GigaView Parallel Image
Server Performance Analysis

Benoit A. Gennart, Bernard Krummenacher, Laurent Landron, Roger D. Hersch
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Abstract. Professionals in various fields such as medical imaging, biology and
civil engineering require rapid access to huge amounts of uncompressed pixmap
image data. Multi-media interfaces further increase the need for large image data-
bases. In order to fulfill these requirements, the GigaView paralel image server
architecture relies on arrays of intelligent disk nodes, each disk node being com-
posed of one processor and one disk. This contribution analyzes through simulation
and experimentation the behavior of the GigaView under single and multiple
reguests, and compares it to the behavior of RAID servers. It evaluates image visu-
alization window access times under various parameters such as load factors and
the number of cooperating disk nodes. Under single request, the GigaView image
server can be modeled as a single high-throughput low-latency secondary storage
device. Under multiple requests, the notions of utilization and maximum sustain-
able throughput define accurately the behavior of the GigaView.

1. Introduction

Graphic and multi-media user interfaces promote the use of computers for visualizing pix-
map images. In the fields of scientific modeling, medical imaging, biology, civil engineer-
ing, cartography and graphic arts, there is an urgent need for huge storage capacities, fast
access and real-time interactive visualization of pixmap images.

While processing power and memory capacity double every two years, disk bandwidth
increases at a much slower rate. Interactive real-time visualization of full color pixmap
image data requires throughputs of 2 to 10 MBytes/s. Parallel input/output devices are
required in order to access and manipulate image data at high speed.

A high-performance high-capacity image server must provide users located on local or
public networks with a set of adequate services for immediate access to images stored on
disk arrays. Basic services include real-time extraction of image parts for panning purposes,
resampling for zooming in and out, browsing through 3-d image cuts and accessing image
sequences at the required resolution and speed.

Previous research focussed on increasing transfer rates between CPU and disks by using
Redundant Arrays Of Inexpensive Disks (RAID)[2]. Accessto disk blocks was parallelized,
but block and file management continued to be handled by a single CPU with limited pro-
cessing power and memory bandwidth.

In amore recent research project [7][5], the RAID concept was further extended to offer
very high bandwidth disk arrays directly hooked onto high-speed networks (HIPPI based
networks). In this paper, we present a different approach: the multiprocessor multidisk
approach we propose aims at associating disks and processors into an array of intelligent
disk nodes capable of applying parallel local preprocessing operations before sending data
from the disk to the client workstation. We have shown that such preprocessing operations

Proc. The World Transputer Congress, Sept. 1994, in DeGloria et al. editor, 120-135

fabienne
Proc. The World Transputer Congress, Sept. 1994, in DeGloria et al. editor, 120-135

fabienne

are highly valuable in the case of image accesses:. large pixmap images can be reduced into
displayable size images at disk reading speed [4].

In the multiprocessor-multidisk (MPMD) approach [3], pixmap image data is parti-
tioned into rectangular extents, each extent having a size which minimizes global access
time. In order to ensure high throughput, image extents are stored on a parallel array of disk
nodes. Each disk node includes one disk-node processor (T800 transputer), cache memory
(6 MBytes) and one disk (400 to 1000 MBytes).

The authors have implemented an MPMD image server, called the GigaView. It pro-
vides through standard host or network interfaces (at the moment SCSI-2, FDDI and ATM
in the near future) a throughput of up to 5MBytes/sec., and the ability to browse through
images and maps of arbitrary size at the rate of three to four 512-by-512 full color image
visualization windows per second.

This contribution analyzes through simulation and experimentation the behavior of
image servers (single-disk, RAID, GigaView) under single and multiple requests. Under
single request, it demonstrates that, regardiess of the architecture and data allocation, the
behavior of the GigaView can be modeled as a single high-throughput low-latency disk.
Under multiple requests, it shows that the GigaView behaves as a fixed-service-time server.

Section 2 describes two approaches to mass storage servers, the RAID approach, and the
MPMD approach. It also introduces MDFS, the multi-dimensional file system used to store
images on the multiprocessor- multidisk architecture. Section 3 analyses through simulation
and experimentation the single-request performance of the GigaView and compares it to a
single disk system running MDFS and a RAID system running MDFS. Section 4 analyzes
through simulations the behavior of the GigaView under multiple requests. It compares the
GigaView behavior to the behavior of areference fixed-service-time server.

