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Abstract 

The extraction of planar sections from volume images is the most 
commonly used technique for inspecting and visualizing anatomic 
structures. We propose to generalize the concept of planar section 
to the extraction of curved cross-sections (free form surfaces). 
Compared with planar slices, curved cross-sections may easily 
follow the trajectory of tubular structures and organs such as the 
aorta or the colon. They may be extracted from a 3D volume, 
displayed as a 3D view and possibly flattened. Flattening of 
curved cross-sections allows to inspect spatially complex 
relationship between anatomic structures and their 
neighbourhood. They also allow to carry out measurements along 
a specific orientation. For the purpose of facilitating the 
interactive specification of free form surfaces, users may navigate 
in real time within the body and select the slices on which the 
surface control points will be positioned. Immediate feedback is 
provided by displaying boundary curves as cylindrical markers 
within a 3D view composed of anatomic organs, planar slices and 
possibly free form surface sections. Extraction of curved surface 
sections is an additional service that is available online as a Java 
applet (http://visiblehuman.epfl.ch). It may be used as an 
advanced tool for exploring and teaching anatomy. 

CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Picture/Image Generation - Viewing Algorithms; I.3.6 
[Computer Graphics]: Methodology and Techniques - Interaction 
Techniques; J.3 [Computer Applications]: Life and Medical 
sciences. 

Additional Keywords: visualization, anatomic structures, curved 
sections, surface extraction, interactive flattening. 

1 Introduction 

State of the art tomographic imaging systems allow to visualize 
planar slices having an arbitrary orientation. Planar slices enable 
radiologists to inspect organs for diagnostic purposes. Planar 
slices are also useful for teaching anatomy. However, oblique  
planar slices do not always allow to adequately follow curved  

anatomic structures. For instance, planar cross sections do not 
allow to see the continuity of tubular structures, such as the vena 
cava (Fig. 1a). 

For visualizing such structures, one may specify and extract a 
ruled surface (Fig. 1b) from the original volume (an operation  
called curved planar reformation). However, ruled surfaces are not 
well suited for visualizing structures with many branches such as  
an arterial tree. Ruled surfaces are also too restricted for tracking  
anatomic structures with irregular geometry such as the pelvis. In  
this paper, we propose to extend the notion of cross section, which 
generally designates the extraction of a planar slice, to the 
extraction of free form surfaces. In contrast to planar slices, 
surfaces may follow curved anatomic structures. By flattening 
such surfaces, one may inspect these structures and their 
neighbourhood.

 a) Planar slice                      b) Flattened ruled surface 

Figure 1. A ruled surface extracted from the Visible Human 
shows the continuity of the vena cava. 

One challenge resides in offering interaction means facilitating the 
specification of surfaces following winded tubular structures 
within a 3D volume. To meet this challenge, we introduce surface 
specification tools which rely on interactive slicing and on the 
placement of marker points inside the volume. A second challenge 
resides in proposing a free form surface flattening paradigm 
meeting the expectation of the user, i.e. minimizing the distortions 
close to a curve of interest and preserving distances along a user 
specified orientation.

In Section 2, we outline possible approaches for surface 
extraction. In Section 3, we describe how to specify ruled surfaces 
along trajectories following tubular anatomic structures. In 
Section 4, we introduce our free form surface extraction and 
flattening methods. In Sections 5 and 6, we describe an 
application integrating interactive surface specification, extraction 
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and display, together with the display of the surrounding anatomic 
structures. Conclusions and possible future improvements are 
presented in Section 7. 

2 Possible approaches 

The simplest approach for specifying a ruled surface is to let the 
user specify a trajectory on an oblique slice and define the ruling 
vector perpendicular to this slice [Figueiredo and Hersch 2002]. 
For angiography applications, paths inside vascular tree structures 
may be computed and corresponding ruled surfaces may be 
extracted [He et al. 2001; Kanitsar et al. 2002]. These multiple 
surfaces are flattened onto the same image but discontinuities are 
unavoidable. 

In order to be able to visualize branching structures without 
introducing discontinuities, we propose to lay out a Coons surface 
across the different branches of a tubular structure. Since the 3D 
display of a surface does not allow to inspect all surface parts 
within a single view, we introduce a user-driven flattening method 
particularly well suited for interactive applications.  

