
© LSP–EPFL, 1998 1

PROGRAM PARALLELIZATION WITH CAP

1. Introduction

A parallel program comprises generally a set of threads containing parallel processing operations
performed by the parallel program. Most parallel programs are based on the client-server (also called
master-slave) paradigm. Parallel processing is initiated by a client thread (also called master) which
communicates with the server threads (also called slaves) located in the server processing nodes. In the
case the data to be processed can be segmented in chunks, the client splits the input data into sub-parts
which are sent for processing to the server nodes. Each server computes its sub-result and sends it back to
the client. The client merges all sub-results into the final result.

Generally, parallel programs execute in Single Program Multiple Data (SPMD) mode: the same program
is distributed on both the client and the server threads and at start time, every program instance checks if
it has to behave as a client or as a server, and executes accordingly either the client or the server code.

To facilitate development and debugging, a parallel program is first developed as a set of threads (also
called lightweight processes) residing within the same process. Such a program can be debugged with
standard debugging tools. In a second step, the threads are mapped to different processes running on the
same computer and the program is further tested and debugged. Finally, the parallel application is
completed by having the threads mapped onto different processes running in different computers. No
further debugging should be necessary.

Fig. 1 Parallel program comprising client and server threads.

Most operating systems supporting distributed environments, such as Unix or WindowsNT offer
primitives enabling threads running on different processing nodes to communicate with one another
(named pipes, socket based TCP-IP communication). However, developing parallel programs making
direct use of operating system threads and pipes is rather tedious. Threads need to be explicitly created
and managed and for each pair of communicating processes, a named pipe needs be explicitely created and
opened.

1.1 Message passing based parallel programming (MPI)

In order to facilite to development of parallel programs, the parallel programming community developed
the MPI message passing based programming environment. This environment offers simple

Client PC

Network

Server PC’s

© LSP–EPFL, 1999 2

Program Parallelization with CAP

MPI_Send(buffer, count, datatype, destProcessId, Tag, communicator)

and

MPI_Receive(buffer, count, datatype, sourceProcessId, Tag, communicator, status)

communication primitives for transfering data located in a buffer from the current thread to the destination
thread. Programming at the message passing level is however difficult for the following reasons :

• two threads may comprise each different procedures communicating with each other : the only way to
distinguish between messages is to use the Tag field (integer).

• At the end of a computation, the client may have to receive results simultaneously from server threads.
This is done by a polling function testing continuously if a message arrives from one of the server
threads. To avoid successive polling of all message sources, MPI provides the MPI_gather() commu-
nication primitive to gather messages from all present threads.

Furthermore, having only one thread running in each computer is highly inefficient: when this thread waits
for a message from another thread or it executes a file read or write operation, the processor remains idle.
Trying to make the parallel program more efficient by developing multi-thread client and server programs
is even more difficult: one has to manage explicitely synchronizations and information exchanges between
threads running either on the same or on different computers.

Fig. 2 Multithread multiprocessor programs.

An alternative is to view a single running server thread as an event loop: on a given event (for example,
receiving a certain message), the thread accomplishes a certain action. To avoid any kind of thread
suspension, sending messages and accessing the disk must be performed asynchronously. A call back
procedure may be associated to the termination of an input/output step, for example reading a file. Within
the call-back procedure, the next step to be accomplished can be launched.

Fig. 3 Programming an event loop: a request corresponds to a list of steps to be accomplished
possibly by call-back procedures.

Computation

threads

Communication

buffers + semaphoresCommunication

threads

I/O access

threads

Communication

channels (pipes)

Single thread

Processing Asynchronous

Asynch.

File transfer

request from
clients

reply sent to clients

“WaitForMultiple
Objects”

file access

done

op. 1
read

op. 2
write

op. 3
send

ptrRequest

Steps to be
accomplished
by call-back
procedures









© LSP–EPFL, 1999 3

Program Parallelization with CAP

1.2 Hiding data communication and disks access time

Parallel programming can only be competitive, if the potentialities of the underlying parallel hardware and
software (native operating system) are fully exploited. To offer good performances, parallel applications
need to hide communication time, i.e. the time to transfer the data between the client and the server threads,
the time to transfer data among the server threads and the time to transfer the results back to the client
thread. In addition, disk access times (disk read and write operations are done by DMA hardware and do
not need processing power) need also be hidden.

Transfer and disk access times can be hidden if data transfers or disk accesses are done in parallel with
computations. This can be done by pipelining data transfers or disk accesses with processing operations.
For example, an application which requires 1 second disk access time and 1 second processing time can
be executed as a pipeline comprising disk access and processing operations and take a total of 1.1 second.

With a message passing interface, ensuring that data transfers are done at the same time as data processing
requires generally two communicating threads within the same address space : one thread is responsible
for communication and the other thread responsible for the computation. Both threads may synchronize
each other with an input and output message queue and appropriate synchronization semaphores (Fig. 2).
Conceiving explicitely multi-threaded parallel applications is difficult and error-prone. The alternative of
programming in each address space an event loop relying on asychronous message passing and file access
primitives is also relatively complex to achieve (Fig. 3).

2. Introduction to the CAP-based parallelization

To develop efficient parallel programs, we need a means of specifying a set of threads running possibly in
the same or in different address spaces (possibly on different computers), associating to each of the threads
one or several operations, and specifying at a high level of abstraction the flow of parameters and data
between the operations located in different threads.

The Computer-Aided Parallelization framework (CAP) aims at providing exactly this functionality. It
offers the parallel application developer the capability of describing his program at a high-level of
abstraction. This high-level description is then automatically compiled into a C++ program source
incorporating all low level communication and synchronization features required to ensure (1) that
parameters and data are correctly transferred between operations located in different threads and (2) that
correct pipelining is achieved, i.e. that data is transferred or read from disks while previous data is being
processed.

In a CAP program, the application developer specifies a set of threads (keyword process), processing
operations available within each thread (keyword operations) and global variables (keyword variables) in
each thread which are maintained during the life of the thread. The basic CAP parallel construct comprises
a split function, an operation possibly located in one or several server threads and a merge function:

split() ..
ComputerServer[i].myOperation()
merge()

The split function is called p times to split the input data into p subparts which are distributed to the
different compute server thread operations (ComputeServer[i].myOperation()) . Each operation running in
a different thread ComputeServer[i] receives as input the subpart sent by the split function, processes this
subpart and returns its subresult to the merge function. The parallel construct specifies explicitely in which
thread the merge function is executed (often in the same thread as the split function). It receives a number
of subresults equal to the number of subparts sent by the split function. Split and merge functions are
executed as many times as specified in the split function (parallel while construct) or as specified in the
parallel construct iterator (indexed parallel construct).

© LSP–EPFL, 1999 4

Program Parallelization with CAP

CAP defines a standard way of passing data as input to the split function, to take the output of the split
function and forward it as input to an operation, to take the output of an operation and to forward it as input
to the merge function. Data passed between split, operation and merge functions is embedded in a token
structure. Token types are defined at the beginning of the program. Here is the definition of the structure
and sequence of parameters passed to the split function, operation and merge functions.
int splitInput (splitInputTokenType* inputToken, // input token to the split function

splitInputTokenType* previousToken, // previous token, zero if first pass
splitOutputTokenType* & outputToken, // output of split function created by user

)
{ ..// sequential C++ body

// programmer needs to create the outputToken
// function returns 1 if split function is to be called again, otherwise 0

}
leaf operation ComputeServerT::myOperation()

in splitOutputTokenType* inputP
out mergeInputTokenType* outputP

{ ..// sequential C++ body } // attention: outputP token needs
// to be created by programmer

void mergeOutput(mergeOutputTokenType* outputResult,
mergeInputTokenType* mergeInput)

{ ..// sequential C++ body } // outputResult generated by CAP

The programmer needs to create the output tokens of the split function and the output tokens of the
operations. CAP directs automatically an output token to the input token of the next operation. CAP creates
the merge function output token of type mergeOutputTokenType defined by the user.

Leaf operations, split functions and merge functions are sequential procedures written in the C++
language. CAP is compositional, i.e. it enables to declare abstract high-level threads which include lower
level "real" threads. Low-level threads are mapped to operating system threads. For example, the CAP
construct residing on the client which launches the parallel execution is the high level operation
ParallelComputation which is part of the high-level thread ParallelServerT.
process ParallelServerT {
subprocesses :

MainProcessT Main; // thread that runs in the same address space as the main program
ComputeServerT ComputeServer[NUMBER_OF_COMPUTESERVERS]; // compute server threads

Operations :
ParallelComputation in splitInputTokenType* inputP

out mergeOutputTokenType* outputP ;
} ;
ParallelServerT ParallelServer; // instantiation of the high-level thread

The high-level operation ParallelComputation contains a parallel while CAP construct enabling the client
to split the input data into parts to be sent to operations running in threads located in the same or in different
address spaces, possibly on different computers (PC’s).

The parallel while construct directs the token originating from the split function according to a user
defined field (index) located in the token generated by the split function.

The index of the destination thread contained in the field thisTokenP->index can be dynamically varied
during the computation.

If the number of parallel branches is independent of the token generated by the split function, an indexed
parallel construct can be used, which requires slightly modified split and merge functions :

operation ParallelServerT::ParallelComputation

 in splitInputTokenType* inputP

 out mergeOutputTokenType* outputP

{

parallel while (splitInput, mergeOutput, Main, mergeOutputTokenType Result)

(ComputeServer[thisTokenP->index].myOperation)

;

}

split function
merge
function

thread
executing
merge function

result and
its type

© LSP–EPFL, 1999 5

Program Parallelization with CAP

void splitInput (splitInputTokenType* inputToken,
splitOutputTokenType* & outputToken,
int index) // current index of splitInput call

{ ..// sequential C++ body }

void mergeOutput(mergeOutputTokenType* outputResult,
mergeInputTokenType* mergeInput,
int index) // current index of mergeOutput call

{ ..// sequential C++ body } // outputResult generated by CAP

The corresponding indexed parallel construct has the following structure

operation ParallelServerT::ParallelComputation
in splitInputTokenType* inputP
out mergeOutputTokenType* outputP

{
indexed (int i=0 ; i<NUMBER_OF_PARALLEL_ITERATIONS; i++) // this is the explicit index
parallel (splitInput, mergeOutput, Main, mergeOutputTokenType Result)

(ComputeServer[i%NUMBER_OF_COMPUTESERVERS].myOperation) ;
}

In the case that the operations to be executed in parallel differ one from another (e.g. in the case of
functional parallelism), a third parallel construct enables specifying custom split, custom operations and
custom merge functions for each of the parallel branches. The syntax of the parallel operation is the
following, for 4 parallel branches:
parallel (Main, mergeOutputTokenType Result) (

(SplitInput0,ComputerServer[0].operation0,MergeOutput0)
(SplitInput1,ComputerServer[1].operation1,MergeOutput1)
(SplitInput2,ComputerServer[2].operation2,MergeOutput2)
(SplitInput3,ComputerServer[3].operation3,MergeOutput3)

);

The Main thread executes the merge functions. According to the configuration file (see below), it runs in
the same address space as the main program. The result token is Result of type mergeOutputTokenType.

