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ABSTRACT 

In message-passing parallel applications, messages are not 
delivered in a strict order. The number of messages, their content 
and their destination may depend on the ordering of their delivery. 
Nevertheless, for most applications, the computation results 
should be the same for all possible orderings. Finding an ordering 
that produces a different outcome or that prevents the execution 
from terminating reveals a message race or a deadlock. Starting 
from the initial application state, we dynamically build an acyclic 
message-passing state graph such that each path within the graph 
represents one possible message ordering. All paths lead to the 
same final state if no deadlock or message race exists. If multiple 
final states are reached, we reveal message orderings that produce 
the different outcomes. The corresponding executions may then 
be replayed for debugging purposes. We reduce the number of 
states to be explored by using previously acquired knowledge 
about communication patterns and about how operations read and 
modify local process variables. We also describe a heuristic that 
tests a subset of orderings that are likely to reveal existing 
message races or deadlocks. We applied our approach on several 
applications developed using the Dynamic Parallel Schedules 
(DPS) parallelization framework. Compared to the naive 
execution of all message orderings, the use of a message-passing 
state graph reduces the cost of testing all orderings by several 
orders of magnitude. The use of prior information further reduces 
the number of visited states by a factor of up to fifty in our tests. 
The heuristic relying on a subset of orderings was able to reveal 
race conditions in all tested cases. We finally present a first step in 
generalizing the approach to MPI applications.   

Categories and Subject Descriptors 

D.1.3 [Programming Techniques]: Concurrent Programming – 

distributed programming. D.2.5 [Software Engineering]: Testing 
and Debugging – debugging aids, testing tools. 

 

General Terms 

Reliability, Experimentation, Verification. 

1. INTRODUCTION 
One of the major difficulties when developing a parallel program 
is to simultaneously ensure that an application has good 
performance and that different executions with the same input 
always produce the same result. Achieving good performance 
generally requires removing synchronizations within the parallel 
program, with the risk that the correctness of the computation is 
no longer guaranteed. Unfortunately, the exponential number of 
possible message orderings makes it impossible to execute them 
all and to compare the final computation result after each run. 

We describe a dynamic message-passing state graph construction 
and exploration technique that greatly reduces the cost of testing 
possible orderings. We identify application states common to 
multiple orderings dynamically by comparing checkpoints taken 
after the delivery of every message. This ensures that each state 
appears only once in the state graph, such that sequences of 
computations common to multiple orderings are executed only 
once. We then use information about communication patterns and 
read-write accesses to local process variables to reduce the 
number of explored states. 

This approach greatly reduces the replay time at the expense of 
the memory or disk space needed to store intermediate application 
checkpoints. In order to handle cases where the space and time 
requirements are too large, we also describe an algorithm that 
tests a subset of orderings that has a high probability of revealing 
commonly found message races. 

We implemented the proposed techniques within the Dynamic 
Parallel Schedules (DPS) framework [5]. This framework 
facilitates the creation of parallel applications by providing high-
level constructs as well as checkpointing and fault-tolerance 
capabilities [6]. It is sufficient to recompile a DPS application in 
order to activate the message race and deadlock detection 
mechanism. Any modification to the application code or input 
data can therefore be immediately tested. Detected erroneous 
executions can then be replayed [8] for debugging purposes. 

Although we present the ideas and example applications in the 
context of DPS applications, message-passing state graphs can be 
adapted to other message-passing models. Section 7 sketches such 
a generalization for MPI applications using a subset of MPI calls. 
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2. THE PARALLEL SCHEDULES MODEL 
We now briefly describe the Dynamic Parallel Schedules 
framework [5]. DPS expresses a distributed memory parallel 
computation as a flow graph composed of serial operations 
arranged to form an acyclic directed graph, whose edges are 
defined by the messages that transit between operations. The flow 
graph describes the asynchronous flow of data between 
operations. 

The particular implementation of operations is left to the 
developer, but each operation must be of one of four fundamental 
types: leaf, split, merge or stream. Leaf operations accept a single 
input and generate a single output message. Split operations take 
one input message and generate one or several output messages. 
Merge operations expect one or several input messages, and 
generate a single output message once all expected messages have 
been received. Split operations are typically used to subdivide a 
high-level task into several subtasks that can be performed in 
parallel. Computation results are then collected and aggregated by 
the matching merge operation (Figure 1a). The fourth operation 
type, the stream, puts no restriction on the number of input and 
output messages and allows the programmer to refine the 
synchronization granularity by streaming out new messages as 
soon as specific groups of incoming messages have been received. 

