of the system. Figure 6 shows the access-time to
a visualization window of increasing sizes for 4
architectures : 1-disk-node, 2-disk-node, 4-disk-
node and 8-disk-node architecture.
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Figure 6 shows that latency decreases and
throughput increases as the number of disk-
nodes increases. With a T800-based architecture,
adding more disk-nodes ceases being bene�cial,
since link communication bandwidth limits overall
performance. Beyond 8 disk-nodes, the through-
put increases only marginally and the latency does
not decrease.
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Figure 6: GigaView single request delay
(T800-based architecture, simulation results)

It is possible to get a precise idea of the maxi-
mum number of disk-nodes the architecture sup-
ports by carrying out a single single-request ex-
periment. The key concept is that of component
utilization, de�ned as the ratio between a given
component's active-time and the total simulation
time. The component utilization is a simulation
result, together with individual operation delays.

The simulation consists of requesting a single
512-by-512 3-byte-pixel visualization window, on
a 4-disk-node T800-based architecture. In a 4-
disk-node architecture, the average disk-node uti-
lization is 86%, the links are 42%-utilized, and the
interface processor is 33%-utilized. The ratio be-
tween disk-node- and link-utilization is 0:86

0:42
' 2.

This suggests that an 8-disk-node architecture
provides an equal utilization of disk-nodes and
links. The utilizations of disks and links in an
8-disk architecture are equal at 66% : the 8-disk
architecture is said to be balanced. Simulations
show that above 8 disks the throughput does not
increase. Balancing the architecture should there-
fore be a design target.

The utilization data for the 8-disk architecture
also shows that the maximum component utiliza-
tion decreases signi�cantly when stepping up the
architecture from 4 to 8 disk-nodes. This explains
why the delay of an 8-disk architecture (0.218s for
a 512-by-512 3-byte-pixel visualization window) is
more than half the delay of a 4-disk architecture

(0.332s). Changing the data allocation scheme to
improve the utilization by decreasing the extent
size does not improve performance : the overhead
due to the larger number of extents negates the
e�ect of the improved data allocation.

3.3 Multiple-request behavior

This section describes the behavior of the Gi-
gaView under multiple requests. In order to pro-
vide a reference point, this study compares the
behavior of the GigaView under multiple-request
to the behavior of an abstract �xed-service-time
server. It shows that, due to internal pipelining,
the GigaView sustains higher throughput than the
�xed-service-time server. The amount of addi-
tional throughput depends on the single-request
utilization of the disk array.

Simulation characteristics. Requests to the
GigaView represent a Poisson process. This
means that individual requests are independent
and that the number of requests in a given time
interval only depends on the length of that in-
terval. The interval between requests therefore
follows an exponential distribution. The load
on the system is expressed in terms of requested
throughput. In our simulations, all users request
a 512-by-512 3-byte-pixels visualization window
(786 KBytes). Therefore, a requested through-
put of 3MBytes/sec. corresponds to 4 window re-
quests per second. The Poisson process hypothe-
sis also ensures that, for a given load, the number
of users requesting windows from the system has
no e�ect. Only the requested throughput a�ects
the average response time of the system. For a
given system architecture, each simulation con-
sists of requesting 5000 visualization windows at
random positions in an image, for a given load.
Each con�guration is simulated for 20 loads cho-
sen in the range of loads sustainable by the archi-
tecture. The result of each simulation is the delay
average over the 5000 requests. For these simula-
tions, the architecture consists of T9000 transput-
ers and Quantum-SCSI-2 disks. Since the T9000
transputers were not yet available at the time of
submission, their performance was conservatively
estimated at 36MBytes/s memory bandwidth and
8MBytes/s link transfer rate. The Quantum-
SCSI-2 latency and throughput are measured ex-
perimentally at 20msec. and 2.23MBytes/sec.

