
Abstract. We propose a new approach for develop-
ing parallel I/O- and compute-intensive applications. At a
high level of abstraction, a macro data flow description
describes how processing and disk access operations are
combined. This high-level description (CAP) is precom-
piled into compilable and executable C++ source lan-
guage. Parallel file system components specified by CAP
are offered as reusable CAP operations. Low-level paral-
lel file system components can, thanks to the CAP formal-
ism, be combined with processing operations in order to
yield efficient pipelined parallel I/O and compute inten-
sive programs.
The underlying parallel system is based on commodity
components (PentiumPro processors, Fast Ethernet) and
runs on top of WindowsNT. The CAP-based parallel pro-
gram development approach is applied to the development
of an I/O and processing intensive tomographic 3D image
visualization application. Configurations range from a
single PentiumPro 1-disk system to a four PentiumPro 27-
disk system. We show that performances scale well when
increasing the number of processors and disks. With the
largest configuration, the system is able to extract in par-
allel and project into the display space between three and
four 512x512 images per second. The images may have
any orientation and are extracted from a 100 MByte 3D
tomographic image striped over the available set of disks.

1 Introduction

Breaking the I/O bottleneck in parallel processing
systems requires more than a RAID disk array hooked on
one or several SCSI strings. In order to build parallel
applications with high I/O bandwidth requirements, multi-
processor file systems are needed, which decluster files
over many disks [2,9,10,7,8,3]. Processes running on any
of the available processors may independently access and
process parts of the declustered file.

However the availability of a multiprocessor file sys-
tem does not ensure the development of efficient parallel
applications. In order to be truly efficient and to avoid data
transfer overheads, processing operations should be
located as close as possible to the disks containing the
required data file parts. There is an inherent contradiction
between a multiprocessor file system hiding the location
of data file parts and the knowledge required in order to
implement efficient I/O intensive parallel programs.

In order to address this problem, Huber et al. [6]
developed a portable parallel file system offering “mallea-
ble access”, enabling application processes to control the
data layout of files over servers and the server’s prefetch-
ing policies. The developers of the Bridge multiprocessor
file system [2], also aware of the problem, introduced the
notion of tools. Tools are applications which can be
embedded into the parallel file system. Tools may use low-
level file system calls giving them information about the
locations of data file parts and accordingly create pro-
cesses on processing nodes close to the disks where file
parts are effectively located.

One further difficulty when developing parallel I/O
intensive operations involving different processes running
on different processors is the necessity to define and
implement application specific protocols in order to
exchange parameters and data between different proces-
sors which do not share common memory. This consider-
ably slows down the development of parallel applications.

We present in this contribution a novel parallel stor-
age and processing system (PS2) which enables the combi-
nation of storage and processing operations. The
underlying hardware architecture consists of a number of
interconnected storage/processing nodes1 (per node: one
PentiumPro processor connected to several disks) and a
client node (one PentiumPro processor with a display

1. The nodes are called storage/processing nodes, since the same proces-
sor runs both the ExtentServer threads executing disk access operations
and the ComputerServer thread executing processing operations.

Performances of the PS2 Parallel Storage and Processing System for Tomographic
Image Visualization

V. Messerli, B. Gennart, R.D. Hersch
Ecole Polytechnique Fédérale, Lausanne

{messerli,gennart,hersch}@di.epfl.ch

fabienne
Proc. 1997 Int'l Conference on Parallel and Distributed Systems, Seoul, Korea, Dec. 1997, 514-522

interface). The client node and the storage/processing
nodes are interconnected by a high-speed network
(100Mbits/s Fast Ethernet). The parallel file system is
built on top of the native WindowsNT local file system
running in each storage/processing node. Global files are
declustered into local files residing in the different storage/
processing nodes. A computer-aided parallelization tool
(CAP) is used to specify at a high level of abstraction,
sequences of processing and input-output operations to be
executed in a pipelined-parallel manner. CAP automati-
cally compiles the parallel target application, given the
sequential code of the contributing operations and a for-
mal description of the macro dataflow between the differ-
ent operations executable on the available processors.

Applications which need to achieve the highest possi-
ble performance with a pipeline composed by parallel I/O
and by overlapped parallel computations have to provide
an application-specific mapping between file stripe parts
and storage/processing nodes. File stripe parts, also called
extents, are indivisible objects, stored as a continuous set
of bytes on a single local file (single disk) and provide the
basic data unit for processing operations. When operations
need to be performed on file extents residing on disks, the
application specifies the set of required file extents and
provides a mapping function for locating the correspond-
ing storage/processing nodes. CAP enables access and
processing requests to be sent in a pipelined parallel man-
ner to these storage/processing nodes.

