Scheduling Data Intensive
Particle Physics Analysis Jobs
on Clusters of PCs

S. Ponce

European Laboratory for Particle Physics (CERN)
Information Technology Department

CH-1211 Geneva 23, Switzerland
sebastien.ponce@cern.ch,

R.D. Hersch

Ecole Polytechniqueétktrale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
rd.hersch@epfl.ch

Abstract:

Scheduling policies are proposed for parallelizing data intensive particle physics analysis ap-
plications on computer clusters. Particle physics analysis jobs require the analysis of tens of
thousands of particle collision events, each event requiring typically 200ms processing time and
600KB of data. Many jobs are launched concurrently by a large number of physicists. At a first
view, particle physics jobs seem to be easy to parallelize, since particle collision events can be
processed independently one from another. However, since large amounts of data need to be
accessed, the real challenge resides in making an efficient use of the underlying computing re-
sources. We propose several job parallelization and scheduling policies aiming at reducing job
processing times and at increasing the sustainable load of a cluster server. The complexity of
each policy is analysed as a measure of the scalability of the system.

Since particle collision events are usually reused by several jobs, cache based job splitting
strategies considerably increase cluster utilisation and reduce job processing times. Compared
with straightforward job scheduling on a processing farm, cache based firstin first out job splitting
speeds up average response times by an order of magnitude and reduces job waiting times in the
system’s queues from hours to minutes.

By scheduling the jobs out of order, according to the availability of their collision events in
the node disk caches, response times are further reduced, especially at high loads. In the de-
layed scheduling policy, job requests are accumulated during a time period, divided into subjob
requests according to a parameterizable subjob size, and scheduled at the beginning of the next
time period according to the availability of their data segments within the disk node caches. De-
layed scheduling sustains a load close to the maximal theoretically sustainable load of a cluster,
but at the cost of longer average response times. We also propose an adaptive delay schedul-
ing approach, where the scheduling delay is adapted to the current load. This last scheduling
approach sustains very high loads and offers low response times at normal loads.

We analyse the benefits of pipelining computation and accesses to tertiary storage and to the
local disk caches. Pipelining tends to increase the throughput of jobs and allows the system to
sustain higher loads.

Finally we analyse the complexity of the different scheduling algorithms both in terms of space
and time. The system is highly scalable and supports a cluster of up to several tens of thousands
of nodes.

Keywords: High-energy physics; particle collision analysis; cluster computing; data intensive
computing; data distribution; cache-based job splitting; delayed scheduling; adaptive delay
scheduling; pipelining; scheduling complexity.

1 Introduction consider is a particle collision analysis software used in high en-
ergy physics experiments. The LHCb experiment at the Euro-
We are interested in parallelizing concurrent data intensive gpan Laboratory for Particle Physics (CERN) faces the issue of
plications on clusters of PCs. The data intensive application amalysing several petabytes of data distributed across the world.

Data is stored on tapes using Castor [7], a tertiary mass stbe world of subatomic particles, the image of a particle in a mir-
age system manager developed at CERN that completely hidesioes not behave like the particle itself [6]. One of the funda-
the tape archives from the user by caching data on large diséntal reasons of this effect is the existence of the bottom-quark
arrays. Data retrieval time from tertiary mass storage is abant its cousin, the top-quark. The LHCb experiment intends to
three times slower than the corresponding data processing tistedy the bottom-quark, in the form of the B-meson. Particles
There are many strategies for scheduling parallel applicati@ugh as this meson are produced when colliding other high en-
on a cluster of PCs [18, 2, 13, 1]. However, these strategiesengy particles, accelerated protons in the case of LHC. These
generally not applicable to data intensive applications which alisions produce hundreds of new particles among which the
arbitrarily divisible [5], which access partly overlapping datphysicists try to detect B-mesons in order to measure their pa-
segments and whose data needs to be loaded from tertiary sgoneters and to deduce their behaviour e.g. the way they decay.
age. On the other hand, strategies focusing on data retrieval
[15, 4] Qeal_ mainly with I/Q thrpughput withogt considerin%_2 The computing requirements
job distribution and scheduling issues. Kadayif et al. address
the problem of data aware task scheduling but only for a unige@rameters of the particles produced by the LHCb detector are
CPU [12]. obtained by analysing the huge amount of data coming out of
We present new paradigms that aim at optimising the p#re experiment, approximately of a few terabytes per second, 24
allelization and scheduling of jobs on a cluster of PCs fapurs a day.
data-intensive applications. The proposed parallelization andHowever, most of the acquired experiment data is irrelevant.
scheduling policies rely on job splitting, disk data caching, datevertheless, about one petabyt6'f bytes) of data per year is
partitioning [16], out of order scheduling as well as on the codetected as being potentially interesting and recorded on tapes.
cept of delayed scheduling. The time and space compleXityese tapes are analysed off-line by the community of physi-
analysis of the proposed scheduling policies is studied carefuigts. This analysing process requires substantial CPU power
leading to a measure of the scalability of our policies. The gais well as access to several terabytes of data per analysis job.
of /0 and CPU pipelining is analysed for the proposed schedtikerefore, it is necessary to parallelize the data analysis pro-
ing policies as well as the consequence on the original physicams.
code. The parallelization is facilitated by the nature of the process-
In Section 2, we present the context of this work, i.e. tlieg patterns and of the corresponding data segments. Data seg-
LHCb experiment at CERN and its computing and data accesents comprise a succession of “small”, fully independent col-
requirements. We introduce the simulation tools and the sinfigion events (around 600KB per event). Event processing con-
lation parameters used to evaluate and compare the schedulisiy of scanning and analysing the events one by one and of
policies. In Section 3, we present simple first come first servagating corresponding statistics. The event analysis output is
job parallelization and scheduling policies. In Section 4, we igery small. It comprises a set of histograms which can be easily
troduce out of order job scheduling and data replication policieserged when carried out on several nodes in parallel. Merg-
In Section 5, we propose a delayed scheduling policy optimisg and transferring the results requires therefore a negligible
ing the resources of the system. Delayed scheduling may heffert. Since events can be analysed independently one from
disadvantages for end users but allows to sustain consideraiyther (no data dependency), event analysis does not induce
heavier loads. In Section 6, we propose an adaptive delay stirster-node communications.
egy that allows to minimise user waiting time at low and normal
Ioac!s and to optimiselthe utilisation of tht_a computing resources i iation Framework
at high loads. In Section 7, we show the influence of pipelining
I/0 and CPU on the different scheduling policies. Both netwowe needed a simulation framework allowing to develop and test
I/0 and disk I/O are considered. In Section 8, we analyse tifferent job parallelization and scheduling policies before run-
time and space complexities of the proposed scheduling paling them on a real computing cluster. Since no efficient soft-
cies. In Section 9, we draw the conclusions. ware adapted to our needs is available, we created our own sim-
ulation tools. Existing general purpose simulation tools [17, 11]
simulate communications between nodes and are therefore too
2 Context and Tools slow to simulate days or weeks of particle collision event pro-
cessing.
The present work is based on studies made at CERN in the corince particle collision event processing does not induce
text of the LHCb [8] experiment. Let us first present the particl@mmunications between computing nodes, we only take into
collision event analysis problem and its associated computfggount the communication time related to data transfers. The
and data access requirements. simulation framework (Fig. 1) simulates the behaviour of a
cluster of PCs (CPU + memory + disk) connected via a high
speed network (typically Gigabit Ethernet) to a shared tertiary
storage device (e.g. the CASTOR system at CERN).
LHCD [8] is the name of one of the future Large Hadron Col- Cluster management and job scheduling are carried out on a
lider (LHC) experiments. Its primary goal is the study of the siedicated node called “master node”. The job parallelization
called CP Violation [9]. This physical theory suggests that, and scheduling software may run both on the simulated and

2.1 The LHCb experiment

Gigabit °
Switch

Scheduler

A |
aEim—

EE0HIM—

=
Master Node
Tertiar
Storfagg
Device
Figure 1: Architecture of the simulated cluster

on the target system (production environment). It implements
a plugin model, enabling new scheduling policies to be easily
added.