Haker et al. [1999] propose a technique to flatten the brain surface 
both for anatomical study and for analyzing functional magnetic 
resonance images. A discretized Laplace Beltrami operator maps 
a topological sphere onto a disc by globally minimizing 
distortions. Similar methods are applied to the 3D visualization of 
colon CT images [Haker et al. 2000]. For cylindrical anatomic 
structures, attempts were made, for instance for virtual 
colonoscopy, to project the colon’s surface onto a cylinder for 
virtual colonoscopy [Bartroli et al. 2001]. These surface flattening 
methods are not adapted to our problem since they are designed 
for the flattening of precomputed organ surfaces models and not 
for inspecting surfaces crossing sets of organs or tubular 
structures. Furthermore, they do not provide support for 
interactivity. 

3 Specification and extraction of ruled surfaces 

We first consider ruled surfaces for tracking curved anatomic 
structures. We focus our attention on ruled surfaces with a 
directrix ( )tα  and a ruling vector of constant orientation p :

( , ) ( )t t pσ ν α ν= +  (1)

Such ruled surfaces are developable and easy to define, since they 
only require the definition of the directrix ( )tα  and of the ruling 
vector p . A ruled surface may therefore be easily specified by a 
2D natural spline located in a planar cross-section, with its ruling 
vector orthogonal to that cross section (Fig. 1).  

However, a ruled surface whose directrix is located within a plane 
does not allow to easily visualize non-planar tubular structures 
such as the aorta. To provide support for specifying true 3D 
trajectories, we propose, by interactive slicing, to interactively 
move forward and backward within the 3D volume and place 
directrix control points (marker points) within the considered 
tubular structure, e.g. the aorta or the vena cava.  

As ruling vector, we choose a vector orthogonal to the main 
orientations of the curve. Indeed, if the ruling vector is not 
adequately chosen, two ruling lines 1( , )tσ ν  and 2( , )tσ ν  may 
become identical, i.e. 1 2( , ) ( , )t tσ ν σ ν≡ . Structures intersected by 
these lines may then be present at two different locations within 
the resulting flattened surface, making the image interpretation 
difficult. Compared with Kanitsar et al. [2002] where the ruling 

vector has a fixed orientation within the (Oxy) plane, our method 
allows to compute the most adequate ruling vector automatically 
by avoiding as much as possible cases where ruling lines become 
identical. To offer additional freedom and improve the 
visualization, users are allowed to rotate the ruling vector in the 
plane orthogonal to the main orientation of the 3D trajectory. 

The main orientations of the 3D trajectory are computed using 
principal component analysis. The trajectory is first represented 
by a polyline, i.e. a set of discretization points { , ,...., }S = 1 2 nx x x .

We compute the center of gravity G of this set, and the covariance 
matrix B, taking into account G and all points of S: 
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Since covariance matrix B is symmetric, the normalized 
eigenvectors of B form a local coordinate system 
( , , , )a b cG x x x with center G and axes ,  ,  a b cx x x . Vector cx  is the 
vector orthogonal to the plane of principal components ( , , )a bG x x
and is used as the ruling vector p  (Fig. 2). 

Figure 2.  Computation of the ruling vector cp x= .

We may change the orientation of the ruled surface by rotating 
ruling vector p  in the plane ( , , )b cG x x

cos sinb cp x xθ θ θ= ⋅ + ⋅  (3)

a) b)  c) 

Figure 3. Extraction of ruled surfaces following the aorta, with 
different ruling vectors. 

After discretization of the surface into rectangular facets, the 
labeled texture of the surface is extracted from the 3D volume 
image and visualized (Fig. 3). Such a ruled surface allows to 
visualize an entire section of the aorta together with its 
neighbourhood.  By rotating pθ  up to 180°, one may scan the full 
3D neighbourhood of the considered trajectory.  

In order to obtain a global view of the surface within a single 
image, one may flatten the ruled surface without introducing 
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angular or metrics distortions. The directrix ( )tα  is first 
approximated by a polyline, whose segments, together with the 
ruling vector, define a succession of rectangular facets. These 
rectangular facets are resampled according to the display grid. 
Corresponding voxels are extracted from the 3D volume data 
using nearest-neighbour or trilinear interpolation. Facets parts are 
then merged into the final display buffer (Fig. 4).  

Figure 4. Flattening a ruled surface. 

By being able to display the entire surface within a single image, 
one may quickly and precisely inspect it without having to rotate 
the view and possibly miss certain parts of the surface (Fig. 5). 

Figure 5. Flattened ruled surfaces following the aorta 
 (with three different ruling vectors). 

Since flattened ruled surfaces preserve distances, accurate 
distance measurements are possible. Furthermore, since each pixel 
on the flattened surface can be selected precisely, marker points 
can easily be placed and their 3D coordinates displayed. 

