PROGRAM PARALLELIZATION WITH CAP

1. Introduction

A parale program comprises generally a set of threads containing parallel processing operations
performed by the parallel program. Most parallel programs are based on the client-server (also called
master-slave) paradigm. Parallel processing is initiated by a client thread (also caled master) which
communicates with the server threads (also called daves) located in the server processing nodes. In the
case the data to be processed can be segmented in chunks, the client splits the input data into sub-parts
which are sent for processing to the server nodes. Each server computes its sub-result and sendsit back to
the client. The client merges all sub-resultsinto the final result.

Generaly, parallel programs execute in Sngle Program Multiple Data (SPMD) mode: the same program
is distributed on both the client and the server threads and at start time, every program instance checks if
it has to behave as a client or as a server, and executes accordingly either the client or the server code.

To facilitate development and debugging, a parallel program is first developed as a set of threads (also
called lightweight processes) residing within the same process. Such a program can be debugged with
standard debugging tools. In a second step, the threads are mapped to different processes running on the
same computer and the program is further tested and debugged. Finally, the parallel application is
completed by having the threads mapped onto different processes running in different computers. No
further debugging should be necessary.

Server PC's

e
S=l=Ne
ke
255
N mﬁ
8-

Fig. 1 Parallel program comprising client and server threads.

Client PC

Tl e | o Network
[[

Most operating systems supporting distributed environments, such as Unix or WindowsNT offer
primitives enabling threads running on different processing nodes to communicate with one another
(named pipes, socket based TCP-IP communication). However, developing parallel programs making
direct use of operating system threads and pipes is rather tedious. Threads need to be explicitly created
and managed and for each pair of communicating processes, a named pipe needs be explicitely created and
opened.

1.1 Message passing based parallel programming (MPI)

In order to facilite to development of parallel programs, the parallel programming community developed
the MPI message passing based programming environment. This environment offers simple

© LSP-EPFL, 1998 1

Program Parallelization with CAP

MPI_Send(buffer, count, datatype, destProcessid, Tag, communicator)
and
MPI_Receive(buffer, count, datatype, sourceProcessld, Tag, communicator, status)

communication primitivesfor transfering datalocated in a buffer from the current thread to the destination
thread. Programming at the message passing level is however difficult for the following reasons:

 two threads may comprise each different procedures communicating with each other : the only way to
distinguish between messagesis to use the Tag field (integer).

» Attheend of acomputation, the client may have to receive results simultaneously from server threads.
Thisis done by a polling function testing continuously if a message arrives from one of the server
threads. To avoid successive polling of all message sources, MPI provides the MPI__gather() commu-
nication primitive to gather messages from all present threads.

Furthermore, having only onethread running in each computer is highly inefficient: when thisthread waits
for amessage from another thread or it executes afile read or write operation, the processor remainsidle.
Trying to make the parallel program more efficient by devel oping multi-thread client and server programs
iseven more difficult: one hasto manage explicitely synchronizations and information exchanges between
threads running either on the same or on different computers.

Communication
channels (pipes)

Communication

buffers + semaphores

Communication

threads

Computation

threads

1/0 access

/
@

threads

Fig. 2 Multithread multiprocessor programs.

An alternative is to view a single running server thread as an event loop: on a given event (for example,
receiving a certain message), the thread accomplishes a certain action. To avoid any kind of thread
suspension, sending messages and accessing the disk must be performed asynchronously. A call back
procedure may be associated to the termination of an input/output step, for example reading afile. Within
the call-back procedure, the next step to be accomplished can be launched.

Processing Asynchronous
request from reply sent to clients
ptrRequest clients * *
—_—
read
op. 2 .
w[:ite % Steps to be Slngle threaq Asynch.
“WaitForMultiple file access

0 accomplished ‘

op.3 % by call-back Objects

send | [procedures
a

File transfer
done

Fig. 3 Programming an event loop: arequest correspondsto alist of stepsto be accomplished
possibly by call-back procedures.

© LSP-EPFL, 1999 2

Program Parallelization with CAP

1.2 Hiding data communication and disks accesstime

Parallel programming can only be competitive, if the potentialities of the underlying parallel hardware and
software (native operating system) are fully exploited. To offer good performances, parallel applications
need to hide communication time, i.e. thetimeto transfer the data between the client and the server threads,
the time to transfer data among the server threads and the time to transfer the results back to the client
thread. In addition, disk access times (disk read and write operations are done by DMA hardware and do
not need processing power) need also be hidden.

Transfer and disk access times can be hidden if data transfers or disk accesses are done in parallel with
computations. This can be done by pipelining data transfers or disk accesses with processing operations.
For example, an application which requires 1 second disk access time and 1 second processing time can
be executed as a pipeline comprising disk access and processing operations and take atotal of 1.1 second.

With amessage passing interface, ensuring that datatransfers are done at the same time as data processing
requires generally two communicating threads within the same address space : one thread is responsible
for communication and the other thread responsible for the computation. Both threads may synchronize
each other with an input and output message queue and appropriate synchronization semaphores (Fig. 2).
Conceiving explicitely multi-threaded parallel applicationsis difficult and error-prone. The alternative of
programming in each address space an event |oop relying on asychronous message passing and file access
primitivesis also relatively complex to achieve (Fig. 3).

2. Introduction to the CAP-based parall€elization

To develop efficient parallel programs, we need ameans of specifying aset of threads running possibly in
the same or in different address spaces (possibly on different computers), associating to each of the threads
one or severa operations, and specifying at a high level of abstraction the flow of parameters and data
between the operations located in different threads.

The Computer-Aided Parallelization framework (CAP) aims at providing exactly this functionality. It
offers the paralel application developer the capability of describing his program at a high-level of
abstraction. This high-level description is then automatically compiled into a C++ program source
incorporating all low level communication and synchronization features required to ensure (1) that
parameters and data are correctly transferred between operations located in different threads and (2) that
correct pipelining is achieved, i.e. that data is transferred or read from disks while previous datais being
processed.

In a CAP program, the application developer specifies a set of threads (keyword process), processing
operations available within each thread (keyword operations) and global variables (keyword variables) in
each thread which are maintained during thelife of thethread. The basic CAP parallel construct comprises
asplit function, an operation possibly located in one or several server threads and amerge function:

split() ..

Conput er Server[i].myOperation()

mer ge()
The split function is called p times to split the input data into p subparts which are distributed to the
different compute server thread operations (ComputeServer[i] .myOperation()) . Each operation runningin
adifferent thread ComputeServer([i] receives as input the subpart sent by the split function, processes this
subpart and returnsits subresult to the merge function. The parallel construct specifies explicitely in which
thread the merge function is executed (often in the same thread as the split function). It receives a number
of subresults equal to the number of subparts sent by the split function. Split and merge functions are
executed as many times as specified in the split function (parallel while construct) or as specified in the
parallel construct iterator (indexed parallel construct).

© LSP-EPFL, 1999 3

Program Parallelization with CAP

CAP defines a standard way of passing data as input to the split function, to take the output of the split
function and forward it asinput to an operation, to take the output of an operation and to forward it asinput
to the merge function. Data passed between split, operation and merge functions is embedded in a token
structure. Token types are defined at the beginning of the program. Here is the definition of the structure
and sequence of parameters passed to the split function, operation and merge functions.

int splitlnput (splitlnputTokenType* inputToken, /1 input token to the split function
splitlnput TokenType* previ ousToken, /1 previous token, zero if first pass
splitQut put TokenType* & out put Token, /1 output of split function created by user

)
{ ../l sequential C++ body

/'l progranmer needs to create the output Token
/1 function returns 1 if split function is to be called again, otherw se 0

}
| eaf operation ConputeServerT::myOperation()
in splitcQutput TokenType* inputP
out nergel nput TokenType* out put P
{ ../l sequential C++ body } /] attention: outputP token needs
/1l to be created by programmer

voi d mer geQut put (mer geQut put TokenType* out put Resul t,
nmer gel nput TokenType* ner gel nput)
{ ../l sequential C++ body } // outputResult generated by CAP

The programmer needs to create the output tokens of the split function and the output tokens of the
operations. CAP directsautomatically an output token to the input token of the next operation. CAP creates
the merge function output token of type mergeOutputTokenType defined by the user.

Leaf operations, split functions and merge functions are sequential procedures written in the C++
language. CAP is compositional, i.e. it enables to declare abstract high-level threads which include lower
level "real” threads. Low-level threads are mapped to operating system threads. For example, the CAP
construct residing on the client which launches the parallel execution is the high level operation
Parallel Computation which is part of the high-level thread Parallel ServerT.

process Parallel ServerT {
subprocesses :

Mai nProcessT Mai n; /1 thread that runs in the sanme address space as the main program
Conmput eServer T Conput eSer ver [NUMBER_OF _COVPUTESERVERS] ; // conpute server threads
Qperations :

Paral | el Conputation in splitlnput TokenType* inputP

out mer geQut put TokenType* out putP ;

Paral | el ServerT Parall el Server; /'l instantiation of the high-level thread

The high-level operation Parallel Computation contains a parallel while CAP construct enabling the client
to split theinput datainto partsto be sent to operations running in threads|ocated in the same or in different
address spaces, possibly on different computers (PC’s).

The parallel while construct directs the token originating from the split function according to a user
defined field {ndex) located in the token generated by the split function.

operation Parallel ServerT:: Parall el Comput ati on thread
in splitlnput TokenType* inputP merge executing result and

out mergeQut put TokenType* outputP split function function merge function itstype
o A e gecut 1/4/ o
arallel while (splitlnpudt, mergeQutput, Min, mergeQutput TokenType Result)
(Conput eSer ver [t hi sTokenP- >i ndex] . myOper ati on)
}
The index of the destination thread contained in the fre&TokenP->index can be dynamically varied
during the computation.

If the number of parallel branches is independent of the token generated by the split funotidexedn
parallel construct can be used, which requires slightly modified split and merge functions :

© LSP-EPFL, 1999 4

Program Parallelization with CAP

void splitlnput (splitlnputTokenType* i nputToken,

splitQut put TokenType* & out put Token,

int index) /1 current index of splitlnput call
{ ../l sequential C++ body }

voi d mer geQut put (mer geQut put TokenType* out put Resul t,

mer gel nput TokenType* nergel nput,

i nt index) /1 current index of nergeCQutput call
{ ../l sequential C++ body } /] output Result generated by CAP

The corresponding indexed parallel construct has the following structure

operation Parallel ServerT::Paral |l el Conputation
in splitlnputTokenType* inputP
out mergeCQut put TokenType* out put P

{
indexed (int i=0; i<NUVBER OF_PARALLEL_| TERATI ONS; i ++) /1 this is the explicit index
parallel (splitlnput, nergeQutput, Main, mergeQutput TokenType Result)
(Conput eSer ver [i Y0NUMBER_OF _COWMPUTESERVERS] . nyOQper ati on) ;

}

In the case that the operations to be executed in parallel differ one from another (e.g. in the case of
functional parallelism), athird parallel construct enables specifying custom split, custom operations and
custom merge functions for each of the parallel branches. The syntax of the parallel operation is the
following, for 4 parallel branches:

paral l el (Main, nergeQutputTokenType Result) (
(SplitlnputO, Comput er Server[0] . operation0, Mer geCut put 0)
(Splitlnputl, Comput er Server[1]. operationl, MergeCQut put 1)
(Splitlnput2, Comput er Server[2].operation2, MergeCQut put 2)
(Splitlnput3, Comput er Server[3] . operation3, MergeCQut put 3)

)i
The Main thread executes the merge functions. According to the configuration file (see below), it runsin
the same address space as the main program. The result token is Result of type mergeOutputTokenType.