As an application example, we consider parallel
plane extraction from 3D tomographic images. We show
how the application is created using the CAP formalism in
conjunction with the available basic parallel file system
operations. We measure and analyze the application’s per-
formances under various configurations and identify the
system’s bottlenecks.

2 The computer-aided parallelization
framework

In order to speedup the development of parallel appli-
cations and to specify parallel I/O and processing opera-
tions at a high level of abstraction, we use the Computer-
Aided Parallelization (CAP) tool. This tool enables appli-
cation programmers to hierachically specify the macro
dataflow between operations performed on extents (file
stripe parts). Operations are segments of sequential code
performed by a single execution thread and characterized
by input value and output values. The input and output
values of an operation are called tokens. In the context of
this paper, tokens consist of extent data and additional
application-dependent parameters. The macro dataflow
specifies how tokens are routed between the operations of
the parallel program. In addition, synchronization points
(also used for merging intermediate results) specify which
tokens must be available before the next operation can
start (Figure 1).

In a graphical CAP specification, parallel operations
are displayed as parallel horizontal branches, pipelined
operations are operations located in the same horizontal
branch. Figure 1 assumes a parallel program consisting of
4 threads T1, T2, T3, and T4. In the macro data flow graph
of Figure 1, the input token enters the graph from the left.
It is divided into two parts, inP1 and inP2, which undergo
operations P1 and P2. Operation P1 is performed by thread
T1. Operation P2 is performed by thread T2. The result of
operation P1 is outP1. outP1 is divided into three tokens

inP3, inP4, inP5, which undergo operations P3, P4 and P5 in
parallel (threads T1, T2 and T3). The results of operations
P3, P4 and P5 are merged into a single token, outM1, which
is in turn merged with outP2 to form outM2. outM2 is fed to
operation P6. If several tokens enter the macro data flow

operation P1

inP1 outP1

inP2 outP2

op P3

inP3 outP3

op P4

inP4 outP4

op P5

inP5 outP5 operation P6

merge
outM1

outM2

thread T1

thread T1

thread T2

thread T3
thread T4

Input data &
parameters
for parallel
operations

thread T1 thread T4

thread T1
thread T4

merge
results

e.g. display
results

split

outP1

operation P2

thread T2

split
input
data

FIGURE 1. Graphical CAP macro dataflow specification

graph of Figure 1, they are processed in a pipelined fash-
ion.

The CAP specification of a parallel program is
described in a simple formal language, an extension of
C++. This specification is translated automatically into a
C++ source program. At program startup time, the CAP
runtime allocates the program threads to the available pro-
cessors, using the information stored in a configuration
file [4]. The macro data flow model which underlies the
CAP approach has also been used successfully by the cre-
ators of the MENTAT parallel programming language [5].

Thanks to the automatic compilation of the parallel
application, the application programmer does not need to
explicitly program the protocols to exchange data between
parallel processes and to ensure their synchronization.
Furthermore, predefined library operations are available,
for example for parallel file storage and access operations.
Combining CAP parallel disk access and processing oper-
ations enables the customization of the parallel file system
according to the application’s requirements.

3 CAP-based synthesis of parallel file
operations

In the context of this paper, the parallel storage and
processing system (Figure 2) consists of a client thread
running on the client node (line 3) and two sets of threads
running on the storage/processing nodes (line 4, 5). The
ExtentServer threads perform I/O operations and the Com-
puteServer threads perform computations on the extents
extracted from the disks. Each storage/processing node
comprises one ComputeServer thread and as many Extent-
Server threads as disks.

Figure 3 shows as an example the graphical and for-
mal specification of the Ps2ServerT::CreateGlobalFile
parallel operation. The input of the dataflow graph is a
GlobalNameT token, containing the name of the global
file to be created. The SplitCreateLocalFile routine
divides the input token into LocalNameT subtokens, con-
taining the name of each of the local files making up the
global file. The LocalFileT subtokens are routed to the
appropriate ExtentServer threads, which create the local
files using the API Win32 CreateFile call. The ExtentServ-
erT::CreateLocalFile sequential operation performed by
each ExtentServer thread returns a void token used for
synchronization purposes. This behavior is modeled in
CAP using a parallel loop (index parallel construct) initial-
ized by the SplitCreateLocalFile routine which generates
the LocalNameT tokens. These tokens are sent in parallel
mode to ExtentServerT::CreateLocalFile sequential oper-
ations. The ExtentServerT::CreateLocalFile sequential
operations are performed by the ExtentServer threads run-
ning on the storage/processing nodes.

