
Dynamic Testing of Flow Graph Based
Parallel Applications

Basile Schaeli

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015, Lausanne, Switzerland

basile.schaeli@epfl.ch

Roger D. Hersch
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015, Lausanne, Switzerland

rd.hersch@epfl.ch

ABSTRACT

In message-passing parallel applications, messages are not
delivered in a strict order. The number of messages, their content
and their destination may depend on the ordering of their delivery.
Nevertheless, for most applications, the computation results
should be the same for all possible orderings. Finding an ordering
that produces a different outcome or that prevents the execution
from terminating reveals a message race or a deadlock. Starting
from the initial application state, we dynamically build an acyclic
message-passing state graph such that each path within the graph
represents one possible message ordering. All paths lead to the
same final state if no deadlock or message race exists. If multiple
final states are reached, we reveal message orderings that produce
the different outcomes. The corresponding executions may then
be replayed for debugging purposes. We reduce the number of
states to be explored by using previously acquired knowledge
about communication patterns and about how operations read and
modify local process variables. We also describe a heuristic that
tests a subset of orderings that are likely to reveal existing
message races or deadlocks. We applied our approach on several
applications developed using the Dynamic Parallel Schedules
(DPS) parallelization framework. Compared to the naive
execution of all message orderings, the use of a message-passing
state graph reduces the cost of testing all orderings by several
orders of magnitude. The use of prior information further reduces
the number of visited states by a factor of up to fifty in our tests.
The heuristic relying on a subset of orderings was able to reveal
race conditions in all tested cases. We finally present a first step in
generalizing the approach to MPI applications.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming –

distributed programming. D.2.5 [Software Engineering]: Testing
and Debugging – debugging aids, testing tools.

General Terms

Reliability, Experimentation, Verification.

1. INTRODUCTION
One of the major difficulties when developing a parallel program
is to simultaneously ensure that an application has good
performance and that different executions with the same input
always produce the same result. Achieving good performance
generally requires removing synchronizations within the parallel
program, with the risk that the correctness of the computation is
no longer guaranteed. Unfortunately, the exponential number of
possible message orderings makes it impossible to execute them
all and to compare the final computation result after each run.

We describe a dynamic message-passing state graph construction
and exploration technique that greatly reduces the cost of testing
possible orderings. We identify application states common to
multiple orderings dynamically by comparing checkpoints taken
after the delivery of every message. This ensures that each state
appears only once in the state graph, such that sequences of
computations common to multiple orderings are executed only
once. We then use information about communication patterns and
read-write accesses to local process variables to reduce the
number of explored states.

This approach greatly reduces the replay time at the expense of
the memory or disk space needed to store intermediate application
checkpoints. In order to handle cases where the space and time
requirements are too large, we also describe an algorithm that
tests a subset of orderings that has a high probability of revealing
commonly found message races.

We implemented the proposed techniques within the Dynamic
Parallel Schedules (DPS) framework [5]. This framework
facilitates the creation of parallel applications by providing high-
level constructs as well as checkpointing and fault-tolerance
capabilities [6]. It is sufficient to recompile a DPS application in
order to activate the message race and deadlock detection
mechanism. Any modification to the application code or input
data can therefore be immediately tested. Detected erroneous
executions can then be replayed [8] for debugging purposes.

Although we present the ideas and example applications in the
context of DPS applications, message-passing state graphs can be
adapted to other message-passing models. Section 7 sketches such
a generalization for MPI applications using a subset of MPI calls.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PADTAD’08, July 20–21, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-052-4/08/07…$5.00.

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

2. THE PARALLEL SCHEDULES MODEL
We now briefly describe the Dynamic Parallel Schedules
framework [5]. DPS expresses a distributed memory parallel
computation as a flow graph composed of serial operations
arranged to form an acyclic directed graph, whose edges are
defined by the messages that transit between operations. The flow
graph describes the asynchronous flow of data between
operations.

The particular implementation of operations is left to the
developer, but each operation must be of one of four fundamental
types: leaf, split, merge or stream. Leaf operations accept a single
input and generate a single output message. Split operations take
one input message and generate one or several output messages.
Merge operations expect one or several input messages, and
generate a single output message once all expected messages have
been received. Split operations are typically used to subdivide a
high-level task into several subtasks that can be performed in
parallel. Computation results are then collected and aggregated by
the matching merge operation (Figure 1a). The fourth operation
type, the stream, puts no restriction on the number of input and
output messages and allows the programmer to refine the
synchronization granularity by streaming out new messages as
soon as specific groups of incoming messages have been received.