The ParallelComputation high-level operation may be called from the main C++ program running in the
client (sometimes called master) thread. After making use of the results (printing them, storing them in a
file or processing them further), it is the programmer’s responsability to delete the high-level parallel
operation’s output token.
int main(int argc, char** argv)
{

splitInputTokenType* inputP= new (splitInputTokenType); // create input token
mergeOutputTokenType* mainOutput; // define output token pointer
call ParallelServer.ParallelComputation in inputP out mainOutput;// calling the high-level operation

// process or display the results located in token mainOutput
delete mainOutput; // Delete the parallel operation’s output token
return 0;

}

Under WindowsNT, the program is developed in the Visual C++ environment as a single multihread
program running on a single PC. The standard Visual C++ debugger is used to debug the Cap program.
Once the program is running correctly as a single NT process, a configuration map can be created to run
the program as several NT processes on the same PC. If the program behaves correctly, the configuration
file can be adapted to run the program on multiple PC’s. The communication between the processes relies
on a TCP/IP socket-based message passing system [Messerli98, chapter 4].

A configuration file specifies the mapping between CAP threads and underlying NT processes. A list of
NT processes (A, B, C, etc..) is defined in the section processes and the Cap threads defined in the section
threads are mapped to the declared NT processes.

© LSP–EPFL, 1999 6

Program Parallelization with CAP

//mandelbrot.cnf
configuration {
processes :
 A ("user") ;
 B ("128.178.71.141", "\\Lamilspsrv1\Users\Periph\etudlsp40\CapProject\Src\mandelbrotPar.exe"

) ;
threads :
 "Main" (A) ; // thread "Main" is located in the same address space as the main program
 "Server[0]" (A) ;
 "Server[1]" (A) ;
 "Server[2]" (B) ;
 "Server[3]" (B) ;
} ;

In the configuration file example shown above, A and B are NT processes. Process A is associated to the
PC where the program is started and process B is a server process running on the PC designated by its IP
number. The executable file is given by its full path specifier. In this example, two server threads execute
on the client PC (master, named “user”) and two server threads on the server PC (slave, named with IP
number 128.178.71.141).

3. A first CAP program

Let us consider a simple program converting in parallel all lower-case letters to capitals. First, the client
creates a string with lower-case letters "a" to "z". The string is segmented into individual characters by the
split function splitInput and sent to server threads which run the leaf operation myOperation. This
sequential procedure (leaf operation) converts lower-case letters to capital letters. These capital letters are
merged into the final resulting string by the merge function mergeOutput. The main program main()
running on the client thread displays the resulting string.

Please read and understand program lowerToUpperCaseIP.pc .

// lowerToUpperCaseIP.pc
// Simple didactic CAP Program with "indexed parallel" construct
// RDH 4.8.98

const int NB_OF_CHARS=26; // constant in the program
parameter int NumberOfProcesses = 4; // number of threads

token aTozStringT { // token type for input and output string
char aTozString[NB_OF_CHARS+1]; // string embedded into token
aTozStringT(); // constructor declaration

};

aTozStringT::aTozStringT()
{ //constructor: build string abcd..z
for (int i=0;i<NB_OF_CHARS;i++) {

aTozString[i]= (char) (i+ ’a’);
}
aTozString[NB_OF_CHARS]= 0; // terminate with zero

}

token SingleCharT {
int index; // current character index
char ThisChar;
SingleCharT() {ThisChar=’$’;index=0;} // inline constructor

};

void splitInput (aTozStringT* inputToken,
SingleCharT*& outputToken,
int splitIndex) // gives the ordinal of the current invocation

{
outputToken = new SingleCharT; // creation of output token
outputToken->index = splitIndex;
outputToken->ThisChar= splitIndex + ’a’; // current ASCII code

}

© LSP–EPFL, 1999 7

Program Parallelization with CAP

void mergeOutput(aTozStringT* outputResult,
SingleCharT* mergeInput,
int mergeIndex) // gives the ordinal of the current invocation

// merge function is called as many times as split function was called
{ // sequential C++ body, outputResult token is created by CAP
outputResult->aTozString[(mergeInput->index)] = mergeInput->ThisChar;

}

// every thread class (keyword process) needs to be declared

process MainProcessT {
operations:
};

process ComputeServerT {
operations:
myOperation in SingleCharT* inputP out SingleCharT* outputP ;

};

leaf operation ComputeServerT::myOperation // operation performed on server threads
in SingleCharT* inputP
out SingleCharT* outputP

{ // sequential C++ body, attention: outputP token needs to be created by programmer
outputP = new SingleCharT;
outputP->index = inputP->index; // copy index
outputP->ThisChar = inputP->ThisChar - 0x20; // capital letter: substract H’20

}

process ParallelServerT { // declaration of high-level thread structure
subprocesses :
MainProcessT Main; // client thread
ComputeServerT ComputeServer[NumberOfProcesses]; // compute server threads
operations :
ParallelComputation in aTozStringT* inputP

out aTozStringT* outputP ;
} ;

// The operation ParallelComputation contains a CAP parallel construct,
// for example the "indexed parallel" construct enabling to run the program
// on a given number of "real" ComputeServer threads,
// located in different address spaces, possibly on different computers (PC’s).

// instantiate the high level process "ParallelServer"
// offering the high-level operation "ParallelComputation"

ParallelServerT ParallelServer;

operation ParallelServerT::ParallelComputation // defines high-level parallel operation
in aTozStringT* inputP // this input is passed to splitInput
out aTozStringT* outputP // this output is obtained from mergeOutput
{ indexed
(int i = 0 ; i < NB_OF_CHARS ; i++)
parallel (splitInput, mergeOutput, Main, aTozStringT Result)

(ComputeServer[i%NumberOfProcesses].myOperation)
;
// the token from the split function is directed towards one of the 4 ComputeServer threads

}

// The high-level operation ParallelComputation may then be called
// from the main C++ program running in the client thread.

int main(int argc, char** argv) // main residing in client program
{
aTozStringT* inputP= new aTozStringT;
printf("input = %s \n", inputP->aTozString);
aTozStringT* mainOutput;
call ParallelServer.ParallelComputation in inputP out mainOutput;
printf("output = %s \n", mainOutput->aTozString);
delete mainOutput; // It is the programmers responsability to delete

// the parallel operation’s output token
return 0;

}

© LSP–EPFL, 1999 8

Program Parallelization with CAP

☞ Experiment 1

Call an MS-DOS console. Place yourself in the directory XXXX. Execute macro CapSetup.
Precompile your program by typing

cap.deb lowerToUpperCaseIP

If there are no errors, you may compile your program

comp.deb lowerToUpperCaseIP

If there are no errors, execute your program

lowerToUpperCaseIP

Without configuration file, all threads run in the same address space in your computer.

☞ Questions 1

1.1. What is the content of the parallel program’s input token inputP?

1.2. How many characters are generated by a single invocation of the split function splitInput ?

1.3. What is the procedure executed by the server threads and what does it do?

1.4. How does the merging function mergeOutput generate the output string?

1.5. How many times is the splitInput function invoked? Why?

1.6. How many times is the mergeOutput function invoked? Why?

1.7. The program incorporates 4 server threads. These threads are indexed by indices 0 to 3
(ComputeServer[0] to ComputeServer[3]). By which thread is character "f" converted to upper-
case character "F" ?

4. Developing and debugging CAP programs

To develop, compile and debug CAP programs within the Msdev Visual C++ environment, apply the
following steps

1. Make sure that all your source files are located in a subdirectory called CapProj/Src. Let us assume
you have your source file lowerToUpperCaseIP.pc in the subdirectory called CapProj/Src. Normally,
at CAP installation time, the variable MSDEV_HOME_DIR has been set to C:\Application\Msdev or
to C:\Program Files\DevStudio, the variable LSP_HOME_DIR set to z:\username\Cap0.1 or to
c:\CapUser and the variable UCAP has been initialized to z:\username\Cap0.1 or to C:\CapUser.
You may verify that these variables exist by clicking in the Control Panel on System and then select-
ing the Environment window. If the variables are not set, run the script CapSetup.bat located in
C:\CapUser, either by clicking or by running it from a console.

2. Run the macro “MakeCapProject lowerToUpperCaseIP lowerToUpperCaseIP”from a MS-DOS con-
sole in the CapProject directory a (the directory including the Src subdirectory). This macro gener-
ates a project lowerToUpperCaseIP.dsp . Click on that project and MS-Dev will create a workspace
with the same name (lowerToUpperCaseIP.dsw). You may then look at your workspace (View work-
space), open the CAP project and find your source file lowerToUpperCaseIP.pc.

3. You may precompile your program with Build, then Compile command. You may generate the exe-
cutable file with the Build then Build lowerToUpperCaseIP.exe command. By clicking on the error
messages, you directly access the corresponding erroneous source lines.

4. If your program needs an argument in the command line, you may select the project, Settings, and in
the Debug field, enter in the Program argument field the argument (for example a filename or a
number, etc).

© LSP–EPFL, 1999 9

Program Parallelization with CAP

5. To run the executable from Msdev, select Build and Start Debug. To insert breakpoints, place the cur-
sor at the corresponding program line and type F9. You may remove the breakpoint by typing again at
the same place F9. To execute and stop at breakpoints, select Build, respectively Debug and Go.

If it is not possible to place a breakpoint (error message from Msdev), just use printf to print at runtime the
value of a variable.

☞ Experiment 2

2.1. Create a project lowerToUpperCaseIP incorporating file lowerToUpperCaseIP.pc (see
above).

2.2. Precompile, compile and run the program lowerToUpperCaseIP from Msdev and verify that
it executes correctly

2.3. Use the debugger to verify that the splitInput split function generates a correct outputToken.
Verify in the debugging window, that outputToken->ThisChar takes successive values ’a’, ’b’, ’c’,...

2.4. Use the debugger or a printf function call to verify that the merge function mergeOutput
correctly translates lower-case characters to upper-case characters.

☞ Programming exercise 1: local variables in server threads

Each thread may incorporate variables, visible by its operations. The following program lines
specify an integer variable in the ComputeServer threads:
process ComputeServerT {
variables:

int passNumber;
operations:

myOperation in SingleCharT* inputP out SingleCharT* outputP ;
};

Modify program lowerToUpperCaseIP.pc so as to convert in each server thread only in the first
two passes characters from lower-case to upper-case. Name the resulting program
lowerToUpperCaseIPvar.pc .

5. Token redirection by conditional expressions

One may want, at run time, to send or not send tokens to server threads depending on their values. With
CAP, a conditional expression enables selecting which tokens are to be sent to given server threads. All
tokens within a parallel expression are issued by a split function and are merged by a merge function.
Therefore, the tokens which are not sent to server threads are directly merged into the resulting parallel
operation output token.

5.1 The if expression

The following program part gives an example of the conditional execution of server thread operations. The
keyword thisTokenP is always a pointer to the current token coming out from the split operation.

const int nbOfProcessedChars=8 ;

operation ParallelServerT::ParallelComputation
in aTozStringT* inputP
out aTozStringT* outputP
{
indexed
(int i = 0 ; i < NB_OF_CHARS ; i++)
parallel (splitInput, mergeOutput, Main, aTozStringT Result)

(if (thisTokenP->index <nbOfProcessedChars)
(ComputeServer[i%NumberOfProcesses].myOperation)

© LSP–EPFL, 1999 10

Program Parallelization with CAP

)
;
// the token from the split function is directed towards one of the 4
// ComputeServer threads

}

☞ Experiment 3: conditional processing by server threads

Insert the program piece shown above in the lowerToUpperCaseIP.pc program, compile it and
execute it. Verify that conditional token routing works.