The mass storage server studied in this publication stores images of arbitrary sizes, i.e.
two- or three-dimensional arrays of pixels, each pixel representing its color as a given num-
ber of bytes (assumed to be 3 in our experiments). Each image stored on the server is
divided into extents, or rectangular image portions. Limited size visualization windows
(generaly 512-by-512 pixels) are requested by client applications.

2. Image storage architectures

This section describes the RAID approach, the Lancaster Multimedia Network Interface
(MNI) approach, as well as the software and hardware concepts of the GigaView architec-
ture (sections 2.3. and 2.4.).

2.1. Raid storage server

Disk arrays are often referred to as RAID (Redundant Arrays of Inexpensive Disks). The
origina RAID research considered [6][9] five types of disk array organizations. The ideal
RAID level for imaging should provide high data transfer rates for large image files, whose
extents are striped onto the disk array. It should also provide large storage capacities while
extracting aminimal premium for redundancy. RAID level-5 disk arrays fulfill these goals.
For the RAID experiments conducted in this study, the authors considered the RAIDER-5
(4+1)-disk system located at the Rural Engineering Department of EPFL. The RAIDER-5
system isaRAID level-5 disk array. The major difference between the RAID approach and
the approach taken in this paper is the ability of the GigaView to process data locally on the
server.

2.2. Lancaster storage server

An experimental storage server has been built [1][8] at Lancaster to investigate the tech-
niques required to support continuous media. The Lancaster Continuous Multimedia Stor-
age Server (CMSS) consists of a standard Multimedia Network Interface (MNI). The MNI
is implemented using transputer technology and is connected on one hand to a high-speed
network, and on the other hand to two stripe disks and one directory disk. There are three
differences between the Lancaster system and the Gigaview : () the GigaView architecture
offers more local processing power and more throughput ; (b) the GigaView supports ran-
dom access to images efficiently ; (c) the GigaView multi-dimensional file system (see sec-
tion 2.3.) guarantees excellent access time to image visualization windows, regardless of
image size.

2.3. Multi-Dimensional File System (MDFS)

Image access characteristics are known : client workstations generally require rectangular
portions of pixmap image files, referred to as visualization windows. Storing a large image
scanline by scanline leads to poor access times. One must either fetch large horizontal
stripes of images, leading to unacceptably large transfers of data, or fetch the visualization
window scanline by scanline, leading to alarge number of disk-seek operations, each taking
around 10msec. For instance, accessing a 600-by-400 window in a 5000-by-5000 image
scanline by scanline takes between 4 and 6 sec.

0 1 2 3 4 5 6 7 8

9 10 |1t 12 13 14 |15 16 17

18 |19 | |20 |21 |22 |23 |24 |2 |26

27 28 | |29 30 31 32 |33 34 35

36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

FIGURE 1. Division of an imageinto extents

A Dbetter approach to accessing visuaization windows in a large image is to partition the
image into rectangular extents (Figure 1). In such a format, accessing a visualization win-
dow consists of fetching only the extents covered by the window. This minimizes both the
number of seek operations and the data transferred. Accessing the same 600-by-400 window
in an image stored as 128-by-128 extents on a standard disk requires 20 extent accesses, and
can be performed in a little over a second. The Multi-Dimensiona File System (MDFS)
stores 1-dimensional (1-D) files, 2-D and 3-D images divided into 1-D, 2-D and 3-D extents
respectively, and provides excellent access performance, regardiess of the size of the
accessed file and of the architecture on which it is executed [4]. For each file, MDFS stores
metadata such as image file segmentation parameters (extent size, number of striping disks,
pixel size), index information such as the disk identifiers on which the file is striped, the
position on each disk of the corresponding file local extent table and, in each filelocal extent
table, pointersto the local file extents.

Experimental results confirm the benefits of storing alarge image using MDFS. Figure 2
shows the time required to transfer visualization windows of varying sizes from a Sparc-

Classic disk to memory, for five kinds of extents : 200-by-ImageWidth extents, 1-image-
scanline-per-extent extents, 50-by-50 extents, 100-by-100 extents, and 150x150 extents.
The SparcClassic local disk isa 1GB Quantum with SCSI interface, 10msec. seek-time and
2.93MBytes/sec. sustained throughput. The size of the image from which the visualization
windows are requested is 3072-by-2048 3-byte pixels.

sec.

8+ —-—-— 1xlmageWdth extents
— — — 200xl mageWdth extents
- —_——— 50x50 extents
——— 100x100 extents —
6fF ———— 150x150 extents

—e——— — —

0 500 1000 1500 2000
visual i zati on wi ndow si ze (KBytes)

FIGURE 2. Running MDFS on a single disk

Once the data is cached, MDFS is even more superior to other file organizations (Figure 3).
Indeed, MDFS accesses very little data outside the visualization window, and therefore
makes the best use of the cache.