From now on, the parallel operation
Ps2ServerT::CreateGlobalFile is known and can be used
in CAP programs. This operation can also be incorporated

1 process Ps2ServerT {
2 subprocesses:
3 ClientProcessT Client;
4 ExtentServerT ExtentServer[NDISK]; // NDISK:total nb of disks
5 ComputeServerT ComputeServer[NSTOR]; // NSTOR:total nb of
6 operations // storage/processing nodes
7 PlaneExtraction
8 in PlaneExtractionParametersT Input out PlaneT Output;
9 CreateGlobalFile
10 in GlobalNameT Input out void Output;
11 ...
12};
13
14process ExtentServerT {
15operations:
16 CreateLocalFile
17 in LocalNameT Input out void Output;
18 ReadExtent
19 in ExtentReadingRequestT Input out ExtentT Output;
20 WriteExtent
21 in ExtentWritingRequestT Input out void Output;
22 ...
23};
24
25process ComputeServerT {
26operations:
27 PlanePartExtraction
28 in ExtentT Input out PlanePartT Output;
29};

FIGURE 2. Parallel storage and processing system
threads

Ps2ServerT::CreateGlobalFile operation

void

void SplitCreateLocalFile
(GlobalNameT* FromP, LocalNameT* ThisP, int ExtSrvIndex)

{ // C++ code
}

leaf operation ExtentServerT::CreateLocalFile
in LocalNameT Input out void Output

{ // C++ code
WindowsNT::CreateFile(Input.Path, ...);

}

operation Ps2ServerT::CreateGlobalFile
in GlobalNameT Input
out void Output

{ // CAP code
indexed
(int ExtSrvIndex = 0; ExtSrvIndex < NDISK; ExtSrvIndex++)

parallel (SplitCreateLocalFile, void, Client, void Result)
(ExtentServer[ExtSrvIndex].CreateLocalFile);

};

thread Client

thread ExtentServer[0]

CreateLocalFile
thread Client

SplitC
reateL

ocalF
ile

FIGURE 3. CAP specification of the parallel
Ps2ServerT::CreateGlobalFile operation

thread ExtentServer[1]

CreateLocalFile

thread ExtentServer[...]

CreateLocalFileCreateLocalFile

thread ExtentServer[NDISK-1]

CreateLocalFileCreateLocalFile

into a C++ parallel file system library (Figure 4) and be
called from any C++ program.

4 The parallel file system support

The parallel file system used for parallel access and
processing applications differs from other parallel file sys-
tems [6,7,1] by the fact that its parallel operations are pro-
grammed in the CAP formalism and that it offers low-
level operations such as ReadExtent or WriteExtent as
CAP operations, usable as building blocks for the defini-
tion and automatic synthesis of parallel I/O and compute
intensive programs.

As in other parallel file systems, global files are
striped over several local files, each of which is stored on a
different disk by the native local file system, i.e. NTFS.
For each global file, there is one local file per contributing
disk. A global directory maintains the information for
accessing individual local files which have the same name
as the global file. Each local file contains the set of extents
stored on its corresponding disk and a table whose entries
specify the size and the storage location of extents, i.e.
their byte address within the corresponding local file.

Extent server sequential operations (Figure 2, line 16-
21) such as ExtentServerT::ReadExtent or ExtentServ-
erT::WriteExtent run on extent server threads: there is one
extent server thread per disk. Extent server threads may
run in the same or in distinct address spaces, depending
whether their corresponding disks are hooked onto the
same shared memory system or on systems interconnected
by the communication network.

The basic parallel file system functions are available
to parallel application programmers as CAP operations
usable as building blocks. The input and output tokens for
these operations comprise the parameters described in Fig-
ure 5. Additional high-level parallel file system calls hav-
ing the same semantics as traditional standard file system
calls (pfsCreateFile, pfsOpenFile, pfsSeek, pfsWriteFile,
pfsReadFile, ...) are also available as C++ library calls.
However, since these file system calls hide the way data is
distributed across the disks, parallel computation opera-
tions making use of these file system calls may induce
considerable I/O access and communication overhead. In
contrast, parallel applications described by CAP and mak-
ing use of the basic parallel file system operations (Figure

5) know precisely the distribution of extents across disks,
and can therefore create pipelined parallel data processing
sequences where processing operations are executed on
the same nodes as the corresponding data access opera-
tions.

When creating a global file, one must provide a path
name, a stripe factor and a table of extent server indexes
specifying the number of disks, i.e. local files, and the
disks across which the global file is declustered. When
opening a global file, the system returns the global file
descriptor, the stripe factor, the table of extent server
indexes and the table of local file descriptors so as to
enable the ExtentServerT::ReadExtent or ExtentServ-
erT::WriteExtent sequential operations to be called.

