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Abstract:
Scheduling policies are proposed for parallelizing data intensive particle physics analysis ap-

plications on computer clusters. Particle physics analysis jobs require the analysis of tens of
thousands of particle collision events, each event requiring typically 200ms processing time and
600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first
view, particle physics jobs seem to be easy to parallelize, since particle collision events can be
processed independently one from another. However, since large amounts of data need to be
accessed, the real challenge resides in making an efficient use of the underlying computing re-
sources. We propose several job parallelization and scheduling policies aiming at reducing job
processing times and at increasing the sustainable load of a cluster server. The complexity of
each policy is analysed as a measure of the scalability of the system.

Since particle collision events are usually reused by several jobs, cache based job splitting
strategies considerably increase cluster utilisation and reduce job processing times. Compared
with straightforward job scheduling on a processing farm, cache based first in first out job splitting
speeds up average response times by an order of magnitude and reduces job waiting times in the
system’s queues from hours to minutes.

By scheduling the jobs out of order, according to the availability of their collision events in
the node disk caches, response times are further reduced, especially at high loads. In the de-
layed scheduling policy, job requests are accumulated during a time period, divided into subjob
requests according to a parameterizable subjob size, and scheduled at the beginning of the next
time period according to the availability of their data segments within the disk node caches. De-
layed scheduling sustains a load close to the maximal theoretically sustainable load of a cluster,
but at the cost of longer average response times. We also propose an adaptive delay schedul-
ing approach, where the scheduling delay is adapted to the current load. This last scheduling
approach sustains very high loads and offers low response times at normal loads.

We analyse the benefits of pipelining computation and accesses to tertiary storage and to the
local disk caches. Pipelining tends to increase the throughput of jobs and allows the system to
sustain higher loads.

Finally we analyse the complexity of the different scheduling algorithms both in terms of space
and time. The system is highly scalable and supports a cluster of up to several tens of thousands
of nodes.

Keywords: High-energy physics; particle collision analysis; cluster computing; data intensive
computing; data distribution; cache-based job splitting; delayed scheduling; adaptive delay
scheduling; pipelining; scheduling complexity.

1 Introduction

We are interested in parallelizing concurrent data intensive ap-
plications on clusters of PCs. The data intensive application we

consider is a particle collision analysis software used in high en-
ergy physics experiments. The LHCb experiment at the Euro-
pean Laboratory for Particle Physics (CERN) faces the issue of
analysing several petabytes of data distributed across the world.
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Data is stored on tapes using Castor [7], a tertiary mass stor-
age system manager developed at CERN that completely hides
the tape archives from the user by caching data on large disk
arrays. Data retrieval time from tertiary mass storage is about
three times slower than the corresponding data processing time.

There are many strategies for scheduling parallel applications
on a cluster of PCs [18, 2, 13, 1]. However, these strategies are
generally not applicable to data intensive applications which are
arbitrarily divisible [5], which access partly overlapping data
segments and whose data needs to be loaded from tertiary stor-
age. On the other hand, strategies focusing on data retrieval
[15, 4] deal mainly with I/O throughput without considering
job distribution and scheduling issues. Kadayif et al. address
the problem of data aware task scheduling but only for a unique
CPU [12].

We present new paradigms that aim at optimising the par-
allelization and scheduling of jobs on a cluster of PCs for
data-intensive applications. The proposed parallelization and
scheduling policies rely on job splitting, disk data caching, data
partitioning [16], out of order scheduling as well as on the con-
cept of delayed scheduling. The time and space complexity
analysis of the proposed scheduling policies is studied carefully
leading to a measure of the scalability of our policies. The gain
of I/O and CPU pipelining is analysed for the proposed schedul-
ing policies as well as the consequence on the original physics
code.

In Section 2, we present the context of this work, i.e. the
LHCb experiment at CERN and its computing and data access
requirements. We introduce the simulation tools and the simu-
lation parameters used to evaluate and compare the scheduling
policies. In Section 3, we present simple first come first served
job parallelization and scheduling policies. In Section 4, we in-
troduce out of order job scheduling and data replication policies.
In Section 5, we propose a delayed scheduling policy optimis-
ing the resources of the system. Delayed scheduling may have
disadvantages for end users but allows to sustain considerably
heavier loads. In Section 6, we propose an adaptive delay strat-
egy that allows to minimise user waiting time at low and normal
loads and to optimise the utilisation of the computing resources
at high loads. In Section 7, we show the influence of pipelining
I/O and CPU on the different scheduling policies. Both network
I/O and disk I/O are considered. In Section 8, we analyse the
time and space complexities of the proposed scheduling poli-
cies. In Section 9, we draw the conclusions.

2 Context and Tools

The present work is based on studies made at CERN in the con-
text of the LHCb [8] experiment. Let us first present the particle
collision event analysis problem and its associated computing
and data access requirements.

2.1 The LHCb experiment

LHCb [8] is the name of one of the future Large Hadron Col-
lider (LHC) experiments. Its primary goal is the study of the so
called CP Violation [9]. This physical theory suggests that, in

the world of subatomic particles, the image of a particle in a mir-
ror does not behave like the particle itself [6]. One of the funda-
mental reasons of this effect is the existence of the bottom-quark
and its cousin, the top-quark. The LHCb experiment intends to
study the bottom-quark, in the form of the B-meson. Particles
such as this meson are produced when colliding other high en-
ergy particles, accelerated protons in the case of LHC. These
collisions produce hundreds of new particles among which the
physicists try to detect B-mesons in order to measure their pa-
rameters and to deduce their behaviour e.g. the way they decay.

2.2 The computing requirements

Parameters of the particles produced by the LHCb detector are
obtained by analysing the huge amount of data coming out of
the experiment, approximately of a few terabytes per second, 24
hours a day.