Jobs are typical high energy physics analysis jobs. They
consist of a large collection of events, 40000 events on av-
erage. The number of events follows an Erlang probability

distribution with parameter equal to 4. Each event requires
200 ms CPU processing time and access to 600 KB of data.

The events accessed by a given job are contiguous. The
data segment they form starts at a random position within
the dataspace. The distribution of the job start points
within the dataspace is homogeneous except for two re-
gions, representing together 10% of the total data space
but incorporating 50% of the start points. Such a distri-
bution mimics the fact that the fraction of the data associ-
ated with some very interesting events is accessed far more
frequently than the remaining data. This start point distri-
bution yields the data utilisation curve shown in Figure 2.
The probability of having two jobs with overlapping data

is around 6.5%. Note that this probability would be two
imes smaller with a uniform distribution of start points.

hen jobs have overlapping segments, the average size of
the overlapping region is half the average size of the data
segment associated to a job, i.e. 12 GB.

Due to the available CPU power limitations, the simulations
are carried out at a reduced scale. The total data space is reduce
from 2 PB to 2 TB (unless specified) and the number of nodes
in the cluster from 10000 to 10 or 20 nodes, in addition to the
master node (except for the complexity studies).
 Job requests arrive randomly, with an exponential distribu-

tion of intervals between arrival times. The mean number

of arrival jobs per time (cadence) depends on the consid-

2.4 Parameters of the simulation

In real computing clusters, important parameters are CPU ered load.
speed, node memory, disk space, disk throughput, etc. Within
our simulation framework, we made the following assump- : : :
. . L Start point i
tions : 3 Utilization -------
27k ~ /,ﬁ i
» The processing node memory is considered to be infinite 24 / / 1
since we only run a single job or subjob per processor at 21F f i 1
. . i | 100GB ¢ | 100 GB
any given time. We therefore expect the node memory to 181 === e =

be always large enough. 15} a Ll i

12 - i 3 1

Processing nodes are single CPU computers and all nodes
are identical.

09 1

Probability density in ©/oo

Processing power requirements are expressed in terms of
single CPU seconds. 0

500 1000

DataSnace (GB)

* Disk throughput is 10 MB/s.
! Hghput! Figure 2: Start point and data utilisation distribution

* The node disk cache size is either 50 GB, 100GB or
200GB.

» The tertiary storage system is accessed through Castor [7].
This system caches tape data on disk arrays. We theretorerirst come first served scheduling policies
do not take the tertiary storage system data access latency

into account. The proposed scheduling policies rely on the following basic

) , principles :
« Throughput from tertiary storage to each node is 1 MB/s.

» Once started, a job never hangs. Therefore, at least one
« The total data space accessible by the high energy physics dedicated node is allocated to it.

analysis jobs is 2 TB. » Jobs are started in a first come first served order in order to

« The default number of processing nodes in the cluster js ENSure afair treatment of user requests.

10. Simulations were also carried out for 5 and 20 nodesKeeping these principles in mind, we analyse the speedup
and lead to similar results. Thus, we only present the cdbat can be obtained with load balancing strategies such as sim-
of 10 nodes. ple job splitting and cache oriented job splitting.

3.1 Processing farm oriented job scheduling ple processing farm oriented job scheduling policy. The job

. processing time is always lower compared with the processing
The simplest scheduling policy relies on the processing faffy, anoroach since there are always as many jobs running as

paradigm. This is the policy in use at CERN for scheduling joR$he processing farm approach and since job splitting reduces

on a computing cluster comprising hundreds of nodes. Jobsige;q, hrocessing time. In both approaches, all data segments
queued in front of the cluster and are transmitted to the fitst, .- (<ferred from tertiary storage.

available node. This node remains dedicated to that job until
its end. No disk caching is performed. All data segments are _ . -
always transferred from tertiary storage when needed. 3.3 Cache oriented job splitting

This simple scheduling algorithm is well studied and underhe job splitting scheduling policy remains very close to the
stood. A mathematical model can be established which @@ocessing farm approach since the disks of the processing
scribes the cluster behaviour as a special case of a M/Ef#iles are not used for data caching. By always caching data
queueing system [14]. We simulate the processing farm cgiriving from tertiary storage on node disks, we improve the ef-
ented job scheduling policy as a reference for judging the pgictiveness of job splitting. We try to schedule jobs on those
formance of the proposed more advanced parallelization giies which store, at least partly, their corresponding data seg-

scheduling policies. ments. This strategy leads to the new cache oriented job split-
ting policy detailed in Table 2.
3.2 Job splitiing Cache oriented job splitting offers on average more perfor-

mance than simple job splitting since it takes advantage of disk
Since jobs contain tens of thousands independent events, they
may be split into subjobs running in parallel on different nodes
of the cluster. Job spllttm.g oceurs when new'nodes b(.acom?able 2: Details of the cache oriented job splitting policy
available and would remain idle, i.e. no new jobs are in the—— _
queue. The job splitting scheduling policy ensures that the maxPoniob arrival
imum possible number of nodes is used at any time. Data geg-* The new job is split into subjobs depending on the content of
ments are only requested from tertiary storage when they [are node disk caches : data processed by a given subjob should
needed i.e. when the corresponding event analysis code is be- 2ways either be fully cached on a node or not cached at all.
ing executed. Job splitting induces therefore no data replication, 92N there is alower limit on the smallest job size.
The job splitting scheduling policy is described in Table 1. « If some nodes are idle, they are given the most suitable suibjob

The job splitting policy performs always better than the sim (a fully cached subjob if such a subjob exists). If there arg not
enough subjobs for all nodes, they are further subdivided. If

there are too many subjobs, the ones that cannot immedjately
be scheduled are suspended.

Table 1: The job splitting scheduling policy - If no node is idle but some job(s) is/are running in parallel
Uponjob arrival on several nodes, one selected node is released by a selected
job. Node and job selection are performed so as to maximise
cached data access. We try to replace a subjob working|with
non cached data by the new job or one of its subjobs, working
on cached data.