20 e — 1xl mageW dth extents
— — — 200xI mageW dth extents
L75F _ — —— 50x50 extents
100x100 extents -
LSF _—__— 150x150 extents e
1.25
1+F
0.75
0.5
0.25
0 500 1000 1500 2000

vi sual i zati on wi ndow si ze (KBytes)

FIGURE 3. Running MDFS on asingledisk : cached data

The best overall performance is obtained by the 100-by-100 extent allocation ; too small an
extent increases the overhead due to accessing extents, and too large an extent increases the
amount of datato be fetched to display a visualization window of a given size. The 200-by-
ImageWidth extents yield such poor performance (between 3 and 5 sec. access-time) that
their datais not shown in Figure 3.

2.4. GigaView Multi-Processor Multi-Disk Architecture

The parallel image server consists of a server interface processor providing the network
interface, disk node processors used for disk access, image part extraction and image reduc-
tion, aswell as an array of disk nodes, each disk node being connected to one disk node pro-
cessor (Figure 4). The local processors are transputers (T800 in the current versions, and
T9000 when they become available). They provide both processing power and communica
tion links. The number of links between the interface processor and the disk array is 4, equal
to the number of links of a single transputer. The number of disks in the architecture can be
varied, by connecting more than one disk node to each server interface processor link.

network

server interface processor

disk node
processing units

Scsi
disks

FIGURE 4. GigaView 8-disk architecture

The server interface processor runs the image server master process receiving image access
requests from the network and issuing image access calls to the parallel image file server.
The parallel file server includes a file system master process responsible for maintaining
overall parallel file system coherence (directories, file index tables, file extent access tables)
and extent serving processes running on disk node processing units. Extent serving pro-
cesses are responsible for serving extent access requests, for maintaining the free block lists
and for managing local extent caches. Local image processing tasks required for image pre-
sentation such as image data reduction for zooming purposes are located on disk node pro-
cessing units.

DO | D1 | D2 | D3 | D4 | D5 | D6 | D7 | DO | D1 | D2

D3 D4§ D5 | D6 | D7 | DO | D1 | D2 | D3 | D4 | D5

D6 D7§ DO | D1 | D2 | D3 | D4 | D5 | D6 | D7 | DO

D1 D2§ D3 | D4 | D5 | D6 | D7 | DO | D1 | D2 | D3

D2 | D3 | D4 | D5 | D6 | D7 | DO | D1 | D2 | D3 | D4

FIGURE 5. Extent allocation with a row offset of 3

Image access performances are heavily influenced by how pixmap images are distributed
onto a disk array. The k disk nodes in the disk array selected for storing an image file are
numbered from O to k-1. Image file extents are mapped sequentially on one disk after the
other. At image storage time, image size and number of disks are known. The image parti-
tioning problem is reduced to the problem of finding the proper extent row offset, that is, the

difference in disk index between two extents of the same image extent column. The extent
row offset should ensure that extents covered by the same visualization window are distrib-
uted as uniformly as possible on the set of available disk nodes [4].

Figure 5 shows that, for an 8-disk architecture, a row offset of 3 provides an excellent
distribution of disk accesses : no disk is accessed more than 3 times. Simulations confirm
that an extent row offset of 3 is effective for an 8-disk architecture regardless of the visual-
ization window size and position. Previous results [3] have shown that the extent size should
be no larger than a quarter of the average visualization window size, no smaller than 25
KBytes and that the extent row offset and the number of disks in the architecture should be
mutually prime.

3. Performance modeling under single-request

This section describes how to model the performance of parallel storage serversunder single
requests. The analysisis based on ssimulation results. The validity of the simulation resultsis
confirmed by experimental data. Section 3.1. describes the simulation model ; section 3.2.
analyzes the single-request performance of the GigaView architecture ; section 3.3. shows
the effect of the number of disks on the architecture performance ; section 3.4. compares the
performance of 3 actual paralel-server architectures (Raid-111, Raid-V, GigaView) under
single request.