The processes involved in the computation are grouped into 
process collections, enabling groups of processes that play distinct 
roles within the application to be indexed independently. Each 
operation of the flow graph is attached to a process collection. 
The destination process of every message, and consequently of the 
triggered operation is computed at runtime via a user-defined 
function. The resulting message-passing graph of the application 
is thus known only at runtime (Figure 1b). 

Operations running in different processes may be running 
concurrently, but in a given process, only one operation runs at a 
time. In order to allow the execution of other operations, merge 
and stream operations are suspended while waiting for messages 
to arrive. A networking layer abstracts the underlying 
communications, which are performed by MPI or by TCP sockets. 
The execution is fully asynchronous, and received messages are 
queued until they are delivered to the consuming operation. Given 
the acyclic nature of the flow graph, an associated message-
passing graph is deadlock-free, provided that no operation 
terminates without outputting a message. However, message races 
may occur if the execution ordering of two non-commutative 
operations is not constrained by the flow graph. 

Figure 2 displays the message-passing graph of one iteration of an 
iterative neighborhood-dependent parallel computation. Processes 
P[0], P[1] and P[2] belong to the same collection and each one 
stores one third of the processed data domain. At each iteration, 
every process sends a request to its neighbors, which send back a 
copy of their subdomain border (Send border operation). The 
computation of the new state of the subdomain (Update 
operation) is performed once the requested borders have been 
received. 

However, this message-passing graph enforces no synchronization 
on a given process between the “border exchange” and “state 
update” phases. Therefore, delaying some messages may have 
unexpected consequences. In the execution depicted in Figure 3, 

the borders sent in messages (1) and (2) have already been 
updated, causing incorrect values to be used to update the 
subdomain stored on P[1] and distorting the results of the 
computation. The existence of the race depends on the actual 
implementation of the operations: in the present case, it is 
nonexistent if the borders to be exchanged are stored in double 
buffers, allowing a copy of the old border to be kept when P[0] 
and P[2] perform the update. Sending the copy of the old 
subdomain borders in messages (1) and (2) then allows the correct 
computation to be performed on P[1]. Detecting the race therefore 
requires executing the actual application code in both orderings. 

 

Split Merge 

ComputeData 

Leaf 

master[0] proc[0] 

proc[1] 

master[0] 

ComputeData 

ComputeData 

(a) 

(b) 

 

Figure 1. (a) Flow graph describing a high level task divided 

into subtasks by a custom split operation and (b) a possible 

deployment onto three processes. The master process 

collection contains a single process and the proc process 

collection contains two processes. 
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Figure 2. The message-passing graph of one iteration of a 

neighborhood dependent parallel computation. 
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Figure 3. If the split operation (a) on P[1] is delayed, the 

state of P[0] and P[2] is read by (b) and (c) after having 

been updated. 
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3. BUILDING THE STATE GRAPH 
We assume that computations are deterministic, and that 
processes exchange information only via messages. The delivery 
order of prior messages may influence the number, content and 
destination of subsequent messages. However, we assume that two 
executions with the same delivery order will produce the same 
messages. The only non-determinism lies thus in the ordering in 
which messages are delivered. Under these assumptions, each 
parallel execution of an application has at least one equivalent 
serial execution, defined by a specific ordering of message 
delivery. We therefore want to test that all message orderings and 
their associated serialized computations yield the same results. 

We represent an execution as a sequence of states, where the 
transition from a state to the next is triggered by the delivery of a 
message. The transition ends upon completion of all the 
computations triggered by the delivered message. In our context, 
the state of the application is defined by the set of messages that 
have been sent but not yet received (i.e., the messages in transit), 
and by the value of the local variables of every process 
participating in the computation. 

We may combine sequences corresponding to different orderings 
into a message-passing state graph by merging states common to 
different executions. Combining all possible sequences produces 
the full message-passing state graph of an application. Each path 
within the graph defines a different ordering of messages. A single 
state has multiple outgoing edges when more than one message is 
in transit, and has multiple incoming edges when it can be reached 
via several message orderings. Since in our execution model all 
computations are triggered by the delivery of a message, reaching 
a non-final state with no message in transit reveals a deadlock. 