 If some nodes are idle, the new job is split into subjobs of equal
sizes, one per idle node. All subjobs are launched in parallel.
To avoid too small jobs, we do not split beyond a minimal joh
size (10 events).
« If there are as many jobs running as nodes, the new job is

« If no node is idle but some job(s) is/are running in paralle| on
queued.

several nodes, one node is released by the job having the largest
number of nodes per event to process. The corresponding sub{ponsubjob endbut not job end)
job is suspended and the new job is launched on the released

d « Ifthere are suspended subjobs within the same job, one offthem
node.

is activated on the node becoming free. The chosen subjob is
« If there are as many jobs running as nodes, the new job is the one having the largest amount of data cached on that node.

queued. « Otherwise the node is allocated to an already running job.| The
Uponsubjob endbut not job end) subjob that is split is the one for which the caching benefit is
« Ifthere are suspended subjobs within the same job, one of them the largest.
is activated and runs on the node becoming free. Uponjob end

« Otherwise the node is allocated to an already running job.|The < If some jobs are in the queue, the first one is taken and run.
largest subjob running on the cluster is split into two equal
parts, one of them being launched on the free node. Again,
jobs below a minimal size are not split.

 Else if there are suspended subjobs, the most suitable gne is
activated.

. « Otherwise an already running subjob is split, as carried oyt in
Uponjob end case ofsubjob end

* Ifthere are queued jobs, the first queued job is run. The scheduler maintains the job and subjob queues as well as the

« Otherwise the free node is allocated to an already running jobstate of all disk caches in the cluster. When needing new disk ¢ache
as in the case afubjob end space, it deallocates the least recently used cached segments.

caches. Not every single job terminates earlier since the order- 20 — - - - e —
ing may change but, in the general case, the average time a job . Cache Oriemob spliting -
spends in the system is reduced. Furthermore, the cluster is bet- T Sache Ortented - 100 SB o
ter utilised and therefore capable of sustaining slightly higher 2 [T I
loads. 3 .

(= g .

o 10F Boeg va 4
3.4 Simulation results %ﬁ S =

> S - \
Two variables define the performance of a scheduling strategy, < st *x% e B . S o
theaverage waiting timend theaverage speedyjpoth a func- T T
tion of the clustetoad. e X

The waiting timeis the time spent between job submission R 08 09 ! i1 12 13
and beginning of job processing. It is interesting to compare it Load (jobs/hour)
with the average time needed to run a simple isolated job ona iweek [' ' ' T ™
single processing node without cache. In our context, the aver- Laay - x i
age single job single node processing time without disk cache 2 fﬁ?fgf%rf?gﬁﬁﬁf’né ,,,,,,,, i B g
is 32000 seconds, i.e. almost 9 hours. = o
Thespeedupf a job is the single job single node processing £ *"[. 2 i

time in processing farm oriented job scheduling divided by the § L g
job processing time in the parallel system when scheduled ac- g, s g)
cording to the current policy. Thaerocessing timés defined as E Lmn EEU e e .
the time between the effective start of job processing, i.e. start < ~ Processing farm ——

H . . . ¥ / Job splitting ---x---
of processing of the first part of the job, and the end of job pro- Sache Oriented - 50 G5 -
cessing, i.e. end of processing of the last part of the job. Thus, tsp p—w——a—u Cache Oriented - 200 GB ——=— 1
the processing time may include periods where the job or part o7 08 ?f:)ad (iolbs/houi)l 12 13

of its subjobs are suspended.
The speedup is larger than one if there is a gain in termsfiure 3: Average speedup and waiting time for different

processing time. Two main factors contribute to the speedugcheduling policies, different cache sizes and different load

parallelization of jobs by job splitting and data caching. Thevels for a system comprising 10 processing nodes

parallelization is maximised when each job is subdivided into

as many subjobs as available nodes. The performance improve-

ment due to parallelization is thus less or equal to the number

of n(_)d_es, Le. 10 in our cluster configuratiqn. Data C?‘Chingdﬁcisive. The simulation shows that the maximal data caching
maximised when data is always read from disk caches instead afo ,, factor (i.e. 3) is reached for a disk cache size of 200GB
tertiary storage. In our context, the performance |mprovem%irﬁt|:ig_ 3, compare the job splitting with the cache oriented pol-

due to maximal data caching is slightly larger than 3. TherefQrg 4 o 1oads). For smaller caches, the gain in performance

the maximal overall speedup that can be reachedis 30. :,mpared with the non cache-oriented job splitting is approxi-
Theload of the cluster is measured in terms of mean n“mbr‘ﬁ%\tely proportional to the size of the disk cache.

of job arrivals per hour. The maximal load of a cluster corre-]) _) o
sponds to the load sustainable when all processors run at 1008#€sides being vertically shifted, the waiting time curves are

cpu utilization and data is accessed from disk caches only.Sifilar one to another. As foreseen, the policies providing a
our context (0.2 s CPU and 0.06 s disk I/O per event, ao0pigher speedup induce a.lower waiting time. Increasing the
events per job and 10 nodes), the maximal load is 3.46 jobs %ghe size decreases the job waiting time from days to hours.
hour.
Hereinafter, all measures make the assumption that the clus-
ter runs in steady state. We do not take into account the startup
period of the cluster, when empty disk caches are filled.
Figure 3 gives the average speedup and waiting time for dif- Data distribution and data replication
ferent loads and for each of the scheduling policies described

so far, including different cache sizes for the cache oriented leb

splitting. The curves on the graph are cut at high loads when fRe>€ction 3, we introduced a cache based job splitting policy
system leaves the steady state and becomes overloaded. VAASH(NG @ high degree of fairness by running the jobs in a first

overloaded, the notion of average waiting time does not maRdi"St out order.

sense anymore since jobs are accumulating and the waiting timeet us study what can be gained by relaxing this constraint

grows to infinity. and analyse to what extend a certain degree of fairness can still
The results show that the job splitting policy improves thge reached. Our hypothesis is that the usage of cache may be

performance, especially when the load is not too high. Thmeproved if we let jobs that find useful data in the cache execute

cache size in the cache oriented job splitting policy appears tdiedore jobs that have to load their data from tertiary storage.

4.1 Out of order job scheduling global job throughput by maximising accesses to data from disk

) caches. However, isolated jobs may have an exceptionally long
We define a new scheduling policy relying on out of order j iting time
scheduling that aims at making a maximal usage of node dlsi '

caches. Table 3 describes the out of order job scheduling policy.