5 CAP specification of the tomographic
image visualization application

In order to compare predicted and measured perfor-
mances, we consider a real parallel and I/O intensive

Ps2ServerT Ps2Server;

void ps2CreateGlobalFile(const char* PathP, ...)
{ // create input token and call the Ps2 server
GlobalNameT* InputP = new GlobalNameT(PathP, ...);
void* OutputP; // Ptr to output token
call Ps2Server.CreateGlobalFile in InputP out OutputP;

}

FIGURE 4. CAP operation incorporated into a C++
library

Ps2ServerT::CreateGlobalFile
in { const char* PathP,

int StripeFactor,
 const int* ExtentServerIndexTableP }

out { void };
Ps2ServerT::OpenGlobalFile
in { const char* PathP,

 int OpenFlags }
out { int GlobalFileDescriptor,

 int StripeFactor,
const int* ExtentServerIndexTableP,
const int* LocalFileDescriptorTableP };

Ps2ServerT::CloseGlobalFile
in { int GlobalFileDescriptor }
out { void };

Ps2ServerT::DeleteGlobalFile
in { const char* PathP }
out { void };

Ps2ServerT::CreateGlobalDirectory
in { const char* PathP }
out { void };

Ps2ServerT::DeleteGlobalDirectory
in { const char* PathP }
out { void };

Ps2ServerT::ListGlobalDirectory
in { const char* PathP }
out { int ListSize,

const DirEntryT* EntryTableP };
ExtentServerT::ReadExtent
in { int LocalFileDescriptor,

int ExtentServerIndex,
int LocalExtentIndex }

out { int ExtentSize,
char* ExtentP };

ExtentServerT::WriteExtent
in { int LocalFileDescriptor,

int ExtentServerIndex,
 int LocalExtentIndex,

int ExtentSize,
const char* ExtentP }

out { void };

FIGURE 5. Library of reusable CAP operations

application: the extraction of image planes from 3D tomo-
graphic images (Figure 6).

The considered 3D tomographic images each consist
of a volume of size 512x512x384, requiring approxi-
mately 100MB storage space. In order to stripe a tomo-
graphic image across a set of storage/processing nodes, the
image volume is divided into small cubes containing each
323 pixels. These cubes form the extents, which are dis-
tributed across the set of available disks. The distribution
of extents to disks is made so as to ensure that direct cube
neighbors reside on different disks. We achieve such a dis-
tribution by introducing, between two successive rows of
extents and between two successive planes of extents, off-
sets which are prime to the number of disks. This enables
planes having any orientation to intersect extents which
are close to uniformly distributed across the disks.

In order to visualize a plane having an arbitrary orien-
tation, the following operations need to be performed: (1)
the extents intersecting the desired plane are computed, (2)
extents intersecting the plane are read from the disks, (3)
their respective plane parts are extracted and projected
into the screen space and (4) all projected plane parts are
merged into the displayed image.

Figure 7 gives the graphical description of the CAP
program specifying the parallel extraction of a plane from
a 3D tomographic image and its display.

Pipelining is achieved at three levels:

• plane extraction and projection is performed by the
compute server thread on one extent while extent
server threads read the next extents

• an extracted and projected plane part is merged by the
client thread into the final display buffer while the next
plane part is being extracted

• a full plane is displayed by the client thread while the
next full plane is being prepared (in the case the user
has requested a series of successive planes)

Parallelization occurs at two levels:

• several extents are read simultaneously from different
disks; the number of disks can be increased to improve
I/O throughput

• extraction of plane parts from extents and projection
operations can be done in parallel by several proces-
sors; the number of processors can be increased to
improve the plane part extraction and projection per-
formance.

With the CAP parallel program specification syntax,
ExtentServerT::ReadExtent and ExtentServerT::WriteEx-
tent sequential disk operations can easily be mixed with

FIGURE 6. Specification of freely oriented plane to
be extracted from a 3D volume

FIGURE 7. Graphical representation of the pipelined parallel plane extraction and
visualization application

extent
server
index
(=0)

thread Client thread Client
local
extent
 index

tomographic
image file

name

plane
orientation
parameters

compute
extents

intersecting
the plane

merge
projected
plane parts
into screen
space

read extent
from disk

extracted
plane visualize

plane

extent server
index

(=NDISK-1)

thread Client

local
extent
 index

thread
ExtentServer[NDISK-1] thread

ComputeServer[NSTOR-1]

thread
ExtentServer[0]

thread
ComputeServer[0]

extent
data

plane
part

extract plane part
from extent,
project onto
screen space

extract plane part
from extent,
project onto
screen space

read extent
from disk

extent
data

plane
part

processing operations. For example, the pipelined-parallel
plane extraction and visualization application (Figure 7) is
specified by the CAP program detailed in Figure 8. The
input of the parallel Ps2ServerT::PlaneExtraction opera-
tion performed by the Client thread is a PlaneExtraction-
ParametersT token. This token is divided by the
SplitPlaneParameters routine into several extent reading
requests. The appropriate ExtentServer threads read the
required 3-D extents from the disks and feed the extent
data to their companion ComputeServer thread. The Com-
puteServer thread extracts sequentially plane parts from
the extents received from the ExtentServer threads, and
returns them to the Client thread who originally started the
operation. The Client thread merges the plane parts into a
single PlaneT token using the MergePlaneParts routine. In
this specification, ExtentServer threads and their compan-
ion ComputeServer thread work in pipeline; ExtentServer
and ComputerServer threads work in parallel.