However, most of the acquired experiment data is irrelevant.
Nevertheless, about one petabyte (1015 bytes) of data per year is
detected as being potentially interesting and recorded on tapes.
These tapes are analysed off-line by the community of physi-
cists. This analysing process requires substantial CPU power
as well as access to several terabytes of data per analysis job.
Therefore, it is necessary to parallelize the data analysis pro-
grams.

The parallelization is facilitated by the nature of the process-
ing patterns and of the corresponding data segments. Data seg-
ments comprise a succession of “small”, fully independent col-
lision events (around 600KB per event). Event processing con-
sists of scanning and analysing the events one by one and of
creating corresponding statistics. The event analysis output is
very small. It comprises a set of histograms which can be easily
merged when carried out on several nodes in parallel. Merg-
ing and transferring the results requires therefore a negligible
effort. Since events can be analysed independently one from
another (no data dependency), event analysis does not induce
inter-node communications.

2.3 Simulation Framework

We needed a simulation framework allowing to develop and test
different job parallelization and scheduling policies before run-
ning them on a real computing cluster. Since no efficient soft-
ware adapted to our needs is available, we created our own sim-
ulation tools. Existing general purpose simulation tools [17, 11]
simulate communications between nodes and are therefore too
slow to simulate days or weeks of particle collision event pro-
cessing.

Since particle collision event processing does not induce
communications between computing nodes, we only take into
account the communication time related to data transfers. The
simulation framework (Fig. 1) simulates the behaviour of a
cluster of PCs (CPU + memory + disk) connected via a high
speed network (typically Gigabit Ethernet) to a shared tertiary
storage device (e.g. the CASTOR system at CERN).

Cluster management and job scheduling are carried out on a
dedicated node called “master node”. The job parallelization
and scheduling software may run both on the simulated and
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Figure 1: Architecture of the simulated cluster

on the target system (production environment). It implements
a plugin model, enabling new scheduling policies to be easily
added.

Due to the available CPU power limitations, the simulations
are carried out at a reduced scale. The total data space is reduced
from 2 PB to 2 TB (unless specified) and the number of nodes
in the cluster from 10000 to 10 or 20 nodes, in addition to the
master node (except for the complexity studies).

2.4 Parameters of the simulation

In real computing clusters, important parameters are CPU
speed, node memory, disk space, disk throughput, etc. Within
our simulation framework, we made the following assump-
tions :

• The processing node memory is considered to be infinite
since we only run a single job or subjob per processor at
any given time. We therefore expect the node memory to
be always large enough.

• Processing nodes are single CPU computers and all nodes
are identical.

• Processing power requirements are expressed in terms of
single CPU seconds.

• Disk throughput is 10 MB/s.

• The node disk cache size is either 50 GB, 100GB or
200GB.

• The tertiary storage system is accessed through Castor [7].
This system caches tape data on disk arrays. We therefore
do not take the tertiary storage system data access latency
into account.

• Throughput from tertiary storage to each node is 1 MB/s.

• The total data space accessible by the high energy physics
analysis jobs is 2 TB.

• The default number of processing nodes in the cluster is
10. Simulations were also carried out for 5 and 20 nodes
and lead to similar results. Thus, we only present the case
of 10 nodes.

• Jobs are typical high energy physics analysis jobs. They
consist of a large collection of events, 40000 events on av-
erage. The number of events follows an Erlang probability
distribution with parameter equal to 4. Each event requires
200 ms CPU processing time and access to 600 KB of data.

• The events accessed by a given job are contiguous. The
data segment they form starts at a random position within
the dataspace. The distribution of the job start points
within the dataspace is homogeneous except for two re-
gions, representing together 10% of the total data space
but incorporating 50% of the start points. Such a distri-
bution mimics the fact that the fraction of the data associ-
ated with some very interesting events is accessed far more
frequently than the remaining data. This start point distri-
bution yields the data utilisation curve shown in Figure 2.
The probability of having two jobs with overlapping data
is around 6.5%. Note that this probability would be two
times smaller with a uniform distribution of start points.
When jobs have overlapping segments, the average size of
the overlapping region is half the average size of the data
segment associated to a job, i.e. 12 GB.

• Job requests arrive randomly, with an exponential distribu-
tion of intervals between arrival times. The mean number
of arrival jobs per time (cadence) depends on the consid-
ered load.
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Figure 2: Start point and data utilisation distribution

3 First come first served scheduling policies

The proposed scheduling policies rely on the following basic
principles :

• Once started, a job never hangs. Therefore, at least one
dedicated node is allocated to it.

• Jobs are started in a first come first served order in order to
ensure a fair treatment of user requests.

Keeping these principles in mind, we analyse the speedup
that can be obtained with load balancing strategies such as sim-
ple job splitting and cache oriented job splitting.
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3.1 Processing farm oriented job scheduling

The simplest scheduling policy relies on the processing farm
paradigm. This is the policy in use at CERN for scheduling jobs
on a computing cluster comprising hundreds of nodes. Jobs are
queued in front of the cluster and are transmitted to the first
available node. This node remains dedicated to that job until
its end. No disk caching is performed. All data segments are
always transferred from tertiary storage when needed.

This simple scheduling algorithm is well studied and under-
stood. A mathematical model can be established which de-
scribes the cluster behaviour as a special case of a M/Er/m
queueing system [14]. We simulate the processing farm ori-
ented job scheduling policy as a reference for judging the per-
formance of the proposed more advanced parallelization and
scheduling policies.