3.1. Smulation model

The following program in free-form programming language describes the modeled behavior
of the GigaView.

conmponent G gaViewis
InterfaceT Interface ;
Li nkT DownLi nk] NUMBER OF LINKS] ; -- frominterface to disks
Li nkT UpLi nk[NUMBER OF LI NKS] ; -- fromdisks to interface
Di skT Di sk NUMBER OF DI SKS]
procedure Read (Visualizati onWndowT w ndow) ;

end G gaVi ew ;

procedure G gaVi ew. Read (Vi sualizati onWndowl wi ndow) is
begi n
I nterface. Deconpose (w ndow, ExtentRequests) ;
foreach ER i n Extent Requests do
- ER : extent request, i.e. image, size, position
DownLi nk[ER. Li nk] . Transfer (ER)
Di sk[ER Di sk] . Access (ER, Extent)
- Extent : i.e. inmge, size, position, pixmap data
UpLi nk[ER Li nk] . Transfer (Extent)
Interface. Merge (Extent, w ndow)
end foreach ;
end G gaVi ew. Read ;

Reading a visualization window from the GigaView consists of decomposing a window
request into extent requests. As soon as an extent request is generated by the interface pro-
cessor, it is transferred down the appropriate transputer link to the disk where the extent is
located. The extent is fetched from the disk and transferred up a transputer link back to the

interface processor, where it is merged with the other extents to form the visualization win-
dow.

The simulation model assumes that the disk access-time, the transputer-link transfer-
time, and the transputer memory-to-memory copy-operations obey simple linear formulas
of the form Delay = Latency + (DataSize / Throughput) ; it also assumes that the time
required to decompose a visualization window into extent requestsislinear in the number of
extent requests. To validate the simulation model, we benchmarked all components of a 4-
disk architecture, as well as the whole system, for single and multiple requests. Whenever
the experimental data is available, we plot it alongside the simulation data (figures 6 and
13). For both single- and multiple-request analysis, the experimental data confirms the
validity of our model.

3.2. Latency and throughput

This section shows by simulation that it is possible to describe the behavior of a parallel
storage server using two numbers, latency and throughput. This is similar to the way sec-
ondary storage devices are described by two numbers, seek-time and throughput. The
approach is to measure the delay of the parallel storage server for increasing visualization
window sizes, to linearize the delay using a least-square fit (Mathematica), and get a for-
mulaof the type:

RequestSize

AccessTime = Latency +
y Throughput

The GigaView architecture performance is sensitive to the extent allocation scheme. In par-
ticular, the extent size and the row offset have to be chosen carefully to reach the best per-
formance. As shown in section 2.4., an extent size of 128-by-128 pixels and an extent row
offset of 3 are effective for a wide range of visualization window sizes and optimum for a
visualization window size of 512-by-512 pixels.

del ay (sec.)
1 -

—~~ sinulation

0.8} eeesse experinentation

0.6¢

0.4¢

0.2¢

vi sual i zati on wi ndow si ze (KBytes)

0 500 1000 1500 2000 2500 _ 3000
FIGURE 6. Latency and throughput of a 4-disk-node ar chitecture

The performance of the GigaView is also sensitive to the position of the visualization win-
dow. However, the analysis cannot make any assumptions about the position of the visual-
ization window. To take into account this effect, the visualization window is accessed 40

times for each size, at random positions, and the resulting delays are averaged. The average
gives the access time for a given visualization window size. Simulations show that increas-
ing the number of window positions does not significantly improve the precision of the
delay measurement.

The linearization approach has proved particularly effective, regardiess of the data allo-
cation and the architecture of the system. Figure 6 shows both simulation and experimental
results (ragged and dotted lines). The simulated architecture consists of 4 disks and 4 links
between server interface processor and disk nodes. The T800 transputers have a memory
bandwidth of 18M Bytes/s and each communication link has a throughput of 1.6M Bytes/sec.
The disks are Quantum-SCSI 2, whose seek-time and throughput have been measured exper-
imentally at being respectively 20msec. and 2.28M Bytes/sec.

The simulated delay can easily be linearized. The linearization shows that over a wide
range of window sizes, the 4-disk-node GigaView architecture can be modeled as a single
high-performance disk system with a latency of 64msec., and a throughput of 3.88MBytes/
sec. The black dots in Figure 6 represent experimental points corresponding to the actual
measured performance of the GigaView under the same circumstances. The measured per-
formance of the GigaView is actualy better than the simulated performance of the
GigaView. This can be traced to the fact that extents are allocated contiguously on disk.
Therefore, on the running prototype system, the seek-time required to locate the first extent
is longer than the seek-time required to locate subsequent extents.