5.2 The ifelse expression

This expression enables redirecting a token to either one or the other compute thread operation. The
following lines illustrate an example of the ifelse expression.

indexed (int i = 0 ; i < NB_OF_CHARS ; i++)
parallel (splitInput, mergeOutput, Main, aTozStringT Result)

(ifelse (thisTokenP->index %2 ==0)
(ComputeServer[i%NumberOfProcesses].evenOperation)
(ComputeServer[i%NumberOfProcesses+1].oddOperation)

)
;

6. Pipelining multiple server leaf operations

It is often necessary to perform several leaf operations (sequential operations running in server threads) in
a pipeline parallel manner. To continue with the present simple ASCII character conversion example, let
us assume that we would like, in a second leaf operation, to shift the character’s ASCII values by a given
amount, for example by one.

The new operation shiftChar may be declared as a second operation offered by the ComputeServerT
thread. Within the parallel program structure, the pipelining of leaf operations is shown by

ComputeServer[index1].myOperation >-> ComputeServer[index2].shiftChar

If index1 is equal to index2, then both operations execute in the same thread, otherwise they will be
executed in different threads.

Only the following lines of program lowerToUpperCaseIP.pc need to be changed or added in order to add
the additional shiftChar operation in the pipeline.

process ComputeServerT {
operations:
myOperation in SingleCharT* inputP out SingleCharT* outputP ;
shiftChar in SingleCharT* inputP out SingleCharT* outputP;

};

leaf operation ComputeServerT::shiftChar
in SingleCharT* inputP
out SingleCharT* outputP

{ // sequential C++ body, attention: outputP token needs to be created by programmer
outputP = new SingleCharT;
outputP->index = inputP->index; // copy index
outputP->ThisChar = inputP->ThisChar+1; // shift by one character

}

operation ParallelServerT::ParallelComputation
in aTozStringT* inputP
out aTozStringT* outputP
{
indexed
(int i = 0 ; i < NB_OF_CHARS ; i++)

© LSP–EPFL, 1999 11

Program Parallelization with CAP

parallel (splitInput, mergeOutput, Main, aTozStringT Result)
(

ComputeServer[i%NumberOfProcesses].myOperation >->
ComputeServer[i%NumberOfProcesses].shiftChar

)
;

}

☞ Experiment 4: conditional processing by server threads

Insert the program piece shown above in the lowerToUpperCaseIP.pc program, compile it and
execute it. Verify that pipelining of operations works.

☞ Questions 2

2.1. Are the successive operations myOperation and shiftChar executed in different or in the same
address space? Explain why!

2.2. If we would like, instead of shifting the character by one, to get the position of the capital letter
within the set of capital letters {A,B,C,..,Z}, what program parts need to be changed, respectively
added?

7. The for and while pipelined loop expressions

If several instances of the same operation, possibly running in different compute threads need to pipelined,
i.e. one token has to repeat the same operation several times, it is possible to use a for or while CAP
expression. The number of repetitions can be made data-dependent. The following program variant
increases for each input token its ASCII value using the shiftChar operation until all ASCII values are
equal or larger ’e’.

indexed
(int i = 0 ; i < NB_OF_CHARS ; i++)

parallel (splitInput, mergeOutput, Main, aTozStringT Result)
(while (thisTokenP->ThisChar< ’e’) // first places in char array will be ’e’

(ComputeServer[i%NumberOfProcesses].shiftChar)
)

;

An example showing how to shift each character by 4 positions, using the for construct

indexed
(int i = 0 ; i < NB_OF_CHARS ; i++)

parallel (splitInput, mergeOutput, Main, aTozStringT Result)
(for (int j=0;j<4;j++) // first places in char array will be ’e’

(ComputeServer[i%NumberOfProcesses].shiftChar
)

;

☞ Experiment 5: repeated pipelined operations by server threads

Insert the first or second program piece (while or for construct) shown above in the
lowerToUpperCaseIP.pc program, compile it and execute it. Verify that repeated pipelined loops
of operations work.

8. The parallel while constuct

The parallel while construct is used instead of the indexed parallel construct described in section 2 when
an explicit index for terminating the parallel loop is not available. The termination of the parallel loop is
data dependent, i.e. dependent on data available in the split function. Once the split function decides that
the parallel while loop is to be terminated, no further tokens are sent to the parallel operations.

© LSP–EPFL, 1999 12

Program Parallelization with CAP

The split function must return 1 to be called again and return 0 during its last invocation. The syntax of the
split function for the parallel while constuct is the following:

int splitInput (splitInputTokenType* inputToken,
splitInputTokenType* previousToken,
splitOutputTokenType* & outputToken,

)
{ ..// sequential C++ body

// attention: outputToken needs to be created

// function returns 1 if split function is to be called again
// function returns 0 if there is no further invocation
// of the split function

}

The parallel while construct directs the token originating from the split function according to a user defined
field (index) located in the token passed from the split function to the desired compute server thread. The
syntax is the following, using the keywords operation, in, out and parallel while :

operation ParallelServerT::ParallelWhileComputation
in splitInputTokenType* inputP
out mergeOutputTokenType* outputP

{
parallel while (splitInput, mergeOutput, Main, mergeOutputTokenType Result)

(ComputeServer[thisTokenP->index].myOperation)
;

}

The syntax of the merge function remains identical to the merge function used in the indexed parallel
construct.

As an example, the previous lowerToUpperCaseIP program may be modified as follows. The split
function needs to be adapted and there is no index parameter in the merge function.

int splitInput (aTozStringT* inputToken,
SingleCharT* previousToken,
SingleCharT*& outputToken)

{
outputToken = new SingleCharT; // creation of output token
if (previousToken==0) { outputToken->ThisChar=’a’;}// first time in split function
else {

outputToken->index = previousToken->index + 1;
outputToken->ThisChar= previousToken->ThisChar + 1;

}
if (outputToken->index < NB_OF_CHARS-1) {return 1;}// means: call again split function
else {return 0;} // means: this was the last split function

// call
}

void mergeOutput (aTozStringT* outputResult,
SingleCharT* mergeInput)

{ // sequential C++ body, outputResult token is created by CAP
outputResult->aTozString[(mergeInput->index)] = mergeInput->ThisChar;

}

The parallel operation construct is modified as follows:

operation ParallelServerT::ParallelComputation
in aTozStringT* inputP
out aTozStringT* outputP
{
parallel while (splitInput, mergeOutput, Main, aTozStringT Result)

(ComputeServer[thisTokenP->index%NumberOfProcesses].myOperation)
;
// the token from the split function is directed towards the one of the 4
// ComputeServer threads

}

© LSP–EPFL, 1999 13

Program Parallelization with CAP

☞ Experiment 6: using the parallel while construct

Insert the program pieces shown above in the lowerToUpperCaseIP.pc program, compile it and
execute it. Verify that the program with the parallel while construct executes correctly.

9. The Sieve of Eratosthenes: an example of "parallel while" program
with many pipelined leaf operations

Let us now look at a real problem. Real problems have their own processing structure. We will see how to
adapt the given problem structure to the available parallel CAP constructs.

The Sieve of Eratosthenes enables generating prim numbers in a pipeline of processing operations. A prim
number generator generates successive numbers according to a given algorithm, for example 2,3,4,5,6..
These numbers pass through the processor pipeline. The first number arriving at a processor is stored as
its prime number. The following numbers that pass through this processor are checked: if they are
multiples of the stored prim number, they are discarded; if not, they are passed to the next processor in the
pipeline. The set of prim numbers stored in the processors is collected and represents the resulting set of
prim numbers.

Fig. 4 Number generator and processor pipeline.

There may be various ways of generating a sequence of numbers incorporating all prim numbers up to a
given value. For example, one may generate the numbers 2,3,5,7,9... by going, after number 3
(initialization) through all odd numbers, or one may, after initialization go through the numbers according
to : 2,3,6-1,6+1,12-1,12+1,18-1,18+1, ..

From theory (there are slightly more than x/lnx prim numbers from 2 to n) we derive the size of an array
able to store prim numbers up to a value called maxPrimValue.

nbMaxOfPrimes = 10 + maxPrimValue/4; // upper bound for storing prim numbers up to maxPrimValue

Let us now describe how to implement with CAP the Sieve of Eratosthenes.

The number generator can be part of the split function. It receives as input the threshold, i.e. the value up
to which numbers need to be generated. The parallel construct will be of the type parallel while since the
number generator does not necessarily generate the numbers one by one in increasing order.

The resulting prim number will be inserted by the merge function into an array. The size of the array is
derived statically from the threshold, i.e. from the value of the highest prim value. We will construct a
pipeline having the maximal required number of stages, i.e. as many pipelined leaf operations as there are
places in the result array. Since, according to CAP’s philosophy, all splitted values need to be merged, we
have to create for each generated number two boolean variables specifying if it is a prim number and if it
is a valid number. Valid numbers are numbers which may potentially be prim numbers. Non-valid numbers
are numbers which have been detected to be non-prime. Therefore, the tokens generated by the split
function and travelling through the set of pipelined filterPrime operations have the following structure

token SubInputOutputT {int nombre; bool prim; bool valid;};

Filter 1 Filter 2 Filter n
Number Receive

generator Prime
Numbers

© LSP–EPFL, 1999 14

Program Parallelization with CAP

The result array where all prim numbers have been merged is imbedded in a token (class) which includes
an inline constructor. Tokens may include fixed size structures or arrays. For dynamic array structures,
please refer to the CAP language reference manual (sect. 3. token serialization, sect 4.2: the predefined
capArrayT class).

token ResultPrim { // result is an array of numbers
int Index;
int prims[nbMaxOfPrimes];
ResultPrim () // constructor

{Index=0; for (int i=0;i<nbMaxOfPrimes;i++) prims[i]=0;
}

};

Each number token generated by the split function travels through the successive filterPrime operations.
The first valid token received by a filterPrime operation is its prim number (ComputeServerT process
variable myPrime) . The next valid tokens are checked and marked as non-valid if they are divisible by
myPrime. The PipelinedPrime parallel operation does not allow non-valid tokens to be forwarded to
further filterPrime operations. The for pipelined loop ensures that tokens may travel up to the maximal
number of required filterPrime operations.

operation ParallelServerT::PipelinedPrime
in InputT* InputP
out ResultPrim *result

{
parallel while (SplitInput,MergeOutput, Main, ResultPrim result())

(for (int i=0;i<(nbMaxOfPrimes-1);i++)
(
if (thisTokenP->valid) (sequential[i].filterPrime)

)
);

}

The full primNumbers.pc program is given below.