Fixed service-time server. The �xed-service-

time server provides a reference point for the
GigaView simulations. Its only property is its
service-time, equal to the service-time of a single
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visualization window request. If a new request oc-
curs while a request (the current request) is being
served, the new request is delayed until the cur-
rent request is completely served. Requests to the
reference server follow the same distribution as
requests to the GigaView. For example, a T9000-
based 4-disk-node GigaView architecture satis�es
a 512-by-512 3-byte-pixel visualization window re-
quest in 0.305 sec. The maximumthroughput sus-
tainable by the �xed-service-time server is (MST
= maximum sustainable throughput) :

MST =
SRS

SRD
=

768KBytes

0:305sec:
= 2:62MBytes=sec:

where SRS is the Single Request Size and SRD

is the Single Request Delay. Figure 7 shows the
performance results of the GigaView. The con-
tinuous line represents the GigaView performance
(delay average), whereas the crosses represent the
performance of the �xed-service-time server (de-
lay average).
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Figure 7: Performance under multiple requests
(T9000-based architecture)

Figure 7 shows that the performance of the Gi-
gaView is superior to the performance of a �xed-
service-time server. This result is not di�cult to
explain. During a single-request experiment, no
component of a 4-disk-node GigaView architec-
ture is used more than 90% of the time. Therefore,
under multiple-request, some amount of internal
pipelining occurs, making the GigaView able to
sustain higher loads than the �xed-service-time
server.
One can match the behavior of the �xed-service-

time server and the GigaView by scaling the x-
axis of the �xed-service-time server performance
curve by a factor equal to the inverse of the single-
request utilization of the GigaView. This suggests
that the GigaView MST must be de�ned as :

MST '

SRS

SRD
�

1

SRU

where SRU is the Single Request Utilization. In
this formula, the single-request size is a simula-
tion parameter ; the single-request delay and uti-
lization are simulation results. The formula holds
true regardless of the single request size. A single
single-request simulation is enough to evaluate an
architecture's maximum sustainable throughput.

E�ect of the number of disk-nodes. Figure 8
shows the e�ect of the number of disk-nodes on
the performance of the GigaView. Adding disk-
nodes to the architecture improves the delay of
each request and the GigaView's ability to sustain
higher loads.
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Figure 8: E�ect of the number of disk-nodes
(T9000-based architecture)

Consider a requested throughput of 6 MBytes/sec.
The average delay for a 12-disk-node architec-
ture is around 400msec, whereas a 16-disk-node
architecture satis�es requests on average within
200msec, i. e. an improvement by a factor of 2.
This seems to be in contradiction with the single
request analysis of the same architecture.

The single-request analysis applied to a T9000-
based architecture (Figure 9) shows that the max-
imum throughput is reached for a 12-disk-node
architecture. The 16-disk-node architecture o�ers
very little bene�t over the 12-disk-node architec-
ture, in terms of single-request throughput or ac-
cess delay. The major di�erence between the two
architectures lies in the utilization of 12-disk and
16-disk architectures under single-request. In a
12-disk-node architecture, disk-node components
are utilized on average 76% of their time, and in
a 16-disk-node architecture, they are used on av-
erage 61% of their time.

Using the MST formula introduced earlier, we
�nd that the maximum sustainable throughputs
are 2.98 MBytes/s (respectively 5.97 MBytes/s,
9.04 MBytes/s, 11.94 MBytes/s) for a 4-disk (re-
spectively 8-disk, 12-disk, 16-disk) architecture.
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Although the single request throughput does not
increase above 12 disks, the maximum sustainable
throughput under multiple requests increases lin-
early with the number of disks, for up to 16 disks.
Above 16 disks, the interface processor becomes
saturated and the maximum sustainable through-
put does not increase anymore.
As the throughput approaches the MST,

the access delay increases exponentially. At
6MBytes/sec, the 12-disk architecture is closer to
its MST than the 16-disk architecture. Hence the
access delay is much higher for the 12-disk archi-
tecture.

number of disks 4 8 12 16

delay (ms) 354 189 143 135
latency (ms) 123 75 95 44
thr. (MB/s) 4.01 7.97 12.8 11.8
utilization (%) 93 87 76 61
MST (%) 2.98 5.97 9.04 11.94

Figure 9: GigaView single-request analysis
(T9000-based architecture)