6 Performances of PS2 running on PC-based
multiprocessor system

The PS2 parallel storage and processing system is
executed on top of a multiprocessor system made up of a
network of 200MHz PentiumPro PCs, each node running
the WindowsNT 4.0 operating system. The PCs are inter-
connected by a Fast Ethernet network (100Mbits/s). On
the slave PCs (storage/processing nodes) we use the
3COM 3C595-TX Fast Ethernet PCI adapters and on the
master PC (client node) we use the SMC 9332BDT Fast
Ethernet PCI adapter2.

A TCP-IP socket-based communication library called
MPS implements the SendMessage and ReceiveMessage
primitives enabling messages to be sent from an applica-
tion program memory of one PC to an application program

2. Our experiments show that the SMC Fast Ethernet adapter requires
less CPU utilization than the 3COM one.

memory located on a second PC, with at most one inter-
mediate memory to memory copy at the receiving site.

Each PC can incorporate up to 5 SCSI-2 strings each
offering a maximum nominal throughput of 10MBytes/s.
We use IBM-DPES 31080 disks which have a measured
data transfer throughput of 3.3MBytes/s and a measured
latency (seek time + rotation time) of 18.5ms. Throughput
and latency values have been obtained by accessing blocks
randomly distributed over the whole disk. When accessing
32KB blocks located at random disk locations, an effec-
tive throughput of 1.1 MBytes/s per disk is reached.

Our goal is to measure separatly the throughputs of
the system’s components (disks and bus/memory sub-
system), to identify potential bottlenecks and to measure
global performances for various system configurations.
The experiment consists of 60 pipelined parallel 512x512
plane extractions during which 18’848 extents of
32KBytes, i.e. 589 MBytes, are read from disks and
22MBytes of plane parts are produced.

The plane extraction application incorporates the fol-
lowing 4 main steps:

1. Reading all extents intersecting the plane

2. Extracting the plane parts from the volumic extents
and projecting them into the screen space (resampling
operation)

3. Sending, possibly across the network, the plane parts
to the processor executing the merging operation

4. Merging the plane parts into the final displayable
screen image.

These four steps are performed in pipeline. Let us
consider the case where a physician is interested in visual-
izing a sequence of adjacent planes, in order to quickly
visualize slices through a specific body region. In that
case, the four steps of the pipeline are always full, and we
can ignore pipeline startup time. The global throughput of
this pipeline in terms of displayable number of bytes/s is
generally limited by the slowest component which forms
the bottleneck.

The components we take into consideration are the
disks, the bus/memory subsystem, the network and the
processors. Each of the four pipeline steps affects one or
more of the hardware components. Step 1 (extent reading)
affects the disks and the bus/memory subsystem. Steps 2
(plane extraction) and 4 (merging plane parts) affect the
processors and the bus/memory subsystem. Step 3 (net-
work transfer) affects the network, the bus/memory sub-
system, and the processors (for packetization).

Disks. The bottleneck may be formed by the disks. In
order to display one image plane of size 512x512 pixels,
an average of 314 extents, each of size 323 pixels (32KB),
i.e. 9.8MB, need to be retrieved in parallel from the disks.

int SplitPlaneParameters(PlaneExtractionParametersT* FromP,
ExtentReadingRequestT* ThisP)

{ // C++ code }

void MergePlaneParts(PlaneT* IntoP, PlanePartT* FromP)
{ // C++ code }

operation Ps2ServerT::PlaneExtraction
in PlaneExtractionParametersT Input
out PlaneT Output

{
pipeline(SplitPlaneParameters, MergePlaneParts, Client,

 PlaneT Output)
(
ExtentServer[thisTokenP->ExtentServerIndex].ReadExtent
>->
ComputeServer[thisTokenP->ExtentServerIndex*

NSTOR/NDISK].PlanePartExtraction
);

}

FIGURE 8. CAP specification of the pipelined-parallel
plane extraction and visualization application

Disk arrays are described using two numbers: latency
and throughput. The approach is to measure the delay
when accessing in parallel randomly-distributed blocks
striped over k disks for increasing block sizes, to linearize
the delay using a least-square fit, and to get the formula of
the type

.
Figure 9 reports the measured throughputs and laten-

cies for disk array configurations of 1 to 15 disks hooked
onto the same PentiumPro PC. The pipeline depth parame-
ter corresponds to the maximum number of outstanding
SCSI requests for a specific disk.