// Program primNumbers.cp : parallel while program, with many pipelined leaf operations
// Generates numbers in a pipelined parallel manner
// until a certain threshold is reached: each slave operation checks if the number
// is divisible by the prim number it has previously stored
// the sequence of generated numbers depends on the algorithm chosen:
// (a) 2,3,4,5,6,... (b) 2, 3, -> 5, 7, 9, 11, 13, ..
// (c) 2,3, -> 6-1, 6+1, 12-1,12+1, 18-1,18+1,..
// RDH 11.8.98,
#define true 1
#define false 0
#define bool int

const int maxPrimValue= 40;
const int nbMaxOfPrimes = 10 + maxPrimValue/4; // upper bound for nb of prim numbers

token InputT { // indicates threshold to reach with prim numbers
int threshold;
int currentNb; // intermediate variable for split function
InputT (int myThreshold)

{threshold=myThreshold;currentNb=1;} // threshold: maximal prim number value
 };

token ResultPrim { // result is an array of numbers
int Index;
int prims[nbMaxOfPrimes];
ResultPrim () // constructor

{Index=0; for (int i=0;i<nbMaxOfPrimes;i++) prims[i]=0;}
};

token SubInputOutputT {int nombre; bool prim; bool valid;};

int SplitInput (InputT* inputP, SubInputOutputT* prevP, SubInputOutputT*& nombreOut)
{
nombreOut = new SubInputOutputT;
inputP->currentNb++; // input used in same way as a static variable
nombreOut->nombre=inputP->currentNb; // generates successive numbers: version (a)

© LSP–EPFL, 1999 15

Program Parallelization with CAP

nombreOut->prim=false;
nombreOut->valid=true;
if (inputP->currentNb < inputP->threshold) return 1; else return 0;

}

void MergeOutput (ResultPrim* outputP, SubInputOutputT* subOutputP)
{
printf("mergeIn=%d ", subOutputP->nombre);
if (subOutputP->prim==true)

outputP->prims[outputP->Index++]= subOutputP->nombre;
}

process MainProcessT {
operations :
} ;

process ComputeServerT {
variables: // variables residing in each computer server thread
bool first; // first number received, not previously identified as prime
int myPrime; // prim number associated to present thread
ComputeServerT(){first=true; myPrime=-1;} // constructor

operations :
filterPrime in SubInputOutputT* subInput out SubInputOutputT* subOutput ;

} ;

process ParallelServerT {
subprocesses :
MainProcessT Main ;
ComputeServerT sequential[nbMaxOfPrimes-1] ;

operations :
PipelinedPrime in InputT* InputP out ResultPrim* result ;

} ;

leaf operation ComputeServerT::filterPrime
in SubInputOutputT* subInput
out SubInputOutputT* subOutput

{
subOutput = new SubInputOutputT;
// the number received is prime: send it further (required to merge same number
// of tokens as tokens generated by the split fct)
if (subInput->prim) *subOutput= *subInput;

// this number was not previously identified as a prim number, if it is the first
// number received not yet identified as prime, it becomes the prim number of the
// present thread operations
else if (first && subInput->valid) {

first=false; // this->first=false
myPrime= subInput->nombre; // this->myPrime
subOutput->nombre=myPrime;
subOutput->prim=true; // now, number is identified as prim
subOutput->valid=true;

}
// not the first non-prim valid number received: if it is not a multiple of myPrime,
// pass it further as a valid candidate, otherwise output it as an unvalid candidate
else if (subInput->valid && ((subInput->nombre%myPrime)!= 0)) {

subOutput->nombre=subInput->nombre;
subOutput->prim=false;
subOutput->valid=true;

}
else { // number is either not valid or it is not prime,

// mark it as false and pass a copy further down
subOutput->nombre=subInput->nombre;
subOutput->prim=false;
subOutput->valid=false;

}
}

operation ParallelServerT::PipelinedPrime
in InputT* InputP
out ResultPrim *result

{
parallel while (SplitInput,MergeOutput, Main, ResultPrim result())

© LSP–EPFL, 1999 16

Program Parallelization with CAP

(for (int i=0;i<(nbMaxOfPrimes-1);i++)
(
if (thisTokenP->valid) (sequential[i].filterPrime)
)

);
}

ParallelServerT ParallelServer; //instanciation of high-level parallel thread

int main (int argc, char** argv)
{

int i;
InputT* inputP = new InputT (maxPrimValue) ;
ResultPrim* resultP ;
call ParallelServer.PipelinedPrime in inputP out resultP ;
for (i=0;i<nbMaxOfPrimes;i++)

fprintf (stdout, "\n indexe = %i, nombre premier = %i\n", i, resultP->prims[i]) ;
return 0 ;

}

☞ Experiment 7

Precompile, compile and run program primNumbers.cp.

Verify that it works.

☞ Questions 3

3.1. In operation filterPrime, we check if a number is valid. Is this check a necessary operation.
Can you imagine simplifying this procedure. If yes, simplify it and run it again!

3.2. The prim numbers remain valid and travel through all stages of the pipeline. Can you think of
a solution, where a prim number is directly merged into the resulting array? Program that solution
and verify that it runs correctly.

10. Running the parallel program on multiple PC’s

Before running a CAP program on multiple PC’s, it is adviced to first run the CAP program as a multithread
monoprocess program on a single PC. In this case, no configuration file is needed. Then the program
should be executed and tested as a multithread program on multiple processes located on a single PC.
Finally, the program may run on multiple processes located in multiple PC’s.

To run the program on multiple NT processes, a configuration file is needed. As example consider the
configuration file shown below. It specifies the present NT processes (for example A the master process
and B the slave process), the IP number of the computer running the additional slave NT processes (for
example 128.178.71.141), and the mapping of CAP threads (Sequential[0], .. Sequential[3]) to NT
processes. The example below specifies two NT processes, a process located on the user’s computer and
a second process located on its own or a different PC (128.178.71.141). The string specifies the location
and name of the CAP executable code on the PC running the second process. The mapping between CAP
threads and NT processes is specified in the threads section. You can modify the relative load of the two
processes by changing the mapping.

To create a new configuration file, you have to modify the example configuration file (for example
mandelbrot.cnf) to give the IP numbers of the contributing slave PC’s, the access path of the application
and the mapping between threads and NT processes. To get the IP number of a PC, run in a console the
command ipconfig.

© LSP–EPFL, 1999 17

Program Parallelization with CAP

//mandelbrot.cnf
configuration {
processes :
 A ("user") ;
 B ("128.178.71.141", "\\Lamilspsrv1\Users\Periph\etudlsp40\CapProject\Src\mandelbrotPar.exe") ;
threads :
 "Main" (A) ;
 "Sequential[0]" (A) ;
 "Sequential[1]" (A) ;
 "Sequential[2]" (B) ;
 "Sequential[3]" (B) ;
} ;

Before lauching the executable on several NT processes, the Mpsd message passing system must be
launched with a parameter file containing the ports to be used.

To launch the MPSD on a single computer, the command, if executed locally is

Mpsd Local.conf

where the Local.conf file contains the following information:

MPSThreadPortNumber = 5567
MPSDaemonPortNumber = 5568

To launch the application on several PC's, in addition to launching the master’s local MPSD (Mpsd

Local.conf), the local command for each slave PC is:

Mpsd Remote.conf

where the Remote.conf file contains additional information specifying the IP number of the node starting
the program (master) and its port number. Don’t forget to modify an existing Remote.conf to include the
IP number of the master computer of your application.

MPSThreadPortNumber = 5567
MPSDaemonPortNumber = 5568
MPSDaemon = 128.178.71.142 5568

Once that the message passing system is launched, the executable source file can be executed in the
specified configuration by typing in a second MS-DOS Command window of the master PC

mandelbrotPar -cnf \\Lamilspsrv1\Users\Periph\etudlsp40\CapProject\Src\mandelbrot.cnf

with the full path of the configuration file so as to make it available on each contributing PC.

By changing the configuration file and without recompilation, you may try another mapping of threads to
PC processes and obtain different performances. To obtain accurate program execution times, be careful
to precompile and compile in release mode (in console):

cap.rel mandelbrotPar
comp.rel mandelbrotPar

In the case your progam is launched from Msdev, don’t forget, by clicking on the project, in Project set-
tings to specify in the Debug field the following additional argument
-cnf \\Lamilspsrv1\Users\Periph\etudlsp40\CapProject\Src\mandelbrot.cnf

Generally, once the message passing system is launched, many program executions can be made. If how-
ever, the Mpsd process needs to be killed, then, by typing Ctl-Alt-Delete, one may call the Task Manager
and destroy the Mpsd process.

© LSP–EPFL, 1999 18

Program Parallelization with CAP

Special programs may be used (Exceed for example) to have a script lauching the message passing system
on multiple PC’s from a single computer.

11. A real example: computation of the Mandelbrot set

The Mandelbrot set is a set of complex numbers {c ∈ C}, where after an infinite number of applications
(in the program, n applications) of complex function fc(0) = z2+c, the resulting absolute value |fc

n(0)| is
smaller than infinity. The Mandelbrot set is included within a region of radius 2 from the center of origin.

The complex map showing the Mandelbrot set can be easily computed: we define the width of each pixel
to be a given fraction, for example 1/200 and draw an image ranging from approximatively -2 to +2.

The mandelbrotPar.pc program uses a simple parallel while loop which distributes the image scanlines in
round-robin manner to the compute server threads.

/* mandelbrotPar.pc
simple parallel program without load balancing
18/8/98 by SV

*/
include "iostream.h"; // for cout, no # as indication to CAP
#include "complex.h" // complex number class, see Appendix 2
#include "ImageFile.h" // operations on image files: ImageFile class, see Appendix 3

parameter (char * outputFilename = "mandelbrot.ppm", ShortHand -> "-ofn");

const int NUMBER_OF_COMPUTE_SERVERS = 4;
const int IMAGE_SIZE_X = 512;
const int IMAGE_SIZE_Y = 512;

// Mandelbrot fonction constants
const double X_START = -2.0;
const double Y_START = -2.0;
const double GAP = 0.005;
const int MAX_ITERATIONS = 200;
const double MAX_MAGNITUDE = 200.0;

static ImageFile imageFile(outputFilename,IMAGE_SIZE_X,IMAGE_SIZE_Y,1);

token TileDescriptionT {
int lineIndex; // line index
TileDescriptionT (int Index) { // inline constructor

lineIndex = Index;
}

};

token TileT {
int lineIndex; // line index of computed line
unsigned char buffer[IMAGE_SIZE_X]; // line buffer
TileT (int index){

lineIndex = index ; // inline constructor
}

};

token StartT {}; // empty token

token ImageT {
unsigned char buffer[IMAGE_SIZE_X*IMAGE_SIZE_Y]; //image buffer as output token

};

© LSP–EPFL, 1999 19

Program Parallelization with CAP

// Mandelbrot function renders magnitude after a number of iterations
// if magnitude very small, x,y value belongs to Mandelbrot set
unsigned char MandelbrotFunction(int x, int y){
double m;
complex c(X_START + x*GAP, Y_START + y*GAP);
complex z(0.0,0.0);
int k = 0;
while (z.Magnitude() < MAX_MAGNITUDE && k < MAX_ITERATIONS) {

z = z * z;
z = z + c;
k++;

}
m = z.Magnitude();
if (m>2550) m = 2550;
return (unsigned char)(m/10);