3.2 Job splitting

Since jobs contain tens of thousands independent events, they
may be split into subjobs running in parallel on different nodes
of the cluster. Job splitting occurs when new nodes become
available and would remain idle, i.e. no new jobs are in the
queue. The job splitting scheduling policy ensures that the max-
imum possible number of nodes is used at any time. Data seg-
ments are only requested from tertiary storage when they are
needed i.e. when the corresponding event analysis code is be-
ing executed. Job splitting induces therefore no data replication.
The job splitting scheduling policy is described in Table 1.

The job splitting policy performs always better than the sim-

Table 1: The job splitting scheduling policy
Upon job arrival

• If some nodes are idle, the new job is split into subjobs of equal
sizes, one per idle node. All subjobs are launched in parallel.
To avoid too small jobs, we do not split beyond a minimal job
size (10 events).

• If no node is idle but some job(s) is/are running in parallel on
several nodes, one node is released by the job having the largest
number of nodes per event to process. The corresponding sub-
job is suspended and the new job is launched on the released
node.

• If there are as many jobs running as nodes, the new job is
queued.

Uponsubjob end(but not job end)

• If there are suspended subjobs within the same job, one of them
is activated and runs on the node becoming free.

• Otherwise the node is allocated to an already running job. The
largest subjob running on the cluster is split into two equal
parts, one of them being launched on the free node. Again,
jobs below a minimal size are not split.

Upon job end

• If there are queued jobs, the first queued job is run.

• Otherwise the free node is allocated to an already running job,
as in the case ofsubjob end.

ple processing farm oriented job scheduling policy. The job
processing time is always lower compared with the processing
farm approach since there are always as many jobs running as
in the processing farm approach and since job splitting reduces
the job processing time. In both approaches, all data segments
are transferred from tertiary storage.

3.3 Cache oriented job splitting

The job splitting scheduling policy remains very close to the
processing farm approach since the disks of the processing
nodes are not used for data caching. By always caching data
arriving from tertiary storage on node disks, we improve the ef-
fectiveness of job splitting. We try to schedule jobs on those
nodes which store, at least partly, their corresponding data seg-
ments. This strategy leads to the new cache oriented job split-
ting policy detailed in Table 2.

Cache oriented job splitting offers on average more perfor-
mance than simple job splitting since it takes advantage of disk

Table 2: Details of the cache oriented job splitting policy
Upon job arrival

• The new job is split into subjobs depending on the content of
node disk caches : data processed by a given subjob should
always either be fully cached on a node or not cached at all.
Again, there is a lower limit on the smallest job size.

• If some nodes are idle, they are given the most suitable subjob
(a fully cached subjob if such a subjob exists). If there are not
enough subjobs for all nodes, they are further subdivided. If
there are too many subjobs, the ones that cannot immediately
be scheduled are suspended.

• If no node is idle but some job(s) is/are running in parallel
on several nodes, one selected node is released by a selected
job. Node and job selection are performed so as to maximise
cached data access. We try to replace a subjob working with
non cached data by the new job or one of its subjobs, working
on cached data.

• If there are as many jobs running as nodes, the new job is
queued.

Uponsubjob end(but not job end)

• If there are suspended subjobs within the same job, one of them
is activated on the node becoming free. The chosen subjob is
the one having the largest amount of data cached on that node.

• Otherwise the node is allocated to an already running job. The
subjob that is split is the one for which the caching benefit is
the largest.

Upon job end

• If some jobs are in the queue, the first one is taken and run.

• Else if there are suspended subjobs, the most suitable one is
activated.

• Otherwise an already running subjob is split, as carried out in
case ofsubjob end.

The scheduler maintains the job and subjob queues as well as the
state of all disk caches in the cluster. When needing new disk cache
space, it deallocates the least recently used cached segments.
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caches. Not every single job terminates earlier since the order-
ing may change but, in the general case, the average time a job
spends in the system is reduced. Furthermore, the cluster is bet-
ter utilised and therefore capable of sustaining slightly higher
loads.

3.4 Simulation results

Two variables define the performance of a scheduling strategy,
theaverage waiting timeand theaverage speedup, both a func-
tion of the clusterload.

The waiting time is the time spent between job submission
and beginning of job processing. It is interesting to compare it
with the average time needed to run a simple isolated job on a
single processing node without cache. In our context, the aver-
age single job single node processing time without disk cache
is 32000 seconds, i.e. almost 9 hours.

Thespeedupof a job is the single job single node processing
time in processing farm oriented job scheduling divided by the
job processing time in the parallel system when scheduled ac-
cording to the current policy. Theprocessing timeis defined as
the time between the effective start of job processing, i.e. start
of processing of the first part of the job, and the end of job pro-
cessing, i.e. end of processing of the last part of the job. Thus,
the processing time may include periods where the job or part
of its subjobs are suspended.

The speedup is larger than one if there is a gain in terms of
processing time. Two main factors contribute to the speedup :
parallelization of jobs by job splitting and data caching. The
parallelization is maximised when each job is subdivided into
as many subjobs as available nodes. The performance improve-
ment due to parallelization is thus less or equal to the number
of nodes, i.e. 10 in our cluster configuration. Data caching is
maximised when data is always read from disk caches instead of
tertiary storage. In our context, the performance improvement
due to maximal data caching is slightly larger than 3. Therefore
the maximal overall speedup that can be reached is 30.

The loadof the cluster is measured in terms of mean number
of job arrivals per hour. The maximal load of a cluster corre-
sponds to the load sustainable when all processors run at 100%
cpu utilization and data is accessed from disk caches only. In
our context (0.2 s CPU and 0.06 s disk I/O per event, 40000
events per job and 10 nodes), the maximal load is 3.46 jobs per
hour.

Hereinafter, all measures make the assumption that the clus-
ter runs in steady state. We do not take into account the startup
period of the cluster, when empty disk caches are filled.