The Parallel Computation high-level operation may be called from the main C++ program running in the
client (sometimes called master) thread. After making use of the results (printing them, storing them in a
file or processing them further), it is the programmer’s responsability to delete the high-level parallel
operation’s output token.

int main(int argc, char** argv)

{
splitlnput TokenType* inputP= new (splitlnput TokenType); /] create input token

mer geQut put TokenType* mai nQut put ; // define output token pointer
call Parallel Server.Parallel Conputation in inputP out mainQutput;// calling the high-level operation

/] process or display the results located in token mai nQut put
delete mainQutput; // Delete the parallel operation’s output token
return O;

}

Under WindowsNT, the program is developed in the Visual C++ environment as a single multihread
program running on a single PC. The standard Visua C++ debugger is used to debug the Cap program.

Once the program is running correctly asasingle NT process, a configuration map can be created to run

the program as several NT processes on the same PC. If the program behaves correctly, the configuration

file can be adapted to run the program on multiple PC’s. The communication between the processes rel
on a TCP/IP socket-based message passing system [Messerli98, chapter 4].

A configuration file specifies the mapping between CAP threads and underlying NT processes. A list of
NT processes (A, B, C, etc..) is defined in the seqionesses and the Cap threads defined in the section
threads are mapped to the declared NT processes.

© LSP-EPFL, 1999 5

Program Parallelization with CAP

/I mandel brot . cnf
configuration {
processes :
A ("user") ;
B ("128.178.71.141", "\\Lam | spsrvl\ Users\ Periph\etudl sp40\ CapProj ect\ Src\ mandel br ot Par . exe"

threads :
“Main" (A) ; // thread "Main" is located in the sane address space as the main program
"Server[0]" (A) ;
"Server[1]" (A ;
"Server[2]" (B) ;
"Server[3]" (B) ;
P

In the configuration file example shown above, A and B are NT processes. Process A is associated to the

PC where the program is started and process B is a server process running on the PC designated by its IP
number. The executable fileis given by itsfull path specifier. In this example, two server threads execute

on the client PC (master, named “user”) and two server threads on the server PC (slave, named with
numberl28. 178. 71. 141).

3. Afirst CAP program

Let us consider a simple program converting in parallel all lower-case letters to capitals. First, the client
creates astring with lower-case letters"a' to "z". The string is segmented into individual characters by the
split function splitinput and sent to server threads which run the leaf operation myOperation. This
sequential procedure (leaf operation) converts lower-case |ettersto capital letters. These capital letters are
merged into the final resulting string by the merge function mergeOutput. The main program main()
running on the client thread displays the resulting string.

Please read and understand program lower ToUpper Casel P.pc .

/'l 1 ower ToUpper Casel P. pc
/1 Sinmple didactic CAP Programwith "indexed parallel" construct
/1 RDH 4.8.98

const int NB_OF_CHARS=26; /'l constant in the program
paraneter int Number Of Processes = 4; /1 nunber of threads
token aTozStringT { /1 token type for input and output string
char aTozString[NB_OF_CHARS+1] ; /'l string enbedded into token
aTozStringT(); /1 constructor declaration
b
aTozStringT::aTozStringT()
{ /lconstructor: build string abcd..z
for (int i=0;i<NB_OF_CHARS;i ++) {
aTozString[i]= (char) (i+ 'a);
}
aTozString[NB_OF_CHARS] = 0; /'l terminate with zero
}
token SingleCharT {
int index; /'l current character index
char Thi sChar;
Si ngl eChar T() {ThisChar="9%";index=0;} /1 inline constructor
b

void splitlnput (aTozStringT* inputToken,
Si ngl eChar T*& out put Token,

int splitlndex) /1 gives the ordinal of the current invocation
{
out put Token = new Si ngl eCharT; /] creation of output token
out put Token->i ndex = splitlndex;
out put Token->Thi sChar= splitlndex + 'a’'; /1 current ASCI| code
}

© LSP-EPFL, 1999 6

Program Parallelization with CAP

voi d mergeQut put (aTozStri ngT* out put Resul t,
Si ngl eChar T* mer gel nput ,
i nt nergel ndex) /1 gives the ordinal of the current invocation

/1 merge function is called as many tinmes as split function was called
{ Il sequential C++ body, outputResult token is created by CAP
out put Resul t - >aTozSt ri ng[(ner gel nput - >i ndex)] = nergel nput - >Thi sChar ;

}
/'l every thread class (keyword process) needs to be decl ared

process Mi nProcessT {
oper ati ons:

b

process ConputeServerT {
oper ati ons:

myQperation in SingleCharT* inputP out SingleCharT* outputP ;
s

| eaf operation ConputeServerT::nyOperation /] operation performed on server threads
in SingleCharT* inputP
out Singl eCharT* out put P

{ Il sequential C++ body, attention: outputP token needs to be created by progranmer
out put P = new Si ngl eCharT;

out put P- >i ndex = i nput P->i ndex; /'l copy index
out put P- >Thi sChar = i nput P->Thi sChar - 0x20; /] capital letter: substract H 20
}
process Parallel ServerT { /'l declaration of high-level thread structure
subprocesses :
Mai nProcessT Mai n; /1 client thread
Conput eServer T Conput eSer ver [Nunber O Processes] ; /'l conpute server threads

operations :
Paral | el Computation in aTozStringT* inputP
out aTozStringT* outputP ;

/1 The operation Parallel Conputation contains a CAP parallel construct,

/1 for exanple the "indexed parallel" construct enabling to run the program

/1 on a given nunber of "real" ConputeServer threads,

/1 located in different address spaces, possibly on different conputers (PC s).

/1 instantiate the high |l evel process "Parallel Server"
/1 offering the high-level operation "Parall el Conputation”

Paral | el ServerT Parall el Server;

operation Parallel ServerT:: Parall el Conputation /1 defines high-level parallel operation
in aTozStringT* inputP /1 this input is passed to splitlnput
out aTozStringT* outputP /1 this output is obtained from nergeCutput
{ indexed
(int i =0 ; i < NB.OF_CHARS ; i++)

parall el (splitlnput, mergeQutput, Main, aTozStringT Result)
(Comput eSer ver [1 9%\unber OfF Processes] . nyOper ati on)

/1 the token fromthe split function is directed towards one of the 4 ConputeServer threads

}

/1 The high-1evel operation Parallel Conputati on may then be called
/1l fromthe main C++ programrunning in the client thread.

int main(int argc, char** argv) /1 main residing in client program
{
aTozStringT* inputP= new aTozStringT;
printf("input = % \n", inputP->aTozString);
aTozStringT* mai nQut put ;
call Parallel Server.Parallel Conputation in inputP out nmainCutput;
printf("output = % \n", mainQutput->aTozString);
del et e mai nQut put ; /1 1t is the programmers responsability to delete
/1 the parallel operation’s output token
return O;

© LSP-EPFL, 1999 7

Program Parallelization with CAP

O Experiment 1
Cal an MS-DOS console. Place yourself in the directory XXXX. Execute macro CapSetup.
Precompile your program by typing
cap.deb lower ToUpper Casel P
If there are no errors, you may compile your program
comp.deb lower ToUpper Casel P
If there are no errors, execute your program
lower ToUpper Casel P
Without configuration file, all threads run in the same address space in your computer.

0 Questions1

1.1. What is the content of the parallel program’s input token inputP?

1.2. How many characters are generated by a single invocation of the split function splitinput ?
1.3. What is the procedure executed by the server threads and what does it do?

1.4. How does the merging function mergeOutput generate the output string?

1.5. How many timesis the splitinput function invoked? Why?

1.6. How many times is the mergeOutput function invoked? Why?

1.7. The program incorporates 4 server threads. These threads are indexed by indices 0 to 3
(ComputeServer[0] to ComputeServer[3]). By which thread is character "f" converted to upper-
case character "F" ?

4. Developing and debugging CAP programs

To develop, compile and debug CAP programs within the Msdev Visual C++ environment, apply the
following steps

1. Makesurethat all your source files are located in a subdirectory called CapProj/Src. Let us assume
you have your source file lower ToUpper Casel P.pc in the subdirectory called CapProj/S-c. Normally,
at CAP installation time, the variable MSDEV_HOME_DIR has been set to C:\Application\Msdev or
to C:\Program Files\Dev&udio, the variable LS HOME_DIR set to z \username\Cap0.1 or to
c:\CapUser and the variable UCAP has been initialized to z\username\Cap0.1 or to C:\CapUser.
You may verify that these variables exist by clicking in the Control Panel on System and then select-
ing the Environment window. If the variables are not set, run the script CapSetup.bat located in
C:\CapUsser, either by clicking or by running it from a console.

2. Run the macroMakeCapProject |ower ToUpper Casel P lower ToUpper Casel P’from a MS-DOS con-
sole in theCapProject directory a (the directory including tiSec subdirectory). This macro gener-
ates a projedbwer ToUpper Casel P.dsp . Click on that project and MS-Dev will create a workspace
with the same naméafver ToUpper Casel P.dsw). You may then look at your workspadéew wor k-
space), open the CAP project and find your source lfikwer ToUpper Casel P.pc.

3. You may precompile your program wioild, thenCompile command. You may generate the exe-
cutable file with theBuild thenBuild lower ToUpper Casel P.exe command. By clicking on the error
messages, you directly access the corresponding erroneous source lines.

4. If your program needs an argument in the command line, you may select the $ettjags, and in
the Debug field, enter in thé’rogram argument field the argument (for example a filename or a
number, etc).

© LSP-EPFL, 1999 8

Program Parallelization with CAP

5. Torun the executable from Msdev, select Build and Sart Debug. To insert breakpoints, place the cur-
sor at the corresponding program line and type F9. You may remove the breakpoint by typing again at
the same place F9. To execute and stop at breakpoints, select Build, respectively Debug and Go.

If it isnot possible to place a breakpoint (error message from Msdev), just use printf to print at runtime the
value of avariable.

O Experiment 2

2.1. Create a project lowerToUpperCaselP incorporating file lower ToUpperCaselP.pc (see
above).

2.2. Precompile, compile and run the program lower ToUpper Casel P from Msdev and verify that
it executes correctly

2.3. Use the debugger to verify that the splitinput split function generates a correct outputToken.
Verify in the debugging window, that outputToken->ThisChar takes successivevalues’a, ', ’c,...

2.4. Use the debugger or a printf function call to verify that the merge function mergeOutput
correctly translates |lower-case characters to upper-case characters.

O Programming exercise 1: local variablesin server threads

Each thread may incorporate variables, visible by its operations. The following program lines
specify an integer variable in the ComputeServer threads:

process ConputeServerT {
vari abl es:
i nt passNunber;
operations:
myQperation in SingleCharT* inputP out SingleCharT* outputP ;

h

Modify program lower ToUpper Casel P.pc so as to convert in each server thread only in the first
two passes characters from lower-case to upper-case. Name the resulting program
lower ToUpper Casel Pvar.pc .

5. Token redirection by conditional expressions

One may want, at run time, to send or not send tokens to server threads depending on their values. With
CAP, aconditional expression enables selecting which tokens are to be sent to given server threads. All
tokens within a parallel expression are issued by a split function and are merged by a merge function.
Therefore, the tokens which are not sent to server threads are directly merged into the resulting parallel
operation output token.

5.1 Theif expression

Thefollowing program part gives an example of the conditional execution of server thread operations. The
keyword thisTokenP is always a pointer to the current token coming out from the split operation.

const int nbOf ProcessedChars=8 ;

operation Parallel ServerT:: Parall el Conputation
in aTozStringT* inputP
out aTozStringT* outputP
{

i ndexed

(int i =0 ; i < NB_OF_CHARS ; i++)

parall el (splitlnput, mergeQutput, Main, aTozStringT Result)

(i f (thisTokenP->i ndex <nbCOf ProcessedChars)
(Comput eSer ver [i 9%unber Of Processes] . nyOper ati on)

© LSP-EPFL, 1999 9

Program Parallelization with CAP

)

/1 the token fromthe split function is directed towards one of the 4
/| Conput eServer threads

}

0 Experiment 3: conditional processing by server threads

Insert the program piece shown above in the lower ToUpper Casel P.pc program, compile it and
execute it. Verify that conditional token routing works.