2 T T T T T T T T T

e ©O--e .
Table 3: Details of the out of order job scheduling policy sl e)
o o
Each node maintains a queue of subjobs. These subjobs only need % R
data that is cached on their node. An extra queue contains suybjobs & 36;;;\
with no cached data. PR CE S ° 1
Upon job arrival &
o
« When a job enters the cluster, it is split into subjobs so as to E . Cache Oriented - 50 GB
ensure that each subjob is either fully cached on a node qr not Cache Oriented - 100 GB
cached at all. Jobs are not split beyond a minimal size. Out of order scheduling - 50 GB &
Out of order scheduling - 100 GB ---&--
« Subjobs with cached data are immediately run if the node ig idle 0 — Quuoforgler schgduling ; 200 GB 7o',
orifitis running a subjob without cached data. In that case} the 08 112 1.4Loa];.;16(]'0b1:/h0ui') 22 24 26
former subjob is suspended and placed back at the first position
of the queue where it_ came from (queue of subjobs with no - ngggeoggﬁpe‘gt{ 150CE]
cached data or a specific node queue). . out ofcojfgfsgﬁ'gglf.ﬁﬂg 20065 -
.. . . Out of ing - 100 GB --®-
* The remaining subjobs with cached data are queued of the = %I 7 Gitof order scheduing - 200 G - 5 - T
nodes where their data is cached. o0 Single job, single node
= Jol ge processing time
« If some nodes are still idle, they are fed with the subjobs having 5 " " = T
no cached data. These subjobs may be split in order to feed all = e o -oe
nodes. % g
5 1mn 4
* Remaining subjobs with no data cached (if any) are put ir the E [
“no cached data” subjob queue. w*
Whenever one or several node(s) become(s) available s * T
. H HY Ho - H R 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Irf t:e node has subjob(s) waiting in its queue, the first subjob is Load (jobs/hour)
un.
« Otherwise a subjob waiting in the “no cached data” subjolrigure 4: Average speedup and waiting time for cache-
queue is run. In case several nodes are available and there areented job splitting and out of order scheduling policies
not enough subjobs in the queue, subjobs may be further split.
The lower limit on the size of subjobs also applies here.
« If some nodes are still available (no subjobs at all in the special Figure 4 gives the average s_peedup_and_ waiting time for the
queue or too small ones to be split), they will take work fronfout of order job scheduling policy. As in Figure 3, the curves
the most loaded nodes. By doing this, some subjobs that hagie cut at high loads when the cluster becomes overloaded, i.e.
cached data will be run on nodes that don’t have the data. Thwghen queues start growing indefinitely.
the subjobs are split so as to ensure that the two subjobs termi-Figure 4 shows that the out of order scheduling policy per-
nate around the same time. The new subjob incorporates a figgtms on average much better than the cache oriented job split-
specifying that a subjob with cached data may take precedengiy policy both from a cluster utilisation and a user point of
over itin the future (see second point above). view. For the same amount of cache and under the same load,

we obtain a much higher speedup and an average waiting time

This scheduling policy does not guarantee fairness i.e., atych is an order of magnitude lower. The server also sus-
cording to the availability of cached data segments, the job etains far larger loads, especially in the case of large caches. The
cution order is modified. One may imagine a succession of jategradation of the speedup at the proximity of the maximal load
where a given job having no data in cache would never be eiseexcellent.
cuted. In order to ensure a minimal degree of fairness, we ad@&egarding the possibly longer waiting time for individual
an extra feature. Whenever the waiting time of a given job in tfabs, Figure 5 shows the typical waiting time distribution for
gueue of jobs with no data cached exceeds a given maximunth@out of order scheduling policy near the maximal sustainable
days in our context), the job is run with a higher priority. Thiwad. The worst-case waiting time is one to two days, depending
first available node executes this job before running any otlverthe cache size. This is acceptable since the single job single
job or subjob. When the cluster is not overloaded, such an evendle average processing time is 9 hours. The waiting time dis-
occurs very seldom since there will always be a time pointtabution curves characterise the out of order scheduling policy.
which the queues become empty and jobs with non cached datdving jobs can be classified into two categories : either they
may be launched. It typically occurs for less than %8.5f the have cached data and can overpass the other jobs (left part of the
jobs. curves) or they have no cached data and are overpassed (right

This out of order job scheduling policy clearly optimises thaart of the curves).

T 20 T T T T T T T T

Oull of order slcheduling - ca(:heI 100 GB - :IL7 jobs/hodr —
Out of order scheduling - cache 50 GB - 1.44 jobs/hour ---x--- 18 F *”%l"ﬁ; B

,,,,,,,,,,,,,,,,,,,,, x ‘ 16 F - b

100 14 + Tl E

Nb jobs

10

2z
Average Speedup

NS a No replication - 50 GB —+— -
“« No replication - 100 GB ---x---
No replication - 200 GB ---*--- |
Replication - 50 GB &
Replication - 100 GB —--&--
i Replication - 200 GB ---&-
1 1 1 1 il 1 1 1 1 1 1 1 1

1h 2h 6h 12h 1day 2days 08 1 12 14 16 18 2 22 24 26
Waiting time distribution Load (jobs/hour)

Single job, !
single node!

average:
processing:
) time:

T T T T T T T T
No replication - 50 GB —+—

Figure 5: Waiting time distribution for the out of order No replication - 100 GB -

scheduling policy near the maximal sustainable load. N D reation -8 GB b

Replication - 100 GB --=--
Replication - 200 GB ---o---

4.2 Data replication

One may think that for high loads the previous scheduling algo-
rithm may be further improved by performing data replication
between the nodes of the cluster. .
Whenever a node is overloaded and other nodes take work ~ t™r 1
from it without having the corresponding data in their cache, 08 1 12 14 16 18 2 22 24 26
it is pretty inefficient to grab the data again from the tertiary Load (jobs/hour)
storage system. Itis better to read' the data directly from the dﬁbure 6: Gain in speedup and waiting time by considering
of the overloaded node and copy it onto the local node disk. yepjication versus no replication of data items for the job
However, such a replication strategy has drawbacks. T of order scheduling algorithm
replication of the data segment onto the new node requires an-
other data segment to be removed from the disk cache. The
removed data segment may have been useful for future jobs.
Thus, replicating a data segment when using the replicated d@aOf €ach busy period will be split onto all nodes. Even jobs
segment only once is not worthwhile. It is therefore preferalii@rting on a single node will, after some time, take advantage
to directly read the data segment from the other node and ug¥ fhe nodes released by other terminated jobs.
without replication. Therefore, there is never a large continuous segment of data
Replication should take place when the cost of not replickgSiding within a single node disk cache. A large data segment
ing is larger than the cost of replication [3, 10]. Applying thi$ @lways split onto several nodes. When a new job requiring
principle, we adopted the following strategy. Whenever a no@darge data segment arrives, it will be immediately split onto
works on a data segment that is cached on another node, the $f&gral nodes, ensuring a high degree of load balancing.
segment is remotely read from the other node. By default, a datdn€ case where a node is overloaded compared with other
segment read from a remote node is not put in the cache of 1RE€S, i.e. where data segment replication would improve the
new node. A data segment is replicated only when the cosPgfformance, occurs very seldom. The detailed analysis of the
not having replicated it from the beginning exceeds the costSnulation reveals that data replication is used in less tHdn 1
the replication. This information is obtained by keeping in ea®hthe job arrivals.
node the number of remote accesses to its data segments. In our
context, data replication is carried out only on data items that
are accessed for the third time. 5 Toward cluster-optimal scheduling
Out of order job scheduling with and without data replication
are compared in Figure 6. Basically, there is no difference : da¥@ consider a policy to be optimal from a cluster utilisation
replication does not improve our scheduling algorithm. point of view if it is able to sustain a larger load than any other
The reason for the poor behaviour of data replication appepadicy. In our context, the load is defined as the mean num-
clearly if one tries to analyse the consequences of the out oflagf of job arrivals per time interval, all other conditions being
der scheduling policy in respect to the distribution of data acradentical.
the different nodes. The scheduling algorithm, taking advantag&Vith this definition of optimality, one can enumerate the
of job or subjob independence, always tries to use all availapleperties of an optimal scheduling policy. The maximal load
nodes whenever a job arrives. This leads to a situation wheoeurs when all data is cached and all nodes are fully utilised.
jobs are always split onto many nodes. As an example, the firefs however can never happen if the total disk cache in all