Figure 3 gives the average speedup and waiting time for dif-
ferent loads and for each of the scheduling policies described
so far, including different cache sizes for the cache oriented job
splitting. The curves on the graph are cut at high loads when the
system leaves the steady state and becomes overloaded. When
overloaded, the notion of average waiting time does not make
sense anymore since jobs are accumulating and the waiting time
grows to infinity.

The results show that the job splitting policy improves the
performance, especially when the load is not too high. The
cache size in the cache oriented job splitting policy appears to be
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Figure 3: Average speedup and waiting time for different
scheduling policies, different cache sizes and different load
levels for a system comprising 10 processing nodes

decisive. The simulation shows that the maximal data caching
speedup factor (i.e. 3) is reached for a disk cache size of 200GB
(in Fig. 3, compare the job splitting with the cache oriented pol-
icy at low loads). For smaller caches, the gain in performance
compared with the non cache-oriented job splitting is approxi-
mately proportional to the size of the disk cache.

Besides being vertically shifted, the waiting time curves are
similar one to another. As foreseen, the policies providing a
higher speedup induce a lower waiting time. Increasing the
cache size decreases the job waiting time from days to hours.

4 Data distribution and data replication

In Section 3, we introduced a cache based job splitting policy
ensuring a high degree of fairness by running the jobs in a first
in first out order.

Let us study what can be gained by relaxing this constraint
and analyse to what extend a certain degree of fairness can still
be reached. Our hypothesis is that the usage of cache may be
improved if we let jobs that find useful data in the cache execute
before jobs that have to load their data from tertiary storage.

5



4.1 Out of order job scheduling

We define a new scheduling policy relying on out of order job
scheduling that aims at making a maximal usage of node disk
caches. Table 3 describes the out of order job scheduling policy.

Table 3: Details of the out of order job scheduling policy
Each node maintains a queue of subjobs. These subjobs only need
data that is cached on their node. An extra queue contains subjobs
with no cached data.
Upon job arrival

• When a job enters the cluster, it is split into subjobs so as to
ensure that each subjob is either fully cached on a node or not
cached at all. Jobs are not split beyond a minimal size.

• Subjobs with cached data are immediately run if the node is idle
or if it is running a subjob without cached data. In that case, the
former subjob is suspended and placed back at the first position
of the queue where it came from (queue of subjobs with no
cached data or a specific node queue).

• The remaining subjobs with cached data are queued on the
nodes where their data is cached.

• If some nodes are still idle, they are fed with the subjobs having
no cached data. These subjobs may be split in order to feed all
nodes.

• Remaining subjobs with no data cached (if any) are put in the
“no cached data” subjob queue.

Whenever one or several node(s) become(s) available

• If the node has subjob(s) waiting in its queue, the first subjob is
run.

• Otherwise a subjob waiting in the “no cached data” subjob
queue is run. In case several nodes are available and there are
not enough subjobs in the queue, subjobs may be further split.
The lower limit on the size of subjobs also applies here.

• If some nodes are still available (no subjobs at all in the special
queue or too small ones to be split), they will take work from
the most loaded nodes. By doing this, some subjobs that had
cached data will be run on nodes that don’t have the data. Thus,
the subjobs are split so as to ensure that the two subjobs termi-
nate around the same time. The new subjob incorporates a flag
specifying that a subjob with cached data may take precedence
over it in the future (see second point above).

This scheduling policy does not guarantee fairness i.e., ac-
cording to the availability of cached data segments, the job exe-
cution order is modified. One may imagine a succession of jobs
where a given job having no data in cache would never be exe-
cuted. In order to ensure a minimal degree of fairness, we add
an extra feature. Whenever the waiting time of a given job in the
queue of jobs with no data cached exceeds a given maximum (2
days in our context), the job is run with a higher priority. The
first available node executes this job before running any other
job or subjob. When the cluster is not overloaded, such an event
occurs very seldom since there will always be a time point at
which the queues become empty and jobs with non cached data
may be launched. It typically occurs for less than 0.5‰ of the
jobs.

This out of order job scheduling policy clearly optimises the

global job throughput by maximising accesses to data from disk
caches. However, isolated jobs may have an exceptionally long
waiting time.

 0

 5

 10

 15

 20

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4  2.6

A
v

er
ag

e 
S

p
ee

d
u

p

Load (jobs/hour)

Cache Oriented - 50 GB
Cache Oriented - 100 GB
Cache Oriented - 200 GB

Out of order scheduling - 50 GB
Out of order scheduling - 100 GB
Out of order scheduling - 200 GB

1week

1 day

1 h

1 mn

1 s

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

A
v

er
ag

e 
W

ai
ti

n
g
 T

im
e

Load (jobs/hour)

Single job, single node
average processing time

Cache Oriented - 50 GB
Cache Oriented - 100 GB
Cache Oriented - 200 GB

Out of order scheduling - 50 GB
Out of order scheduling - 100 GB
Out of order scheduling - 200 GB

Figure 4: Average speedup and waiting time for cache-
oriented job splitting and out of order scheduling policies

Figure 4 gives the average speedup and waiting time for the
out of order job scheduling policy. As in Figure 3, the curves
are cut at high loads when the cluster becomes overloaded, i.e.
when queues start growing indefinitely.

Figure 4 shows that the out of order scheduling policy per-
forms on average much better than the cache oriented job split-
ting policy both from a cluster utilisation and a user point of
view. For the same amount of cache and under the same load,
we obtain a much higher speedup and an average waiting time
which is an order of magnitude lower. The server also sus-
tains far larger loads, especially in the case of large caches. The
degradation of the speedup at the proximity of the maximal load
is excellent.