4. Measured performance comparisons

This section compares the access delays of four
storage systems. The �rst con�guration is an
actual SparcClassic workstation and its local
disk and the second con�guration is an actual
RAIDER-5 system connected to a Sparc server
1000. The third system is an actual RAID level-3
system connected to a Cray Y-MP. The fourth
system is an actual 4-disk-node GigaView sys-
tem. The SparcClassic local disk is a 1GB Quan-
tum with SCSI interface, 10msec seek-time and
2.93MBytes/sec. sustained throughput. The
RAIDER-5 system is a RAID-5 architecture con-
sisting of (4+1) WREN-9 disks having a latency
of 12.9 msec. and a wide SCSI-2 interface. The
RAID level-3 system consists of 10 disks (8 + 2
spare) Hitachi DK-516-15.
The experiment consists of transferring visual-

ization windows of increasing sizes from disk(s)
to host memory, and measuring the transfer
times. All architectures run MDFS, the multi-
dimensional �le system. The image from which
the visualization windows are selected is 3072-by-
2048 3-byte pixels in size, and is divided in 128-
by-128 extents. On the �rst three con�gurations
(single-disk station and the two RAID servers),
the entire data is experimental.
For the GigaView performance measurements,

it is assumed that transferring a visualization win-
dow from disk to host is a two-stage pipeline. The

�rst stage of the pipeline transfers rows of extents
from the disks to the GigaView server interface
processor memory. The second stage transfers
rows of extents from the server interface processor
memory to the host memory.
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Figure 10: Experimental results

The access delay is a combination of (1) actual

delays measured on the GigaView system (trans-
fer of the whole visualization window between the
disks and the GigaView interface processor) and
(2) a conservative estimate of the transfer delay of
one row of extents between the GigaView interface
processor and the host memory. The formula giv-
ing the estimation of the SCSI bus transfer time
is :

RowOfExtentSize

SCSIthroughput
=

l
ImageWidth
ExtentWidth

m
�ExtentSize

5 � 106

The fact that the GigaView performance is su-
perior to the RAID systems performance can be
traced to the fact that the GigaView has an
excellent control over extent allocation, which
could not be achieved on the tested RAID-III and
RAIDER-V systems. To achieve the best visu-
alization window access times, it is necessary to
control precisely the disk allocation of each image
extent.

5. Applications

The authors consider two application �elds for the
GigaView image servers : geographical informa-
tion systems, and medical imaging. Both �elds
require large amounts of pixmap data, as well as
the ability to de�ne relationships between vari-
ous pixmaps (hypermedia document). Both �elds
also require the ability to display the information
stored on the server. Multimedia techniques [6]
can be used to provide the best presentation of
the data.
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5.1 Geographical information systems

(GIS)

The EPFL and BSI Engineering develop civil en-
gineering network planning facilities based on the
superimposition of networks (road, gas, electric-
ity) and scanned topographic maps.
Experience acquired during exhibitions and in-

teractions with potential users led us to the con-
clusion that the Gigaview must support various
layers of information such as orthophotos, scanned
1:25'000 topographic maps, 1:5'000 local maps,
and 1:500 cadastral maps. For reference, topo-
graphic (resp. cadastral) maps scanned at 500
dpi covering the whole of Switzerland represent
37.5GBytes (resp. 27.5GBytes) uncompressed. In
order to pack sparse scanned maps of a signi�-
cant region onto a disk array of reasonable size (16
disks for example), there is an imperative need for
using lossless compression techniques.
The GigaView uses several lossless compression

algorithms tuned to the kind of data stored on
disk. The algorithms are variations of the run-
length coding algorithm and are optimized to pro-
vide high-speed software decompression, at the ex-
pense of compression e�ciency.
Scanned topographic maps consist of 1-byte