Figure 4 displays a simple example. Given the message-passing 
graph shown in (a), delivering the initial message 1 triggers the 
execution of the split operation, which sends messages 2 and 3 
during its execution. These two messages are therefore in transit 
when the operation terminates and the next state is reached. We 
may then deliver either message 2 or message 3. If the two leaf 
operations triggered by messages 2 and 3 execute on different 
processes, they run within distinct memory spaces and cannot 
interfere with each other. Delivering message 2 before message 3 
or message 3 before message 2 therefore leads to the same state 
with messages 4 and 5 in transit. 

If we reach a single final state, we ensure that no message race or 
deadlock can occur for the given application input data. If a bug 
in the merge operation causes the content of the output message or 
the value of the local process variables to depend on the ordering 
of the delivery of messages 4 and 5, the final state will be different 
(Figure 5). When several final states are reached, we reveal the 
paths (i.e. the message orderings) leading to these states to enable 
their replay and study the erroneous execution. Although any set 
of paths will do, we choose the ones with the longest common 
prefix in order to help the developer focus on the ordering 
variation that caused the divergence in the executions, e.g., in 
Figure 5, paths 1-2-3-4-5 and 1-2-3-5-4. 

Message-passing state graphs have the benefit of taking local and 
global synchronizations into account. Figure 6a displays the 
message-passing graph of a two-phase computation. For a single 
phase, the message-passing graph accepts 6 orderings of length 6, 
i.e. testing all orderings requires delivering 6·6 messages. For two 

phases, there are 36 orderings of length 11, which imply the 
delivery of 396 messages to execute all orderings. In contrast, the 
number of messages delivered while building the message-passing 
state graph is given by the number of edges in the graph and 
grows linearly (from 13 to 26) with the number of phases. 
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Figure 4. (a) A message-passing graph and (b) its 

corresponding state graph. Edge labels identify the 

delivered message triggering the transition, and node 

labels indicate which messages are in transit. 
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Figure 5. Resulting state graph if the output of the merge 

operation is dependent on the ordering of its inputs (4 
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Figure 6. The barrier synchronization caused by the 

merge-split sequence in the original flow graph (a) is 

reflected in the state graph (b). 
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4. REDUCING THE NUMBER OF VISITED 

STATES 
In the general case, many of the orderings contained in the full 
message-passing state graph are equivalent. Indeed, for a given 
ordering we may for instance exchange two consecutive messages 
that trigger operations running on different processes without 
modifying the computation results. If we can determine a priori 
that different subpaths in the message-passing state graph will 
produce identical results, we may cut redundant branches by not 
sending all the messages that are in transit at a given state. 
Looking back at Figure 4b for example, sending only message 2 
after the delivery of message 1 avoids testing all orderings where 
message 3 is delivered before message 2, and removes two states 
from the graph. 

Detecting equivalent orderings and determining which messages 
we may avoid delivering at every state therefore requires a priori 
knowledge about future computations. The computations 
triggered by two messages a and b delivered to distinct processes 
do not directly interfere, i.e., one computation cannot modify the 
process variables used by the other computation. However, future 
computations triggered by a successor of b may interfere with the 
computations triggered by a. If they do not, we may avoid 
delivering b; if they do, we have to deliver both a and b. 

In our context, the DPS flow graph of the application provides 
this information: it specifies which operations may be triggered by 
a message and by its successors, as well as the process collection 
on which these operations execute. Figure 7 displays an example 
based on the application described in Section 2. Message 1 
triggers operation C1, and one of its successors will eventually 
trigger an instance of operation E, which is a successor of C in the 
flow graph. However, since messages 1 and 2 are synchronized by 
operation D1, we do not need to consider E while determining the 
operations potentially interfering with messages 1 and 2. On the 
other hand, the first common successor of messages 1 and 3 is 
operation F1. Since the destination of each message is computed 
at runtime, the operation E1 triggered by a successor of message 1 
may potentially be executed on the same process as operation C3. 
If this is the case, a race may appear if E1 modifies local process 

variables read by C3. 

DPS messages carry a unique identifier [6]. Identifiers are built 
hierarchically by keeping the list of pending split operations that 
determines the flow graph branch to which the message belongs, 
e.g., in Figure 7, A1.B1 for message 1 and A1.B2 for message 3. 
The first common successor of two messages is therefore the 
merge operation that matches the split operation identified by the 
innermost split in the common prefix of their identifiers.  

We may now establish rules for identifying sets of messages that 
may potentially interfere with each other. Let S be a state in the 
message-passing state graph with a set of messages in transit M. 
Let Cm and Fm be the set of current, respectively future interferers 
of a message m∈M. 