Average Waiting Time

nodes is less than the total data size. Thus an optimum paniod. A data segmerstripe sizeis also defined as being the

be achieved if data is loaded at most once from tertiary stlargest acceptable size of a data segment associated to a subjob.
age. An optimal behaviour supposes that the scheduler ha¥eause different values for the stripe size, ranging from 200 to
complete knowledge of all future jobs in order to schedule joBS000 events. Table 4 describes the delayed scheduling policy.
before their data segments are removed from the cache. In oth@the goal of the delayed scheduling policy consists in loading
words, an optimal policy is an off-line policy. the data from tertiary storage only once during a given period.
In addition, the “stripe size” parameter controls the average size
of a subjob and thus on how many nodes a job may be dis-

tributed.
The previous statement does not help much in an on-line con-

text. But it shows a tendency : the more we know about future

jobs, the better we can schedule them. 5.2 Results and comparison with the out of order schedul-
This leads to the definition of delayed scheduling policy ing policy

where several jobs are scheduled at fixed time intervals. Time

is divided into periods of equal size during which jobs are athe comparison between the out of order and the delayed

cumulated without being scheduled. They are then scheduigfeduling policies is not obvious since they don’t try to achieve

at once at the end of the period and processed during the fé&tsame goal. The out of order scheduling policy, despite its
name, is still pretty fair concerning the job execution order.
On the contrary, the delayed scheduling policy only focuses on
cluster utilisation optimisation. The average speedup will thus
be lower since many jobs requiring non cached data may stay
ngge during long periods while other jobs are running on cached
Melita (no fairness). For the same reason, their waiting time will
O 950 be worse. In addition the waiting time becomes longer due
o %the fact that jobs have to wait until the end of a period before
eing scheduled. This extra “period” delay is not included in

. -) ‘the waiting time shown in the figures.
« Each job is split into subjobs so as to ensure that each suibjob

data segment is either fully cached on a node or not cached at

5.1 Delayed scheduling

Table 4: Details of the delayed scheduling policy

Each node maintains a queue of subjobs. These subjobs only
data that is cached on their node. An extra queue contains
subjobs with no cached data. A meta-subjob is an aggregati
subjobs requiring overlapping data segments.

At the end of a period, all waiting jobs need to be scheduled.
are scheduled as follow :

subjobs and places every subjob contained in it into its qU
By construction, these subjobs are all requiring a partially ¢
mon contiguous data segment which is not present on the
and which will be loaded from tertiary storage.

pops the first meta-subjob from the queue of non cached meta-

€ULigure 7: Speedup and waiting time (period delay excluded)
Pt the delayed scheduling policy for different delays (cache

all. There is a lower limit on the subjob size. b los T T DIPe'aé’?g ﬁ“e'%ﬁh§ .
r elayed (delay 2 days) ---x-—-

« Subjobs with cached data are queued on the corresponding By Delayed (delay 1 week) ---x-

des 10} a ¢ 1
nodes. e ;

« The other non-cached subjobs are further split as follows : 2 .l ‘)

(5] o]
— A list defining data segment start and end points of sub- %’
jobs is built @ O .]
= o}
— Points creating stripes below half the “stripe size” are re- 2 4t _
moved. Points are also added so as to ensure that no stripe \
is above the “stripe size” 2r]
— The final list of points is used to split the subjobs into o L s N P X
subjobs having a number of events equal to or lower than 1 15 i 2 25
the stripe size. Load (jobs/hour)

« Non cached subjobs working on the overlapping data segments e %
are gathered into a single meta-subjob. Note that the size ofthe | 1day oo *eo .
meta-subjob data segments is defined by the stripe size. E — x

VRN c Single job single node
Meta-subjobs are queued according to their arrival time soasto 20 . average processing time
introduce fairness in their order of execution. The arrival time 1% M///
of a meta-subjob is defined as the earliest of its subjobs afrival & hr .]
H]
times. %ﬂ
Once the queues are filled, a new period starts during which the sub- E
jobs are processed as follow : o Delayed (delay 11h) ——
o . o 5.5 Delayed (s6iay 1 wedk) -
¢ Nodes run in priority the subjobs located in their private queue. . . Out of order scheduling &

.) i i i 1 1.5 2 25

If a node’s queue is empty and the node becomes idlg, it Load (jobs/hour)

nog&e 100 GB, stripe size 5000 events)

Figure 7 shows the results of the simulation for delayed . . . : :
scheduling with different “period” delays. As in Figure 3, the 3
curves in Figure 7 are cut at high loads when the cluster be-
comes overloaded i.e. when queues start growing indefinitely.
For comparison purposes, the out of order scheduling policy is
also shown. Delayed scheduling behaves poorly both in terms
of average speedup and average waiting time. On the other
hand, it allows to sustain very high loads, especially if the “pe-
riod” delay is large (up to 1 week for 9 h jobs). However the
total waiting time becomes really high if one takes into account

T
*
L

Stripe size : 5000 events e

25

O o
=
15 4

Delayed, cache 50 GB —+—
Delayed, cache 100 GB ---x---

Maximum load (Jobs/hour)

the “period” delay. . pelitoenocs
The influence of the stripe size on the delayed scheduling al- 1day 3days Sdays 1week 10 days
gorithm performance is presented in Figure 8. It shows a very delay (hours)

clear improvement in term of speedup for small striping val- 28 ' '

ues and no influence at all on the average waiting time. This
reinforces the idea that the parallelization potential is better ex-
ploited with smaller stripe sizes. A larger average speedup al-
lows to sustain higher loads.

Dellayed, cache I50 GB —
Delayed, cache 100 GB ---%---
Delayed, cache 200 GB ---*---

26 X Rescheduling, cache 100 GB &

24+ * Period delay : 2 days B

T T T T T

Delayed, stripe 200 events —+—
Delayed, stripe 1K events ---x---
Delayed, stripe 5K events ------

5F Delayed, stripe 25K events ~&-

Maximum load (Jobs/hour)

o

S af 1 1

3

L’%‘ 5000 10000 15000 20000 25000

o 3T b Stripe size (nb Events)

on

<

9 2t . Figure 9: Maximal sustainable load of the delayed schedul-

< Fow s e ing policy with different cache sizes in function of the period
Lp ®eeg G R Ry T delay and the stripe size (stripe size on the left : 5000 events,

period delay on the right : 2 days)

0.8 1 12 1.4 16 1.8 2 22 2.4

events. This maximal load can be compared with the maximal
theoretical load of 3.46 jobs per hour. Itis close to 3 times the

(]
E load of 1.1 jobs per hour sustained by processing farm schedul-
o0 ing without disk caching (see sections 3.1 and 3.4).
.‘é]
Z
&
g 6 Adaptive delay scheduling
>
< A
g Delayed, st 200 ts ——
e beiayed, g?ffgg LK events As shown in the previous section, large period delays allow to
: yed, stri Vents ---x---
anbk © | Delayed, Stripe 25K events 5 sustain much higher loads at the cost of excessive waiting times
0.8 1 1.2 14 16 1.8 2 2.2 2.4 for the end-users_
Load (jobs/hour)

We define here a new adaptive delay policy that aims at min-

Figure 8: Average speedup and waiting time (delay ex- imising the waiting time, while sustaining the currentload. This

cluded) of delayed scheduling for different stripe sizes Policy makes use of the performance parameters shown in Fig-
(cache size 100 GB, period delay 2 days) ures 7, 8 and 9 in order to choose the minimal “period” delay

that allows to sustain the current load.
Figure 10 shows the performance of adaptive delay schedu-