}

process ComputeServerT {
operations :
ComputeMandelbrot in TileDescriptionT* InputP out TileT* OutputP;

};

int SplitFunction (StartT* inputP,
TileDescriptionT* previousP,
TileDescriptionT*& nextP)

{
cout << "S"<< flush;
int nextIndex = 0;
if (previousP!=0)
nextIndex = previousP->lineIndex + 1; // scanline index
nextP = new TileDescriptionT(nextIndex); // allocates new scanline
if (nextIndex == IMAGE_SIZE_Y-1) return 0; // if last scanline, returns 0
else return 1; // else continue calling splitfct

}

leaf operation ComputeServerT::ComputeMandelbrot
in TileDescriptionT* InputP
out TileT* OutputP

{
OutputP = new TileT(InputP->lineIndex); // allocates output token
cout << "." << flush;
for (int i=0; i< IMAGE_SIZE_X; i++) // magn values of each pixel of scanline

OutputP->buffer[i] = MandelbrotFunction(i,InputP->lineIndex);
}

void MergeFunction (ImageT* intoP, TileT* inputP)
{
cout << "M"<< flush;
CopyMemory(&intoP->buffer[inputP->lineIndex*IMAGE_SIZE_X],

&inputP->buffer, IMAGE_SIZE_X);
}

process MainProcessT {
operations :
} ;

process ParallelServerT {
subprocesses :
MainProcessT Main ;
ComputeServerT Sequential[NUMBER_OF_COMPUTE_SERVERS] ;

operations :
GlobalOperation in StartT* InputP out ImageT* OutputP ;

} ;

operation ParallelServerT::GlobalOperation
in StartT* InputP
out ImageT* OutputP

{
parallel while (SplitFunction, MergeFunction, Main, ImageT Result()) (
Sequential[thisTokenP->lineIndex%NUMBER_OF_COMPUTE_SERVERS].ComputeMandelbrot
) ;

}

© LSP–EPFL, 1999 20

Program Parallelization with CAP

ParallelServerT ParallelServer ;

int main (int argc, char** argv)
{
cout << "Mandelbrot set generation program \n";
cout << "S - Split function\n";
cout << ". - Operation\n";
cout << "M - Merge function\n\n";
long StartupTime = GetTickCount();
long EndComputingTime, EndFileWritingTime;

StartT* InputP;
ImageT* OutputP;
InputP = new StartT() ;
call ParallelServer.GlobalOperation in InputP out OutputP ;

EndComputingTime = GetTickCount();
imageFile.SaveImage((unsigned char *)&(OutputP->buffer[0]));
cout << ’\n’<< flush;
delete OutputP;
EndFileWritingTime = GetTickCount();

cout << ’\n’<< flush;
cout << "Computing time [ms]: "<< EndComputingTime-StartupTime << ’\n’;
cout << "File writing time [ms] : "<< EndFileWritingTime-EndComputingTime << ’\n’;
cout << "Total time [ms] : "<< EndFileWritingTime-StartupTime << ’\n’<<flush;
return 0 ;

}

☞ Experiment 8

8.1. Precompile, compile and run program mandelbrotPar.cp. The program generates a *.ppm or
*.pgm file that can be observed by the application viewppm.exe (viewppm mandelbrot.ppm).

Verify that the program works on a single PC, note the execution times and examine the produced
image file.

8.2. Create, according to the instructions in section 9, a configuration file in order to run the
program on two different processes of the same computer. Lauch the MPSD message passing
system and run the program without recompiling it. Note the execution times.

8.3. Modify the configuration file to run the program on two computers. Launch the MPSD
message passing system on both computers and run the program. Note the execution times.

You have to modify the configuration file (for example mandelbrot.cnf) to give the IP numbers of
contributing slave PC’s, the access path of the application and the mapping between threads and NT
processes. To get the IP number of a PC, run in a console the command ipconfig.

configuration {
processes :
 A ("user") ;
 B ("128.178.71.141", "\\Lamilspsrv1\Users\Periph\etudlsp40\CapProject\Src\mandelbrotPar.exe") ;
threads :
 "Main" (A) ;
 "Sequential[0]" (A) ;
 "Sequential[1]" (A) ;
 "Sequential[2]" (B) ;
 "Sequential[3]" (B) ;
} ;

Once your configuration file is ready, prepare the remote.conf file for running the Mpsd on the
remote PC. Work with a colleague and create in his directory the remote.conf file you need, by
putting his IP number in that file:

MPSThreadPortNumber = 5567
MPSDaemonPortNumber = 5568
MPSDaemon = 128.178.71.142 5568

© LSP–EPFL, 1999 21

Program Parallelization with CAP

You should then first run the Mpsd local.conf on your PC and then on your colleague’s PC the Mpsd
remote.conf command. In a second console of your PC, you may then run your parallel application,
for example

mandelbrotPar -cnf \\Lamilspsrv1\Users\Periph\etudlsp40\Src\mandelbrot.cnf

with the full path of the configuration file so as to make it available on each contributing PC.

By changing the configuration file and without recompilation, you may try another mapping of
threads to PC processes and obtain different performances. To obtain accurate program execution
times, be careful to precompile and compile in release mode (in console):

cap.rel mandelbrotPar
comp.rel mandelbrotPar

☞ Questions 4

4.1. Does the parallel program ensure that when running on two compute nodes, the two PC's are
always busy? Click on the performance monitor and verify how busy the two computers are during
computation.

4.2. What speedup do you get when running the program on two PC's?

12. Flow-control and load-balancing issues

In the current CAP implementation, the split function generally generates the tokens at a much higher rate
than they can be consumed, i.e. processed by operations within the parallel construct and merged by the
merging operation. Tokens may therefore accumulate in front of operations and merging functions. This
may require considerable amounts of memory and induce disk swapping operations (transfer of virtual
memory to disks).

Another problem is load balancing. In real applications, the load may be different in different compute
servers. There is therefore a need to direct tokens generated by the split function towards a compute server
which has terminated an operation on a previous token.

For the purpose of flow-control and load balancing, the CAP preprocessor translates an indexed parallel
loop or respectively a parallel while loop into a combination of indexed parallel or respectively parallel
while and a for CAP construct:

indexed
(int index=0; index<indexMax; index++)

parallel (splitfct,mergefct, Main, OutT outP)
(ComputeServer.operation) // ComputeServer is a compute server process

; // Main is the starting main process

becomes a construct of the type

indexed
(int indexFC=0; indexFC<maxNbTokens; indexFC++)

parallel (splitfct,mergefct, Main, OutT outP) (
for (int nbCirculations=0, nbCirculations<indexMax/maxNbTokens, nbCirculations++)

(Main.splitfct>->ComputerServer.operation >-> Main.mergefct)
);

where a token is recirculated in a for loop, and at each new entry into the for loop, the split function is
called. The cycling around the for loop ensures that at one time, only maxNbTokens are in circulation.

© LSP–EPFL, 1999 22

Program Parallelization with CAP

To ensure flow-control, the user specifies by the instruction flow_control(20) the number of tokens in
circulation, for example 20. This slight modification is in front of the standard indexed parallel or parallel
while construct:

(
flow_control(20)
indexed

(int index=0; index<indexMax; index++)
parallel (splitfct, mergefct, main, OutT outP)

(ComputerServer[index%NbOfComputeServers].operation);
)

The load-balancing mechanism uses the same construct: tokens recirculate according to a for loop along
the branch of operation, which has just terminated a previous loop. For example, if the flow-control
variable specifies 20 circulating tokens, then each token represents an independent execution branch, i.e.
each token may be forwarded to an operation located into a different address space. The execution branch
index is available through the CAP variable cap_fcindex0 . This means that when a branch has terminated
a single execution, it is again available to receive a token and to execute an operations.

An example of a construct enabling flow-control and load-balancing is the following:

(
flow_control(20)
indexed

(int index=0; index<indexMax; index++)
parallel (splitfct, mergefct, main, OutT outP)

(ComputerServer[cap_fcindex0%NbOfComputeServers].operation);
)

To ensure both flow control and load balancing, the mandelbrotPar.pc program needs to be modified so
to incorporate these features into its main parallel while construct.

operation ParallelServerT::GlobalOperation
in ImageT* InputP
out ImageT* OutputP

{ flow_control(20)
parallel while (SplitFunction, MergeFunction, Main, ImageT Result()) (

Sequential[cap_fcindex0%NUMBER_OF_COMPUTE_SERVERS].ComputeMandelbrot
) ;

}

☞ Experiment 9

Modify the mandelbrotPar.pc program for flow-control and load-balancing. For verifying the
effect of load balancing, create a configuration file mandelbrot.cnf with one server (slave) thread
running on a separate PC and all other server thread running on the user PC, similar to
configuration {
processes :
 A ("user") ;
 B ("128.178.75.10", "\\lsppc20\lsppc20d\users\hersch\cap\crsJul\mandelbrotPar.exe") ;
threads :

"Main" (A) ;
 "Sequential[0]" (A) ;
 "Sequential[1]" (A) ;
 "Sequential[2]" (A) ;
 "Sequential[3]" (B) ;

} ;

Create also a second configuration file where 2 server threads run on the user PC and the 2 other
server threads run on the second PC whose IP number is given explicitely.

© LSP–EPFL, 1999 23

Program Parallelization with CAP

Run the modified program mandelbrotParFC.pc successively on a single PC, on two NT
processes of a single PC and on two PC’s, one time with only one server thread on the second PC
and the second time with two server threads on the second PC. Note the execution times.

☞ Questions 5

Compute the speedup for all variants. Is the speedup similar for the two parallel variants?

Questions 6

Propose a strategy to verify that flow-control and load balancing effectively brings an
improvement ! What measurements have to be done?

13. Combining pipelined parallel computations and file accesses

CAP’s enables the pipelined parallel execution of operations. If one includes into these operations a file
system call (reading a file part, writing a file part), it is possible to read and write files or file parts in
parallel. If one includes a file access call in a split or merge, this file access may execute in pipeline with
operations of the parallel split-merge construct.

Let us consider as example the mandelbrotPar.pc example presented in section 11. After generating in
parallel for each pixel of the output image a magnitude value, the full pixmap containing all pixel values
is written as a separate step to an image file. The file writing time can be completely hidden behind the
image computation time, if the file writing operation is integrated into the parallel construct, i.e. if each
scanline that arrives from a ComputeMandelbrot operation is directly merged into the final image file by
writing it at its required position within the file.

A class ImageFile offers in addition to file opening and close functions a function

inline void ImageFile::SaveDataChunk(int position, int size, unsigned char * chunk){
fseek(file,position,SEEK_CUR);
fwrite(chunk,sizeof(unsigned char),size,file);
fseek(file,-(position+size),SEEK_CUR);

}

This function can be used to save a scanline at its correct position within the image file. The merge function
will therefore be changed to:

void MergeScanlineToFile (ImageT* intoP, TileT* inputP)
{
 cout << "M"<< flush;
 imageFile.SaveDataChunk(inputP->lineIndex*IMAGE_SIZE_X,IMAGE_SIZE_X,

&inputP->buffer[0]);
}

By having in the main program the instructions to create the image file and to generate its header, in the
parallel GlobalOperation the merge function as described above and the instruction to close the file, file
writing is completely pipelined with the processing operations.

imageFile.Open(); // create the image file
imageFile.SaveHeader(); // generate its header
call ParallelServer.GlobalOperation in InputP out OutputP ; // parallel operations
imageFile.Close(); // close the file

☞ Experiment 10

© LSP–EPFL, 1999 24

Program Parallelization with CAP

Modify the mandelbrotParFC.pc in order to integrate file writing into the pipeline. Run the
modified program mandelbrotParFCWr.pc successively on a single PC, on two NT processes of
a single PC and on two PC’s. Note the execution times.