1. Cm contains m and all messages m’∈M such that m and m’ are 
delivered to the same process. 

2. Given m’∈M, let Succm’ be the set of operations triggered by 
successors of m’. Then Fm contains all messages m’ ≠ m such 
that the first common successor of m and m’, or at least one 
operation of Succm’\ Succm runs on the same process collection 
as the operation triggered by m. 

Both sets are computed dynamically for every message in transit 
of every state of the message-passing state graph. If the sets Fm 
and Cm associated to a message m are empty, the only message 
from S that we deliver is m. Otherwise, for each message m ∈M 
we augment its set Fm by recursively computing the union of Fm 
with the sets Cn and Fn for all n∈Fm. We then compare the sets 
Fm associated to every message m∈M, and pick the set Fm* with 
the smallest cardinality. We then deliver all the messages 
contained in Fm*. The rationale for selecting the smallest set is that 
delivering fewer messages per state creates fewer branches in the 
message-passing state graph, which tends to reduce the number of 
states to be explored. 

Messages that trigger read-only operations can be reordered freely 
without any impact on the computation result. The number of 
interfering messages in the sets C and F, and thus the number of 
messages to be sent from each state can thereby be further reduced 
if we know whether an operation only reads or modifies the local 
variables of the underlying process. Given such information and 
the sets Cm and Fm as defined above, we may remove from Cm and 
from Fm every message m’ such that the operation triggered by m 
does not write or read a variable modified by the operation 
triggered by m’. 

5. IMPLEMENTATION AND RESULTS 
We implemented the proposed mechanisms within the Dynamic 
Parallel Schedules (DPS) framework [5], and use its built-in 
checkpointing and restart capabilities [6] to store and recover 
intermediate application states.  

The testing procedure starts right before delivering the input 
message of the flow graph. We build the initial application state 
by taking a checkpoint of each process and by making a copy of 
the input message. Unprocessed message-passing graph states are 
stored in a queue. For each unprocessed state S of the message-
passing state graph, we determine the set of messages in transit 
that must be delivered. We then deliver one message from the set 
by pushing it into the incoming message queue of its destination 
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Figure 7. (a) The flow graph of the application 

illustrated in Figure 2 and (b) its message-passing graph 

when deployed on two nodes. The first common successor 

of messages 1 and 2 is operation D in the original flow 

graph, while the first common successor of messages 1 and 

3 is operation F. 
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process, thereby triggering the associated operation. After the 
transition, we log the newly generated messages and checkpoint 
the process to which the message was delivered. Together with the 
checkpoints of the other processes, this forms the new state of the 
application and a successor of S in the message-passing state 
graph. If the new state of the application has not been reached be-
fore, we add it to the queue of unprocessed states. We then roll 
back the application to its former state S and deliver the next 
message. S is removed from the queue when all required messages 
have been delivered. 

5.1 Results 
Let us present practical results for a few parallel applications. The 
metric used for all measurements is the total number of messages 
that must be delivered to test all considered orderings. In case of a 
naive test of all possible executions, we compute the number of 
messages that must be delivered by multiplying the number of 
permutations by the number of messages sent during one 
execution. When using a message-passing state graph, the number 
of delivered messages corresponds to the number of edges in the 
graph. 

We first quantify the benefits of the state graph approach and of 
the proposed optimizations using the neighborhood-exchange 
(NE) application illustrated in Figure 2. Table 1 compares the 
number of messages delivered for exhaustively testing two 
iterations of the neighborhood-exchange computation when 
naively executing all orderings, when using the full message-
passing state graph, and when applying the optimizations de-
scribed in section 4. Table 1 shows that it is impossible to naively 
execute all orderings without building the state graph, even when 
the application runs on only two processes. For two processes the 
optimized message-passing state graph reduces the number of 
messages that must be delivered by a factor of 1013 compared to 
the naive execution of all possible orderings. 

We carry out the same analysis for a parallel implementation of 
the Floyd-Steinberg halftoning algorithm (FS) which converts a 
grayscale image into a black and white image [10]. It determines 
for each grayscale pixel whether it should be black or white. The 
error, i.e., the difference between the desired grey value and the 
selected binary value, is then added according to an error-
diffusion weight matrix to the grey value of the unprocessed 
neighboring pixels. Table 2 summarizes the results. For 4 
processes, the optimized state graph reduces the number of 
messages that must be delivered by a factor of 50 compared to the 
full state graph. 