A summary of the maximal sustainable loads under differdimg compared to the out of order scheduling policy. As in pre-
period delays, cache sizes and stripe sizes is given in Figurgi®us figures, the curves are cut at high loads when the cluster
We can observe an almost linear dependency of the maxitn@tomes overloaded. As expected, the use of delayed schedul-
load with respect to both the delay and the stripe size. The mimg allows the adaptive delay policy to sustain loads that the out
we wait and the finer we split the jobs, the larger the maximaflorder scheduling policy cannot sustain.
load we can sustain. The simulation experiments show that &t low loads and for small stripe sizes, the adaptive delay
maximal load of 3 jobs per hour can be reached by using 28dlicy is performing in terms of speedup as well or slightly bet-
gigabytes of disk cache, 1 week of delay and a stripe size of 260than the out of order scheduling policy. At these low loads,

20 T T

modern computing systems allow to asynchronously perform

Adapti\lle delay (Striple 200 events)I —

Adaptive delay (stripe 5K events) - I/0 and processing operations and to hide the shortest of the

Out of order scheduling ------

two activities. We consider two types of pipelining :

=
13
T

* pipelining of tertiary storage access and computation : the
access to tertiary storage and the processing will be per-
formed asynchronously

Average Speedup

* pipelining of local disk I/O, tertiary storage access and
computation : reading data segments from the disk caches
is pipelined with the processing activities.

o
T

0.5

7.1 Pipelining accesses from tertiary storage and event
' ' ' ' processing

lweek

The computation of a given event can be carried out in paral-
T lel with the loading of the next event from the tertiary storage
(if the next event is not cached). With this strategy, we expect
to be able to hide completely the computation activity for non
cached events. The theoretical speedup for an event read from

. ToputT,)
tertiary storage is=" /2 — 02106 _ 1 33 j e a performance

; To 06
improvement of 33%.

1day
Single job single node
average processing time

Average Waiting Time

1imn 27 Adaptive delay (stripe 200 events) —+— |

Adaptive delay (stripe 5K events) ---x---

* Out of order scheduling ------ T — — T
L L L L L | Processing Farm Pipelined —+— |
0.5 1 EL.5 2 25 14 Processing farm -—--x--—-
Load (jobs/hour) Ll *,‘*X Job S""‘“”J%E's"[ﬁ!{ﬂﬁg S |
‘%‘%.
Figure 10: Speedup and waiting time (delay included) of § o} e ,
the adaptive delay policy for different stripe sizes (cache 100 é g 5 .
GB) compared with the out of order scheduling policy a2 8r Fa i)
&0 a T
g 6 ., a * X‘x B
> E! o
< 4t =, . |
the “period” delay is actually reduced to zero. The counterpart .1 B o |
is a little overhead (up to 1h) in the average waiting time. How- Fg *
ever, this overhead is not really significant when compared to 0 T oz o4 o6 o8 1 12 11 1se
the single job single node average processing time (9h). Load (jobs/hour)

One may wonder why there is still a difference between the] . : :
out of order scheduling policy and the delayed policy at IOWgure 11: Average speedup for different scheduling poli-

loads (where the “period” delay is zero). This is a consequer? 8s with and without pipelining of tertiary storage accesses,

of the different data distribution strategies. In the out of o leduced from simulations.

der scheduling policy, the data distribution is a side-effect of

the paralleli_za?ior} thgt occurs When computing nodes are ?dIeFigure 11 shows the improvement in speedup due to pipelin-
However priority is given to starting new jobs over parallelizng according to simulations for both the processing farm and
ing (splitting) running jobs. In the delayed scheduling policye jop splitting policy. The theoretical value of 33% is con-

in most of the cases, the data distribution is triggered by a Pfigmeq for the processing farm policy : the speedup is stable at
defined stripe size. Thus, for small stripe sizes, the level £§3 with pipelining.

parallelization of delayed schedgling i's higher,.leading to Iarger,:'or the job splitting policy, the theoretical speedup improve-
speedups. On the other hand, since jobs are in most cases gplif; ot 3304 is confirmed at low loads. We obtain speedup of 13
into subjobs running in parallel, and since only one subjob rufigy hinelining and of 9.75 without pipelining. At higher loads,
onone node atagiventime, the number of concurrently runni@ sneedup improvement is higher than the theoretical value.
jobs becomes smaller, leading to longer waiting times. This is mainly due to a virtuous cycle starting with the reduction
of the average time spent in the cluster by the jobs. Whenever
a job spends less time in the cluster, it leaves its nodes earlier.
7 Pipelining processing and 1/O operations The other running jobs can take advantage of these nodes to in-
crease their parallelization degree and run faster. They will in
In the previous sections, we considered that I/0 operations tum stop earlier, leaving even more nodes for the next jobs.
performed serially, i.e. processing operations can operate oAt higher loads, the speedup of the job splitting strategy de-
data after the disk accesses have been carried out. Howevweases linearly with the load along the same slope as in the case

10

with no pipeline. Figure 11 shows that the speedup improvead from tertiary storage. Since the delayed scheduling pol-
ment of 33% at low loads becomes 50% for 0.5 jobs per hoiay makes a heavy use of disk caches, improvements are only
100% for 0.9 jobs per hour and 300% for 1 jobs per hour. Tpheesent for small delays. Note that the same simulations with
maximum sustainable load of the cluster using the job splittiagdisk cache of 100GB show no improvement at all, even for

policy increases from 1.15 to 1.5 jobs per hour. small delays.
‘ Nopipe -80GB 7.2 Pipelining of cache disk 1/0
#0000 Tertiary storage pipe - 50 GB -—-x-—-

O emmwaiol Teniay sioage pire- 10068 5 | Pipelining of cache disk I/O and event processing allows to re-
= e ™ Terary storage pipe - 200 G5 - 5. - duce the overall processing time of the cached events. Namely,
§ 15 2] reading cached data from disks can be completely hidden by
o ﬂ\ event processing.

% 10 , The theoretical speedup for an event read from disk is
o o n TCPU”'/O = 024006 — 1 3. Pipelining of cache disk I/O brings
< 5 x 5 i no speedup when the event is loaded from tertiary storage.
% B However, in such a case, pipelining from tertiary storage access
brings an important speedup. The two pipelining capabilities
%0 ‘ 15 25 3 are therefore complementary.
Load (]obs/hour) Out of Order policy Note that disk I/O pipelining makes no sense in the case of

the computing farm and job splitting policies since, for these

Figure 12: Average speedup for the out of order scheduling policies, data segments are always read from tertiary storage.

policy with and without pipelining of tertiary storage ac-
cesses for different disk cache sizes and different load levels,