☞ Questions 7

7.1. Evaluate the effective disk throughput obtained when writing the image buffer (512x512
bytes) to a file with the initial program mandelbrotPar.pc ? Taking into account that the initial
seek operation takes 10ms and that a throughput of approximatively 4 MB/s can be achieved when
writing a continuous file into a contiguous disk space, is the file writing time obtained realistic?
What effects can lead to wrong conclusions?

7.2. Are the file writing times completely hidden in the mandelbrotParFCWr.pc program version?
For this purpose, compare the execution times without any file writing and with file writing.

14. Suspending and reordering the flow of tokens

There are cases, where it is necessary to suspend momentarily the flow of tokens. This can be done by
calling the predefined function

void capDoNotCallTokenSuccessor(myTokenT* OutputP);

This call inhibits sending at the end of the operation the Output token to the next operation. To resume the
flow of tokens the operation

void capCallSuccessor(myTokenT* myTokenP)

is executed, where myTokenP is a pointer to the token that has been prevented from being sent out.
Generally, the pointers to such inhibited tokens are stored in an array of token pointers.

Suspending the flow of tokens is useful to launch an asynchronous operation, for example a file access
and to resume the flow of tokens by making the capCallSuccessor call for in the in the file access callback
function. In continuous media applications, tokens may have to be sent periodicly. A capCallSuccessor
call may for example be made as a result of a call back function made by a timer event.

To reorder the flow of tokens, it may be necesssary to suspend it momentarily. The flow of tokens may go
out of order due to uneven processor load. Consider for example the mandelbrotParFCWr.pc program,
which writes successive scanlines to the disk. If the amount of the data to be written to disk would be
important, disk access times would become predominant. To reduce disk access times, one would like to
eliminate seek function calls. This can be done by reordering the tokens in front of the merge function and
by writing the scanlines continuously one after the other onto the disk.

For that purpose, the following modifications have to be made the mandelbrotParFCWr.pc program. The
main process now includes a current line index indicated the next line to be sent to the merge function. It
further includes a table (tokenPArr) for storing token pointers which have been prevented from being sent
out by the capDoNotCallTokenSuccessor function. It also includes the new ReorderTokens operation.

process MainProcessT {
variables:
int currLineIndex;
TileT* tokenPArr[IMAGE_SIZE_Y];
MainProcessT() {currLineIndex=0;

for (int i=0;i<IMAGE_SIZE_Y;i++) tokenPArr[i]=0;
} // constructor

operations :
ReorderTokens in TileT* InputP out TileT* OutputP;

} ;

© LSP–EPFL, 1999 25

Program Parallelization with CAP

The operation ParallelServerT::GlobalOperation now also includes after the ComputeMandelbrot
operation executed in the Sequential server processors the operation ReorderTokens executed in the Main
thread.

operation ParallelServerT::GlobalOperation
in StartT* InputP
out ImageT* OutputP

{ flow_control(20)
parallel while (SplitFunction, MergeScanlineToFile, Main, ImageT Result()) (

Sequential[cap_fcindex0%NUMBER_OF_COMPUTE_SERVERS].ComputeMandelbrot >->
Main.ReorderTokens

) ;
}

The ReorderTokens operation compares the arriving line with the current line index. If it is higher, its
further circulation is inhibited and it is stored in the tokenArr array. If it is equal, it is also stored in the
array, and together with possibly previously stored line tokens, they are extracted in order from the array
and put into circulation.

leaf operation MainProcessT::ReorderTokens
in TileT* InputP
out TileT* OutputP

{
if (InputP->lineIndex > currLineIndex) { // prepare successor in table

OutputP = new TileT(InputP->lineIndex); // allocate output token
tokenPArr[InputP->lineIndex]=OutputP; // queue in table
for (int i=0; i< IMAGE_SIZE_X; i++)

OutputP->buffer[i] = InputP->buffer[i]; // copy content
capDoNotCallTokenSuccessor(OutputP); // (TileT*);

}
else {

//InputP->lineIndex <= currLineIndex
OutputP = new TileT(InputP->lineIndex);
tokenPArr[InputP->lineIndex]=OutputP; // puts in array to be outputted
cout << "," << flush;
// copies the buffer of the input into output token
for (int i=0; i< IMAGE_SIZE_X; i++) // copy buffer

OutputP->buffer[i] = InputP->buffer[i];
capDoNotCallTokenSuccessor(OutputP); // don’t output this token at the end

// of the procedure, output it in sequence from the tokenPArr array

for (int j=0;(j<=currLineIndex) && (j<IMAGE_SIZE_Y);j++) {
if (tokenPArr[j]!=0) {

capCallSuccessor(tokenPArr[j]); // output of token
tokenPArr[j]=0;
printf(" successor= %i", j);
currLineIndex++;

}
}

}
}

To make possible errors visible, the merge function calls the ImageFile::SaveLineContiguous function to
store each scanline contiguously after the previous scanline in the image file.

void MergeScanlineToFile (ImageT* intoP, TileT* inputP)
{
printf(" M= %i ", inputP->lineIndex);
imageFile.SaveLineContiguous(IMAGE_SIZE_X, &inputP->buffer[0]);

}

© LSP–EPFL, 1999 26

Program Parallelization with CAP

☞ Experiment 11

Apply the above mentioned modifications to program mandelbrotParFCWr.pc and generate
program mandelbrotParFCWrCS.pc . Precompile, compile and execute program
mandelbrotParFCWrCS.pc . Verify the sequence of generated line tokens and the sequence of line
tokens after the reordering function. Visualize the resulting mandelbrot.ppm file and check that
the image is ok.

☞ Questions 8

8.1. In the case, a line token has the same line index as the current index (currLineIndex), why is
it first necessary to store in it the tokenPArr array and then to send all tokens from this array having
a line index smaller or equal to currLineIndex ?

8.2. Why is it necessary to run the ReorderTokens operation as part of the MainProcessT process
structure? Could the ReorderTokens operation run in a Sequential server process?

15. Neighbourhood-dependent parallel operations (example: game of
Life)

In the preceeding sections, the parallel program considered only applications, where the operations
running in parallel in different threads were able to proceed independently on their subset of data. In many
real application cases, each processing element (thread) must, at a certain point of its program execution
receive information from neighbouring processing elements (threads). As an example, we consider
parallelizing the game of Life.

This game was introduced in 1970 by the mathematician John Conway. The rules of the game are as
follows:

1. The world is represented by an array of cells (TOT_VERT_SIZE x HOR_SIZE)

2. Every cell is always either dead or alive

3. The state of a cell in the next cycle depends on its actual state as well as on the states of its 8 immedi-
ate neighbors according to the following rule: A living cell with 2 or 3 living cells remains alive, oth-
ewise it dies. A dead cell with 3 neighbors becomes alive, otherwise it remains dead.

4. All state transitions over the entire world are synchronized.

5. The world wraps around: all vertical neighbors are calculated modulo TOT_VERT_SIZE and all hor-
izontal neighbors are calculated modulo HOR_SIZE.

Here follows a sequence of evolution at times t0 (initial state), t1, t2, t3:

t0 t1 t2 t3
..O.. ..OO. .O.O.
..OO. .OOO.
..O.. .OO.. .O.O.
..O..
.....

To parallelize the game of life, we segment the world into horizontal tiles of size TOT_VERT_SIZE/
NUMBER_OF_COMPUTE_SERVERS x HOR_SIZE. In each server thread, we create an array of the
size of the horizontal tile plus two horizontal lines: one for the top border which is a copy of the most
bottom line belonging to the previous tile and one for the bottom border which is a copy of the most top
line belonging to the following tile.

© LSP–EPFL, 1999 27

Program Parallelization with CAP

The parallel program comprises the following stages:

1. Read the world from a file and copy it into the arrays located in server threads. For this purpose, the
world is read from a file, possibly passed as a parameter from the command line and a token compris-
ing the world is sent to each server thread (split-merge construct).

2. Each parallel iteration, i.e. each computation of the new state of the worlds tile includes two steps: (a)
each thread must ask its neighbouring tiles to send its top and bottom neighbour lines and must merge
these lines into its cell array (tile) and (b) each thread must compute the new state of its part of the
world based on the present state.

3. Once all iterations are terminated, a high-level parallel GetWorld operation collects the tiles com-
puted by all threads and merges them in the resulting output token.

Fig. 5 The world, the tiles and the array located in server threads.

15.1 The parallel construct

In addition to the indexed parallel and to the parallel while construct, there is a parallel construct, again
based on the split - operation - merge concept, where each parallel branch is separatly specified and may
contain its own split function, its own operation and its own merge function (for more information, see
Reference Manual, section 2.5.6). The syntax of the parallel operation is the following:

parallel (Main, OutputT Result) (
(SplitInput0,ComputerServer[0].operation0,MergeOutput0)
(SplitInput1,ComputerServer[1].operation1,MergeOutput1)
(SplitInput2,ComputerServer[2].operation2,MergeOutput2)
(SplitInput3,ComputerServer[3].operation3,MergeOutput3)

);

Main indicates the thread where the merging functions are executed and the result token is Result of type
OutputT. The present parallel construct comprises four branches, each with its own split, operation and
merge functions. One may however also use the same operations in different branches.

15.2 The parallel game of life

The main program comprises three calls to parallel CAP constucts. One for initialization of the world, one
for computing the iterations and one for gathering the results.