Table 3 presents the results of our techniques running on a 
parallel block LU factorization application [7]. Our 
implementation requires at least three processes. Since the 
iterations of the computation are loosely synchronized in order to 
maximize the pipelining of the computation, messages have little 
dependencies between each other, causing the size of the 
message-passing state graph to explode, and almost cancelling the 
benefits of the optimizations described in section 4. 

Finally, Table 4 presents results for a branch-and-bound solver for 
the Traveling Salesman Problem (no. of cities: 17). Messages 
distribute the value of the current best solution to processes in 
order to speed up the search, and a basic load-balancing scheme 
distributes computations more evenly among processes. Finding a 

good solution early will therefore impact the remaining 
computations. This dependence of the content and destination of 
messages on the ordering of prior computations increases the 
number of possible message-passing graph states. The running 
time therefore becomes prohibitive for testing the application 
exhaustively on more than two processes. All tests produced 
multiple final states, reflecting the existence of several solutions 
for our dataset: all final states showed the same minimum length 
for the total path, but with different orderings of cities. 

In order to test our message race detection software, we artificially 
introduced races by removing synchronizations or code that 
reorders messages within merge operations. We also discovered a 
few genuine potential message races in previous implementations 
of the LU factorization application. 

5.2 Scalability issues 
While building the state graph, one often encounters the same 
messages and process checkpoints many times. We therefore save 
memory by keeping a single physical copy of every element, and 
by discarding messages and checkpoints no longer needed. All 
elements are stored in hash tables to be quickly compared and 
retrieved. 

Table 1. Number of delivered messages (neighborhood-

exchange application, two iterations). 

 2 proc. 4 proc. 6 proc. 

All orderings 5.6·1016 - - 

Full state graph 1237 3.4·106 - 

Optimized state graph 843 1.6·106 4.2·109 

Table 2. Number of delivered messages (parallel Floyd-

Steinberg halftoning algorithm). 

 2 proc. 4 proc. 6 proc. 8 proc. 

All orderings 6.8·108 - - - 

Full state graph 338 3.9·104 - - 

Optimized state graph 47 765 2.7·104 1.0·106 

Table 3. Number of delivered messages (pipelined parallel 

LU factorization). 

 3 proc. 4 proc. 

All orderings >1017 - 

Full state graph 4841 6.2·109 

Optimized state graph 4780 6.2·109 

Table 4. Number of delivered messages (traveling 

salesman problem). 

 2 proc. 

All orderings >1010 

Full state graph 8.1·104 

Optimized state graph 2.8·104 
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Nevertheless, the number of delivered messages impacts both the 
running time and the amount of memory required to build the 
message-passing state graph. The first column of Table 5 provides 
the regular application running time with four processes running 
on a single dual-core computer, and the memory occupied by the 
input data (e.g. a matrix or an image). When building the 
message-passing state graph (columns two and three), we indicate 
the full running time of the testing procedure, and the amount of 
memory used by the testing process. 

Scaling the tests from 2 to 4 and 6 processes leads to strongly 
increased execution times and memory consumption. These 
numbers need to be compared with the running time of executing 
all orderings: on only two processes, we would already need in 
the order of 1014 seconds for the neighborhood-exchange (NE) 
application, and 105 seconds for the Floyd-Steinberg (FS) 
application. 

For three (NE, FS, LU) of our four test applications and for many 
real-world codes, the number of messages sent and the 
communication patterns are independent of the size or content of 

the processed data. Testing small data sets is thus often sufficient 
for revealing message races and programming errors. 
Nevertheless, the numbers shown in Table 5 clearly point to the 
fact that only tiny portions of a parallel program can be tested 
exhaustively. One could for instance test orderings only between 
two barrier synchronizations. 

6. TESTING A SUBSET OF ORDERINGS 
Despite the orders of magnitude decrease in the number of 
explored states, using a message-passing state graph does not 
change the fundamental fact that the number of states and 
checkpoints grows exponentially with the number of processes. It 
is therefore crucial that we can generate a subset of orderings that 
reveals most if not all of the potential deadlocks and message 
races. 

It is often the relative rather than the absolute ordering of two 
messages that causes a message race. For example, an error may 
occur for all orderings where message b is delivered before 
message a, regardless of the ordering of other messages. Many 
such errors occur when one message is unexpectedly delayed. We 
therefore suspect that most message races can be revealed by 
testing a small subset of carefully selected orderings. 