5.2 Theifelse expression

This expression enables redirecting a token to either one or the other compute thread operation. The
following linesillustrate an example of the ifelse expression.

indexed (int i =0 ; i < NB . OF_CHARS ; i++)
parallel (splitlnput, mergeQutput, Miin, aTozStringT Result)
(ifelse (thisTokenP->index %2 ==0)
(Comput eSer ver [i 9%unber Of Processes] . evenQper ati on)
(Comput eSer ver [i 9%unber Of Processes+1] . oddQper at i on)

)

6. Pipelining multiple server leaf operations

It is often necessary to perform several |leaf operations (sequential operations running in server threads) in
apipeline parallel manner. To continue with the present simple ASCII character conversion example, let

us assume that we would like, in a second leaf operation, to shift the character's ASCII values by a give
amount, for example by one.

The new operatioshiftChar may be declared as a second operation offered bZdahputeServerT
thread. Within the parallel program structure, the pipelining of leaf operations is shown by

Conput eServer[index1]. myQperation >-> Conput eServer[index2].shiftChar

If index1 is equal toindex2, then both operations execute in the same thread, otherwise they will be
executed in different threads.

Only the following lines of progratower ToUpper Casel P.pc need to be changed or added in order to add
the additionabhiftChar operation in the pipeline.

process ConputeServerT {

oper ati ons:
myQperation in SingleCharT* inputP out SingleCharT* outputP ;
shiftChar in SingleCharT* inputP out SingleCharT* outputP;

}

| eaf operation ConputeServerT::shiftChar
in SingleCharT* inputP
out Singl eCharT* out put P
{ Il sequential C++ body, attention: outputP token needs to be created by progranmmer
out put P = new Si ngl eCharT;
out put P- >i ndex = i nput P->i ndex; /1 copy index
out put P- >Thi sChar = i nput P->Thi sChar +1; /1 shift by one character

operation Parallel ServerT:: Parall el Conputation
in aTozStringT* inputP
out aTozStringT* outputP
{
i ndexed
(int i =0 ; i < NB_ OF_CHARS ; i++)

© LSP-EPFL, 1999 10

Program Parallelization with CAP

paral l el (splitlnput, mergeQutput, Main, aTozStringT Result)

(
Conput eSer ver [i %unmber O Processes] . myQperati on >->
Conput eSer ver [i ¥Nunber O Processes] . shi ft Char

)
.
[0 Experiment 4. conditional processing by server threads

Insert the program piece shown above in the lower ToUpper Casel P.pc program, compile it and
execute it. Verify that pipelining of operations works.

0 Questions 2

2.1. Arethe successive operations myOperation and shiftChar executed in different or in the same
address space? Explain why!

2.2. 1f wewould like, instead of shifting the character by one, to get the position of the capital letter
within the set of capital letters{A,B,C,..,Z}, what program parts need to be changed, respectively
added?

7. Thefor and while pipelined loop expressions

If several instancesof the same operation, possibly running in different compute threads need to pipelined,
i.e. one token has to repeat the same operation several times, it is possible to use a for or while CAP
expression. The number of repetitions can be made data-dependent. The following program variant
increases for each input token its ASCII value using the shiftChar operation until all ASCII values are
equal or larger €.

i ndexed
(int i =0 ; i < NB.OF_CHARS ; i++)
parallel (splitlnput, mergeQutput, Main, aTozStringT Result)
(while (thisTokenP->ThisChar< 'e’) /1 first places in char array will be 'e’

(Comput eSer ver [i %Nunber Of Processes] . shi ft Char)
)

An example showing how to shift each character by 4 positions, using the for construct

i ndexed
(int i =0 ; i < NB.OF_CHARS ; i++)
parallel (splitlnput, mergeQutput, Main, aTozStringT Result)
(for (int j=0;j<4;j++) /1 first places in char array will be 'e’

(Comput eSer ver [i ¥%unber Of Processes] . shi ft Char
)

O Experiment 5: repeated pipelined operations by server threads

Insert the first or second program piece (while or for construct) shown above in the
lower ToUpper Casel P.pc program, compile it and execute it. Verify that repeated pipelined loops
of operations work.

8. Theparallel while constuct

The parallel while construct is used instead of the indexed parallel construct described in section 2 when
an explicit index for terminating the parallel loop is not available. The termination of the parallel loop is
data dependent, i.e. dependent on data available in the split function. Once the split function decides that
the parallel while loop isto be terminated, no further tokens are sent to the parallel operations.

© LSP-EPFL, 1999 11

Program Parallelization with CAP

The split function must return 1 to be called again and return O during its last invocation. The syntax of the
split function for the parallel while constuct is the following:
int splitlnput (splitlnputTokenType* inputToken

splitl nput TokenType* previ ousToken
splitQut put TokenType* & out put Token,

)
{ ../l sequential C++ body
/] attention: outputToken needs to be created

/1 function returns 1 if split function is to be called again
/1 function returns O if there is no further invocation
/1 of the split function

}

The parallel while construct directsthe token originating from the split function according to auser defined
field (index) located in the token passed from the split function to the desired compute server thread. The
syntax is the following, using the keywords operation, in, out and parallel while:

operation Parallel ServerT:: Paral | el Wil eConput ati on
in splitlnputTokenType* inputP
out nergeCut put TokenType* out put P

{
parallel while (splitlnput, mergeCutput, Min, nergeCutput TokenType Result)
(Conput eSer ver [t hi sTokenP->i ndex] . myOper ati on)

}

The syntax of the merge function remains identical to the merge function used in the indexed parallel
construct.

As an example, the previous lower ToUpperCaselP program may be modified as follows. The split
function needs to be adapted and there is no index parameter in the merge function.
int splitlnput (aTozStringT* inputToken,

Si ngl eChar T* previ ousToken,
Si ngl eChar T*& out put Token)

{
out put Token = new Si ngl eCharT; /'l creation of output token
if (previousToken==0) { output Token->ThisChar="a';}// first tine in split function
el se {
out put Token- >i ndex = previ ousToken->i ndex + 1;
out put Token- >Thi sChar= previ ousToken- >Thi sChar + 1;
}
i f (outputToken->i ndex < NB_OF_CHARS-1) {return 1;}// means: call again split function
else {return 0;} /1 nmeans: this was the last split function
/1 call
}

voi d mergeQutput (aTozStringT* outputResult,
Si ngl eChar T* mer gel nput)
{ Il sequential C++ body, outputResult token is created by CAP
out put Resul t - >aTozSt ri ng[(ner gel nput - >i ndex)] = nergel nput - >Thi sChar ;

}

The parallel operation construct is modified as follows:

operation Parall el ServerT:: Parall el Conputation
in aTozStringT* inputP
out aTozStringT* outputP

parallel while (splitlnput, nergeQutput, Main, aTozStringT Result)
(Comput eSer ver [t hi sTokenP->i ndex%Number O Pr ocesses] . myQper ati on)

/1 the token fromthe split function is directed towards the one of the 4
/1 Conput eServer threads

}

© LSP-EPFL, 1999 12

Program Parallelization with CAP

[0 Experiment 6: using the parallel while construct

Insert the program pieces shown above in the lower ToUpper Casel P.pc program, compile it and
execute it. Verify that the program with the parallel while construct executes correctly.

9. The Sieve of Eratosthenes. an example of " parallel while" program
with many pipelined leaf operations

Let usnow look at areal problem. Real problems have their own processing structure. We will see how to
adapt the given problem structure to the available parallel CAP constructs.

The Sieve of Eratosthenes enables generating prim numbers in a pipeline of processing operations. A prim
number generator generates successive numbers according to a given algorithm, for example 2,3,4,5,6..
These numbers pass through the processor pipeline. The first number arriving at a processor is stored as
its prime number. The following numbers that pass through this processor are checked: if they are
multiples of the stored prim number, they are discarded; if not, they are passed to the next processor in the
pipeline. The set of prim numbers stored in the processors is collected and represents the resulting set of
prim numbers.

Receive
gg&?:{or Filter 1 Filter 2 > Filter n Prime
Numbers

Fig. 4 Number generator and processor pipeline.

There may be various ways of generating a sequence of numbers incorporating all prim numbers up to a
given value. For example, one may generate the numbers 2,3,5,7,9... by going, after number 3
(initialization) through all odd numbers, or one may, after initialization go through the numbers according
to:2,3,6-1,6+1,12-1,12+1,18-1,18+1, ..

From theory (there are slightly more than x/Inx prim numbers from 2 to n) we derive the size of an array
able to store prim numbers up to a value called maxPrimValue.

nbMaxOfPrimes= 10 + maxPrimValue/4; // upper bound for storing prim numbersup to maxPrimvalue
L et us now describe how to implement with CAP the Sieve of Eratosthenes.

The number generator can be part of the split function. It receives as input the threshold, i.e. the value up
to which numbers need to be generated. The parallel construct will be of the type parallel while since the
number generator does not necessarily generate the numbers one by one in increasing order.

The resulting prim number will be inserted by the merge function into an array. The size of the array is
derived statically from the threshold, i.e. from the value of the highest prim value. We will construct a
pipeline having the maximal required number of stages, i.e. as many pipelined leaf operations asthere are
placesin the result array. Since, according to CAP’s philosophy, all splitted values need to be merged, we
have to create for each generated number two boolean variables specifying if it isaprim number and if it
isavalid number. Valid numbers are numberswhich may potentially be prim numbers. Non-valid numbers
are numbers which have been detected to be non-prime. Therefore, the tokens generated by the split
function and travelling through the set of pipelined filter Prime operations have the following structure

token Subl nputQut putT {int nonbre; bool prim bool valid;};

© LSP-EPFL, 1999 13

Program Parallelization with CAP

The result array where all prim numbers have been merged isimbedded in atoken (class) which includes
an inline constructor. Tokens may include fixed size structures or arrays. For dynamic array structures,
please refer to the CAP language reference manual (sect. 3. token serialization, sect 4.2: the predefined
capArrayT class).

token Resul tPrim { I/ result is an array of nunbers
int | ndex;
int prinms[nbMaxOf Primes];
Resul t Prim () /'l constructor
{Index=0; for (int i=0;i<nbMaxOfPrimes;i++) prins[i]=0;
}
b

Each number token generated by the split function travels through the successive filter Prime operations.
The first valid token received by a filterPrime operation is its prim number (ComputeServerT process
variable myPrime) . The next valid tokens are checked and marked as non-valid if they are divisible by
myPrime. The PipelinedPrime parallel operation does not allow non-valid tokens to be forwarded to
further filterPrime operations. The for pipelined loop ensures that tokens may travel up to the maximal
number of required filterPrime operations.

operation Parallel ServerT:: Pi pelinedPrine
in I nputT* I nputP
out ResultPrim*result
{
parallel while (Splitlnput, MergeQutput, Main, ResultPrimresult())
(for (int i=0;i<(nbMaxCfPrimes-1);i++)

if (thisTokenP->valid) (sequential[i].filterPrinme)
)
)
}

The full primNumbers.pc program is given below.
/1 Program primNunbers.cp : parallel while program w th many pipelined | eaf operations

/] Generates nunbers in a pipelined parallel nanner
/1 until a certain threshold is reached: each slave operation checks if the nunber

/1 is divisible by the primnunber it has previously stored
/1 the sequence of generated nunbers depends on the al gorithm chosen:
/I (a) 2,3,4,56,... (b) 2, 3, ->5, 7, 9, 11, 13,