pixels. The BRL1 algorithm recognizes uniform
sequences and divides each map in two kinds of
runs : compressed uniform runs, and uncom-
pressed runs. Scanned cadastral maps are pre-
dominantly white and very sparse bitmaps. They
are compressed using two versions of a lossless
compression algorithm called BRL2 and BRL3,
working at the byte level. The BRL2 algorithm
divides bitmaps in three kinds of byte runs : runs
of black bytes ; runs of white bytes ; runs of gray
bytes. The BRL3 algorithm takes into account
the fact that in most cases, black and white runs
are followed by a single gray byte : Each black
or white run consists of several identical bytes fol-
lowed by a single gray byte. In addition, the com-
pression algorithms combines short white runs be-
tween two gray runs into a single longer gray run,
to speed up decompression.
The compression and decompression facilities

are integrated into the server's �le system. The
data access pipeline, i. e. the path from the com-
pressed data on disk to a visualization window on
the GigaView interface processor consists of four
steps : moving the required compressed-image ex-
tents from disk to its disk-node processor cache ;
decompressing the extents on the disk-node pro-
cessor, and storing the uncompressed extents back
in the disk-node processor cache ; transferring the

uncompressed extents from the disk-nodes to the
server interface processor ; and merging the de-
compressed extents into the visualization window
bu�er. The four steps are pipelined for extents
extracted from the same disk node.

The authors evaluated the three decompres-
sion algorithms on three processor architec-
tures : sparc-sun4m processor (in Sparc5 work-
stations) ; sparc-sun4c processor (in Sparc IPC
workstations) ; T800 transputer (Figure 11).
The delays of each algorithm are measured
on each architecture, for windows of vary-
ing sizes. The delay curves are linearized
and the slope of the linearized curve repre-
sents the algorithm throughput. The Sparc5
workstation is able to decompress at around
10MBytes/sec (40MBytes/sec peak), the Spar-
cIPC at 2.5MBytes/sec (9MBytes/sec peak), and
the T800 transputer (which has no internal cache)
at the rate of 900KBytes/sec (2.5MBytes/sec
peak).

architecture
BRL1
bytemap

BRL2
bitmap

BRL3
bitmap

sparc-sun4m 12.50 9.90 12.35
sparc-sun4c 2.31 2.51 2.70
t800 0.91 0.91 0.92
compression factor 4.06 4.57 4.57

Figure 11: BRL decompression performance
(MBytes/sec.)

The authors also tested the 4-disk Gigaview ar-
chitecture connected to a MacIntosh computer,
for compressed and uncompressed maps, and for
various zoom factors (Figure 12). A zoom factor
of n is achieved by selecting one in n2 pixels in
a decompressed image. The experiment consists
for each zoom factor to extract visualization win-
dows of increasing size. When the zoom factor is
increased, the visualization window sizes are not
changed, and consequently, the size of the data
fetched from the disks is increased. The experi-
ments are done in compressed and uncompressed
mode. In compressed mode, the compressed data
is extracted from the disk, decompressed, and
merged into the uncompressed visualization win-
dow. In uncompressed mode, the data is uncom-
pressed throughout the experiment. Figure 12 re-
ports four results as a function of the zoom fac-
tor : the interface processor (SIP) throughput in
compressed mode, the total disk-node through-
put in compressed mode, the SIP throughput in
uncompressed mode, the total disk-node through-
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put in uncompressed mode. The total disk-node
throughput is the sum of the uncompressed-data
throughput through each disk-node.

In uncompressed mode, the current SCSI-
MacIntosh interface limits the SIP throughput at
660KBytes/sec. At the disk-node level however,
the throughput can reach up to 7.66MBytes/sec.,
enabling a complete topographic map (128MBytes
uncompressed) to be visualized in less than
20sec. In compressed mode, the combined disk-
access and decompression throughput reaches in
the average case (typical cadastral map) 2.75
MBytes/sec, or 700KBytes/sec per processor in
the GigaView architecture ; and in the best case
(completely white cadastral map) 8MBytes, or the
same throughput as in uncompressed mode. The
next generation T9000 transputers will allow the
decompression process to be completely transpar-
ent to the user.

compr. data on disk uncompr. data on disk

zoom
SIP

(decompr.)
disks

(compr.)
SIP

(uncompr.)
disks

(uncompr.)