Regarding the possibly longer waiting time for individual
jobs, Figure 5 shows the typical waiting time distribution for
the out of order scheduling policy near the maximal sustainable
load. The worst-case waiting time is one to two days, depending
on the cache size. This is acceptable since the single job single
node average processing time is 9 hours. The waiting time dis-
tribution curves characterise the out of order scheduling policy.
Arriving jobs can be classified into two categories : either they
have cached data and can overpass the other jobs (left part of the
curves) or they have no cached data and are overpassed (right
part of the curves).
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4.2 Data replication

One may think that for high loads the previous scheduling algo-
rithm may be further improved by performing data replication
between the nodes of the cluster.

Whenever a node is overloaded and other nodes take work
from it without having the corresponding data in their cache,
it is pretty inefficient to grab the data again from the tertiary
storage system. It is better to read the data directly from the disk
of the overloaded node and copy it onto the local node disk.

However, such a replication strategy has drawbacks. The
replication of the data segment onto the new node requires an-
other data segment to be removed from the disk cache. The
removed data segment may have been useful for future jobs.
Thus, replicating a data segment when using the replicated data
segment only once is not worthwhile. It is therefore preferable
to directly read the data segment from the other node and use it
without replication.

Replication should take place when the cost of not replicat-
ing is larger than the cost of replication [3, 10]. Applying this
principle, we adopted the following strategy. Whenever a node
works on a data segment that is cached on another node, the data
segment is remotely read from the other node. By default, a data
segment read from a remote node is not put in the cache of the
new node. A data segment is replicated only when the cost of
not having replicated it from the beginning exceeds the cost of
the replication. This information is obtained by keeping in each
node the number of remote accesses to its data segments. In our
context, data replication is carried out only on data items that
are accessed for the third time.

Out of order job scheduling with and without data replication
are compared in Figure 6. Basically, there is no difference : data
replication does not improve our scheduling algorithm.

The reason for the poor behaviour of data replication appears
clearly if one tries to analyse the consequences of the out of or-
der scheduling policy in respect to the distribution of data across
the different nodes. The scheduling algorithm, taking advantage
of job or subjob independence, always tries to use all available
nodes whenever a job arrives. This leads to a situation where
jobs are always split onto many nodes. As an example, the first
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Figure 6: Gain in speedup and waiting time by considering
replication versus no replication of data items for the job
out of order scheduling algorithm

job of each busy period will be split onto all nodes. Even jobs
starting on a single node will, after some time, take advantage
of the nodes released by other terminated jobs.

Therefore, there is never a large continuous segment of data
residing within a single node disk cache. A large data segment
is always split onto several nodes. When a new job requiring
a large data segment arrives, it will be immediately split onto
several nodes, ensuring a high degree of load balancing.

The case where a node is overloaded compared with other
nodes, i.e. where data segment replication would improve the
performance, occurs very seldom. The detailed analysis of the
simulation reveals that data replication is used in less than 1‰
of the job arrivals.

5 Toward cluster-optimal scheduling

We consider a policy to be optimal from a cluster utilisation
point of view if it is able to sustain a larger load than any other
policy. In our context, the load is defined as the mean num-
ber of job arrivals per time interval, all other conditions being
identical.

With this definition of optimality, one can enumerate the
properties of an optimal scheduling policy. The maximal load
occurs when all data is cached and all nodes are fully utilised.
This however can never happen if the total disk cache in all
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nodes is less than the total data size. Thus an optimum can
be achieved if data is loaded at most once from tertiary stor-
age. An optimal behaviour supposes that the scheduler has a
complete knowledge of all future jobs in order to schedule jobs
before their data segments are removed from the cache. In other
words, an optimal policy is an off-line policy.

5.1 Delayed scheduling

The previous statement does not help much in an on-line con-
text. But it shows a tendency : the more we know about future
jobs, the better we can schedule them.

This leads to the definition of adelayed scheduling policy
where several jobs are scheduled at fixed time intervals. Time
is divided into periods of equal size during which jobs are ac-
cumulated without being scheduled. They are then scheduled
at once at the end of the period and processed during the next

Table 4: Details of the delayed scheduling policy
Each node maintains a queue of subjobs. These subjobs only need
data that is cached on their node. An extra queue contains meta-
subjobs with no cached data. A meta-subjob is an aggregation of
subjobs requiring overlapping data segments.
At the end of a period, all waiting jobs need to be scheduled. Jobs
are scheduled as follow :

• Each job is split into subjobs so as to ensure that each subjob
data segment is either fully cached on a node or not cached at
all. There is a lower limit on the subjob size.

• Subjobs with cached data are queued on the corresponding
nodes.

• The other non-cached subjobs are further split as follows :

– A list defining data segment start and end points of sub-
jobs is built

– Points creating stripes below half the “stripe size” are re-
moved. Points are also added so as to ensure that no stripe
is above the “stripe size”

– The final list of points is used to split the subjobs into
subjobs having a number of events equal to or lower than
the stripe size.

• Non cached subjobs working on the overlapping data segments
are gathered into a single meta-subjob. Note that the size of the
meta-subjob data segments is defined by the stripe size.

• Meta-subjobs are queued according to their arrival time so as to
introduce fairness in their order of execution. The arrival time
of a meta-subjob is defined as the earliest of its subjobs arrival
times.

Once the queues are filled, a new period starts during which the sub-
jobs are processed as follow :

• Nodes run in priority the subjobs located in their private queue.

• If a node’s queue is empty and the node becomes idle, it
pops the first meta-subjob from the queue of non cached meta-
subjobs and places every subjob contained in it into its queue.
By construction, these subjobs are all requiring a partially com-
mon contiguous data segment which is not present on the node
and which will be loaded from tertiary storage.

period. A data segmentstripe sizeis also defined as being the
largest acceptable size of a data segment associated to a subjob.
We use different values for the stripe size, ranging from 200 to
25000 events. Table 4 describes the delayed scheduling policy.