4 Free Form Surfaces  

Despite their usefulness, ruled surfaces do not offer enough 
flexibility for visualizing irregular anatomic structures such as the 
pelvis or the jaw. Furthermore, with a ruled surface, it is difficult 
to define a surface section that passes through a part of the aorta 
tree, i.e. the aorta together with its outgoing tubular structures. To 
offer a higher degree of freedom, we propose to use free form 
surfaces as visualization means. 

The first difficulty is to find a method which enables an easy and 
accurate placement of a surface within a 3D volume. A second 
challenge resides in proposing an intuitive user-driven flattening 
method for free form surfaces. 

Specification and extraction of free form surfaces 

With Coons free form surfaces [Hoschek and Lasser 1993], users 
may interactively place boundary curves along structures of 
interest. The surface interpolates these boundary curves. 

P(0,1)

P(1,1)

P(1,0)

P(0,0)

P(u,v)

uv

Figure 6. Surface interpolation between curves. 

To facilitate the placement of the marker points defining the 
desired Coons surface boundary curves, users may navigate in real 
time across the volume (Section 5). On the desired slices, they 
may position marker points. Each set of successive marker points 
defines a surface boundary curve. The surface interpolating the 
boundary curves may then be extracted from the 3D volume and 
displayed in 3D, together with other related anatomic structures. 

Let us describe the construction of Coons surfaces. Given n
boundary cubic splines specified by the user, varying along the u
parameter, the two other boundary cubic splines are constructed 
which pass through the extremities of these n curves (Fig. 6, red 
curves). The resulting system of boundary curves is interpolated 
by Coons patches [Hoschek and Lasser 1993, pp. 371-382]. 
Starting with the n curves specified by user, we can construct n-1 
Coons patches by carrying out for each patch the following 
interpolation
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where ( , )P i v  and ( , )P u i  are the parametric representations of 
the boundary curves for 0,1i =  and where if  are blending 
functions.

Since each boundary curve is a cubic spline with 2C continuity, 
the corresponding patch has also 2C  continuity. We choose cubic 
Hermite polynomials as blending functions, which satisfy the 
continuity conditions 

1,
( )

0,i ik

i k
f k

i k
δ

=ë
= = ì ≠í

  and  ( ) 0,if k′ =    for , 0,1.i k =  (5)

Thus, derivatives of the patch along boundaries are given by 

0 1

0 1

( , ) ( ,0). ( ) ( ,1). ( )

( , ) (0, ). ( ) (1, ). ( )
u u u

v v v

P i v P i f v P i f v
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= +
= +

      for 0,1.i =  (6)

Using these functions, the tangent vectors to the curve ( , )cP u v  at 
the point ( ,1)cP u  (with cu  constant) depend only on the tangent 
vectors (0,1)vP  and (1,1)vP  at points (0,1)P  and (1,1)P . It 
follows from (6) that if the two computed boundary curves have 

1C  continuity at these points, the two neighbouring patches A and 
B join together with 1C  continuity along the curve 

( ,1) ( ,0)A BP u P u=  (Fig. 6). In contrast to bi-cubic patches 
[Hoschek and Lasser 1993, pp. 382-385], the presented bilinear 
interpolation with Hermite polynomials does not require to 
specify the derivatives along boundary curves ( ,0),vP u ( ,1),vP u

(0, )uP v  and (1, )uP v .

a)

b)

Figure 7. Curved section revealing the variation of the aorta 
 lumen diameter. 

As an example, a surface across the aorta is constructed by 
specifying boundary curves within several distant axial slices 
crossing the aorta (Fig. 7a). The boundary curves are oriented 
according to the lumen’s main diameter. The resulting surface 
follows the largest aorta diameter and reveals diameter variations 
(Fig. 7b).  

As a further example, we construct a surface passing through the 
aorta, the subclavian, the carotid and the brachiocephalic arteries. 
This surface is then extracted and displayed together with a 3D 
view of the aorta and the corresponding arteries (Fig. 8b) or alone 
(Fig. 8c). This allows to illustrate the connections between the 
aorta and the outgoing arteries. 

a)  b)  c) 

Figure 8. Curved section passing through a part of the aorta tree. 