We generate a first reference ordering by delivering messages in 
the order in which they are sent by the application. This 
corresponds to a breadth-first traversal of the message-passing 
graph of the application. We produce the ordering using a single 
FIFO queue: new messages are pushed at the back of the queue, 
and at each transition we deliver the message at the head of the 
queue (Figure 8b).  

The second ordering is produced via a depth-first traversal of the 
application message-passing graph, where we send all messages 

Table 5. Running time [s] and memory consumption [MB] for 

regular executions and for tests relying on the message-passing 

state graph. 

 
Regular execution 

on 4 proc. 
4 proc. 6 proc. 

 [s]  [MB] [s] [MB] [s]  [MB] 

NE 0.13 2 452 227 117617 5689 

FS 0.014 0.066 0.716 1.9 48 19 

LU 0.014 0.115 33804 302 - - 
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Figure 8. (a) The message-passing graph of one iteration on two nodes of the neighborhood-dependent computation described 

in section 2; (b) message-passing state graph for the breadth-first traversal; (c) message-passing state graph of all the possible 

depth-first traversals (i.e. all branch orderings) of the message-passing graph. Highlighted numbers and edge labels represent 

the messages triggering the transition from a state to the next. 
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from a single branch before sending a message from any other 
branch. This scheme simulates delays on specific branches, and is 
implemented as follows. Each state stores its messages in transit 
as a stack (i.e., a LIFO queue) of sets. A set contains all the 
messages generated by the delivery of a single message. A 
transition is triggered by delivering one message from the set at 
the head of the stack. Once a transition completes, we copy the 
stack into the new state, remove the message that caused the 
transition and, if new messages were generated, push them in a 
new set onto the stack. If no messages are produced, the head of 
the stack contains a set with unsent messages from a previous 
transition. When the head set contains more than one message, the 
choice of the message to deliver defines the order in which we 
execute the branches of the message-passing graph. 

Multiple branch orderings may be tested by delivering more than 
one message from the head set. Testing all branch orderings for 
instance ensures that we test executions that maximize and 
minimize the delays that can be experienced by each branch. 
Figure 8c displays a message-passing state graph representing all 
the possible orderings of branches of the message-passing graph 
in Figure 8a, created by always sending all the messages in the 
head set. Each path in that state graph represents a single depth-
first traversal of the message-passing graph. 

Table 6 displays the number of explored states for testing all 
branch orderings of our applications when applying the heuristic 
on the full message-passing state graph. We can see that for the 
FS application, the test using the heuristic on the full state graph 
delivers more messages than using the optimized state graph 
(Table 1). For less constrained applications such as the pipelined 
LU and the travelling salesman, testing only permutations of 
branch orderings strongly reduces the number of delivered 
messages. 

The optimization and the heuristic could obviously be combined. 
Moreover, in practice, existing symmetries in the computations 
performed by different processes imply that a single error is 
revealed by multiple orderings of branches. A few depth-first 
executions with distinct branch orderings were sufficient to reveal 
errors in all our applications. 

Since one may conceive an application whose message races or 
deadlocks are not exposed by the orderings defined above, we 
may additionally execute randomly generated orderings in order 
to further reduce the probability that errors remain undetected. 
Such a technique was successfully used for detecting data races in 
multithreaded applications [16]. By increasing the number of 
randomly generated orderings, one can arbitrarily increase the 

confidence that no message race or deadlock exists. 

7. APPLYING MESSAGE-PASSING STATE 

GRAPHS TO MPI APPLICATIONS 
We now present a conceptual generalization of the message-
passing state graph construction for MPI applications. We only 
consider applications that perform deterministic computations and 
use non-buffered blocking point-to-point and collective 
communications. Under these restrictions, non-determinism only 
stems from the use of wildcard receives that allow a single recv 
call to receive a message from multiple sources. We therefore 
want to test that the computation result remains the same no 
matter which message is actually received. 

In DPS applications, new computations are triggered by the 
delivery of a message. In MPI applications that satisfy our 
restrictions, new computations are triggered when a set of calls 
from distinct processes are matched. For collective 
communications, processes block until all participating processes 
have joined the communication. For blocking point-to-point MPI 
communications, a send call at the source must match a recv call 
at the destination before any of the sending and receiving process 
may resume its computation. 