0

5

10

15

19

20
world

0

4
5

19

5

9
10

4

10

14
15

9

15

19
0

14

tile 0 in
ComputeServer [0]

tile 1 in
ComputeServer [1]

tile 2 in
ComputeServer [2]

tile 3 in
ComputeServer [3]

© LSP–EPFL, 1999 28

Program Parallelization with CAP

call ParallelServer.parallelInitPartWorld in fullworldP out resultP ;
call ParallelServer.Automaton(NB_ITERATIONS) in inputP out outputP;
call ParallelServer.GetWorld in inputP out lastResultP;

The parallelInitPartWorld high-level parallel operation is an indexed parallel construct, which circulates
a token of type WorldT.

operation ParallelServerT::parallelInitPartWorld
in WorldT* InputP
out WorldT* OutputP

{ indexed
(int i = 0 ; i < NUMBER_OF_COMPUTE_SERVERS ; i++)
parallel (SplitWorld, MergeWorld, Main,

WorldT Result (thisTokenP->vertSize,thisTokenP->horSize))
(Sequential[i].initPartWorld(i)

);
}

The Automaton high-level parallel parallel operation comprises a sequence of two indexed parallel
constructs: one for exchanging and merging tile borders and one for the computing the tiles new state (life
of game iteration).

operation ParallelServerT::Automaton(int nbIterations)
// on Main, sequences the indexed parallel ExchangeBorder and the following
// indexed parallel ComputeStep
in void* InputP
out void* OutputP

{
// single iteration first
for (int it=0;it<nbIterations;it++) (// iterations ExchangeBorders->ComputeStep

indexed // to synchronize exchange of borders
(int i=0; i<NUMBER_OF_COMPUTE_SERVERS; i++)

parallel (void,void,Main,void output)
(ExchangeBorders (i))

>->
indexed

(int j=0; j<NUMBER_OF_COMPUTE_SERVERS; j++)
parallel (void,void,Main,void output)

(Sequential[j].ComputeStep)
) ;

}

The ExchangeBorders operation is itself a high-level parallel operation comprising a parallel construct.
Within each branch of the parallel construct, split operations are empty (void) and merge operations copy
a top or a bottom border into the thread’s tile (prevworld). The merge of the parallel operation is executed
in thread Sequential[partIx] and the operation itself is executed in another thread for example in
Sequential[partIx-1], Sequential[partIx+1]).

operation ParallelServerT::ExchangeBorders (int partIx)
// this operation asks in parallel the neighbours to send their borders,
// merges them into the prevworld
// the parallel construct is lauched in the Main thread;
// where Sequential is called, it acts on the slave threads
// exchange of borders works in wraparound mode
in void* InputP
out void* OutputP

{
parallel (Sequential[partIx], void result) (// indicates merge in Sequential

(void
, ifelse (partIx>0)

(Sequential[partIx-1].sendBottomBorder) // partIx>0
(Sequential[NUMBER_OF_COMPUTE_SERVERS-1].sendBottomBorder) // partIx==0

, mergeBorders(TopBorder)
)
(void
, ifelse (partIx<NUMBER_OF_COMPUTE_SERVERS-1) // partIx<NUMBER_OF_COMPUTE_SERVERS-1

(Sequential[partIx+1].sendTopBorder) // partIx==NUMBER_OF_COMPUTE_SERVERS-1
(Sequential[0].sendTopBorder)

, mergeBorders(BottomBorder)
)

© LSP–EPFL, 1999 29

Program Parallelization with CAP

) ;
}

The full lifePar.pc program is listed in Annex I. The presented version only provides support for a fixed
sized world, whose size is determined at compile time. This is due to the fact that only fixed sized arrays
and structures can be declared in tokens. However, the predefined capArrayT class supported by the CAP
compiler provides support for dynamic arrays and for packing, respectively unpacking these dynamic
arrays into tokens (see Reference Manual, setion 4.2).

☞ Experiment 12

Precompile, compile and execute the lifePar.pc program on one PC. Try to understand the
execution of the program, by analyzing the printed comments and the printed values of the world
or of part of it.

☞ Questions 9

9.1. (a) Is the initialization of the tiles (prevworld) in the parallel threads done in parallel or in a
pipelined sequence? (b) Could it be programmed as a pipelined sequence? (c) What would need
to be changed to have the initialization as a pipelined sequence?

9.2. (a) How are border lines transferred from one thread to the neighbouring threads? (b) Does a
border line travel first to the main thread and then back to a neighbouring thread?

(c) Are border lines exchanged in parallel or as sequence of pipelined operations?

9.3. What makes sure that before a new state of the world is computed, neighbouring tiles are
really available in the parallel threads operating on their local tile (prevworld)?

9.4. A first version of the program, called lifeParWrong.pc had a slightly different structure.
Instead of two separate index parallel structures, one for exchanging tile borders and one applying
one iteration, the two are unified as a sequence of operations as shown in operation
AutomatonStep. Why does program lifeParWrong not work correctly?

operation ParallelServerT::AutomatonStep (int partIx)
// this operation asks in parallel the neighbours to send their borders,
// merges them into the prevworld
// the parallel construct is lauched in the Main thread;
// where Sequential is called, it acts on the slave threads
// exchange of borders works in wraparound mode

in void* InputP
out void* OutputP

{
parallel (Sequential[partIx], void result) (// indicates merge in Sequential

(void // empty split function
, ifelse (partIx>0)
(Sequential[partIx-1].sendBottomBorder) // partIx>0
(Sequential[NUMBER_OF_COMPUTE_SERVERS-1].sendBottomBorder) // partIx==0

, mergeBorders(TopBorder)
)
(void
, ifelse (partIx<NUMBER_OF_COMPUTE_SERVERS-1) // partIx<NUMBER_OF_COMPUTE_SERVERS-1
(Sequential[partIx+1].sendTopBorder) // partIx==NUMBER_OF_COMPUTE_SERVERS-1
(Sequential[0].sendTopBorder)

, mergeBorders(BottomBorder)
)

) >->
Sequential[partIx].ComputeStep ;

}

© LSP–EPFL, 1999 30

Program Parallelization with CAP

operation ParallelServerT::Automaton(int nbIterations)
in void* InputP
out void* OutputP

{
// single iteration first
for (int it=0;it<nbIterations;it++) // iterations of AutomatonStep: exchange->Compute

indexed
(int i=0; i<NUMBER_OF_COMPUTE_SERVERS; i++)

parallel (void,void,Main,void output)
(AutomatonStep(i))

)
;

}

9.5. Does the lifePar.pc program support the overlap of computation (next step of the world) and
the exchange of borders (communication)? If not, what would needed to be changed to ensure such
an overlap ?

Appendix 1

// program lifePar.pc
// 1. read the input file (2D world), transfer it to the computer servers
// and initialize the local 2D tiles in parallel
// 2. launch the computations
// 3. get the results from the parallel threads and display them
// 26.8.98, RDH

const int NUMBER_OF_COMPUTE_SERVERS = 4;
const int HOR_SIZE = 20;
const int TOT_VERT_SIZE = 20;
const int PART_VERT_SIZE = TOT_VERT_SIZE/NUMBER_OF_COMPUTE_SERVERS;
const int ALIVE = 1;
const int DEAD = 0;

int NB_ITERATIONS;

// data structures described by tokens & initialization of subtiles

token WorldT { // this is the full world, also used to store hor. parts
int firstRow ; // first valid row
int horSize;
int vertSize; // effective number of stored rows
int world[TOT_VERT_SIZE][HOR_SIZE] ;
WorldT (int vertsize,int horsize) ;

} ;

WorldT::WorldT (int vertsize, int horsize) // constructor
{
firstRow = 0 ; // first valid Row in array
horSize = horsize ;
vertSize = vertsize;
for (int i=0;i<vertSize;i++)

for (int j=0;j<horSize;j++)
world[i][j]=0;

} ;

enum NeighbourT { BottomBorder, TopBorder, None };

void printWorld(WorldT* worldP)
{
int i,j ;
for (i = 0 ; i < worldP->vertSize ; i++)
{

if (((i%(TOT_VERT_SIZE/NUMBER_OF_COMPUTE_SERVERS))==0)&&(i!=0)) printf("\n");
printf("\n");

© LSP–EPFL, 1999 31

Program Parallelization with CAP

for (j = 0 ; j < worldP->horSize ; j++)
printf(" %i", worldP->world[i][j]);

}
printf("\n");

}

void printArray(int array[][HOR_SIZE], int vertSize, int horSize)
{
int i,j ;
for (i = 0 ; i < vertSize ; i++)
{

printf("\n");
for (j = 0 ; j < horSize ; j++)
{

printf(" %i", array[i][j]);
}

}
printf("\n");

}

void SplitWorld
(WorldT* worldP
, WorldT*& partworldP
, int index
)

{
int result ;
int partvertsize = TOT_VERT_SIZE/NUMBER_OF_COMPUTE_SERVERS ;
int firstrow = index * partvertsize ;
partworldP = new WorldT (partvertsize,worldP->horSize) ;
partworldP->firstRow = firstrow ;

for (int i=firstrow;i<(firstrow+partvertsize);i++)

for (int j=0;j<partworldP->horSize;j++)
partworldP->world[i][j]=worldP->world[i][j] ;

printf("split: firstrow= %i \n", firstrow);
}

void MergeWorld (WorldT* resworldP , WorldT* partworldP, int index)
{ // every cell of partworld must be copied into corrrect hor tile of resworld,
// for verification purposes
for (int i=partworldP->firstRow;i<((partworldP->firstRow)+(partworldP->vertSize));i++)
for (int j=0;j<partworldP->horSize;j++)

resworldP->world[i][j] = partworldP->world[i][j];
}

process MainProcessT {
operations :
} ;

process ComputeServerT {
variables :
int prevworld[PART_VERT_SIZE+2][HOR_SIZE];
int currworld[PART_VERT_SIZE+2][HOR_SIZE];
int HorSize;
int VertSize; // prevworld & currworld have size VertSize+2 (with neighbours)
int localFirstRow;
void mergeBorders(void* resultP, WorldT* borderP, NeighbourT neighbour);

operations :
initPartWorld(int threadIx) in WorldT* InputP out WorldT* OutputP;
sendTopBorder in void* InputP out WorldT* OutputP;
sendBottomBorder in void* InputP out WorldT* OutputP;
ComputeStep in void* InputP out void* OutputP;
GetSubWorld (int threadIx) in void* InputP out WorldT* OutputP;

} ;

process ParallelServerT {
subprocesses :
MainProcessT Main ;
ComputeServerT Sequential[NUMBER_OF_COMPUTE_SERVERS] ;

operations :
parallelInitPartWorld in WorldT* InputP out WorldT* OutputP ;
Automaton(int nbIterations) in void* InputP out void* OutputP;

© LSP–EPFL, 1999 32

Program Parallelization with CAP

ExchangeBorders (int partIx) in void* InputP out void* OutputP;
GetWorld in void* InputP out WorldT* lastResultP;

} ;

leaf operation ComputeServerT::initPartWorld(int threadIx)

// here, the initial segmented world is copied into the local buffer prevworld
// first and last raws are reserved for overlaps, but not initialized
// prevworld,currworld,VertSize,HorSize,localFirstRow are local process variables

in WorldT* InputP
out WorldT* OutputP

{
localFirstRow = InputP->firstRow ;
VertSize=InputP->vertSize; HorSize=InputP->horSize;

OutputP = new WorldT(InputP->vertSize,InputP->horSize);
OutputP->firstRow = localFirstRow ; // same first row in output token

for (int ii = 0 ; ii < InputP->vertSize; ii++)
for (int jj=0; jj < InputP->horSize; jj++)
{

OutputP->world[localFirstRow+ii][jj] = InputP->world[localFirstRow+ii][jj]; // for test
// row 0 is kept as overlap from neighbour

prevworld[ii+1][jj] = InputP->world[localFirstRow+ii][jj];
}

printf ("process %s prevworld init \n, ", processP->cap_NameS) ;
}

leaf operation ComputeServerT::sendTopBorder
in void* InputP
out WorldT* OutputP

{
OutputP = new WorldT(1,HorSize);
OutputP->firstRow=0; //first row of array used to transfer border
for (int i=0;i<HorSize;i++)

OutputP->world[0][i]=prevworld[1][i]; // send line 1 from prevworld
}

leaf operation ComputeServerT::sendBottomBorder
in void* InputP
out WorldT* OutputP

{
OutputP = new WorldT(1,HorSize);
OutputP->firstRow=0;
for (int i=0;i<HorSize;i++)
{
// send last valid line from prevworld