3.3. Effect of the number of disk-nodes

Using the linear model of the performance of the GigaView, it is easy to demonstrate the
effect of the number of disk-nodesin the architecture on the performance of the system. Fig-
ure 7 shows the simulated access-time to a visualization window of increasing sizes for 4
architectures : 1-disk-node, 2-disk-node, 4-disk-node and 8-disk-node architecture.

del ay (sec.)

1 disk 2 di sks

4 di sks

0.6¢

0.4r¢

0.2¢

0 500 1000 1500 _ 2000 _ 2500 _ 3000
vi sual i zati on wi ndow si ze (KBytes)

FIGURE 7. Latency and throughput vs. number of disk-nodes (T800-based architecture)
Figure 7 shows that |atency decreases and throughput increases as the number of disk-nodes

increases. Beyond 8 disk-nodes, adding more disk-nodes ceases being beneficial, since link
communication bandwidth limits overall performance.

t hr oughput (MBytes/sec.)

2 4 6 8 10 12 14 16
nunber of disks

FIGURE 8. Throughput vs. number of disk-nodes (T800-based ar chitecture)

Figures 8 and 9 respectively plot the linearized throughput and the latency versus the num-
ber of disk-nodes for this T800-based transputer architecture. The peak throughput is
reached for an 8-disk-node architecture, and the latency remains around 80msec for all
architectures with more than 4 disk-nodes. The throughput curve reaches local maxima
when the number of disk-nodes is a multiple of the number of links (4, 8, 12). The single-
request study seems to suggest that a GigaView architecture with more than 8 disk-nodes is
not cost-effective. The multiple request study will show adifferent result.

| atency (nsec.)

300 ¢
250
200
150 ¢
100 ¢

50

~2 4 6 8 10 12 14 16
FIGURE 9. Latency vs. number of disk-nodes (T800-based architecture)

It is possible to get a precise idea of the maximum number of disk-nodes the architecture
effectively supports by carrying out a single single-request experiment. The key concept is
that of component utilization, defined as the ratio between a given component’s active-time
and the total simulation time.

The simulation consists of requesting a single 512-by-512 3-byte-pixel visualization
window, on a 4-disk-node T800-based architecture. Table 1 shows the utilization of each
component of the 4-disk-node architecture, aswell as the average utilization of each class of
components (interface processor, links, disk-nodes). The utilization data are part of the sim-

ulation results. In a 4-disk-node architecture, the average disk-node utilization is 86, the
links are 42%-utilized, and the interface processor is 33%-utilized. In the 4-disk architec-
ture, the ratio between disk-node- and link-utilization is 2. This suggests that an 8-disk-node
architecture provides an equal utilization of disk-nodes and links (Table 2). Above 8 disk-
nodes, the transputer links are more utilized than the disks. The links become the limiting
factor in the architecture, and therefore adding more disks to the architecture does not pro-
vide any performance improvement.

0 1 2 3 average

disk-node 095 | 083 | 0.83 | 0.83 0.86

link 042 | 042 | 042 | 042 0.42
interface 0.33 0.33
processor

Table 1: Utilisation of GigaView components
(T800 processors, 4 disk-nodes, 512x512 visualization window size)

Figure 8 and table 2 confirm that the best performance (in terms of throughput) is achieved
by the balanced architecture, i. e. the architecture for which the links and disks are equally
utilized. Table 2 aso shows that the maximum component utilization decreases significantly
when stepping up the architecture from 4 to 8 disk-nodes. This explains why the delay of an
8-disk architecture (0.218s for a 512-by-512 3-byte-pixel visualization window) is more
than half the delay of a 4-disk architecture (0.332s). For small visualization windows,
changing the data allocation scheme to improve the utilization by decreasing the extent size
does not improve performance : the overhead due to the larger number of extents negatesthe
effect of the improved data all ocation.

0 1 2 3 4 5 6 7 average

disk-node 0.62 | 063 | 0.63 | 0.63 | 0.84 | 0.64 | 0.63 | 0.64 0.66

link 055 | 063 | 0.76 | 0.68 0.66
interface 0.51 0.51
processor

Table 2: Utilisation of GigaView components
(T800 processors, 8 disk-nodes, 512x512 visualization window size)

3.4. Experimental results

This section compares the access delays of four storage systems. The first configuration is
an actual SparcClassic workstation and its local disk and the second configuration is an
actual RAIDER-5 system connected to a Sparc server 1000. The third system is an actual
RAID level-3 system connected to a Cray Y-MP. The fourth system is an actual 4-disk-node
GigaView system. The SparcClassic local disk is a 1GB Quantum with SCSI interface,
10msec seek-time and 2.93M Bytes/sec. sustained throughput. The RAIDER-5 system is a
RAID-5 architecture consisting of (4+1) WREN-9 disks having a latency of 12.9 msec. and
awide SCSI-2 interface. The RAID level-3 system consists of 10 disks (8 + 2 spare) Hitachi
DK-516-15.