/1 (c) 2,3, ->6-1, 6+1, 12-1,12+1, 18-1,18+1,..
// RDH 11.8. 98,

#define true 1

#define false O

#define bool int

const int maxPrinVal ue= 40;

const int nbMaxOfPrinmes = 10 + maxPrinVal ue/ 4; /1 upper bound for nb of primnunbers

token InputT { /1 indicates threshold to reach with primnunbers
int threshol d;
int current Nb; /1 intermediate variable for split function
InputT (int nyThreshol d)

{threshol d=myThr eshol d; current Nb=1; } /1 threshol d: meximal primnunber val ue
b

token Resul tPrim { // result is an array of nunbers
int | ndex;
int prims[nbMaxOf Primes];
Resul t Prim () /1 constructor

{Index=0; for (int i=0;i<nbMaxOfPrinmes;i++) prins[i]=0;}
b

token Subl nputQutputT {int nonbre; bool prim bool valid;};

int Splitlnput (InputT* inputP, SublnputCQutputT* prevP, SublnputQutputT*& nonbreQut)

{
nonbreQut = new Subl nput Qut put T;
i nput P- >curr ent No++; /1 input used in sane way as a static variable
nonbr eQut - >nonbr e=i nput P- >cur r ent Nb; /| generates successive nunbers: version (a)

© LSP-EPFL, 1999 14

Program Parallelization with CAP

nonbr eQut - >pri mef al se;
nonbr eCut - >val i d=t r ue;
if (inputP->currentNo < inputP->threshold) return 1; else return O;

}
voi d MergeCutput (ResultPrint outputP, SublnputCutputT* subCutputP)
{
printf("mergeln=% ", subQutputP->nonbre);
i f (subQutput P->pri me=true)
out put P->pri nms[out put P- >l ndex++] = subQut put P- >nonbr e;
}

process Mai nProcessT {

operations :

P

process ConputeServerT {

vari abl es: /] variables residing in each conputer server thread
bool first; /1 first number received, not previously identified as prine
int nyPrine; /1 primnunber associated to present thread

Conput eServer T(){first=true; nyPrime=-1;} // constructor
operations :
filterPrime in SublnputQutputT* sublnput out Subl nput Qut put T* subQut put ;

}

process Parallel ServerT {
subprocesses :
Mai nProcessT Main ;
Conput eServer T sequenti al [nbMaxOf Pri mes-1] ;
operations :
Pi pelinedPrine in InputT* InputP out ResultPrint result ;
P

| eaf operation ConputeServerT::filterPrime
i n Subl nput Qut put T* subl nput
out Subl nput Qut put T* subQut put

{
subQut put = new Subl nput Qut put T;
/1 the nunmber received is prime: send it further (required to nmerge sane nunber
/1 of tokens as tokens generated by the split fct)
if (sublnput->prinm *subQutput= *subl nput;
/1 this nunmber was not previously identified as a primnunber, if it is the first
/1 nunber received not yet identified as prime, it becomes the primnunber of the
/1 present thread operations
else if (first & sublnput->valid) {
first=fal se; /'l this->first=fal se
nmyPri me= subl nput - >nonbr e; /1 this->nmyPrine
subQut put - >nonbr e=nyPri nme;
subQut put - >pri met r ue; /1 now, nunber is identified as prim
subQut put - >val i d=t r ue;
}
/1 not the first non-primvalid nunber received: if it is not a multiple of myPrine,
/] pass it further as a valid candidate, otherwi se output it as an unvalid candidate
else if (sublnput->valid & ((subl nput->nonbre%ryPrine)!= 0)) {
subQut put - >nonbr e=subl nput - >nonbr e;
subQut put - >pri nef al se;
subQut put - >val i d=t r ue;
}
else { /1 nunmber is either not valid or it is not prineg,
/1 mark it as false and pass a copy further down
subQut put - >nonbr e=subl nput - >nonbr e;
subQut put - >pri nef al se;
subQut put - >val i d=f al se;
}
}

operation Parallel ServerT:: PipelinedPrinme
in InputT* I nputP
out ResultPrim*result

{
parallel while (Splitlnput, MergeQutput, Main, ResultPrimresult())

© LSP-EPFL, 1999 15

Program Parallelization with CAP

(for (int i=0;i<(nbMaxOf Prinmes-1);i++)
(

if (thisTokenP->valid) (sequential[i].filterPrinme)
)
)
}

Paral | el ServerT Parall el Server; //instanciation of high-level parallel thread

int main (int argc, char** argv)
{

int i;

I nput T* inputP = new I nputT (maxPrinVal ue) ;

Resul tPrint resultP ;

call Parallel Server.PipelinedPrinme in inputP out resultP ;

for (i=0;i<nbMaxOf Primes;i++)

fprintf (stdout, "\n indexe = %, nonbre premier = %\n", i, resultP->prins[i]) ;

return O ;

}

O Experiment 7

Precompile, compile and run program primNumbers.cp.
Verify that it works.

0 Questions 3

3.1. In operation filterPrime, we check if a number isvalid. Is this check a necessary operation.
Can you imagine simplifying this procedure. If yes, smplify it and run it again!

3.2. The prim numbers remain valid and travel through all stages of the pipeline. Can you think of
asolution, where a prim number is directly merged into the resulting array? Program that solution
and verify that it runs correctly.

10. Runningthe parallel program on multiple PC’s

Beforerunning aCAP program on multiple PC’s, itisadviced to first run the CAP program asamultithread
monoprocess program on a single PC. In this case, no configuration file is needed. Then the program
should be executed and tested as a multithread program on multiple processes located on a single PC.
Finally, the program may run on multiple processes located in multiple PC's.

To run the program on multiple NT processes, a configuration file is needed. As example consider the
configuration file shown below. It specifies the present NT processes (for example A the master process
and B the slave process), the IP number of the computer running the additional slave NT processes (for
example 128.178.71.141), and the mapping of CAP threads (Sequential[Q], .. Sequential[3]) to NT
processes. The example below specifiestwo NT processes, a process located on the user’'s computer and
a second process located on its own or a different PC (128.178.71.141). The string specifies the location
and name of the CAP executable code on the PC running the second process. The mapping between CAP
threads and NT processes is specified in the threads section. Y ou can modify the relative load of the two
processes by changing the mapping.

To create a new configuration file, you have to modify the example configuration file (for example
mandelbrot.cnf) to give the IP numbers of the contributing slave PC’s, the access path of the applicatior
and the mapping between threads and NT processes. To get the IP number of a PC, run in a console
command pconfig.

© LSP-EPFL, 1999 16

Program Parallelization with CAP

/I mandel brot . cnf
configuration {
processes :
A ("user") ;
B ("128.178.71.141", "\\Lam | spsrvl\ Users\Periph\etudl sp40\ CapProj ect\ Src\ mandel br ot Par. exe") ;
threads :
"Main" (A ;
"Sequential[0]" (A ;
"Sequential [1]" (A) ;
"Sequential[2]" (B) ;
"Sequential[3]" (B) ;
}

Before lauching the executable on several NT processes, the Mpsd message passing system must be
launched with a parameter file containing the ports to be used.

To launch the MPSD on a single computer, the command, if executed locally is

Mpsd Local . conf

where the Local.conf file contains the following information:

MPSThr eadPor t Nunmber
MPSDaenonPor t Nunmber

5567
5568

To launch the application on several PC's, in addition to launching the master's local MRSD (
Local . conf), the local command for each slave PC is:

Mpsd Renot e. conf

where the Remote.conf file contains additional information specifying the IP number of the node startin
the program (master) and its port number. Don’t forget to modify an exRemgte.conf to include the

IP number of the master computer of your application.

MPSThr eadPor t Nunber 5567

MPSDaenonPor t Nunmber 5568
MPSDaenon = 128.178. 71. 142 5568

Once that the message passing system is launched, the executable source file can be executed in
specified configuration by typing in a second MS-DOS Command window of the master PC

mandel brot Par -cnf \\Lanmi | spsrv1\ Users\Peri ph\etudl sp40\ CapProj ect\ Src\ mandel brot . cnf
with the full path of the configuration file so as to make it available on each contributing PC.

By changing the configuration file and without recompilation, you may try another mapping of threads to
PC processes and obtain different performances. To obtain accurate pexgmation times, be careful
to precompile and compile in release mode (in console):

cap. rel mandel br ot Par
conp. rel mandel br ot Par

In the case your progam is launched from Msdev, don't forget, by clicking on the proferdject set-
tings to specify in théebug field the following additional argument
-cnf \\Lami | spsrv1\ User s\ Peri ph\ et udl sp40\ CapPr oj ect\ Src\ nandel brot. cnf

Generally, once the message passing system is launched, many program executions can be made. If h
ever, the Mpsd process needs to be killed, then, by tyilrglt-Delete, one may call th@ask Manager
and destroy the Mpsd process.

© LSP-EPFL, 1999 17

Program Parallelization with CAP

Special programs may be used (Exceed for example) to have a script lauching the message passing system
on multiple PC’'s from a single computer.

11. A real example: computation of the Mandelbrot set

The Mandelbrot set is a set of complex numbers{c O C}, where after an infinite number of applications
(in the program, n applications) of complex function f,(0) = Z2+c, the resulti ng absolute value [f."(0)| is
smaller than infinity. The Mandelbrot set isincluded within aregion of radius 2 from the center of origin.

The complex map showing the Mandelbrot set can be easily computed: we define the width of each pixel
to be agiven fraction, for example 1/200 and draw an image ranging from approximatively -2 to +2.

The mandel brotPar.pc program uses asimple parallel while loop which distributes the image scanlinesin
round-robin manner to the compute server threads.
/* mandel br ot Par. pc

sinple parallel programw thout |oad bal anci ng
18/8/98 by SV

*/

include "iostream h"; /1 for cout, no # as indication to CAP

#i ncl ude "conpl ex. h" /1 conpl ex nunber cl ass, see Appendix 2

#i ncl ude "l mageFile. h" /1 operations on inmage files: InageFile class, see Appendix 3
paraneter (char * outputFilename = "mandel brot. ppni', ShortHand -> "-ofn");

const int NUMBER OF COWPUTE_SERVERS = 4;
const int | MAGE_SI ZE X = 512;
const int | MAGE_SIZE Y = 512;
/1 Mandel brot fonction constants

const doubl e X _START = -2.0;
const doubl e Y_START = -2.0;
const doubl e GAP = 0. 005;
const int MAX_| TERATI ONS = 200;
const doubl e MAX_MAGNI TUDE = 200. 0;

static | mageFile imageFil e(out put Fi |l ename, | MAGE_SI ZE_X, | MAGE_SI ZE_Y, 1) ;

token Til eDescriptionT {

int |inelndex; /1 line index
Til eDescriptionT (int Index) { /1 inline constructor
i nel ndex = I ndex;
}
b
token TileT {
int |inelndex; /1 line index of conputed |ine
unsi gned char buffer[| MAGE_SI ZE_X]; /1 line buffer
TileT (int index){
I'i nel ndex = index ; /1 inline constructor
}
b
token StartT {}; /1 enpty token

t oken | nageT {
unsi gned char buffer[| MAGE_SI ZE_X*| MAGE_SI ZE_VY] ; //image buffer as output token

h

© LSP-EPFL, 1999 18

Program Parallelization with CAP

/1 Mandel brot function renders magnitude after a nunber of
/1

if magnitude very small, x,y value belongs to Mandel brot set

unsi gned char Mandel brot Function(int x, int y){

}

double m
conpl ex c(X_START + x*GAP, Y_START + y*GAP);
conpl ex z(0.0,0.0);
int k =0;
while (z.Magnitude() < MAX_MAGNI TUDE && k < MAX_| TERATI ONS) ({
z =2z * z;
z =2z +¢;
k++;
}
m = z. Magni tude();
if (m»2550) m = 2550;
return (unsigned char)(m 10);

process ConputeServerT {
operations :

b

Conput eMandel brot in Til eDescriptionT* InputP out TileT* QutputP;

int SplitFunction (StartT* inputP,

}

Ti | eDescri ptionT* previousP,
Til eDescri pti onT*& next P)

cout << "S"<< flush;
int nextlndex = 0;
if (previousP!=0)

iterations

next | ndex = previousP->|inelndex + 1; /1 scanline index

next P = new Til eDescri ptionT(next!| ndex); /1 allocates new scanline

if (nextlndex == | MAGE_SIZE Y-1) return O; /1 if last scanline,

el se return 1; /1 else continue calling splitfct

| eaf operation ConputeServerT:: Conput eMandel br ot

}

in TileDescriptionT* |nputP
out TileT* QutputP

Qut put P = new Til eT(I nput P->li nel ndex); /1 allocates output token

cout << "." << flush;

for (int i=0; i< |MAGE_SIZE X; i++) /1 magn val ues of each pi xel
Qut put P->buffer[i] = Mandel brot Function(i, | nput P->linel ndex);

voi d MergeFunction (lnmageT* intoP, TileT* inputP)