The goal of the delayed scheduling policy consists in loading
the data from tertiary storage only once during a given period.
In addition, the “stripe size” parameter controls the average size
of a subjob and thus on how many nodes a job may be dis-
tributed.

5.2 Results and comparison with the out of order schedul-
ing policy

The comparison between the out of order and the delayed
scheduling policies is not obvious since they don’t try to achieve
the same goal. The out of order scheduling policy, despite its
name, is still pretty fair concerning the job execution order.
On the contrary, the delayed scheduling policy only focuses on
cluster utilisation optimisation. The average speedup will thus
be lower since many jobs requiring non cached data may stay
idle during long periods while other jobs are running on cached
data (no fairness). For the same reason, their waiting time will
also be worse. In addition the waiting time becomes longer due
to the fact that jobs have to wait until the end of a period before
being scheduled. This extra “period” delay is not included in
the waiting time shown in the figures.
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Figure 7: Speedup and waiting time (period delay excluded)
of the delayed scheduling policy for different delays (cache
size 100 GB, stripe size 5000 events)
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Figure 7 shows the results of the simulation for delayed
scheduling with different “period” delays. As in Figure 3, the
curves in Figure 7 are cut at high loads when the cluster be-
comes overloaded i.e. when queues start growing indefinitely.
For comparison purposes, the out of order scheduling policy is
also shown. Delayed scheduling behaves poorly both in terms
of average speedup and average waiting time. On the other
hand, it allows to sustain very high loads, especially if the “pe-
riod” delay is large (up to 1 week for 9 h jobs). However the
total waiting time becomes really high if one takes into account
the “period” delay.

The influence of the stripe size on the delayed scheduling al-
gorithm performance is presented in Figure 8. It shows a very
clear improvement in term of speedup for small striping val-
ues and no influence at all on the average waiting time. This
reinforces the idea that the parallelization potential is better ex-
ploited with smaller stripe sizes. A larger average speedup al-
lows to sustain higher loads.
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cluded) of delayed scheduling for different stripe sizes
(cache size 100 GB, period delay 2 days)

A summary of the maximal sustainable loads under different
period delays, cache sizes and stripe sizes is given in Figure 9.
We can observe an almost linear dependency of the maximal
load with respect to both the delay and the stripe size. The more
we wait and the finer we split the jobs, the larger the maximal
load we can sustain. The simulation experiments show that a
maximal load of 3 jobs per hour can be reached by using 200
gigabytes of disk cache, 1 week of delay and a stripe size of 200
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delay and the stripe size (stripe size on the left : 5000 events,
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events. This maximal load can be compared with the maximal
theoretical load of 3.46 jobs per hour. It is close to 3 times the
load of 1.1 jobs per hour sustained by processing farm schedul-
ing without disk caching (see sections 3.1 and 3.4).

6 Adaptive delay scheduling

As shown in the previous section, large period delays allow to
sustain much higher loads at the cost of excessive waiting times
for the end-users.

We define here a new adaptive delay policy that aims at min-
imising the waiting time, while sustaining the current load. This
policy makes use of the performance parameters shown in Fig-
ures 7, 8 and 9 in order to choose the minimal “period” delay
that allows to sustain the current load.

Figure 10 shows the performance of adaptive delay schedu-
ling compared to the out of order scheduling policy. As in pre-
vious figures, the curves are cut at high loads when the cluster
becomes overloaded. As expected, the use of delayed schedul-
ing allows the adaptive delay policy to sustain loads that the out
of order scheduling policy cannot sustain.

At low loads and for small stripe sizes, the adaptive delay
policy is performing in terms of speedup as well or slightly bet-
ter than the out of order scheduling policy. At these low loads,
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Figure 10: Speedup and waiting time (delay included) of
the adaptive delay policy for different stripe sizes (cache 100
GB) compared with the out of order scheduling policy

the “period” delay is actually reduced to zero. The counterpart
is a little overhead (up to 1h) in the average waiting time. How-
ever, this overhead is not really significant when compared to
the single job single node average processing time (9h).

One may wonder why there is still a difference between the
out of order scheduling policy and the delayed policy at low
loads (where the “period” delay is zero). This is a consequence
of the different data distribution strategies. In the out of or-
der scheduling policy, the data distribution is a side-effect of
the parallelization that occurs when computing nodes are idle.
However priority is given to starting new jobs over paralleliz-
ing (splitting) running jobs. In the delayed scheduling policy,
in most of the cases, the data distribution is triggered by a pre-
defined stripe size. Thus, for small stripe sizes, the level of
parallelization of delayed scheduling is higher, leading to larger
speedups. On the other hand, since jobs are in most cases split
into subjobs running in parallel, and since only one subjob runs
on one node at a given time, the number of concurrently running
jobs becomes smaller, leading to longer waiting times.

7 Pipelining processing and I/O operations

In the previous sections, we considered that I/O operations are
performed serially, i.e. processing operations can operate on
data after the disk accesses have been carried out. However

modern computing systems allow to asynchronously perform
I/O and processing operations and to hide the shortest of the
two activities. We consider two types of pipelining :

• pipelining of tertiary storage access and computation : the
access to tertiary storage and the processing will be per-
formed asynchronously

• pipelining of local disk I/O, tertiary storage access and
computation : reading data segments from the disk caches
is pipelined with the processing activities.

7.1 Pipelining accesses from tertiary storage and event
processing

The computation of a given event can be carried out in paral-
lel with the loading of the next event from the tertiary storage
(if the next event is not cached). With this strategy, we expect
to be able to hide completely the computation activity for non
cached events. The theoretical speedup for an event read from

tertiary storage is
TCPU+TI/O

TIO
= 0.2+0.6

0.6 = 1.33, i.e. a performance
improvement of 33%.
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Figure 11: Average speedup for different scheduling poli-
cies with and without pipelining of tertiary storage accesses,
deduced from simulations.