The experiment consists of transferring visualization windows of increasing sizes from
disk(s) to host memory, and measuring the transfer times. All architectures run MDFS, the
multi-dimensional file system. The image from which the visualization windows are
selected is 3072-by-2048 3-byte pixelsin size, and is divided in 128-by-128 extents. On the
first three configurations (single-disk station and the two RAID servers), the entire data is
experimental.

del ay (sec.)

_____ Sparc O assic
2t ====——- RAID- 111 __
/"!—g——
— — — RAIDERV -7
. v /’/ //
G gaVi ew Vs
1. 5 I g \\ ‘ //
N
,/ // - —
1 // e /
./ ,f’/ — <
- - ~
~ ,/ P
0.5 P
_-—
0 500 1000 1500 2000 2500

vi sual i zati on wi ndow si ze (KBytes)

FIGURE 10. Experimental results

For the GigaView performance measurements, it is assumed that transferring a visualization
window from disk to host is a two-stage pipeline. The first stage of the pipeline transfers
extents from the disks to the GigaView server interface processor memory. The second stage
transfers image segments consisting of rows of extents from the server interface processor
memory to the host memory. The access delay is a combination of (1) actual delays mea-
sured on the GigaView system (transfer of the whole visualization window between the
disks and the GigaView interface processor) and (2) a conservative estimate of the transfer
delay of one horizontal row of extents between the GigaView interface processor and the
host memory. The formula giving the estimate of the SCSI bus transfer timeis:

ImageWidth [ExtentSize
RowOfExtentSize _ | ExtentWidth

SCSIThroughput 5 (10°

where the curtailed bracket symbol represents the round-up operation. The fact that the
GigaView performance is superior to the RAID systems performance can be traced to the
fact that the GigaView has an excellent control over extent alocation, which could not be
achieved on the tested RAID-111 and RAIDER-V systems. To achieve the best visualization
window access times, it is necessary to control precisely the disk alocation of each image
extent. Another important point is that the high-throughput low-latency behavior of the
GigaView is achieved despite the comparatively longer seek-time of the Quantum-SCS| 2.

4. Multiple-request behavior

This section describes the behavior of the GigaView under multiple requests. In order to
provide areference point, this study compares the behavior of the GigaView under multiple-

request to the behavior of an abstract fixed-service-time server. It shows that, due to internal
pipelining, the GigaView sustains higher throughput than the fixed-service-time server. The
amount of additional throughput depends on the single-request utilization of the disk array.
Section 4.1. describes the conditions under which the simulations are conducted. Section
4.2. demonstrates the validity of our simulation model under multiple requests. Section 4.3.
simulates the GigaView under multiple requests, and compares its behavior to the reference
server. It also evaluates the effect of the number of disks on the performance of the architec-
ture.

4.1. Smulation characteristics

Requests to the GigaView represent a Poisson process. This means that individual requests
are independent and that the number of requestsin agiven time interval only depends on the
length of that interval. The interval between requests therefore follows an exponential distri-
bution. The load on the system is expressed in terms of requested throughput. In our simula-
tions, all users request a 512-by-512 3-byte-pixels visualization window (786 KBytes).
Therefore, a requested throughput of 3MBytes/sec. corresponds to 4 window requests per
second. The Poisson process hypothesis also ensures that, for a given load, the number of
users requesting windows from the system has no effect. Only the requested throughput
affects the average response time of the system.

For a given system architecture, each simulation consists of requesting 5000 visualiza-
tion windows at random positionsin an image, for agiven load. Each configuration is simu-
lated for 20 loads chosen in the range of loads sustainable by the architecture. The result of
each ssimulation is the delay average over the 5000 requests.

4.2. Experimental model validation

To validate our smulation model under multiple requests, we measure the access-times of
an actual GigaView architecture consisting of 4 Quantum-SCSI-2 (23msec average seek-
time and 2.28MBytes/sec. throughput) and 4 T800 processors (memory bandwidth
18MBytes/s ; link bandwidth 1.6M Bytes/sec), and compare it to the smulation of the same
architecture. In this experimental setup, the requests for visualization windows represent a
Poisson process with the same statistical properties as a sequence of requests generated dur-
ing a multiple-request simulation.

del ay (sec.)