. . 35 T T T T
deduced from simulations rtry 50285 1 G910 e 2088
30 F Tertiary storage pipe - 100 GB ---*---
Tertiary storage + disk I/O pipe - 100 GB =)
. 06] Tertian sldrre;tlgrzdltglial?oe p:pg %88 gg jigi
Figure 12 shows the gain of pipelining for the out of or- £ 25 Fecooco . y siorag P
der scheduling policy according to simulations. The relative g 2 ; |
speedup gain is proportional to the amount of data that is loaded © -)
from tertiary storage. This leads to large improvements in case & 15 . %o
of a small disk cache and no improvement at all when all data j% 0 . |
is located within the disk caches. The maximum load supported Ly
by the cluster is also improved in the case of small disk caches. 5 1
From a performance point of view, pipelining has the same ef- . ‘ ‘ ‘ ‘ ‘
fect on the out of order scheduling policy as increasing the disk 0 05 15 25 3
cache size. Load (]obs/hour) Out of Order policy
» Figure 14: Average speedup for the out of order scheduling
X Tertory store pipe, delay 11h —— pol|_cy with tertiary sto_rage plp_ellm_ng only add with bdth
12X Tertiary siorend Pipe. delay Zdays - tertiary storage and disk 1/O pipelining for different disk
\ ry storage pipe, delay 2 days & X X
NS Tertiary storag bioe. delay T week —6.- | cache sizes and different load levels

=]

Figure 14 shows the gain of pipelining disk I/O and tertiary

. storage access in the case of the out of order policy compared to
the case where only the access to tertiary storage is pipelined.
The simulations show that the gain is large for large disk caches
- where most of the data is read from the disk caches while it

Average Speedup

. g0 is small for small disk caches where data is mainly read from
0 05 1 15 2 25 3 tertiary storage. Since the performance gain of disk I/O pipelin-
Load (jobs/hour), Delayed policy - Cache 50GB ing is complementary to the gain obtained by tertiary storage

Figure 13: Average speedup for the delayed scheduling pol- pipelining, the total gain in speedup due to both disk I/O and ter-
icy with and without pipelining of tertiary storage accesses t|ary storage pipelining is quite constant, around 30% as shown

for a small disk cache and different load levels in Figure 15.

Figure 13 shows the gain of pipelining the delayed sched8l- Complexity and Scalability
ing policy according to simulations. The disk cache size was
fixed to 50GB here and different delays were simulated. Thhe present contribution aims at optimising the scheduling of
improvements are also proportional to the proportion of dgtds on large clusters of nodes. Since the scheduling system

11

35 T
30

25 - %gocoge

Average Speedup

T T
No pipe - 50 GB —+—
Tertiary storage + disk I/O pipe - 50 GB ---x---
No pipe - 100 GB ---*---
Tertiary storage + disk I/O pipe - 100 GB &

No pipe - 200 GB —-m--
Tertiary storage + disk I/O pipe - 200 GB ---&-- |

The.-
6-a

0 ! ! !
0 0.5 1 15

2 25

Load (jobs/hour), Out of Order policy

Figure 15: Average speedup for the out of order scheduling
policy with no pipelining and with both tertiary storage and
disk 1/0O pipelining for different disk cache sizes and differ-

ent load levels

3. For delayed scheduling, the period delay is inversely pro-
portional to the number of slave nodes. Thus the average
number of jobs arriving into the cluster within a period is
not dependent on the number of slave nodes. The delay
used in Figure 16 is one month for a one node cluster, cor-
responding to e.g. 3 days for a 10 nodes cluster and 7 hours
for a hundred nodes cluster.

0.1
0.01
0.001
le-04
le-05

Job splitting —+—
Out of order ---x--- |

Load of the cluster (1 = max)

1e-06 F * /7
v & _ Delayed (total) ------
¥ %x g Delayed (job spllmng_onlyg 3]
1e-07 . pa GD,.E{./‘ ™ Thecf)ry foor Jofb S(;j:)llmnzgﬂn TS
runs on a single central node, the scalability of the system de- os Xv;g,m 5/ t‘aory_l%reof;%rose?;y% n, S
pends on the complexity of the scheduling algorithms both in < 10 100 1000 10000 100000

term of scheduling time and memory space.

8.1 Time complexity of the scheduling algorithms

The theoretical time complexity of each of the present&]e
scheduling algorithms can be derived by a careful analysi
their implementation. Table 6 presents the main lines of th

Number of nodes in the cluster

Figure 16: Average load of the master node as a fraction
of the maximum load in function of the number of nodes in
cluster. The tests run on a single 2.0GHz Intel Celeron
shgpeessor, the delay for delayed scheduling is one month di-
ed by the number of nodes

analysis leading to the scheduling time complexities per job

summarised in Table 5. The complexities are given with re-
spect to the number of computing and storage nodes presem

in the system.

Policy Complexity
Processing Farm Oo(n)
Job Spilitting o(r?)
Out of order O(ny/n)
Delayed Scheduling Oo(n)

Table 5: Complexities for scheduling one job according to
the different scheduling policies in function of the numbemn

of nodes in the cluster

Figure 16 shows both the simulation data (marker lines) and
e theoretical models (dotted, without marker lines). The
scheduling time complexity gives only the slope of the lines
and their position is derived from the simulation data.
Simulations and theory match well for the job splitting and
out of order policies. In the case of the delayed policy, the load
represents both the subdivision of data into the desired stripe
size and job splitting. Thus an extra curve of simulated data
shows the time spent only in the job splitting part of the delayed
scheduling algorithm. It clearly shows that the complexity of
the job splitting part matches the theoretical complexity. How-
ever, the simulations show that the job splitting part becomes
preponderant only for a large number of nodes, around 50000.
From the theoretical extrapolations of the simulated data, the

Table 5 gives the complexity of scheduling one job as a furixpected maximum number of nodes that a single master node
tion of the numben of nodes in the cluster. However, in a retan handle is around 5000 for the job splitting policy, around
case, the number of jobs processed per unit of time is also 48000 for the out of order scheduling policy and around 300000
pendent on the number of nodes, typically proportional to er the delayed scheduling policy. The period delay introduced
Taking this fact into account, theoretical complexities have iy the delayed scheduling policy reduces the job scheduling
be multiplied byn for a comparison with simulation data. Figload for very large clusters by an order of magnitude.
ure 16 shows the average load of the master node as a function
of the number of slave nodes under the following conditions 8.2 Space complexity

1. The cluster load is proportional to the number of slaJde space complexity is bound by the amount of data needed by
nodes present in the cluster the master node to schedule the jobs, namely the list of nodes

and the status of their disk caches (when applicable). The re-
2. The total data space size is proportional to the numbemofred memory space is linear with the number of nodes and
slave nodes remains relatively small :

12

Table 6: Single job theoretical time complexities of the different scheduling policies in function of the numben of nodes
in the cluster.

Processing Farm Job Splitting
Scheduling one job requires traversing the list of nodes to fidgon job arrival, the worst case requires scanning all nodes to
an idle node. Scheduling complexity@n). find the subjob to be suspended. Complexity of this case is
o(n).
Upon job or subjob end, the worst case consists in finding the
Out Of order subjob to split. By looking at all of them (one per node) the

complexity isO(n) per split.

Upon job arrival, the new job has to be splitinto subjobs. Splijge a5sume here that the number of jobs in the system depends

ting takes caches into account by reading the content descfifyy on the load, and is independent of the number of npdes
tion of each node cache, yielding a complexityath). _n._Since the jobs are parallelized across all nodes, the number
When a node becomes available, a subjob needs to be Sp"toﬁgplits per job isO(n). Since the number of splits per joblis

looking at all of them (one per node), the complexityO&) o) and each split operation ®(n), the overall complexity
per split. The global complexity per job is thus of the order gf single job splitting isO(n?).