Figure 11 shows the improvement in speedup due to pipelin-
ing according to simulations for both the processing farm and
the job splitting policy. The theoretical value of 33% is con-
firmed for the processing farm policy : the speedup is stable at
1.33 with pipelining.

For the job splitting policy, the theoretical speedup improve-
ment of 33% is confirmed at low loads. We obtain speedup of 13
with pipelining and of 9.75 without pipelining. At higher loads,
the speedup improvement is higher than the theoretical value.
This is mainly due to a virtuous cycle starting with the reduction
of the average time spent in the cluster by the jobs. Whenever
a job spends less time in the cluster, it leaves its nodes earlier.
The other running jobs can take advantage of these nodes to in-
crease their parallelization degree and run faster. They will in
turn stop earlier, leaving even more nodes for the next jobs.

At higher loads, the speedup of the job splitting strategy de-
creases linearly with the load along the same slope as in the case
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with no pipeline. Figure 11 shows that the speedup improve-
ment of 33% at low loads becomes 50% for 0.5 jobs per hour,
100% for 0.9 jobs per hour and 300% for 1 jobs per hour. The
maximum sustainable load of the cluster using the job splitting
policy increases from 1.15 to 1.5 jobs per hour.
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Figure 12: Average speedup for the out of order scheduling
policy with and without pipelining of tertiary storage ac-
cesses for different disk cache sizes and different load levels,
deduced from simulations

Figure 12 shows the gain of pipelining for the out of or-
der scheduling policy according to simulations. The relative
speedup gain is proportional to the amount of data that is loaded
from tertiary storage. This leads to large improvements in case
of a small disk cache and no improvement at all when all data
is located within the disk caches. The maximum load supported
by the cluster is also improved in the case of small disk caches.
From a performance point of view, pipelining has the same ef-
fect on the out of order scheduling policy as increasing the disk
cache size.
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Figure 13: Average speedup for the delayed scheduling pol-
icy with and without pipelining of tertiary storage accesses
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Figure 13 shows the gain of pipelining the delayed schedul-
ing policy according to simulations. The disk cache size was
fixed to 50GB here and different delays were simulated. The
improvements are also proportional to the proportion of data

read from tertiary storage. Since the delayed scheduling pol-
icy makes a heavy use of disk caches, improvements are only
present for small delays. Note that the same simulations with
a disk cache of 100GB show no improvement at all, even for
small delays.

7.2 Pipelining of cache disk I/O

Pipelining of cache disk I/O and event processing allows to re-
duce the overall processing time of the cached events. Namely,
reading cached data from disks can be completely hidden by
event processing.

The theoretical speedup for an event read from disk is
TCPU+TI/O

TCPU
= 0.2+0.06

0.2 = 1.3. Pipelining of cache disk I/O brings
no speedup when the event is loaded from tertiary storage.
However, in such a case, pipelining from tertiary storage access
brings an important speedup. The two pipelining capabilities
are therefore complementary.

Note that disk I/O pipelining makes no sense in the case of
the computing farm and job splitting policies since, for these
policies, data segments are always read from tertiary storage.
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Figure 14: Average speedup for the out of order scheduling
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Figure 14 shows the gain of pipelining disk I/O and tertiary
storage access in the case of the out of order policy compared to
the case where only the access to tertiary storage is pipelined.
The simulations show that the gain is large for large disk caches
where most of the data is read from the disk caches while it
is small for small disk caches where data is mainly read from
tertiary storage. Since the performance gain of disk I/O pipelin-
ing is complementary to the gain obtained by tertiary storage
pipelining, the total gain in speedup due to both disk I/O and ter-
tiary storage pipelining is quite constant, around 30% as shown
in Figure 15.

8 Complexity and Scalability

The present contribution aims at optimising the scheduling of
jobs on large clusters of nodes. Since the scheduling system
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Figure 15: Average speedup for the out of order scheduling
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runs on a single central node, the scalability of the system de-
pends on the complexity of the scheduling algorithms both in
term of scheduling time and memory space.

8.1 Time complexity of the scheduling algorithms

The theoretical time complexity of each of the presented
scheduling algorithms can be derived by a careful analysis of
their implementation. Table 6 presents the main lines of this
analysis leading to the scheduling time complexities per job
summarised in Table 5. The complexities are given with re-
spect to the numbern of computing and storage nodes present
in the system.

Policy Complexity
Processing Farm O(n)

Job Splitting O(n2)
Out of order O(n

√
n)

Delayed Scheduling O(n)

Table 5: Complexities for scheduling one job according to
the different scheduling policies in function of the numbern
of nodes in the cluster

Table 5 gives the complexity of scheduling one job as a func-
tion of the numbern of nodes in the cluster. However, in a real
case, the number of jobs processed per unit of time is also de-
pendent on the number of nodes, typically proportional to it.
Taking this fact into account, theoretical complexities have to
be multiplied byn for a comparison with simulation data. Fig-
ure 16 shows the average load of the master node as a function
of the number of slave nodes under the following conditions :

1. The cluster load is proportional to the number of slave
nodes present in the cluster

2. The total data space size is proportional to the number of
slave nodes

3. For delayed scheduling, the period delay is inversely pro-
portional to the number of slave nodes. Thus the average
number of jobs arriving into the cluster within a period is
not dependent on the number of slave nodes. The delay
used in Figure 16 is one month for a one node cluster, cor-
responding to e.g. 3 days for a 10 nodes cluster and 7 hours
for a hundred nodes cluster.
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vided by the number of nodes

Figure 16 shows both the simulation data (marker lines) and
the theoretical models (dotted, without marker lines). The
scheduling time complexity gives only the slope of the lines
and their position is derived from the simulation data.