Due to the contention on a single SCSI-2 bus, the
throughput is not linearly scalable up to 3 disks. This
effect is particularly visible with blocking disk access
requests, i.e. a pipeline depth of a single request. With a
pipeline depth of 2 or more requests, the throughput can be
increased by a factor 1.25. Throughputs scale linearly
when increasing the number of SCSI strings. With 5 SCSI
strings, i.e. 15 disks, throughput increases by a factor of 5.

Bus/Memory subsystem.The bottleneck may also be
formed by the PC’s internal bus and memory sub-system.
Since all accesses through the bus are read or write opera-
tions from or to memory, the bus/memory subsystem is
considered as a single potential bottleneck component,
simply called bus. If there are simultaneous data transfers
from memory to memory (for computations), from the
SCSI DMA interface to memory and from memory to the
network interface, the internal bus located either within
the storage/processing node PCs or the PC executing the
merging operation may become a bottleneck. By measur-

ing separately the maximal sustainable bus bandwidth for
(1) memory read operations, (2) for disk to memory DMA
transfers, one obtains the bus usage time per byte for each
of the mentioned data transfers. When several data trans-
fers occur simultaneously, their respective bus usage time
per byte are added and the resulting effective bandwidth is
computed as one over the total bus usage time per byte.

For memory read operations, bus usage time per byte
is directly measured by executing a loop of memory read
operations that saturates the bus/memory subsystem. The
bus usage time for disk to memory transfers is indirectly
measured by simultaneously performing memory read
operations and disk to memory transfers and by verifying
how much longer the combination of both operations lasts,
when compared with simple memory read operations.

The same methodology is used to determine possible
bottlenecks due to the combination of processing opera-
tions (plane part extraction and projection), disk to mem-
ory transfers and memory to network interface transfers.
Therefore, bus usage times per byte are also measured for
the typical processing operations of our application, i.e.
(1) plane part extraction and projection and (2) merging
the resulting projected plane parts into the final display-
able image (Table 1).

In order to evaluate the worst-case bus usage on a
slave PC we consider the 9 disk 3 SCSI string configura-
tion where 9 disks sustain a throughput of approximately
(Figure 9, blocking disk access requests, 32KB /
[2ms + 32KB/21.5MB/s]) 9.5 MBytes per second, i.e. 290

extents/s. The plane part extraction operation produces at
most 347 KBytes per second (page 6, for 60 plane extrac-
tions, 18’848 extents are read and 22MBytes of plane parts
are produced). According to the bus usage times in Table
1, during one second of slave processing time, the bus is
used for 137ms (disk read) + 113ms (plane part extraction)
+ 20ms (send message) = 270ms.

The same calculation is carried out for the master PC
which has to receive and to merge from 3 different slave

DiskAccessTime Latency RequestSize Throughput⁄+=

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of disks (IBM-DPES 31080)

T
hr

ou
gh

pu
t [

M
B

/s
]

0

2

4

6

8

10

12

14

16

18

20
La

te
nc

y
[m

s]

Read pipeline depth: 1

Read pipeline depth: 2

Read pipeline depth: 5

Read pipeline depth: 10

FIGURE 9. Measured disk throughputs and latencies
when accessing blocks striped over k disks hooked

onto the same PentiumPro PC

2.5% 4.4% 6.6% 8.8% 12.3%1.2%

Privileged processor utilization

Nb of Nb of SCSI
disks strings
1 1
2 1
3 1
6 2

Nb of Nb of SCSI
disks strings
9 3
12 4
15 5

Memory read 14.0ns per byte transferred from main memory to the cache

Disk read 14.4ns per byte transferred from the disk to main memory

Plane part
extraction &
projection

319.2ns per byte produced

Plane part
merging

36.2ns per byte merged

Send message 56ns per byte transferred from main memory to the network
interface

Receive mes-
sage

98ns per byte transferred from the network interface to
main memory

TABLE 1. Bus usage times per byte for typical
operations of our application

PCs 1041 KBytes per second of extracted plane parts.
Therefore for one second of master processing time, the
bus is used for 104ms (receive message) + 39ms (plane
part merging) = 143ms.

This clearly demonstrates that the bus and the mem-
ory subsystem cannot be a potential bottleneck for our
specific application. Moreover, our 100 Mbits/s network
cannot be a bottleneck either, since in the case of the full-
blown configuration (3 storage/processing nodes with
each 9 disks), it transfers only 8.1 Mbits/s (1041KBytes/s).
Only the disks and the processors are potential bottle-
necks.