We represent an execution using an event model inspired by [20], 
where every MPI call produces one event. We now construct a 
message-passing state graph as follows. Starting from the initial 
application state where all processes have called the MPI_Init 
function, a transition occurs by matching a send event with a recv 
event, or by matching a set of collective communication events, 
thereby allowing the suspended processes to resume their 
execution until the next MPI function call. In respect to the state 
graph construction, the state of a single process is defined by the 
value of its local variables and by the pending MPI call. The state 
of the whole application is defined as the set of states of the 
individual processes.  

We illustrate the state graph construction of a simple parallel 
merge sort application. Each process initially stores a local array 
containing n/p sorted elements, that must be merged into a single 
sorted array of size n. Figure 9 shows the MPI pseudocode of the 
application. The number of participating processes p is a power of 
2. The p/2 processes with the largest ranks send their array to one 
of the p/2 processes with the smallest ranks. The p/2 receiving 
processes merge together the received and local arrays. The p/2 
processes with the largest ranks then exit the loop, and the p/2 
processes with the smallest ranks enter the next iteration. At every 
iteration, half of the remaining processes exit the loop. When all 
the pieces have been merged, the last process exits the loop and 
the application exits. 

Figure 10a displays the message-passing graph of the expected 
execution on four processes, when all processes move 
simultaneously from one iteration to the next. The init and finalize 
events from process i are denoted Ii and Fi, and are assumed to 
behave as barrier synchronizations. A send from process i to 
process j at iteration k is denoted as sk

i,j, while rk
*,j denotes the 

matching wildcard receive event. 

If the send s0
2,0 of process 2 is delayed however, the send event 

s1
1,0 may instead match the r0

*,0 receive (Figure 10b). As r0
*,0 

expects an array containing n/4 elements while process 1 sends 

Table 6. Number of delivered messages [msgs], running time 

[s], and memory consumption [MB] for testing all message-

passing graph branch permutations on 4 processes. 

 [msgs] [s] [MB] 

Neighborhood-
exchange 

1737 8.32 10.0 

Floyd-Steinberg 3513 1.92 4.6 

LU factorization 4.7·105 92 31.0 

Travelling salesman 481 240 4.4 
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n/2 elements, the MPI implementation may either deliver a 
truncated message or raise a fatal error. 

The corresponding message-passing state graph of the application 
is displayed in Figure 11a. The match of the send event sk

i,j with 
the recv event rk’

*,j is indicated as {sk
i,j , r

k’
*,j}. The incorrect match 

{s1
1,0, r

0
*,0} is easily detected as message sizes are different. The 

programmer can solve the problem by explicitly specifying the 
source of the expected message in the receive call. Then s1

1,0 can 
no longer match r0

2,0 (Figure 11b). 

We can adapt the breadth-first and depth-first executions 
described in section 6 as follows. We maintain for each process a 
counter that stores the number of events that have been matched. 
We then produce a depth-first (resp. breadth-first) execution by 
always matching events for the process with the largest (resp. 
smallest) counter value. In our example, the error is revealed by a 
depth-first execution of the application. We initialize every match 
counter to 0, and after matching the init events we match the 
events of processes 3 and 1 {s0

3,1 , r
0

*,1}. Their match counter is 
incremented to 2 and become the ones with the largest value. In 
order to produce a depth-first execution, we therefore attempt to 
match events from these processes in priority. The finalize event 
of process 3 (F3) cannot be matched yet, but we may match the 
send event s1

1,0 of process 1 with the receive event r0
*,0 of process 

0, thereby producing the incorrect execution. 

Although one could easily run a single breadth-first or depth-first 
execution, building the state graph and avoiding restarting the 
program for each sequence of event matches requires additional 
checkpointing support. The Berkeley Lab Checkpoint/Restart 
library has been successfully used with MPI implementations such 
as LAM and OpenMPI [1, 18]. DéjàVu [17] specifically targets 
MPI and distributed programs. Integrating one of these libraries 
would also require means for performing fast process data 
checkpoint comparisons. 

DPS has the advantage of providing a high-level description of 
dependencies between computations. In MPI, the lack of a flow 

graph or equivalent information about future communication 
patterns implies that we cannot readily apply the optimizations 
described in section 4. However, the potential for optimizations 
does exist. In Figure 11b for instance, all matches are 
deterministic and both paths in the message-passing state graph 
are guaranteed to produce the same result. One of the branches 
could therefore be pruned. Such insight could potentially be 
provided by a model of the tested application [20, 21]. Another 
interesting approach consists in dynamically identifying 
interesting backtracking points by collecting information during 
the application execution [4]. 