Flattening of Coons surfaces 

Coons surfaces are not developable, i.e. it is not possible to unfold 
them without distortions. The unfolding of non developable 
surfaces is the inverse problem of texture mapping. In texture 
mapping, a planar image is mapped to a surface by globally 
minimizing distortions on the resulting 3D surface [Salomon 
1999]. In our case, we would like to map a texture laid out on a 
surface onto the plane. Instead of globally minimizing distortions, 
we prefer to minimize distortions in a region of interest in order to 
inspect it with a higher precision. In addition, we may preserve 
distances along a user specified orientation. The user may then 
interactively modify the region of interest and the orientation of 
distance preservation in order to observe successive regions of 
interest. 

In a previous approach to surface flattening, Bennis et al. [1991] 
unfold a parametric surface by flattening neighbouring transversal 
isoparametric curves vC  (v=const) so as to preserve both arc 
length and geodesic curvature (Fig. 9). This surface flattening 
method is not well suited for our application, since it does not 
provide an intuitive feeling about how metric distortions are 
distributed on the resulting flattened image. Indeed, within the 
flattened image, distances are not preserved along a specific 
direction but along curved lines (Fig.  9b, red curves). 

uv

           
 a) Parametric surface S b) Flattened surface S’ 

Figure 9. Flattening of a parametric surface according  
to Bennis et al. [1991]. 

Due to the preservation of the geodesic curvature along the 
curves, this method may also introduce self intersections between 
unfolded transversal curves. To provide a more intuitive 

vC vC′

S

S′
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distribution of metrics distortions and allow to choose the desired 
orientation of distance preservation, we propose to reparameterize 
the surface before carrying out the flattening step. Such a 
reparameterization may ensure that transversal isoparametric 
curves correspond to the intersection between the surface and 
parallel planes of constant orientation. These transversal curves 
are then flattened into straight lines with distance preservation. In 
contrast to [Bennis et al. 1991], where arc length is preserved 
along curves defined by the initial parameterization, our method 
allows to choose the desired orientation of arc length preservation. 
In addition, by construction, it prevents the apparition of self 
intersections. 

Algorithm Description 

In a first step, the user selects a curve 
0uC 0 max{ ,0 }u u v v= ≤ ≤

on the surface S as the reference curve for flattening purpose. The 
angular distortions will be minimized along this curve (Fig. 10). 
Then, a plane orientation { , }P a b=  is chosen according to the 
desired orientation along which distances should be preserved. 
One may define the plane orientation interactively or it may be 
computed automatically, e.g. as a plane orthogonal to the main 
orientation of the reference curve 

0uC .

By discretizing the surface along u, we obtain a set of curves uC
( u const= ). For each sample point jM  of the initial curve 

0uC ,
the plane jP  of orientation P passing trough jM  is computed. 
The intersection points between jP  and the family of curves uC
provide a discrete representation of the intersection of the surface 
and plane jP  (Fig. 10)1. By iterating along all sample points of 

0uC , we obtain a family of discrete curves hC . Each discrete 
curve hC  corresponds to the intersection of a plane jP  and the 
family of curves uC .

With the new parameterization defined by the family of curves 
uC  and the family of curves hC , the flattening algorithm runs as 

follow:

1. Map the initial curve 
0uC  into a plane by preserving the 

geodesic curvature2 at each sample point and by 
preserving the distance between points, according to 
[Bennis et al. 1991] (see Appendix), 

2. Map a curve 
0hC  into a straight line with cross angle 

preservation between 
0hC  and 

0uC  and distance 
preservation between consecutive sample points of 

0hC ,

3. Map each curve hC  into a straight line parallel to 
0hC

and passing through jM ′ , with distance preservation 
between consecutive sample points of hC .

By construction, this method preserves both the distances on the 
reference curve 

0uC′ , and on the transversal curves hC′ . The cross 
angle between 

0uC and
0hC  is also preserved. The geodesic 

curvature is preserved along the reference curve 
0uC′ , therefore 

angular distortions are minimized along a band of interest near the 
curve

0uC′ .

1 In cases of double intersections between the plane jP  and 
the surface S, we choose the intersection curve closest to the 
previously computed intersection curve 1hC −  . 
 2 The geodesic curvature gk  of a curve ( )C s   belonging to 
a surface S, at a point X, is the norm of the derivative of the 
tangential vector gt  of ( )C s  at X according to the arc length 
parameter s, i.e. ( )g gk s′= t .

uv

            

  a) Coons surface S    b) Flattened surface S’ 

Figure 10. Flattening of a Coons surface preserving distances 
along a user-specified orientation. 

Each facet (quadrilateral) of the resulting flattened surface is 
sampled according to the display grid. The corresponding colors 
are then extracted from the 3D volume image by nearest 
neighbour or trilinear interpolation. 