Simulations and theory match well for the job splitting and
out of order policies. In the case of the delayed policy, the load
represents both the subdivision of data into the desired stripe
size and job splitting. Thus an extra curve of simulated data
shows the time spent only in the job splitting part of the delayed
scheduling algorithm. It clearly shows that the complexity of
the job splitting part matches the theoretical complexity. How-
ever, the simulations show that the job splitting part becomes
preponderant only for a large number of nodes, around 50000.

From the theoretical extrapolations of the simulated data, the
expected maximum number of nodes that a single master node
can handle is around 5000 for the job splitting policy, around
20000 for the out of order scheduling policy and around 300000
for the delayed scheduling policy. The period delay introduced
by the delayed scheduling policy reduces the job scheduling
load for very large clusters by an order of magnitude.

8.2 Space complexity

The space complexity is bound by the amount of data needed by
the master node to schedule the jobs, namely the list of nodes
and the status of their disk caches (when applicable). The re-
quired memory space is linear with the number of nodes and
remains relatively small :
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Table 6: Single job theoretical time complexities of the different scheduling policies in function of the numbern of nodes
in the cluster.

Processing Farm

Scheduling one job requires traversing the list of nodes to find
an idle node. Scheduling complexity isO(n).

Out Of order

Upon job arrival, the new job has to be split into subjobs. Split-
ting takes caches into account by reading the content descrip-
tion of each node cache, yielding a complexity ofO(n).
When a node becomes available, a subjob needs to be split. By
looking at all of them (one per node), the complexity isO(n)
per split. The global complexity per job is thus of the order of
O(n) multiplied with the average number of splits per job, i.e.
the average number of subjobs.
Let j(t) be the number of jobs running in the cluster ands(t)
the average number of subjobs per job at time t. If the cluster is
not idle, the job splitting algorithm ensures that all nodes have
a running subjob. Thus :

∀t > 0 j(t) s(t)' n

The simulation shows thats(t) = O(
√

n) and j(t) = O(
√

n).
Therefore the scheduling complexity isO(n

√
n).

Job Splitting

Upon job arrival, the worst case requires scanning all nodes to
find the subjob to be suspended. Complexity of this case is
O(n).
Upon job or subjob end, the worst case consists in finding the
subjob to split. By looking at all of them (one per node) the
complexity isO(n) per split.
We assume here that the number of jobs in the system depends
only on the load, and is independent of the number of nodes
n. Since the jobs are parallelized across all nodes, the number
of splits per job isO(n). Since the number of splits per job is
O(n) and each split operation isO(n), the overall complexity
of single job splitting isO(n2).

Delayed Scheduling

At each new period, the new jobs are split into subjobs. Job
splitting takes caches into account by reading the content de-
scription of each node cache, yielding a complexity ofO(n).
The non cached subjobs are further split. The number of splits
per job is given by the stripe size and is independent of the
number of nodes yielding a complexity ofO(1). The overall
complexity per job is thusO(n).

• The list of nodes is not large compared with the represen-
tation of the information present in the disk caches

• The size of the representation of the information contained
in a disk cache is in the order of the cache size divided by
the stripe size. The maximal cache size being around a few
terabytes and the stripe size comprising a few events i.e. a
few megabytes, the size of the representation of cached
information is a few megabytes.

We may therefore store the information contained in two thou-
sands very large disk caches (each disk 500 GB yielding a to-
tal size of 1 PB) divided into very small stripes within 1GB of
RAM. For a regular stripe size, the scalability limitation due to
memory limitations on the master node is of the order of tens of
thousands of slave nodes in the cluster.

9 Conclusions

We propose several scheduling policies for parallelizing data
intensive particle physics applications on clusters of PCs. Parti-
cle physics analysis jobs are composed of independent subjobs
which process either non-overlapping or partly overlapping data
segments. Jobs comprise tens of thousands of collision events,
each one requiring typically 200 ms CPU processing time and
access to 600 KB of data.

We show that splitting jobs into subjobs improves the pro-
cessing farm model by making use of intra-job parallelism. By

caching data on the processing farm node disks, cached-based
job splitting further improves the performances.

The out of order job scheduling policy we introduce takes
advantage of cache resident data segments and still includes a
certain degree of fairness. It offers considerable improvements
in terms of processing speedup, response time and sustainable
loads. For the same level of performance, the typical load sus-
tainable by the out of order job scheduling policy is double the
load sustainable by a simple first in first out cache-based job
splitting scheduling policy.

We propose the concept of delayed scheduling, where the
deliberate inclusion of period delays further improves the disk
cache access rate and therefore enables a better utilisation of
the cluster. This strategy is very efficient in terms of the maxi-
mal sustainable load (50 to 100% increase) but behaves poorly
in terms of response time and processing speedup. In order
to offer a trade-off between maximal sustainable load and re-
sponse time, we introduce an adaptive delay scheduling policy
with large delays at high loads and zero delays at normal loads.
The delay is adapted to the current system load, thus trying to
optimise the response time as a function of the current load.
This adaptive delay scheduling policy aims at satisfying the end
user whenever possible and at the same time allows to sustain
high loads.

Pipelining computation and accesses to tertiary storage and
to the local disk caches further increases the performances and
allows the system to sustain higher loads.

The job scheduling complexity analysis, both in respect
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to running time and memory space shows that the proposed
scheduling policies scale to clusters comprising thousands to
tens of thousands of nodes.

The scheduling policies presented here aim at maximising the
sustainable load of a processing cluster and at reducing as much
as possible individual response times. In the future, we intend
to study mixed scheduling strategies combining period delays,
immediate processing of job requests and optimal pipelining of
data accesses to both tertiary storage and disk caches.
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