3.5}
3t simul ati on ¢
2.5} eeeeee neRASUrENENtS
2 L
1.5}
1 L
0.5
0 500 1000 1500 2000 _ 2500 3000

request ed throughput (KBytes/sec.)

FIGURE 11. Comparing simulation and experimental results (T800-based GigaView architecture)

Figure 11 shows the average access delays of both the simulated architecture (continuous
line) and the actual architecture (dots). It confirmsthe validity of our simulation model, both
gualitatively and quantitatively. The multiple-request performance of the actual system is
superior to the performance of the simulated architecture, for the same reason that the sin-
gle-request performance was superior to the single-request performance of the simulated
architecture : the seek-time required to locate the first extent in an image is longer than the
seek-time required to locate subsequent extents (see section 3.2.).

4.3. T9000-based GigaView architecture

In this section, we study the behavior of the GigaView under multiple requests. The archi-
tecture consists of T9000 transputers and Quantum-SCSI-2 disks. Since the T9000 transput-
ers were not yet available at the time of submission, their performance was conservatively
estimated at 36MBytes/s memory bandwidth and 8MBytes/s link transfer rate. The Quan-
tum-SCSI-2 latency and throughput are measured experimentally at 20msec. and
2.23MBytes/sec. The fixed-service-time server provides areference point for the GigaView
simulations. Its only property isits service-time, equal to the service-time of asingle visual-
ization window request. Requests to the reference server follow the same distribution as
requests to the GigaView. For example, a T9000-based 4-disk-node GigaView architecture
satisfies a 512-by-512 3-byte-pixel visualization window request in 0.305 sec. The maxi-
mum throughput sustainable by the fixed-service-time server is (MST = maximum sustain-
able throughput) :

MST = SingleRequestSize _ 768KBytes _
SingleRequestDel ay 0.305s

2.62MBytes/'s

Figure 12 shows the performance results of the GigaView. The continuous line represents
the GigaView performance (delay average), whereas the crosses represent the performance
of the fixed-service-time server (delay average).

del ay (sec.)

2.5¢

) continuous line : G gaView del ay

crosses : fixed-service-tine
server del ay X

1.5}

1 L
0.5+t

500 1000 1500 2000 2500

requested t hroughput (KBytes/sec.)
FIGURE 12. GigaView performance under multiple requests (T9000-based ar chitecture)

Figure 12 shows that the performance of the GigaView is superior to the performance of a
fixed-service-time server. This result is not difficult to explain. During a single-request

experiment, no component of a 4-disk-node GigaView architecture is used more than 90 of
the time. Therefore, under multiple-request, some amount of interna pipelining occurs,
making the GigaView able to sustain higher |oads than the fixed-service-time server.

del ay (sec.)

2.5}
5 continuous line : G gaView del ay
crosses : fixed-service-tine server
server del ay
1.5}

0.5}

500 1000 1500 2000 2500
requested throughput (KBytes/sec.)

FIGURE 13. Matching reference server and GigaView (T9000-based ar chitecture)

One can match the behavior of the fixed-service-time server and the GigaView by scaling
the x-axis of the fixed-service-time server performance curve by afactor equal to theinverse
of the single-request utilization of the GigaView (Figure 13). This suggests that the
GigaView maximum sustainable throughput (MST) must be defined as :

SingleRequestSize 1

MST DSi ngleRequestDelay ESI ngleRequestUtilization

In this formula, the single-request size is a simulation parameter ; the single-request delay
and utilization are simulation results. The formula holds true regardless of the single request
size. A single single-request simulation allows to evaluate the maximum sustainable
throughput of a given architecture.

del ay (sec.)

1.5¢

1.25¢

1t 4 8
di sks

0.75¢

0.5}

0.25¢

2000 2000 6000 8000 10000
request ed throughput (KBytes/sec.)

FIGURE 14. Effect of the number of disk-nodes (T9000-based architecture)

Effect of the number of disk-nodes. Figure 14 shows the effect of the number of disk-
nodes on the performance of the GigaView. Adding disk-nodes to the architecture improves
the delay of each request and the GigaView’s ability to sustain higher loads.

Consider arequested throughput of 6 MBytes/sec. The average delay for a 12-disk-node
architecture is around 400msec, whereas a 16-disk-node architecture satisfies requests on
average within 200msec, i.e. an improvement by afactor of 2. This seemsto be in contradic-
tion with the single request analysis of the same architecture.