7 Scalability analysis

Figure 10 gives the number of tomographic image
planes extracted per second (or a proportional amount of
overall disk throughput) with a single PentiumPro proces-
sor and a variable number of disks (local) or with one Pen-
tiumPro processor acting as the master assembling plane
parts (client node) into the final image and one Pentium-
Pro processor acting as the slave processor (storage/pro-
cessing node) reading from the disks, extracting and
resampling the plane parts. The processor utilization bars
show that in all configurations, disk accesses represent the
throughput’s bottleneck, except in the configuration where
the slave processor reads in parallel from 9 disks and
sends the extracted and resampled extents to the master
processor. In that case, the slave processor is 100% busy,
with 30.0% for network and 6.6% for disk interface pro-
cessing (privileged processor utilization).

Figure 11 shows how the system scales, when using
more than one slave system (storage/processing node).
Globally, the system scales linearly. However, since the

disks used in the measures have a constant rotation rate
and the number of sectors per track varies in function of
the track’s position, disk throughput may vary as a func-
tion of the position of the tomographic image file on the
disks.

In all configurations, where slave processors incorpo-
rate 9 disks, slave processor utilization is between 90%
and 100% (Figure 12). With 3 slave processors, the master
processor is utilized 90% of its time.

Therefore, the current scalability limit of the global
system is due to the limited processing power of the mas-
ter node, which needs to receive plane parts from the slave
processors and to assemble them into the final displayable
image. At the highest rate of 3.4 image planes per second,
the master processor receives on average from the Fast
Ethernet network 1068 plane parts per second, i.e. 10.0
Mbits/s, and uses 62.1% of its processing time (privileged
processor utilization) only for the network reception oper-
ations.

Figure 13 shows that the system scales linearly when
the number of slave storage/processing nodes is increased
from 1 to 3 slaves. Augmenting the number of disks per

2.6
6.9 7.8

11.9
5.5

14.7
23.3

9.4

22

36.6

10.9
11.3 22.6

23
42.1

7

43.9
66.8

10

34.7

63

3.61.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 6 9

0

10

20

30

40

50

60

70

80

90

100
%User processor utilization
%Privileged processor utilization
Remote: 1 slave PC
Local

2.0

3.9

5.9

7.9

9.8

11.8

13.8

0

Number of disks per slave PC

2.6
6.9 7.8

11.9
5.5

14.7
23.3

9.4

22

36.6

10.9
11.3 22.6

23
42.1

7

43.9
66.8

10

34.7

63

3.61.9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 6 9

0

10

20

30

40

50

60

70

80

90

100
%User processor utilization
%Privileged processor utilization
Remote: 1 slave PC
Local

2.0

3.9

5.9

7.9

9.8

11.8

13.8

0

[Image planes/s]

Overall disk
throughput [MB/s]

[%]

Lo
ca

l

R
em

ot
e:

 M
as

te
r

P
C

R
em

ot
e:

 S
la

ve
 P

C

Lo
ca

l

M
as

te
r

S
la

ve

Lo
ca

l

M
as

te
r

S
la

ve

Number of disks per slave PC

FIGURE 10. Extracted image planes per second,
overall disk throughput and processor utilization for a

single processor configuration (local) and for a
master - slave two processor system interconnected

by Fast Ethernet (PentiumPro processors).

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9

Number of disks per slave PC

[Im
ag

e
pl

an
es

/s
]

1 slave PC

2 slave PCs

3 slave PCs

FIGURE 11. Number of extracted image planes per
second when varying both the number of disks per

slave processor and the number of slave
processors

0

10

20

30

40

50

60

70

80

90

100

[%
]

%User processor utilization
%Privileged processor utilization

S
la

ve
 1

M
as

te
r

S
la

ve
 1

M
as

te
r M

as
te

r

S
la

ve
 1

S
la

ve
 1

S
la

ve
 1

S
la

ve
 2

S
la

ve
 2 M

as
te

r

S
la

ve
 1

S
la

ve
 3

S
la

ve
 2

S
la

ve
 3

FIGURE 12. Master and slave processor
utilizations for different configurations

1 3 69 11 33 66 9

2 slave PCs1 slave PC 3 slave PCs
disks
per

PC

M
as

te
r

9
Nb of

slave

M
as

te
r

S
la

ve
 2

S
la

ve
 1

M
as

te
r

M
as

te
r

S
la

ve
 3

S
la

ve
 2

S
la

ve
 1

S
la

ve
 1

M
as

te
r

S
la

ve
 2

storage/processing node (1, 3, 6 and 9 disks) does not give
a linear throughput increase as observed in Figure 9 due to
the fact that in the present version of the parallel file sys-
tem, single disk read extent requests are blocking.