{

}

cout << "M'<< flush;
CopyMenor y(& nt oP->buf f er [i nput P- >l i nel ndex*| MAGE_SI ZE_X] ,
& nput P->buffer, | MAGE_SI ZE X);

process Mi nProcessT {
operations :

}

process Parallel ServerT {
subprocesses :

Mai nProcessT Main ;
Conput eServer T Sequenti al [NUMBER_OF_COWPUTE_SERVERS] ;

operations :

}

d obal Operation in StartT* I nputP out |mageT* QutputP ;

operation Parallel ServerT::d obal Operation

{

}

in StartT* I nputP
out | mageT* QutputP

parall el while (SplitFunction, MergeFunction, Miin, ImageT Result()) (
Sequenti al [t hi sTokenP->l i nel ndexYNUVBER_OF COVPUTE_SERVERS] . Conput eMandel br ot
)

of scanline

© LSP-EPFL, 1999

19

Program Parallelization with CAP

Paral | el ServerT Parall el Server ;

int main
{
cout <<
cout <<

cout << "

cout <<
I ong St
I ong En

StartT*
| mgeT*
I nput P

call Pa

EndConp
i mageFi
cout <<
del ete

(int argc, char** argv)

"Mandel brot set generation program\n";
"S- Split function\n";
- Operation\n";
"M - Merge function\n\n";
artupTime = GetTickCount();
dConputi ngTi me, EndFileWitingTine;

I nput P;

Cut put P;

= new StartT() ;
rall el Server.d obal Operation in I nputP out QutputP ;

utingTime = GetTickCount();

| e. Savel mage((unsi gned char *) & QutputP->buffer[0]));
"\n’ << flush;

Cut put P;

EndFi l eWitingTime = GetTickCount();

cout << '\n’ << flush;

cout << "Conputing time [nms]: "<< EndConputingTine-StartupTime << '\n’;

cout << "File witing time [ms] : "<< EndFileWitingTi me- EndConputi ngTinme << '\n’;
cout << "Total tine [me] @ "<< EndFileWitingTime-StartupTime << '\n’<<flush;
return O ;

}

O Experiment 8

8.1. Precompile, compile and run program mandelbrotPar.cp. The program generates a *.ppm or
* pgm file that can be observed by the application viewppm.exe (viewppm mandelbrot.ppm).

Verify that the program works on asingle PC, note the execution times and examine the produced

imag

efile.

8.2. Create, according to the instructions in section 9, a configuration file in order to run the
program on two different processes of the same computer. Lauch the MPSD message passing
system and run the program without recompiling it. Note the execution times.

8.3. Modify the configuration file to run the program on two computers. Launch the MPSD
message passing system on both computers and run the program. Note the execution times.

You

have to modify the configuration file (for example mandelbrot.cnf) to give the IP numbers of

contributing slave PC’s, the access path of the application and the mapping between threads and I
processes. To get the IP number of a PC, run in a console the conpoteniig).
configuration {
processes :

A ("user") ;

B ("128.178.71.141", "\\Lam | spsrv1\ Users\Periph\etudl sp40\ CapProj ect\ Src\ mandel br ot Par. exe") ;
threads :

"Main" (A ;

"Sequential [0]" (A) ;

"Sequential [1]" (A ;

"Sequential[2]" (B) ;

"Sequential [3]" (B) ;
P

Once your configuration file is ready, prepare thaote.conf file for running the Mpsd on the
remote PC. Work with a colleague and create in his directoryethete.conf file you need, by
putting his IP number in that file:

MPSTh
MPSDa
MPSDa

r eadPor t Nunber = 5567
enonPor t Nunber = 5568
enon = 128.178.71. 142 5568

© LSP-EPFL, 1999 20

Program Parallelization with CAP

Y ou should then first run the Mpsd local .conf on your PC and then on your colleague’s PQMpsd
remote.conf command. In a second console of your PC, you may then run your parallel application,
for example

mandel brot Par -cnf \\Lam | spsrv1\ User s\ Peri ph\ et udl sp40\ Src\ mandel brot . cnf

with the full path of the configuration file so as to make it available on each contributing PC.

By changing the configuration file and without recompilation, you may try another mapping of
threads to PC processes and obtain different performances. To obtain accurate ¢x@agitaon
times, be careful to precompile and compile in release mode (in console):

cap.rel mandel br ot Par
conp. rel mandel br ot Par

0 Questions4

4.1. Does the parallel program ensure that when running on two compute nodes, the two PC's are
always busy? Click on the performance monitor and verify how busy the two computers are during
computation.

4.2. What speedup do you get when running the program on two PC's?

12. Flow-control and load-balancing issues

In the current CAP implementation, the split function generally generates the tokens at a much higher ra
than they can be consumed, i.e. processed by operations within the parallel construct and merged by
merging operation. Tokens may therefore accumulate in front of operations and merging functions. Thi
may require considerable amounts of memory and induce disk swapping operations (transfer of virtu
memory to disks).

Another problem is load balancing. In real applications, the load may be different in different compute
servers. There is therefore a need to direct tokens generated by the split function towards a compute sel
which has terminated an operation on a previous token.

For the purpose of flow-control and load balancing, the CAP preprocessor transiat#exethparallel
loop or respectively parallel while loop into a combination ohdexed parallel or respectivelyarallel
while and afor CAP construct:

i ndexed

(int index=0; index<indexMax; index++)
paral l el (splitfct,mergefct, Main, QutT outP)

(Conput eSer ver . oper ati on) /1 ComputeServer is a conpute server process
; /1 Main is the starting main process

becomes a construct of the type

i ndexed
(int indexFC=0; indexFC<naxNbTokens; indexFC++)
parallel (splitfct,mergefct, Main, QutT outP) (
for (int nbGrculations=0, nbC rcul ati ons<i ndexMax/ maxNbTokens, nbCircul ati ons++)
(Mai n.splitfct>->ConputerServer.operation >-> Min. nergefct)

)

where a token is recirculated irfa loop, and at each new entry into floe loop, the split function is
called. The cycling around thier loop ensures that at one time, omigxNbTokens are in circulation.

© LSP-EPFL, 1999 21

Program Parallelization with CAP

To ensure flow-control, the user specifies by the instruction flow_control (20) the number of tokens in
circulation, for example 20. This slight modification isin front of the standard indexed parallel or parallel
while construct:

(

fl ow control (20)
i ndexed
(int index=0; index<indexMax; index++)
paral l el (splitfct, mergefct, main, QutT outP)
(Conput er Server [i ndex%N\bOf Conput eServers]. operation);
)

The load-bal ancing mechanism uses the same construct: tokens recirculate according to a for loop along
the branch of operation, which has just terminated a previous loop. For example, if the flow-control
variable specifies 20 circulating tokens, then each token represents an independent execution branch, i.e.
each token may be forwarded to an operation located into a different address space. The execution branch
index is available through the CAP variable cap_fcindex0 . This means that when a branch has terminated
asingle execution, it is again available to receive a token and to execute an operations.

An example of a construct enabling flow-control and load-balancing is the following:
(

fl ow _control (20)
i ndexed
(int index=0; index<indexMax; index++)
paral l el (splitfct, mergefct, main, QutT outP)
(Comnput er Server [cap_f ci ndexO¥\bCOf Conput eSer ver s] . operati on);
)

To ensure both flow control and load balancing, the mandelbrotPar.pc program needs to be modified so
to incorporate these features into its main parallel while construct.

operation Parall el ServerT:: d obal Operati on
in | mageT* | nputP
out | mageT* QutputP

{ flow_control (20)

parallel while (SplitFunction, MergeFunction, Min, InmageT Result()) (
Sequenti al [cap_f ci ndexOYNUVBER _OF_COVPUTE_SERVERS] . Conput eMandel br ot
)
}

0 Experiment 9

Modify the mandelbrotPar.pc program for flow-control and load-balancing. For verifying the
effect of load balancing, create a configuration file mandel brot.cnf with one server (dave) thread
running on a separate PC and all other server thread running on the user PC, similar to

configuration {
processes :
A ("user") ;
B ("128.178.75.10", "\\| sppc20\ | sppc20d\ user s\ her sch\ cap\ cr sJul \ mandel br ot Par. exe") ;
threads :
"Main" (A) ;
"Sequential [0]" (A ;
"Sequential [1]" (A ;
"Sequential [2]" (A) ;
"Sequential [3]" (B) ;
.

Create also a second configuration file where 2 server threads run on the user PC and the 2 other
server threads run on the second PC whose |P number is given explicitely.

© LSP-EPFL, 1999 22

Program Parallelization with CAP

Run the modified program mandelbrotParFC.pc successively on a single PC, on two NT
processes of a single PC and on two PC's, one time with only one server thread on the second PC
and the second time with two server threads on the second PC. Note the execution times.

0 Questions5
Compute the speedup for al variants. |s the speedup similar for the two parallél variants?

Questions 6

Propose a strategy to verify that flow-control and load balancing effectively brings an
improvement ! What measurements have to be done?

13. Combining pipelined parallel computations and file accesses

CAP's enables the pipelined parallel execution of operations. If one includes into these operations afile
system call (reading a file part, writing a file part), it is possible to read and write files or file parts in
parallel. If oneincludes afile access cal in asplit or merge, this file access may execute in pipeline with
operations of the parallel split-merge construct.

Let us consider as example the mandel brotPar.pc example presented in section 11. After generating in
parallel for each pixel of the output image a magnitude value, the full pixmap containing all pixel values
is written as a separate step to an image file. The file writing time can be completely hidden behind the
image computation time, if the file writing operation is integrated into the parallel construct, i.e. if each
scanline that arrives from a ComputeMandelbrot operation is directly merged into the final image file by
writing it at its required position within the file.

A class ImageFile offersin addition to file opening and close functions a function

inline void | mageFil e:: SaveDat aChunk(int position, int size, unsigned char * chunk){
fseek(file, position, SEEK CUR);
fwrite(chunk, sizeof (unsi gned char), size,file);
fseek(file,-(position+size), SEEK_CUR);

}

Thisfunction can be used to save ascanline at its correct position within theimagefile. The merge function
will therefore be changed to:

voi d MergeScanlineToFile (ImageT* intoP, TileT* inputP)
{

cout << "M' << flush;
i mageFi | e. SaveDat aChunk(i nput P->I i nel ndex*| MAGE_SI ZE_X, | MAGE_SI ZE_X,
& nput P->buffer[0]);
}

By having in the main program the instructions to create the image file and to generate its header, in the
parallel Global Operation the merge function as described above and the instruction to close the file, file
writing is completely pipelined with the processing operations.

i mageFi | e. Open(); /] create the inage file
i mgeFi | e. SaveHeader () ; /! generate its header
call Parallel Server.d obal Operation in InputP out QutputP ; // parallel operations

i mgeFile.d ose(); /Il close the file

O Experiment 10

© LSP-EPFL, 1999 23

Program Parallelization with CAP

Modify the mandelbrotParFC.pc in order to integrate file writing into the pipeline. Run the
modified program mandel brotPar FCWr .pc successively on asingle PC, on two NT processes of
asingle PC and on two PC'’s. Note the execution times.