OutputP->world[0][i]=prevworld[VertSize][i];
}

}

void ComputeServerT::mergeBorders(void* resultP, WorldT* borderP, NeighbourT myBorder)
{
if (borderP->cap_TypeIndexF()==capTokenT::cap_TypeIndex) return;
for (int i=0;i<HorSize;i++) {

int indexPrev=0;
if (myBorder==TopBorder) indexPrev=0;
else if (myBorder==BottomBorder) indexPrev=VertSize+1;
else printf("\n error in border type"); // last line
prevworld[indexPrev][i]=borderP->world[0][i];

}
printf ("mergeborders %s %i\n", cap_NameS, (int) myBorder) ;
//printArray(prevworld, VertSize+2, HorSize);

}

leaf operation ComputeServerT::ComputeStep
in void* InputP
out void* OutputP
{ // computes one iteration in prevworld and places it in currworld
// traverses its 8 neighbours + itself
int iv, ih, kv, kh, jv, jh;
int count;

© LSP–EPFL, 1999 33

Program Parallelization with CAP

OutputP = new capTokenT(); // necessary, empty token
for (iv=1;iv<=VertSize;iv++) { // top and bottom lines not computed

for (ih=0; ih<HorSize; ih++) {
// traverses its 8 neighbours + itself
count = 0;
for (kv=-1; kv<=1; kv++) {

for (kh=-1; kh<=1; kh++) {
jv = (iv+kv);
jh = (ih+kh+HorSize) % HorSize; // works horizontally in wrap around mode,

// % requires pos number
// printf("\n jv,jh = %i , %i ", jv, jh);
if ((jv==iv)&&(jh==ih)) ; else count=count+prevworld[jv][jh];

}
}
switch(count) // The law of life is applied here
{

case 2: currworld[iv][ih]=prevworld[iv][ih]; break; // remains alive
case 3: currworld[iv][ih]=ALIVE; break; // remains or becomes alive
default: currworld[iv][ih]=DEAD; // remains or becomes dead

}
}

}
// now copy currworld into prevworld
for (iv=1;iv<=VertSize;iv++) // top and bottom lines not computed

for (ih=0; ih<HorSize; ih++)
prevworld[iv][ih]=currworld[iv][ih];

printf ("\n after process %s iteration \n", processP->cap_NameS) ;
//printArray(prevworld, VertSize+2, HorSize);

}

leaf operation ComputeServerT::GetSubWorld (int threadIx)
// sends prevworld to main program
in void* InputP
out WorldT* OutputP
{
int i,k;
OutputP = new WorldT(VertSize,HorSize);
OutputP->firstRow = localFirstRow;
for (i=1;i<=VertSize;i++)

for (k=0;k<HorSize;k++) {
OutputP->world[localFirstRow+i-1][k]=prevworld[i][k];
// OutputP->firstRow=threadIx * (TOT_VERT_SIZE/NUMBER_OF_COMPUTE_SERVERS);

}
printf ("\n process %s collect results \n", processP->cap_NameS) ;

//printArray(prevworld, VertSize+2, HorSize) ;
}

void MergeSubWorld (WorldT* resworldP , WorldT* partworldP, int index)
{ // every cell of partworld must be copied into corrrect hor tile of resworld
int k=0;
for (int i=partworldP->firstRow;i<((partworldP->firstRow)+(partworldP->vertSize));i++)

for (int j=0;j<partworldP->horSize;j++)
{

resworldP->world[i][j] = partworldP->world[i][j];
}

}

operation ParallelServerT::parallelInitPartWorld
in WorldT* InputP
out WorldT* OutputP

{
indexed

(int i = 0 ; i < NUMBER_OF_COMPUTE_SERVERS ; i++)
parallel (SplitWorld, MergeWorld, Main, WorldT Result (thisTokenP->vertSize,thisTokenP->horSize))
(Sequential[i].initPartWorld(i)
) ;

}

operation ParallelServerT::ExchangeBorders (int partIx)
// this operation asks in parallel the neighbours to send their borders,
// merges them into the prevworld
// the parallel construct is lauched in the Main thread;
// where Sequential is called, it acts on the slave threads
// exchange of borders works in wraparound mode

© LSP–EPFL, 1999 34

Program Parallelization with CAP

in void* InputP
out void* OutputP

{
parallel (Sequential[partIx], void result) (// indicates merge in Sequential

(void
, ifelse (partIx>0)

(Sequential[partIx-1].sendBottomBorder) // partIx>0
(Sequential[NUMBER_OF_COMPUTE_SERVERS-1].sendBottomBorder) // partIx==0

, mergeBorders(TopBorder)
)
(void
, ifelse (partIx<NUMBER_OF_COMPUTE_SERVERS-1) // partIx<NUMBER_OF_COMPUTE_SERVERS-1

(Sequential[partIx+1].sendTopBorder) // partIx==NUMBER_OF_COMPUTE_SERVERS-1
(Sequential[0].sendTopBorder)

, mergeBorders(BottomBorder)
)

) ;
}

operation ParallelServerT::Automaton(int nbIterations)
// on Main, sequences the indexed parallel ExchangeBorders and indexed parallel ComputeStep

in void* InputP
out void* OutputP

{
// single iteration first
for (int it=0;it<nbIterations;it++) (// iterations of ExchangeBorders->ComputeStep

indexed // to synchronize exchange of borders
(int i=0; i<NUMBER_OF_COMPUTE_SERVERS; i++)

parallel (void,void,Main,void output)
(ExchangeBorders (i))

>->
indexed

(int j=0; j<NUMBER_OF_COMPUTE_SERVERS; j++)
parallel (void,void,Main,void output)

(Sequential[j].ComputeStep)
)
;

}

operation ParallelServerT::GetWorld
// gathering the tiles (sub worlds) into the final world
in void* InputP
out WorldT* lastResultP

{
indexed // collects the partial worlds (result)

(int j=0; j<NUMBER_OF_COMPUTE_SERVERS; j++)
parallel (void, MergeSubWorld, Main, WorldT lastResult(TOT_VERT_SIZE,HOR_SIZE))

(Sequential[j].GetSubWorld (j))
;

}

ParallelServerT ParallelServer ; // instantiation de ParallelServerT

void get_world(WorldT* startWorldP, char* fileNameS) /* Get input */
{
FILE* fP ;
int Row,Column;
char ch;
fP = fopen (fileNameS, "r") ;
if (fP == 0) {

fprintf (stderr, "unable to open file %s\n", fileNameS) ;
exit (1) ;

}
for(Row=0; Row < startWorldP->vertSize; Row++) {

for(Column=0; Column < startWorldP->horSize+1; Column++) { // +newline char
ch= (char) getc (fP);
if (ch==’O’) startWorldP->world[Row][Column] = 1;
else if (ch==’.’) startWorldP->world[Row][Column] = 0;

© LSP–EPFL, 1999 35

Program Parallelization with CAP

else if (ch == ’\n’) continue;
else { fprintf(stderr,"Error in Data!\n"); exit (1); }

}
}
fclose (fP) ;

}

parameter int NumberOfIterations = 1 ; // lifePar -noi 1 -wfn wch1.in
parameter char* WorldFileName = "wch1.in" ;

int main (int argc, char** argv)
{
NB_ITERATIONS = NumberOfIterations ;
if (NB_ITERATIONS < 1) {printf("\n neg number of iterations");exit(1);}

WorldT* fullworldP = new WorldT (TOT_VERT_SIZE,HOR_SIZE) ;
WorldT* resultP ;

WorldT* lastResultP;

int i;
get_world (fullworldP,WorldFileName) ;
printWorld(fullworldP);
call ParallelServer.parallelInitPartWorld in fullworldP out resultP ;
printWorld(resultP);

capTokenT* inputP = new capTokenT;
capTokenT* outputP;
call ParallelServer.Automaton(NB_ITERATIONS) in inputP out outputP;

inputP = new capTokenT;
call ParallelServer.GetWorld in inputP out lastResultP;
printWorld(lastResultP);

return 0 ;
}

Appendix 2

class complex{
public:
double i;
double j;

complex(double i = 0.0, double j = 0.0){
this->i = i;
this->j = j;

}

void Set(double i, double j){
this->i = i;
this->j = j;

}

friend complex operator+(complex a,complex b){
return complex(a.i+b.i,a.j+b.j);

}

friend complex operator*(complex a, complex b){
return complex(a.i*b.i-a.j*b.j,a.i*b.j+a.j*b.i);

}

double Magnitude(){
return sqrt(i*i + j*j);

}
};

© LSP–EPFL, 1999 36

Program Parallelization with CAP

Appendix 3

// ImageFile.h, SV, RDH 8.9.98

class ImageFile {
FILE *file;
char * filename;
int sizeX;
int sizeY;
int nbBytesPerPixel;

public:
ImageFile(char * name,int x, int y, int pixelSize); // constructor: initialization
int SaveImage(unsigned char * buffer);
int Open();
void SaveHeader();
void SaveData(unsigned char * buffer);
void SaveDataChunk(int position, int size, unsigned char * chunk);
void SaveLineContiguous(int size, unsigned char * linebuffer);
void Close();

};

inline ImageFile::ImageFile(char * name,int x, int y, int pixelSize){
filename = name;
sizeX = x;
sizeY = y;
nbBytesPerPixel = pixelSize;

}

inline int ImageFile::SaveImage(unsigned char * buffer){ // saves image
if (Open()==1) return 1;
SaveHeader();
SaveData(buffer);
Close();
return 0;

}

inline int ImageFile::Open(){
//opens the output file
if ((file = fopen(filename,"wb")) == NULL) {

cout << "The file " << filename << " could not be opened\n" ;
return 1;

}
//cout << "The file " << filename << " was successfully opened !\n" << flush;
return 0;

}

inline void ImageFile::SaveHeader(){
 // generates the bytemap header parameters sizeX,sizeY, numberOfIntensity levels

// for the PGM or PPM output bytemap file.

 fputs("P",file);

 /* Test if here are three bytes per pixel */
 if (nbBytesPerPixel==3)
 fprintf(file,"%c\n", ’6’);
 else
 fprintf(file,"%c\n", ’5’);

fprintf(file, "%u %u\n",sizeX,sizeY);

 fprintf(file, "%u\n", 255);
}

inline void ImageFile::SaveData(unsigned char * buffer){
fwrite(buffer, sizeof(unsigned char), sizeX * sizeY * nbBytesPerPixel, file);

}

inline void ImageFile::SaveDataChunk(int position, int size, unsigned char * chunk){
// saves one image scanline into the file according to “position”
fseek(file,position,SEEK_CUR);
fwrite(chunk,sizeof(unsigned char),size,file);
fseek(file,-(position+size),SEEK_CUR);

}

© LSP–EPFL, 1999 37

Program Parallelization with CAP

inline void ImageFile::SaveLineContiguous(int size, unsigned char * linebuffer){
// saves a scanline contiguously onto a file
fwrite(linebuffer,sizeof(unsigned char),size,file);

}

inline void ImageFile::Close(){
fclose(file);
//cout << "The file " << filename << " was successfully closed !\n" << flush;

}

RDH/9.4.99