8 Conclusions

The computer-aided parallelization tool (CAP) used
in conjunction with PS2 basic parallel file system opera-
tions enables to easily combine parallel computing and
disk access operations, thereby making use of the pipelin-
ing and parallelization potential offered by the underlying
hardware. We use CAP for creating a real tomographic
image visualization application, where discrete planes are
extracted in parallel from a large 3D tomographic image.
The application runs on a parallel system made of com-
modity PC PentiumPro computers interconnected by a
100Mbit/s Fast Ethernet network. We measure the applica-
tion’s throughput and analyze for each configuration
where the bottleneck resides.

In the case of a single PentiumPro PC connected to 9
disk nodes, the system is balanced: both processor utiliza-
tion and disk node throughput are close to their maximal
values and images can be extracted and displayed at a rate
of slightly more than one image per second.

In the case of master-slave configurations, where the
master PentiumPro PC (client node) receives plane parts
from the network and assembles them into the display
image, and where slave processors (storage/processing
nodes) read plane parts from disks and project them into
the display space, disk access throughput is the bottleneck
with up to 9 disks per slave node.

In the case of the full-blown configuration consisting
of one master node and 3 slave nodes with 9 disks each,
the bottleneck resides both in the limited processing power
of the slave nodes and of the master node. The master pro-
cessing node receives plane parts from the network and
assembles them into the displayable image at a speed of
3.4 displayable images per second. The network protocol

itself requires approximately 62% of the master proces-
sor’s computing power.

The next version of the system will incorporate two
PentiumPro processors per processing system. With twice
the processing power at the master node, we intend to
scale the system to 60 disks. Since the slave nodes will
also incorporate Bi-PentiumPro processors, they will be
able to sustain up to twice the present number of disks. We
foresee that a configuration of 12 disks per slave node, i.e.
4 SCSI strings, and 5 slave nodes hooked to a master node
will offer at least twice the throughput of today's system,
i.e. the ability to access, extract, project and display 7
image planes per second.

However, even the simplest single PentiumPro 9 disk
architecture offers, due to parallel disk accesses and pipe-
lining, a much better price/performance ratio than tradi-
tional UNIX-based tomographic visualization equipment,
which requires preloading the complete tomographic
image into main memory.

References

[1] S. More, A. Choudhary, “MTIO: A multi-threaded parallel
I/O system”, Proc. 11th International Parallel Processing
Symposium, April 97, Geneva, IEEE Press, 368-373

[2] P. Dibble, M.L. Scott, C. Ellis, “Bridge: A high-perform-
ance file system for parallel processor”, Proc. 8th Interna-
tional Conf. on Distributed Computing Systems, June 1988,
154-161

[3] D. G. Feitelson, P.F. Corbett, J.P. Prost, “Performances of
the Vesta parallel file system”, IBM Research report, RC
19760, 1994

[4] B. Gennart, J. Tarraga, R.D. Hersch, “Computer-assisted
generation of PVM/C++ programs using CAP”, Proc. Par-
allel Virtual Machine, EuroPVM’96, LNCS 1156, Springer
Verlag, 259-269

[5] A. S. Grimshaw, “Easy-to-use object-oriented parallel
processing with Mentat”, IEEE Computer, Vol. 26, No. 5,
May 1993, 39-51

[6] J.V. Huber, C.L. Elford, D.A. Reed, A.A. Chien, D.S. Blu-
menthal, “PPFS: A high-performance portable parallel file
system”, Proc. 9th ACM International Conference on
Supercomputing, Barcelona, Spain, 1995, 385-394

[7] D. Kotz, “Multiprocessor File System Interfaces”, Proc.
IEEE Conf. on Parallel and Distributed Information Sys-
tems, 1993, 194-201

[8] S.J. LoVerso, M. Isman, A. Nanopoulos, W. Nesheim, E.D.
Milne, R. Wheeler, “SFS: A parallel file system for the CM-
5”, Proc. Summer USENIX Conf, June 1993, 291-305

[9] P. Pierce, “A concurrent file system for a highly parallel
mass storage system”, Proc. 4th Conf. on Hypercube Con-
current Computers and Applications, 1989, 155-160

[10] T.W Pratt, J.C. French, P.M. Dickens, S. A. Janet, “A com-
parison of the architecture and performance of two paralllel
file systems”, Proc. 4th Conf. on Hypercube Concurrent
Computers and Applications, 1989, 161-166

FIGURE 13. Speedup

1.0
2.0 2.42.0

4.7

6.0

3.7

7.9

11.1

5.4

9.9

15.9

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 3

Number of slave PCs

S
pe

ed
up

1 disk per slave PC
3 disks per slave PC
6 disks per slave PC
9 disks per slave PC