0 Questions7

7.1. Evauate the effective disk throughput obtained when writing the image buffer (512x512
bytes) to a file with the initial program mandelbrotPar.pc ? Taking into account that the initial
seek operation takes 10ms and that a throughput of approximatively 4 MB/s can be achieved when
writing a continuous file into a contiguous disk space, is the file writing time obtained realistic?
What effects can lead to wrong conclusions?

7.2. Arethefilewriting times completely hidden in the mandel brotPar FCWr .pc program version?
For this purpose, compare the execution times without any file writing and with file writing.

14. Suspending and reordering the flow of tokens

There are cases, where it is necessary to suspend momentarily the flow of tokens. This can be done by
calling the predefined function

voi d capDoNot Cal | TokenSuccessor (myTokenT* CQut put P)

Thiscall inhibits sending at the end of the operation the Output token to the next operation. To resumethe
flow of tokens the operation

voi d capCal | Successor (nyTokenT* nyTokenP)

is executed, where myTokenP is a pointer to the token that has been prevented from being sent out.
Generaly, the pointers to such inhibited tokens are stored in an array of token pointers.

Suspending the flow of tokens is useful to launch an asynchronous operation, for example a file access
and to resume the flow of tokens by making the capCallSuccessor call for intheinthefile access callback
function. In continuous media applications, tokens may have to be sent periodicly. A capCallSuccessor
call may for example be made as aresult of acall back function made by atimer event.

To reorder the flow of tokens, it may be necesssary to suspend it momentarily. The flow of tokens may go
out of order due to uneven processor load. Consider for example the mandelbrotPar FCWk.pc program,
which writes successive scanlines to the disk. If the amount of the data to be written to disk would be
important, disk access times would become predominant. To reduce disk access times, one would like to
eliminate seek function calls. This can be done by reordering the tokensin front of the merge function and
by writing the scanlines continuously one after the other onto the disk.

For that purpose, the following modifications have to be made the mandel brotPar FCWr .pc program. The
main process now includes a current line index indicated the next line to be sent to the merge function. It
further includes atable (tokenPArr) for storing token pointers which have been prevented from being sent
out by the capDoNotCall TokenSuccessor function. It also includes the new Reorder Tokens operation.

process Mai nProcessT {
vari abl es:
i nt currlLinel ndex;
Til eT* tokenPArr[| MAGE_SI ZE VY] ;
Mai nProcessT() {currLinel ndex=0;
for (int i=0;i<IMAGE_SIZE_Y;i++) tokenPArr[i]=0;
} /1 constructor
operations :
Reorder Tokens in TileT* InputP out TileT* CutputP;
P

© LSP-EPFL, 1999 24

Program Parallelization with CAP

The operation ParallelServerT::GlobalOperation now aso includes after the ComputeMandelbrot
operation executed in the Sequential server processors the operation Reorder Tokens executed in the Main
thread.

operation Parall el ServerT:: d obal Operati on
in StartT* I nputP
out | mageT* QutputP

{ flow_control (20)
parallel while (SplitFunction, MergeScanlineToFile, Main, ImageT Result()) (
Sequenti al [cap_f ci ndexOYMNUMBER _OF_COVPUTE_SERVERS] . Conput eMandel brot >- >
Mai n. Reor der Tokens
)
}

The Reorder Tokens operation compares the arriving line with the current line index. If it is higher, its
further circulation is inhibited and it is stored in the tokenArr array. If it isequdl, it is also stored in the
array, and together with possibly previously stored line tokens, they are extracted in order from the array
and put into circulation.

| eaf operation MinProcessT:: Reorder Tokens
in TileT* InputP
out TileT* QutputP

{
if (InputP->linelndex > currlLinelndex) { /] prepare successor in table
Qut put P = new Til eT(I nput P->li nel ndex) ; /1 allocate output token
t okenPArr [| nput P- >l i nel ndex] =Qut put P; /1 queue in table
for (int i=0; i< |MAGE_SIZE_X; i++)
Qut put P->buffer[i] = InputP->buffer[i]; /1 copy content
capDoNot Cal | TokenSuccessor (Qut put P) ; [l (TileT*);
}
el se {
/11 nput P->li nel ndex <= currLinel ndex
Qut put P = new Til eT(I nput P->li nel ndex) ;
tokenPArr [| nput P- >l i nel ndex] =Qut put P; /1 puts in array to be outputted
cout << "," << flush;
// copies the buffer of the input into output token
for (int i=0; i< |MAGE_SIZE_X; i++) /1 copy buffer
Qut put P->buffer[i] = InputP->buffer[i];
capDoNot Cal | TokenSuccessor (Qut put P) ; // don’t output this token at the end
/1 of the procedure, output it in sequence fromthe tokenPArr array
for (int j=0;(j<=currlLinelndex) && (j<IMAGE_SIZE Y);j++) {
if (tokenPArr[j]!=0) {
capCal | Successor (tokenPArr[j]); /1 output of token
tokenPArr[j]=0;
printf(" successor= %", j);
currLinel ndex++;
}
}
}
}

To make possible errors visible, the merge function calls the ImageFile: : SavelLineContiguous function to
store each scanline contiguously after the previous scanline in the imagefile.

voi d MergeScanlineToFile (InageT* intoP, TileT* inputP)
{

printf(" M= % ", inputP->linelndex);

i mgeFi | e. SavelLi neConti guous(| MAGE_SI ZE_X, & nputP->buffer[0]);
}

© LSP-EPFL, 1999 25

Program Parallelization with CAP

0 Experiment 11

Apply the above mentioned modifications to program mandelbrotParFCWr.pc and generate
program mandelbrotParFCWrCSpc . Precompile, compile and execute program
mandel brotPar FCWr CSpc . Verify the sequence of generated line tokens and the sequence of line
tokens after the reordering function. Visualize the resulting mandelbrot.ppm file and check that
theimageis ok.

[0 Questions8

8.1. In the case, aline token has the same line index as the current index (currLinelndex), why is
it first necessary to storeinit the tokenPArr array and then to send all tokensfrom thisarray having
alineindex smaller or equal to currLinelndex ?

8.2. Why isit necessary to run the Reorder Tokens operation as part of the MainProcessT process
structure? Could the Reorder Tokens operation run in a Sequential server process?

15. Neighbourhood-dependent parallel operations (example: game of
Life)

In the preceeding sections, the parallel program considered only applications, where the operations
running in parallel in different threads were able to proceed independently on their subset of data. In many
real application cases, each processing element (thread) must, at a certain point of its program execution
receive information from neighbouring processing elements (threads). As an example, we consider
parallelizing the game of Life.

This game was introduced in 1970 by the mathematician John Conway. The rules of the game are as
follows:

1. Theworldisrepresented by an array of cells (TOT_VERT_SIZE x HOR_SIZE)

2. Every cdl isaways either dead or alive

3. Thestate of acell in the next cycle depends on its actual state aswell as on the states of its 8 immedi-
ate neighbors according to the following rule: A living cell with 2 or 3 living cellsremains alive, oth-
ewiseit dies. A dead cell with 3 neighbors becomes alive, otherwise it remains dead.

All state transitions over the entire world are synchronized.
The world wraps around: al vertical neighbors are calculated modulo TOT_VERT_SIZE and all hor-
izontal neighbors are calculated modulo HOR_SIZE.

Here follows a sequence of evolution at timestO (initial state), t1, t2, t3:

to tl t2 t3

.. O 00) .00 ...,
.. O oo s
.. O 00) .00 ...
O

To parallelize the game of life, we segment the world into horizontal tiles of size TOT _VERT_SIZE/
NUMBER_OF COMPUTE_SERVERS x HOR_SIZE. In each server thread, we create an array of the
size of the horizontal tile plus two horizontal lines: one for the top border which is a copy of the most
bottom line belonging to the previous tile and one for the bottom border which is a copy of the most top
line belonging to the following tile.

© LSP-EPFL, 1999 26

Program Parallelization with CAP

The paralel program comprises the following stages:

1. Read theworld from afile and copy it into the arrays located in server threads. For this purpose, the
world isread from afile, possibly passed as a parameter from the command line and a token compris-
ing the world is sent to each server thread (split-merge construct).

2. Each paralld iteration, i.e. each computation of the new state of the worldstile includestwo steps: (a)
each thread must ask its neighbouring tilesto send its top and bottom neighbour lines and must merge
theselinesinto its cell array (tile) and (b) each thread must compute the new state of its part of the
world based on the present state.

3. Onceall iterations are terminated, a high-level parallel GetWorld operation collects the tiles com-
puted by all threads and merges them in the resulting output token.

tile 0in
world ComputeServer [0]
20 19
0 0
tile 1in
ComputeServer [1]
.8 4
5_.5 5
tile 2in
ComputeServer [2]
9 9
10 N [10
tile 3in
ComputeServer [3]
14 14
15 NN L 15
19 19
0

Fig.5 Theworld, thetilesand the array located in server threads.

15.1 Theparalle construct

In addition to the indexed parallel and to the parallel while construct, there is a parallel construct, again
based on the split - operation - merge concept, where each parallel branch is separatly specified and may
contain its own split function, its own operation and its own merge function (for more information, see
Reference Manual, section 2.5.6). The syntax of the parallel operation is the following:

parallel (Main, QutputT Result) (
(SplitlnputO, Conput er Server[0]. operation0, Mer geQut put 0)
(Splitlnputl, ConputerServer[1].operationl, MergeQut put 1)
(Splitlnput?2, Conput erServer[2].operation2, Mer geQut put 2)
(Splitlnput3, Conput erServer|[3].operation3, Mer geQut put 3)
)

Main indicates the thread where the merging functions are executed and the result token is Result of type
OutputT. The present parallel construct comprises four branches, each with its own split, operation and
merge functions. One may however also use the same operationsin different branches.

15.2 Theparallel gameof life

The main program comprisesthree callsto parallel CAP constucts. Onefor initialization of the world, one
for computing the iterations and one for gathering the results.