Figure 11 shows a curved surface following the aorta and the 
corresponding flattened surface obtained with the algorithm 
described above. A grid showing the curves along which distances 
are preserved may be superposed on the flattened image (Fig. 
11c). Since distances, within the resulting flattened image, are 
preserved along a constant orientation (Fig. 11c), the distribution 
of metric distortions becomes rather intuitive. Measurements may 
be carried out along that orientation.

a)

b) c) 

Figure 11. Flattening of a free form surface following the aorta. 
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a)   b)   c) 

Figure 12. Flattening of a free form surface passing through the aorta tree with different orientations of distance preservation. 

Figure 12 shows the flattening of a surface passing through the 
aorta tree. In order to minimize the distortions within a different 
area, one may choose another band of interest by selecting a 
different curve of reference. A different orientation of the planes 

jP  may also be specified (Fig. 12b and 12c). The new flattened 
surface is then recomputed. 

The proposed surface flattening method provides a global view of 
a curved section within a single image, without introducing 
discontinuities. Distortions are present but the user may 
interactively choose their distribution and therefore inspect 
accurately all the surface parts. Flattened views may be used for 
illustrating properties of curved anatomic structures or for 
carrying out measurements along a user specified orientation.  

5 Interactive specification of surfaces 

In order to interactively specify in 3D space the boundary curves 
or trajectories defining a surface of interest, we use both 
interactive slicing across the volume image and the 3D display of 
organ surfaces and slices. Interactive slicing [Gerlach and Hersch 
2002] enables navigating within the Visible Human volume image 
[Ackerman 1998] by continuously extracting slices at a speed of 
several slices per second, according to the displacement of the 
mouse (backward and forward translation, rotation, zoom). The 
3D visualization interface [Evesque et al. 2002] allows users to 
construct 3D anatomical scenes by combining planar slices and 
3D anatomical structures which may be selected and 
automatically loaded from the Visible Human server. User may 
zoom in and out, rotate and translate the scene as well as displace 
and rotate the planar slices located within the scene.  

To accurately place points within the 3D volume, one should 
preferably use the interactive real time navigator for slicing 
through the volume data and halt on the slices on which marker 
points are to be specified. For understanding the 3D context, the 
current slice is displayed both in the real time navigator and in the 
3D visualization interface, together with surrounding organ 
surface models (Fig. 13). At any time, both views may be 

synchronized. This facilitates interactive and dynamic positioning 
of slices by mouse displacements. 

Figure 13. Synchronization between views. 

Users may also modify the position of the slice in the 3D view by 
dragging it to the desired location and simultaneously see the 
corresponding movement in the slice navigator. 

The presented approach relying on the synchronization between 
the slice navigator interface and the 3D viewer is similar to the 
approach of [Gering et al. 1999], used in surgical planning 
applications.

Interactive specification of trajectories and boundary curves 

By combining the real time slice navigation and the 3D 
visualization interface, users may specify trajectories or boundary 
curves within the 3D volume by using markers. Markers are fat 
3D cubic spline curves defined by several user-specified control 
points (marker points). Marker points may be freely placed by 
clicking with the mouse at the desired position on the selected 
slice. The markers are extruded as cylinders. Their intersection 
with the current slice is displayed (Fig. 14, right view).  
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However, the real time navigator does not provide a global view 
of the curve. The 3D visualization interface displays the marker as 
a 3D cylinder along the curve (Fig. 14, left view). By making 
organ models appear as partly transparent surfaces, the 3D 
curvilinear marker and its surrounding anatomic structures can be 
displayed simultaneously. In the example of Fig. 14, the aorta 
model is displayed in transparency and reveals the 3D marker 
curve located inside it. Since both views are synchronized, the 
current marker shape is displayed in 3D while it is being specified 
by placing control points with the real time slice navigator. This 
ensures an optimal interactivity and an accurate placement of the 
marker splines. 

Figure 14. Simultaneous display of a marker in the slice navigator 
and in the 3D visualization interface. 

6 Exploration of anatomic structures with 
surfaces and 3D models 

Let us summarize how users may make use of our interactive 
application to inspect anatomic structure of interest. In a first step, 
organ models surrounding the structures of interest are loaded and 
displayed in the 3D visualization interface (Fig. 15a). Then, using 
interactive slicing and thanks to the synchronized 3D display of 
the scene, marker points are positioned within the volume image. 
After specifying several boundary curves (markers), the 
application computes the resulting free form surface and requests 
from the server to extract the corresponding surface texture 
elements from the volume image. The surface elements are 
extracted from the 3D volume and sent back to the client for 
display. The boundary curves may be modified in order to adjust 
the shape or the location of the surface.  

a) 3D view      b) Flattened view 

Figure 15. Surface following the costal cartilage and the sternum. 

a) 3D view 

b) Flattened view 

Figure 16. Surface section passing through the jaw. 