The single request analysis applied to a T9000-based architecture (Table 3) shows that
the maximum throughput is reached for a 12-disk-node architecture. The 16-disk-node
architecture does offers very little benefit over the 12-disk-node architecture, in terms of sin-
gle-request throughput or access delay. The major difference between the two architectures
liesin the utilization of 12-disk and 16-disk architectures under single-request. In a 12-disk-
node architecture, disk-node components are utilized on average 76% of their time, andin a
16-disk-node architecture, they are used on average 61% of their time.

number of disks 4 8 12 16
delay (983K Bytes,ms) 354 | 89 | 143 | 135
latency (ms) 123 | 75 95 44
throughput (MB/s) 401 | 797 | 128 | 11.8
utilization (%) 93 87 76 61

Table 3: GigaView single-request analysis (T9000-based architecture)

Using the maximum sustainable throughput formula introduced earlier, we find that the
maximum sustainable throughputs are 2.98MBytes/s (respectively 5.97MBytes/s,
9.04MBytes/s, 11.94MBytes/s) for a 4-disk (respectively 8-disk, 12-disk, 16-disk) architec-
ture. Although the single request throughput does not increase above 12 disks, the maxi-
mum sustainable throughput under multiple requests increases linearly with the number of
disks, for up to 16 disks. Above 16 disks, the interface processor becomes saturated, and the
maximum sustai nabl e throughput does not increase anymore.

5. Conclusion and futurework

This paper shows through simulation and experimentation that the GigaView multi-proces-
sor multi-disk mass storage server is able to sustain throughputs of up to 5SMBytes/s for a4-
disk-node T800-based architecture, and of up to 12MBytes/s for a 16-disk-mode T9000-
based architecture, while accessing random visualization windows. The access delay is
insufficient to describe the architecture performance. Under single request, the concepts of
latency and throughput provide a much better picture of the architecture performance. Sim-
ulations and experimentation show that it is accurate to model the GigaView as a single
high-throughput and low-latency server. Under multiple request, the concept of utilization is
essential in estimating the maximum sustainable throughput. The multiple-request study
suggests that, although adding disk may not improve the single-request throughput, it
improves the maximum sustainable throughput under multiple requests.

Future work will focus on designing a flexible processing scheme for downloading cus-
tom code to the disk-node servers, thereby combining high-throughput data access from the
disks and high-performance preprocessing operations. By adding features to synchronize
multiple heterogeneous streams of data (e. sound and image files), and designing new data

allocation algorithms taking into account the specificity of each stream, the parallel image
server presented in this paper will become a parallel multimedia server.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

G. Blair, A. Campbell, G. Coulson, F. Garcia, D. Hutchinson, A. Scott, and D. Shep-
herd. A network interface unit to support continuous media. |[EEE Journal on selected
areas in Communications, 11(2):264-275, February 1993. Specia issue on network
interfaces.

A. Chenand D. A. Patterson. Maximizing performancesin astriped disk array. In Pro-
ceedings |EEE International Symposium on Computer Architecture, pages 322-331,
Seattle, 1990.

R. D. Hersch. Paralel storage and retrieval of pixmap images. In Proceedings of the
12th IEEE Symposium on Mass Storage System, pages 221-226, Monterey, 1993.

R. D. Hersch, B. Krummenacher, and L. Landron. Parallel pixmap image storage and
retrieval. In Grebe et al., editor, Proceedings of the World Transputer Congress, pages
691-699. 10S Press, 1993.

R. H. Katz, P. M. Chen, A. L. Drapeau, E. K. Lee, K. Lutz, E. L. Miller, S. Seshan, and
D. A. Patterson. RAID-I1 : design and implementation of a large scale disk array con-
troller. In VLS System Design Conference, 1993.

R. H. Katz, G. A. Gibson, and D. A. Patterson. Disk system architecture for high per-
formance computing. Proceedings of the |EEE, 77(12):1842-1858, December 1989.

E. K. Lee, P M. Chen, J. H. Hartman, A. L. Drapeau, E. L. Miller, R. H. Katz, G. A.
Gibson, and D. A. Patterson. RAID-I1 : a scalable storage architecture for high-band-
width network file service. Technical Report 92/672, Computer Science Department,
University of Californiaat Berkeley, 1992.

P. Lougher and D. Shepherd. The design of a storage server for continuous media. The
Computer Journal, 36(1):32-42, February 93.

D. A. Patterson, G. A. Gibson, and R. H. Katz. The case for RAID : redundant arrays
of inexpensive disks. In Proceedings ACM SSGMOD Conference, pages 106-113, Chi-
cago, IL, May 1988.