1 0.65 0.65 0.65 0.65
2 0.31 1.23 0.65 2.58
3 0.22 1.96 0.54 4.83
4 0.15 2.40 0.38 6.10
5 0.10 2.55 0.26 6.49
6 0.07 2.65 0.19 6.92
7 0.05 2.74 0.15 7.32
8 0.04 2.75 0.12 7.66

Figure 12: Gigaview access throughput
(MBytes/sec.)

These results show the bene�ts of integrating de-
compression into the data access pipeline. Fur-
thermore, the image-oriented �le system can be
ported to a high-end workstation with multiple
processors and SCSI channels, while retaining ex-
cellent decompression performance.

5.2 Medical imaging

The authors acquired and stored on the GigaView
a 3-D MRI scan (Magnetic Resonance Imaging).
The image size is 100MBytes (384-by-512-by-512
1-byte pixels). Thanks to the GigaView, im-
age views orthogonal to the main axes can be
extracted at the rate of several frames per sec-
ond. The image frames through which the user is
browsing come directly from the disk, without the
costly operation of preloading them in memory.

For this application, the 3-D images are divided

in 3-D extents, which improve the locality of both
disk and memory accesses. This feature is essen-
tial as access times depend almost completely on
access locality. Let's assume an image width (X-
axis), height (Y-axis), and depth (Z-axis) of W ,
H, and D pixels ; a visualization window width
and height of w and h ; and an extent size of e
pixels.

XY

Z

Figure 13: MRI scan and 3-D extents

Consider �rst the case where the 3-D images are
stored as a set of 2-D images (X-Y planes stacked
along the Z-axis, top of Figure 13). In this format,
an extent (i. e. a few KBytes of data with good
locality) has a width of W and a height of � =
e=W . To fetch a visualization window along the
XY plane requires accessing an extent for every �
lines in the visualization window. Along the XZ
plane, it requires accessing an extent for every line
in the visualization window. Along the YZ plane,
it requires accessing one extent for every � pixel
in a visualization window line.

More formally, accessing images along the XY
(resp. XZ, YZ) plane requires h

�
(resp. h, resp.

w �
h
�
) extent accesses. To give some numbers, as-

sumingW, H, D at 2048 pixels, w, h at 512 pixels,
e at 32768 pixels, a single extent access-time at
20msec and a single disk, we get an access-time of
160msec (resp. 10.24s, 327.68sec) along the XY
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(resp. XZ, YZ) plane. The access anisotropy is
large. On the other hand, if we consider cubical
extents, the number of extent accesses is identical
along all 3 planes ( w

3
p
e
�
h
3
p
e
). With the same im-

age and visualization window, the access time be-
comes 5.12 sec. along any axis. Moreover, access
to contiguous planes will be much faster, as the
relevant extents can be maintained in disk-node
cache. For example, 32 frames can be visualized
in the same 5.12sec. If we consider an 8-disk ar-
chitecture, the access time drops below 1sec.

Thanks to 3-D extents, the amount of data read
from the disk depends only on the visualization
window size. This last feature is essential, consid-
ering for example that the 3-D scan of a complete
human body represents about 24GBytes of data
(2048-by-2048-by-2048 3-byte pixels).

Figure 14: 3-D visualization of MRI scan

The authors are developing visualization algo-
rithms that can be implemented e�ciently on
the GigaView architecture. These algorithms are
based on the extraction, rotation and projection
of planes of arbitary direction in the 3-D reference
image (Figure 14).

6. Conclusion

This paper has presented the design, evaluation
and applications of the GigaView multiproces-
sor multidisk image server. The GigaView is a
dedicated multiprocessor architecture connected
through a standard SCSI-bus to a workstation. It
can interactively display 2-D and 3-D pixmap im-
ages accessed simultaneously from several disks.
The division of data in extents gives excellent lo-
cality to random accesses of 2-D and 3-D pixmap
images. The MDFS �le system enables data ac-
cess and processing to be pipelined, allowing for
example decompression to be performed almost

transparently to the user.
Future research aims at adapting the GigaView

concept to multi-processor multi-disk worksta-
tions. Research will evaluate the modi�cations
required to the �le system in order to achieve the
performance of the current GigaView server on a
standard UNIX multiprocessor platform.
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