Compared with conventional curved sections, free form surfaces 
allow to follow non tubular structures, such as the sternum and the 
costal cartilage. Figure 15 shows a surface passing through the 
sternum and costal cartilages and the resulting flattened image. 
Figure 16 shows a surface following the jaw. The flattened image 
reveals all teeth within a single image. The simultaneous display 
of surfaces and organs greatly facilitates the understanding and 
the interpretation of the flattened images. 

Conclusions 

In the present contribution, we generalize the concept of planar 
slices, which are widely used in medical imaging, to curved cross-
sections. Curved cross-sections such as ruled surfaces or free form 
surfaces extracted from 3D volume images enable an accurate 
visualization of curved anatomic structures.  

We integrate the curved cross-section extraction into an 
interactive slicing application allowing to visualize both the 
current slice and its representation within the surrounding 
anatomic scene. Combining the 2D slice view and the 3D scene 
view enables users to accurately position in 3D the control points 
determining the location and properties of the desired curved 
section. Free form surface boundaries as well as ruled surface 
trajectories are displayed as fat 3D cylindrical curves, visible both 
at their intersection with the current slice and within the 3D view.  

Flattening of ruled and free form surfaces enables to follow 
curved anatomic structures. Free form surfaces are especially well 
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suited for tracking tubular tree structures such as the vascular or 
arterial trees. While the flattening of a ruled surface is 
straightforward, flattening of a free form surface needs to be 
intuitive, i.e. the user should be able to specify the regions of the 
surface which should be reproduced at a high fidelity. We present 
a first solution to the “interactive flattening” problem by 
minimizing distortions along a band of interest, i.e. a band whose 
central curve is a user-selected constant parameter curve.  We also 
allow users to specify an orientation, along which distances are 
preserved.  

For a thorough inspection of a surface, the user may successively 
select different bands of interest. He may also carry out 
measurements along the orientation along which distances are 
preserved. In the near future, we intend to further extend the 
interactive flattening paradigm in order to allow users to freely 
specify their region of interest and to provide information about 
the locations and the amplitudes of the distortions. 

The present application is available on the Web, as an additional 
service offered by the Visible Human server 
(http://visiblehuman.epfl.ch). It provides both to the general 
public and to the professionals interested in anatomy an additional 
tool for visualizing complex anatomic structures and their intricate 
relationships.
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Appendix: Curve flattening with arc length and 
geodesic curvature preservation (according to 
[Bennis et al. 1991]) 

Let us recall that surface curves are approximated by polylines. A 
curve C  that is to be mapped onto the plane contains 1n +
sample points ,iM 0..i n= . Let us denote by in  and 

ipT ,
respectively, the normal vector and the tangent plane to the 
surface at point iM . The curve flattening algorithm is the 
following:

1. Map the first curve segment 0 1M M  onto a segment 0 1P P  in 
the plane (Oxy) such that 0 1 0 1( ) ( )d M M d P P= , where d
designates the Euclidean distance function. 

2. For each ,  2 ,  jj j n P≤ ≤  is iteratively computed in the plane 
as follows: 

a) Project jM  and 2jM −  onto the plane tangent to the 
surface at 1jM − . This provides two points in 

1jpT
−

,
called jM and 2jM −  given by the formulas:  

1 1 1(( )) )j j j j j jM M M M n n− − −= + − ⋅

2 2 1 2 1 1(( )) )j j j j j jM M M M n n− − − − − −= + − ⋅

b) Use a dilatation in 
1jpT

−
,  in order to transform jM  into 

a point jM ′  such that 1 1( , ) ( , )j j j jd M M d M M− − ′= .

1
1 1

1

( )
j j

j j j j
j j

M M
M M M M

M M

−
− −

−

−
′ = + −

−

c) As 2jP −  and 1jP −  are already computed, the desired 
point jP  is the point of (Oxy) that preserves 
simultaneously the angle 1jθ −  between 2 1j jM M− −  and 

1j jM M− ′ , and the distance 1( , )j jd M M− ′ .

This curve flattening algorithm preserves the geodesic curvature 
at each sample point and the arc length between sample points.  
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