/* myRank: process rank                     */ 
/* n: no of elements to be sorted           */ 
/* p: no of processes (power of 2)          */ 
/* procsInLoop: no of processes in the loop */ 
/* Every process stores a sorted subarray 
   containing n/p elements                  */ 
 
MPI_Init() 
procsInLoop = p 
do { 
  if (myRank ≥ procsInLoop/2) 
    MPI_Ssend(array of size (n/procsInLoop) 
              to myRank%(procsInLoop/2) 
 
  else { 
    MPI_Recv(array of size (n/procsInLoop) 
             from any source) 
    /* Merge the received and local arrays */ 
  } 
  procsInLoop = procsInLoop/2 
} 
while(myRank<procsInLoop && procsInLoop>1) 
 
MPI_Finalize() 

Figure 9. MPI pseudocode for a parallel merge sort 

application. 
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Figure 11. (a) State graph of the application with 

wildcard receives and (b) state graph without wildcard 

receives. Nodes indicate the pending event of each 

process, while edge labels indicate which event match 

produces the transition. 

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10



8. RELATED WORK 
Mosbah and Ossamy [12] and Otta and Racek [14] detect message 
races by evaluating predefined predicates that consider both the 
local and the global application state at various points of the 
execution. Since no control is applied on the program execution, 
the detection only works for executions where message races 
actually occur. 

Several variants of controlled re-execution of message-passing 
applications have been described in the literature. Mittal and Garg 
[11] determine where to add synchronizations in order to maintain 
a global predicate, thereby pointing to the location of 
synchronization bugs. However, they do not allow events to be 
reordered on a given process. Duesterwald et al. [1] describe a 
slicing method to isolate only problematic statements when an 
erroneous result is observed. The slice may then be re-executed 
for identifying the source of error. Kilgore and Chase [9] identify 
sets of messages that can be received in any order on a given 
process, and propose an algorithm that generates a single ordering 
that maximizes the number of reversed message pairs compared to 
the original execution. In our previous work [19], we described a 
static message-passing graph decomposition technique and a 
partial-order reduction method to reduce the number of tested 
orderings. In both approaches the destination, content and number 
of messages sent by the application are assumed to be independent 
of the ordering of their delivery. 

Several authors argue that detecting the first message race is 
beneficial [13, 15]. Correcting early races not only removes 
subsequent instances of the same race, but also prevents potential 
spurious races from being enabled. By identifying the longest 
common prefix between message orderings yielding different 
results, we can determine at which point the executions start to 
diverge, allowing the developer to correct early races first. 

Considering work that specifically targets MPI applications, 
Siegel and Avrunin have been working on the development of 
formal models of MPI applications [20, 21]. Their modelization 
inspired the generalization described in the previous section. Very 
recently, Vakkalanka et al. presented ISP [22], a tool that 
automatically executes all relevant event orderings within MPI 
applications. It implements no checkpointing however, and 
therefore requires reexecuting the whole application for every 
ordering. 

A large body of work exists that focuses on the analysis and 
verification of multithreaded applications. Since the number of 
possible thread interleavings is even more intractable than the 
number of message permutations in distributed memory message-
passing programs, a central goal is the detection of equivalent 
interleavings. In particular, several proposals (e.g. [2, 3, 23]) use 
information about read/write access to shared variables to 
determine the commutativity of operations and reduce multiple 
equivalent executions to the same serialized execution. 

9. CONCLUSION 
We present a method to dynamically test multiple message 
orderings in a message-passing parallel application. We represent 
the multiple orderings using a message-passing state graph built at 
runtime, which ensures that parts common to multiple orderings 
are executed only once. We then use information about future 
computations and about how these computations read or write 

local process variables to identify equivalent orderings within the 
message-passing state graph. We also show how to generate a 
subset of orderings that are still able to reveal most errors. 

We integrated the dynamic message-passing state graph 
construction and analysis method within the Dynamic Parallel 
Schedules parallelization framework, which provides support for 
checkpointing and restarting individual processes during a 
computation. For four different parallel applications, we evaluated 
the influence of the proposed techniques on the total number of 
messages that must be delivered in order to test all orderings. The 
message-passing state graph and the described optimizations 
enable reducing the number of delivered messages by many orders 
of magnitude compared to the naive approach. The proposed 
partial tests revealed all errors present in our experiments. 

We finally presented a generalization of the approach to MPI 
applications using a subset of MPI calls. 

The DPS software is available on the Web under the GPL license 
at http://dps.epfl.ch. 
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