© LSP-EPFL, 1999 27

Program Parallelization with CAP

call Parallel Server.parallellnitPartWorld in fullworldP out resultP ;
call Parallel Server. Aut omat on(NB_I TERATI ONS) in inputP out outputP;
call Parallel Server.GetWrld in inputP out |astResultP;

The parallelInitPartWorld high-level paralel operation is an indexed parallel construct, which circulates
atoken of type WorldT.

operation Parallel ServerT::parallellnitPartWrld
in WrldT* I nputP
out Worl dT* Qut put P
{ indexed
(int i =0 ; i < NUMBER OF COVPUTE_SERVERS ; i ++)
parallel (Splitwrld, MergeWrld, Min,
Wor 1 dT Result (thi sTokenP->vert Size, thi sTokenP->hor Si ze))
(Sequential[i].initPartWorld(i)
)
}

The Automaton high-level parallel parallel operation comprises a sequence of two indexed parallel
constructs: one for exchanging and merging tile borders and one for the computing the tiles new state (life
of game iteration).

operation Parallel ServerT:: Automaton(int nblterations)
/1 on Main, sequences the indexed parallel ExchangeBorder and the follow ng
/1 indexed parallel ConputeStep
in void* |nputP
out void* QutputP
{
/1 single iteration first
for (int it=0;it<nblterations;it++) (/1 iterations ExchangeBor ders->ConputeStep
i ndexed Il to synchroni ze exchange of borders
(int i=0; i<NUMBER OF_COWPUTE_SERVERS; i ++)
paral l el (void,void, Mai n,voi d out put)
(ExchangeBorders (i))
>->
i ndexed
(int j=0; j<NUMBER_OF_COWPUTE_SERVERS; | ++)
parall el (void,void, Mai n,void output)
(Sequential[j].ConputeStep)
)
}

The ExchangeBorders operation is itself a high-level parallel operation comprising a parallel construct.
Within each branch of the parallel construct, split operations are empty (void) and merge operations copy
atop or a bottom border into the thread’s tile (prevworld). The merge of the parallel operation is executed
in thread Sequential[partlx] and the operation itself is executed in another thread for example in
Sequential[partlx-1], Sequential [partlx+1]).

operation Parall el ServerT:: ExchangeBorders (int partlx)
/1 this operation asks in parallel the neighbours to send their borders,
/1 merges theminto the prevworld
/1 the parallel construct is |lauched in the Miin thread,
/'l where Sequential is called, it acts on the slave threads
/'l exchange of borders works in waparound node
in void* |nputP
out void* QutputP

{
paral l el (Sequential[partlx], void result) (// indicates nmerge in Sequential
(void
ifel se (partlx>0)
(Sequenti al [part|x-1].sendBott onBor der) Il partlx>0

(Sequent i al [NUMBER _OF_COVMPUTE_SERVERS- 1] . sendBot t onBorder) // partlx==0

nmer geBor der s(TopBor der)
)
(void
i felse (partlx<NUVBER OF_ COWPUTE_SERVERS-1) // part|x<NUMBER OF_ COVPUTE_SERVERS- 1
(Sequenti al [part|x+1].sendTopBorder) // partlx==NUMBER_OF_ COWPUTE_SERVERS- 1
(Sequenti al [0] . sendTopBor der)
nmer geBor der s(Bot t onBor der)

© LSP-EPFL, 1999 28

Program Parallelization with CAP

)
}

The full lifePar.pc program is listed in Annex |. The presented version only provides support for a fixed
sized world, whose size is determined at compile time. Thisis due to the fact that only fixed sized arrays
and structures can be declared in tokens. However, the predefined capArrayT class supported by the CAP
compiler provides support for dynamic arrays and for packing, respectively unpacking these dynamic
arrays into tokens (see Reference Manual, setion 4.2).

O Experiment 12

Precompile, compile and execute the lifePar.pc program on one PC. Try to understand the
execution of the program, by analyzing the printed comments and the printed values of the world
or of part of it.

0 Questions9

9.1. (a) Istheinitialization of the tiles (prevworld) in the parallel threads done in parallel or in a
pipelined sequence? (b) Could it be programmed as a pipelined sequence? (¢) What would need
to be changed to have the initialization as a pipelined sequence?

9.2. (d) How are border lines transferred from one thread to the neighbouring threads? (b) Does a
border line travel first to the main thread and then back to a neighbouring thread?

(c) Are border lines exchanged in parallel or as sequence of pipelined operations?

9.3. What makes sure that before a new state of the world is computed, neighbouring tiles are
really availablein the paralel threads operating on their local tile (prevworld)?

9.4. A first version of the program, called lifeParWrong.pc had a dlightly different structure.
Instead of two separate index parallel structures, one for exchanging tile borders and one applying
one iteration, the two are unified as a sequence of operations as shown in operation
AutomatonSep. Why does program lifeParWrong not work correctly?

operation Parallel ServerT:: AutomatonStep (int partlx)

/1 this operation asks in parallel the neighbours to send their borders,
// nmerges theminto the prevworld

/1 the parallel construct is lauched in the Main thread;

/'l where Sequential is called, it acts on the slave threads

/1 exchange of borders works in w aparound node

in void* |nputP
out void* QutputP
{

paral l el (Sequential[partlx], void result) (/1 indicates merge in Sequenti al

(void /1 enpty split function

, ifelse (partlx>0)
(Sequenti al [part|x-1].sendBott onBor der) /1 partlx>0
(Sequenti al [NUMBER_OF_COWPUTE_SERVERS- 1] . sendBot t onBor der) /] partlx==0

, mergeBorder s(TopBorder)

)

(void

, ifelse (partlx<NUMBER OF_COWPUTE_SERVERS- 1) /1 part| x<NUMBER_OF_COWPUTE_SERVERS- 1
(Sequenti al [part| x+1] . sendTopBor der) /1 part|x==NUMBER_OF_COWPUTE_SERVERS- 1

(Sequenti al [0] . sendTopBor der)
, mergeBorder s(BottonBorder)

)

) >->
Sequenti al [partlx]. ConmputeStep ;
}

© LSP-EPFL, 1999 29

Program Parallelization with CAP

operation Parallel ServerT:: Automat on(int nblterations)
in void* |nputP
out void* QutputP

{

/1 single iteration first

for (int it=0;it<nblterations;it++) // iterations of AutomatonStep: exchange->Conpute

i ndexed

(int i=0; i<NUVBER OF_COWVPUTE_SERVERS; i ++)
paral l el (void,void, Main,void output)

(AutomatonStep(i))

9.5. Doesthe lifePar.pc program support the overlap of computation (next step of the world) and
the exchange of borders (communication)? If not, what would needed to be changed to ensure such

anoverlap ?

Appendix 1

/'l programlifePar.pc

/1 1. read the input file (2D world), transfer it to the conputer servers
I/ and initialize the local 2D tiles in parallel

/1 2. launch the conputations

/1 3. get the results fromthe parallel threads and display them

/1 26.8.98, RDH

const int NUMBER OF COWPUTE_SERVERS = 4;

const int HOR_SIZE = 20;

const int TOT_VERT_SIZE = 20;

const int PART_VERT_SI ZE = TOT_VERT_SI ZE/ NUMBER_OF_COWPUTE_SERVERS;
const int ALIVE = 1;

const int DEAD = O;

i nt NB_| TERATI ONS;

/1 data structures described by tokens & initialization of subtiles

token WorldT { /1 this is the full world, also used to store hor.
int firstRow ; /1 first valid row
int horSize;
int vertSize; /1 effective nunber of stored rows

int world[TOT_VERT_SI ZE] [HOR_SI ZE] ;
Worl dT (int vertsize,int horsize) ;

b

Wor 1 dT: : Wor 1 dT (int vertsize, int horsize) /'l constructor

{
firstRow = 0 ; /1 first valid Row in array
hor Si ze = horsize ;
vert Size = vertsize;
for (int i=0;i<vertSize;i++)
for (int j=0;j<horSize;j++)
wor ld[i][j]=0;
P

enum Nei ghbour T { BottonBorder, TopBorder, None };

void printWrld(WrldT* worl dP)
{
int i,j
for (i =0 ; i <wrldP->vertSize ; i++)

if (((i% TOT_VERT_SI ZE/ NUVBER OF COVPUTE_SERVERS))==0) &&(i!=0)) printf("\n");
printf("\n");

parts

© LSP-EPFL, 1999

30

Program Parallelization with CAP

for (j =0 : j < worldP->horSize : j++)
printf(" %", worldP->world[i][j]):
}
printf("\n");
}

void printArray(int array[][HOR_SIZE], int vertSize, int horSize)

{
int i,j
for (i =0 ; i <vertSize ; i++)
{
printf("\'n");
for (j =0 ; j < horSize ; j++)
{
printf(" %", array[i][j]);
}
}
printf("\n");
}

void Splitwrld
(WorldT* worl dP
, Worl dT*& partworl dP

, int index
)
{
int result
int partvertsize = TOT_VERT_SI ZE/ NUMBER_OF_COWPUTE_SERVERS ;
int firstrow = index * partvertsize ;
partworl dP = new Worl dT (partvertsize, worl dP->horSi ze)
partworl dP->firstRow = firstrow ;
for (int i=firstrowi<(firstrowtpartvertsize);i++)
for (int j=0;]j<partworldP->horSize;j++)
partwor | dP->world[i][j]=worldP->world[i][j] ;
printf("split: firstrow= % \n", firstrow);
}

void MergeWorld (WorldT* resworl dP , WorldT* partworldP, int index)
{ Il every cell of partworld must be copied into corrrect hor tile of resworld,
/1 for verification purposes
for (int i=partworldP->firstRow i<((partworldP->firstRow)+(partworl dP->vertSize));i++)
for (int j=0;]j<partworldP->horSize;j++)
resworl dP->world[i][j] = partworldP->world[i][j];

}

process Mai nProcessT {
operations :

P

process ConputeServerT {
variabl es :
int prevworl d[PART_VERT_SI ZE+2] [HOR_SI ZE] ;
i nt currworl d[PART_VERT_SI ZE+2] [HOR_SI ZE] ;
int HorSize;
int VertSize; /1 prevworld & currworld have size VertSize+2 (with neighbours)
int |ocal FirstRow,
voi d nmergeBorders(void* resultP, WorldT* borderP, NeighbourT nei ghbour);
operations :
initPartWorld(int threadlx) in WorldT* | nputP out WorldT* CQutputP;
sendTopBorder in void* |InputP out WorldT* QutputP;
sendBot t onBorder in void* |nputP out WorldT* CQutputP;
ConputeStep in void* InputP out void* QutputP;
Get SubWorld (int threadlx) in void* InputP out WorldT* QutputP;
P

process Parallel ServerT {
subprocesses :
Mai nProcessT Main ;
Conput eServer T Sequenti al [NUMBER _OF_COVPUTE_SERVERS]
operations :
parallellnitPartWorld in WrldT* | nputP out Worl dT* QutputP ;
Aut omat on(int nblterations) in void* InputP out void* CutputP;

© LSP-EPFL, 1999 31

Program Parallelization with CAP

ExchangeBorders (int partlx) in void* |InputP out void* CutputP;
GetWorld in void* InputP out WorldT* | astResultP;
}o

| eaf operation ConputeServerT::initPartWorld(int threadlx)
/1 here, the initial segmented world is copied into the |ocal buffer prevworld
/1 first and last raws are reserved for overlaps, but not initialized

/1 prevworld, currworld, VertSi ze, Hor Si ze, | ocal First Row are | ocal process variabl es

in WrldT* I nputP
out Worl dT* Qut put P

{
| ocal Fi rst Row = | nput P->firstRow ;
Vert Si ze=I nput P->vert Si ze; Hor Si ze=I nput P- >hor Si ze;
Qut put P = new Worl dT(I nput P->vert Si ze, | nput P- >hor Si ze) ;
Qut put P->first Row = | ocal Fi rst Row ; /1 same first row in output token
for (int ii =0 ; ii < InputP->vertSize; ii++)
for (int jj=0; jj < InputP->horSize; jj++)
{
Qut put P->worl d[l ocal FirstRow+ii][jj] = InputP->world[local FirstRowii][jj]; /1 for test
/1l row O is kept as overlap from nei ghbour
prevworld[ii+1][jj] = InputP->world[local FirstRow+ii][jj];
}
printf ("process % prevworld init \n, ", processP->cap_NaneS)
}

| eaf operation ConputeServerT::sendTopBorder
in void* |InputP
out Worl dT* Qut put P

{
Qut put P = new Worl dT(1, Hor Si ze);
Qut put P- >f i r st Row=0; //first row of array used to transfer border
for (int i=0;i<HorSize;i++)
Qut put P->wor 1 d[O] [i] =prevwor | d[1][i]; /1 send line 1 fromprevworld
}

| eaf operation ConputeServerT::sendBottonBorder
in void* |nputP
out WorldT* QutputP