O(n) multiplied with the average number of splits per job, i.e.

the average number of subjobs.

Let j(t) be the number of jobs running in the cluster aig Delayed Scheduling
the average number of subjobs per job at time t. If the cluster is

not idle, the job splitting algorithm ensures that all nodes haé each new period, the new jobs are split into subjobs. |Job

a running subjob. Thus : splitting takes caches into account by reading the content de-
_ scription of each node cache, yielding a complexityOoh).
Vt>0 j(t)s(t)~n The non cached subjobs are further split. The number of splits

per job is given by the stripe size and is independent of the
number of nodes yielding a complexity 6{1). The overal
complexity per job is thu®(n).

The simulation shows tha{t) = O(,/n) and j(t) = O(\/n).
Therefore the scheduling complexity@n,/n).

» The list of nodes is not large compared with the represaraching data on the processing farm node disks, cached-based
tation of the information present in the disk caches job splitting further improves the performances.
» The size of the representation of the information containe [he out of order job §chedu|mg policy we |ntrod.uc.e takes
. . T . L vantage of cache resident data segments and still includes a
in a disk cache is in the order of the cache size divided N tai i : i
; . . . : rtain degree of fairness. It offers considerable improvements
the stripe size. The maximal cache size being around a = . . .
. . - - in'terms of processing speedup, response time and sustainable
terabytes and the stripe size comprising a few events 168 .
) . o%ds. For the same level of performance, the typical load sus-
few megabytes, the size of the representation of cad%e ble by th f order iob scheduli licv is double th
information is a few megabytes dinable yt eouto order job scheduling policy is double t' e
' load sustainable by a simple first in first out cache-based job
We may therefore store the information contained in two thosplitting scheduling policy.
sands very large disk caches (each disk 500 GB yielding a towe propose the concept of delayed scheduling, where the
tal size of 1 PB) divided into very small stripes within 1GB ofleliberate inclusion of period delays further improves the disk
RAM. For a regular stripe size, the scalability limitation due teache access rate and therefore enables a better utilisation of
memory limitations on the master node is of the order of tensthé cluster. This strategy is very efficient in terms of the maxi-
thousands of slave nodes in the cluster. mal sustainable load (50 to 100% increase) but behaves poorly
in terms of response time and processing speedup. In order
to offer a trade-off between maximal sustainable load and re-
9 Conclusions sponse time, we introduce an adaptive delay scheduling policy
with large delays at high loads and zero delays at normal loads.
We propose several scheduling policies for parallelizing ddthe delay is adapted to the current system load, thus trying to
intensive particle physics applications on clusters of PCs. Pagitimise the response time as a function of the current load.
cle physics analysis jobs are composed of independent subjbliis adaptive delay scheduling policy aims at satisfying the end
which process either non-overlapping or partly overlapping datger whenever possible and at the same time allows to sustain
segments. Jobs comprise tens of thousands of collision evehig) loads.
each one requiring typically 200 ms CPU processing time andPipelining computation and accesses to tertiary storage and
access to 600 KB of data. to the local disk caches further increases the performances and
We show that splitting jobs into subjobs improves the prafows the system to sustain higher loads.
cessing farm model by making use of intra-job parallelism. By The job scheduling complexity analysis, both in respect

13

to running time and memory space shows that the propo§&?| I. Kadayif, M. Kandemir, I. Kolcu, and G. Chen. Locality-

scheduling policies scale to clusters comprising thousands to conscious process scheduling in embedded systems. In

tens of thousands of nodes. Proceedings of the tenth international symposium on
The scheduling policies presented here aim at maximising the Hardware/software codesignSystem design methods:

sustainable load of a processing cluster and at reducing as much scheduling advances, pages 193-198. ACM Press, 2002.

as possible individual response times. In the future, we intend , .

to study mixed scheduling strategies combining period delal/sl] J- Kaplan and M. L. Nelson. A comparison of queueing,

immediate processing of job requests and optimal pipelining of cluster, and distributed computing systems. NASA Tech-
data accesses to both tertiary storage and disk caches. nical Memorandum 109025, NASA LaRC, october 1993.

http://citeseer.nj.nec.com/kaplan94comparison.html.

[14] Kleinrock. Queueing System§Viley-Interscience, 1976.
REFERENCES

[15] J. Myllymaki and M. Livny. Efficient Buffering for Con-
current Disk and Tape /0. Performance Evaluatign

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing 27/28(4):453-471, 1996

of bags of tasks in heterogeneous cluster®rbceedings
of the fifteenth annual ACM symposium on Parallel alggt6] P. Triantafillou and C. Faloutsos. Overlay striping and op-
rithms and architecturesScheduling |, pages 1-10. ACM timal parallel I/O for modern application®arallel Com-

Press, 2003. puting 24(1):21-43, 1998.

[2] S. V. Anastasiadis and K. C. Sevcik. Parallel applicatic[rl17] M. Uysal, T. M. Kurc, A. Sussman, and J. H. Saltz. A
scheduling on networks of workstationgournal of Par- performance prediction framework for data intensive ap-
allel and Distributed Computingt3(2):109-124, 1997. plications on large scale parallel machines. Piroc. of

[3] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms 4th Workshop on Languages, Compilers, and Run-time
for distributed data management. 24th Annual ACM Systems for Scalable Computers (LCR9&)ume 1511
STOG pages 39-50, 1992. of Lecture Notes in Computer Scienqeges 243-258.

Springer-Verlag, 1998.
[4] R. Bennett, K. Bryant, A. Sussman, R. Das, and J. Saltz.
Jovian: A framework for optimizing parallel I/O. IRro- [18] B. B. Zhou, R. P. Brent, D. Walsh, and K. Suzaki. Job
ceedings of the Scalable Parallel Libraries Conference ~ Scheduling strategies for networks of workstationgc-
pages 10-20, Mississippi State, MS, 1994. IEEE Com- ture Notes in Computer ScienceNCS 1459:143-157,
puter Society Press. Springer-Verlag, 1998.

[5] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisi-
ble load theory: A new paradigm for load scheduling in
distributed systemsCluster Computing, Special Issue on
Divisible Load Scheduling in Cluster Computjr@(1):7—
17, January 2003. Kluwer Academic Publishers.

[6] CERN web pages. A matter of symmetry. http://lhch-
public.web.cern.ch/lhcb-public/html/symmetry.htm.

[71 CERN web pages. The Castor project.
http://castor.cern.ch.

[8] CERN web pages. The LHCb Experiment. http:// Ihcb-
public.web.cern.ch/Ihcb-public.

[9] CERN web pages. What is CP-violation? http://Ihcb-
public.web.cern.ch/lhcb-public/html/introduction.htm.

[10] R. Fleischer and S. S. Seiden. New results for online page
replication. InProceedings of the International Work-
shop on Approximation Algorithms for Combinatorial Op-
timization (APPROX '0Q)pages 144-154. Springer Lec-
ture Notes in Computer Science, 2000. ISBN : 3-540-
67996-0.

[11] T. Galla. Cluster Simulation in Time-Triggered Real-Time
Systems PhD thesis, Technische UniveggitWien, Insti-
tut fur Technische Informatik, Treitlstr. 3/3/182-1, 1040
Vienna, Austria, 1999.

14