{
Qut put P = new Worl dT(1, Hor Si ze);
Qut put P->f i r st Row=0;
for (int i=0;i<HorSize;i++)
{
/1 send last valid line fromprevworld
Qut put P->wor 1 d[O] [i] =prevwor | d[Vert Si ze] [i];
}
}

voi d Conput eServerT: : nergeBorders(void* resultP, WorldT* borderP, Nei ghbourT nyBorder)
{
i f (borderP->cap_Typel ndexF()==capTokenT: : cap_Typel ndex) return;
for (int i=0;i<HorSize;i++) {
int indexPrev=0;
i f (nyBorder==TopBorder) indexPrev=0;
el se if (nyBorder==BottonBorder) indexPrev=VertSize+1;
else printf("\n error in border type"); /1 last line
prevwor | d[i ndexPrev][i]=borderP->world[0][i];
}
printf ("nmergeborders % %\n", cap_NaneS, (int) myBorder) ;
[/printArray(prevworld, VertSize+2, HorSize);
}

| eaf operation ConputeServerT:: Conput eSt ep

in void* |nputP

out void* QutputP

{ I/ conputes one iteration in prevworld and places it in currworld
/1 traverses its 8 neighbours + itself
int iv, ih, kv, kh, jv, jh;
int count;

© LSP-EPFL, 1999 32

Program Parallelization with CAP

Qut put P = new capTokenT(); /'l necessary, enpty token
for (iv=l;iv<=VertSize;iv++) { // top and bottomlines not conputed
for (ih=0; ih<HorSize; ih++) {
/] traverses its 8 neighbours + itself
count = 0;
for (kv=-1; kv<=1; kv++) {
for (kh=-1; kh<=1; kh++) {
jv = (iv+kv);
jh = (i htkh+Hor Si ze) % Hor Si ze; /1 works horizontally in wap around node,
/'l %requires pos nunber

/[l printf("\n jv,jh =% , % ", jv, jh);
if ((jv==iv)&&(jh==ih)) ; else count=count+prevworld[jv][]jh];

}
}
switch(count) // The law of life is applied here
{
case 2: currworld[iv][ih]l=prevworld[iv][ih]; break; /'l remains alive
case 3: currworl d[iv][ih]=ALIVE; break; /1 remains or becones alive
default: currworld[iv][ih]=DEAD; /1 remains or beconmes dead
}
}
}
/1 now copy currworld into prevworld
for (iv=1l;iv<=VertSize;iv++) /1 top and bottomlines not conputed

for (ih=0; ih<HorSize; ih++)
prevworl d[iv][ih]=currworld[iv][ih];
printf ("\n after process % iteration \n", processP->cap_Nane$S) ;
[lprintArray(prevworld, VertSize+2, HorSize);
}

| eaf operation ConputeServerT:: Get SubWorld (int threadlx)
/1 sends prevworld to main program

in void* |nputP

out Worl dT* Qut put P

{
int i, k;
Qut put P = new Worl dT(VertSi ze, Hor Si ze) ;
Qut put P->first Row = | ocal Fi r st Row;
for (i=1;i<=VertSize;i++)
for (k=0; k<Hor Si ze; k++) {
Qut put P->wor | d[| ocal Fi rst Row+i - 1] [k] =prevwor 1 d[i][K];
/1 Qutput P->firstRow=t hreadl x * (TOT_VERT_SI ZE/ NUMBER_OF _COVPUTE_SERVERS) ;
printf ("\'n process % collect results \n", processP->cap_NaneS)
[lprintArray(prevworld, VertSize+2, HorSize) ;
}

voi d MergeSubWorld (Worl dT* resworl dP , Worl dT* partworl dP, int index)
{ Il every cell of partworld nmust be copied into corrrect hor tile of resworld
int k=0;
for (int i=partworldP->firstRow i<((partworldP->firstRow)+(partworldP->vertSize));i++)
for (int j=0;j<partworl dP->horSize;j ++)

{
}

reswor | dP->world[i][j] = partworldP->world[i][j];

}

operation Parallel ServerT::parallellnitPartWrld
in WrldT* I nputP
out WorldT* QutputP

{
i ndexed
(int i =0 ; i < NUVMBER OF COVPUTE_SERVERS ; i ++)
parallel (Splitwrld, Mergewrld, Min, WrldT Result (thisTokenP->vertSize,thi sTokenP->horSize))
(Sequential[i].initPartWorld(i)
)
}

operation Parall el ServerT:: ExchangeBorders (int partlx)

/1 this operation asks in parallel the neighbours to send their borders,
/1 merges theminto the prevworld

/1 the parallel construct is lauched in the Main thread;

/'l where Sequential is called, it acts on the slave threads

/'l exchange of borders works in waparound node

© LSP-EPFL, 1999 33

Program Parallelization with CAP

in void* |nputP
out void* QutputP

paral l el (Sequential[partlx], void result) (
(void
, ifelse (partlx>0)
(Sequenti al [part|x-1]. sendBott onBor der)

(Sequenti al [NUMBER_OF COWPUTE_SERVERS- 1] . sendBot t onBor der)

, mergeBorders(TopBorder)

)

(void

, ifelse (partlx<NUVBER OF COVPUTE_SERVERS- 1)
(Sequenti al [part | x+1] . sendTopBor der)
(Sequenti al [0] . sendTopBor der)

, mergeBorder s(BottonBorder)

/1 indicates nerge in Sequenti al

/1 partlx>0
/1 partlx==0

/1 part!|x<NUVBER OF COVPUTE_SERVERS- 1
/1 partlx==NUMBER_OF_COVPUTE_SERVERS- 1

operation Parall el ServerT:: Automat on(i nt nblterations)
/1 on Main, sequences the indexed parallel ExchangeBorders and indexed parallel ConputeStep

in void* |nputP
out void* QutputP

{
/1 single iteration first
for (int it=0;it<nblterations;it++) (
i ndexed
(int i=0; i<NUMBER OF_ COVWPUTE_SERVERS; i ++)
paral l el (void,void, Mai n,voi d out put)
(ExchangeBorders (i))
>->
i ndexed
(int j=0; j<NUMBER_OF_COWPUTE_SERVERS; | ++)
parall el (void,void, Main,void output)
(Sequential[j].ConputeStep)
)
}

operation Parallel ServerT:: GetWrl d

/1 gathering the tiles (sub worlds) into the final

in void* |nputP
out WorldT* | astResultP

/1 iterations of ExchangeBorders->ConputeStep
/1 to synchronize exchange of borders

wor | d

/1 collects the partial worlds (result)

paral l el (void, MergeSubWrld, Miin, WrldT | astResult(TOT_VERT_SI ZE, HOR_SI ZE))

{
i ndexed
(int j=0; j<NUMBER OF COVMPUTE SERVERS; | ++)
(Sequential[j].GetSubWorld (j))
}

Paral | el ServerT Parall el Server ;

voi d get_worl d(Worl dT* startWorl dP, char* fil eNameS)

{

FILE* fP ;

i nt Row, Col umm;

char ch;

fP = fopen (fileNameS, "r")

if (fP==0) {
fprintf (stderr, "unable to open file %\n",
exit (1)

}

for(Row=0; Row < startWorl dP->vertSize; Row++) {
for(Colum=0; Columm < startWorl dP->horSi ze+1; Colum++) {

ch= (char) getc (fP);

if (ch=="0) startWrl dP->worl d[Rowj [Col umm]

/1 instantiation de Parallel ServerT

/* Get input */

fil eNanmes) ;

/1 +newl i ne char

1;

else if (ch==".") startWirl dP->worl d[Rowj [Col um] = 0;

© LSP-EPFL, 1999

34

Program Parallelization with CAP

else if (ch =="\n") continue;
else { fprintf(stderr,"Error in Datal\n"); exit (1); }
}
}
fclose (fP) ;
}
paraneter int NunmberOflterations = 1 ; /1 lifePar -noi 1 -wfn wchl.in
paraneter char* WorldFil eName = "wchl.in" ;

int min (int argc, char** argv)

{

NB_| TERATI ONS = NunberOflterations ;

if (NB_ITERATIONS < 1) {printf("\n neg nunber of iterations");exit(1);}

Wor 1l dT* ful lworl dP = new Worl dT (TOT_VERT_SI ZE, HOR_SI ZE)
Worl dT* resul tP ;

Wor | dT* | ast Resul t P;
int i;

get _world (fullworldP, Wrl dFi | eNare)
printWorld(fullworldP);

call Parallel Server.parallellnitPartWorld in fullworldP out resultP ;

printWorld(resul tP);

capTokenT* inputP = new capTokenT;
capTokenT* out put P;
call Parallel Server. Aut omat on(NB_I TERATI ONS) in inputP out outputP;

i nput P = new capTokenT;
call Parallel Server.GetWrld in inputP out |astResultP;
printWorl d(l ast Resul tP);

return 0 ;

Appendix 2

cl

}s

ass conpl ex{
public:
doubl e i;
doubl e j;

conpl ex(double i = 0.0, double j = 0.0){
this->i =1i;
this-> =j;

}

voi d Set(double i, double j){
this->i =1i;
this-> =j;

}

friend conpl ex operator+(conplex a,conplex b){
return conplex(a.i+b.i,a.j+b.j);

}

friend conpl ex operator*(conplex a, conplex b){
return conplex(a.i*b.i-a.j*b.j,a.i*b.j+a.j*b.i);

}

doubl e Magni t ude() {
return sqrt(i*i + j*j);

}

© LSP-EPFL, 1999

35

Program Parallelization with CAP

Appendix 3
/1 lmageFile.h, SV, RDH 8.9.98

class I mageFile {
FILE *file;
char * filenane;
int sizeX;
int sizey,
i nt nbByt esPerPi xel ;

publi c:
I mageFil e(char * nane,int x, int y, int pixelSize); // constructor: initialization
i nt Savel nage(unsi gned char * buffer);
int Open();
voi d SaveHeader ();
voi d SaveDat a(unsi gned char * buffer);
voi d SaveDat aChunk(int position, int size, unsigned char * chunk);
voi d Saveli neConti guous(int size, unsigned char * |inebuffer);
void C ose();

b

inline | mageFile::lmgeFile(char * nane,int x, int y, int pixelSize){
filename = naneg;
sizeX = Xx;
sizeY = vy;
nbByt esPer Pi xel = pi xel Si ze;

}

inline int |nageFile:: Savel nage(unsi gned char * buffer){ /] saves inmge
if (Open()==1) return 1;
SaveHeader () ;
SaveDat a(buffer);
G ose();
return O;

}

inline int ImageFile:: Open(){
//opens the output file
if ((file = fopen(filenane, "wb")) == NULL) ({
cout << "The file " << filename << " could not be opened\n" ;
return 1;
}
//cout << "The file " << filename << " was successfully opened !\n" << flush;
return O;

}

inline void | mageFil e:: SaveHeader () {
/'l generates the bytemap header paraneters sizeX sizeY, nunberOfIntensity levels
/1 for the PGM or PPM output bytemap file.

fputs("P",file);

/* Test if here are three bytes per pixel */
if (nbBytesPerPi xel ==3)

fprintf(file,"%\n", '6");
el se

fprintf(file, "%\n", '5);

fprintf(file, "% %\n",sizeX sizeY);
fprintf(file, "%\n", 255);
}

inline void | mageFil e:: SaveDat a(unsi gned char * buffer){
fwite(buffer, sizeof(unsigned char), sizeX * sizeY * nbBytesPerPixel, file);

}

inline void | mageFil e:: SaveDat aChunk(int position, int size, unsigned char * chunk){
I/l saves one image scanline into the file according to “position”
fseek(file,position,SEEK_CUR);
fwrite(chunk,sizeof(unsigned char),size,file);
fseek(file,-(position+size), SEEK_CUR);
}

© LSP-EPFL, 1999 36

Program Parallelization with CAP

inline void | mageFil e:: SavelLi neConti guous(int size, unsigned char * linebuffer){
/'l saves a scanline contiguously onto a file
fwite(linebuffer,sizeof(unsigned char), size,file);

}

inline void I mageFile::d ose()({
fclose(file);
//cout << "The file " << filename << " was successfully closed !'\n" << flush;

}

RDH/ 9. 4. 99

© LSP-EPFL, 1999 37