The processes involved in the computation are grouped into
process collections, enabling groups of processes that play distinct
roles within the application to be indexed independently. Each
operation of the flow graph is attached to a process collection.
The destination process of every message, and consequently of the
triggered operation is computed at runtime via a user-defined
function. The resulting message-passing graph of the application
is thus known only at runtime (Figure 1b).

Operations running in different processes may be running
concurrently, but in a given process, only one operation runs at a
time. In order to allow the execution of other operations, merge
and stream operations are suspended while waiting for messages
to arrive. A networking layer abstracts the underlying
communications, which are performed by MPI or by TCP sockets.
The execution is fully asynchronous, and received messages are
queued until they are delivered to the consuming operation. Given
the acyclic nature of the flow graph, an associated message-
passing graph is deadlock-free, provided that no operation
terminates without outputting a message. However, message races
may occur if the execution ordering of two non-commutative
operations is not constrained by the flow graph.

Figure 2 displays the message-passing graph of one iteration of an
iterative neighborhood-dependent parallel computation. Processes
P[0], P[1] and P[2] belong to the same collection and each one
stores one third of the processed data domain. At each iteration,
every process sends a request to its neighbors, which send back a
copy of their subdomain border (Send border operation). The
computation of the new state of the subdomain (Update
operation) is performed once the requested borders have been
received.

However, this message-passing graph enforces no synchronization
on a given process between the “border exchange” and “state
update” phases. Therefore, delaying some messages may have
unexpected consequences. In the execution depicted in Figure 3,

the borders sent in messages (1) and (2) have already been
updated, causing incorrect values to be used to update the
subdomain stored on P[1] and distorting the results of the
computation. The existence of the race depends on the actual
implementation of the operations: in the present case, it is
nonexistent if the borders to be exchanged are stored in double
buffers, allowing a copy of the old border to be kept when P[0]
and P[2] perform the update. Sending the copy of the old
subdomain borders in messages (1) and (2) then allows the correct
computation to be performed on P[1]. Detecting the race therefore
requires executing the actual application code in both orderings.

Split Merge

ComputeData

Leaf

master[0] proc[0]

proc[1]

master[0]

ComputeData

ComputeData

(a)

(b)

Figure 1. (a) Flow graph describing a high level task divided

into subtasks by a custom split operation and (b) a possible

deployment onto three processes. The master process

collection contains a single process and the proc process

collection contains two processes.

 M[0] M[0] P[0]

P[1]

P[2]

border exchange state update

Update Send bord.

Send bord.

Send bord.

Send bord.

Update

Update

Figure 2. The message-passing graph of one iteration of a

neighborhood dependent parallel computation.

 M[0] M[0] P[0]

(1)

(2)

(a)

(b)

(c)

Update

Update

Update

Send

Send

Send

Send

P[1]

P[2]

Figure 3. If the split operation (a) on P[1] is delayed, the

state of P[0] and P[2] is read by (b) and (c) after having

been updated.

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

3. BUILDING THE STATE GRAPH
We assume that computations are deterministic, and that
processes exchange information only via messages. The delivery
order of prior messages may influence the number, content and
destination of subsequent messages. However, we assume that two
executions with the same delivery order will produce the same
messages. The only non-determinism lies thus in the ordering in
which messages are delivered. Under these assumptions, each
parallel execution of an application has at least one equivalent
serial execution, defined by a specific ordering of message
delivery. We therefore want to test that all message orderings and
their associated serialized computations yield the same results.

We represent an execution as a sequence of states, where the
transition from a state to the next is triggered by the delivery of a
message. The transition ends upon completion of all the
computations triggered by the delivered message. In our context,
the state of the application is defined by the set of messages that
have been sent but not yet received (i.e., the messages in transit),
and by the value of the local variables of every process
participating in the computation.

We may combine sequences corresponding to different orderings
into a message-passing state graph by merging states common to
different executions. Combining all possible sequences produces
the full message-passing state graph of an application. Each path
within the graph defines a different ordering of messages. A single
state has multiple outgoing edges when more than one message is
in transit, and has multiple incoming edges when it can be reached
via several message orderings. Since in our execution model all
computations are triggered by the delivery of a message, reaching
a non-final state with no message in transit reveals a deadlock.

Figure 4 displays a simple example. Given the message-passing
graph shown in (a), delivering the initial message 1 triggers the
execution of the split operation, which sends messages 2 and 3
during its execution. These two messages are therefore in transit
when the operation terminates and the next state is reached. We
may then deliver either message 2 or message 3. If the two leaf
operations triggered by messages 2 and 3 execute on different
processes, they run within distinct memory spaces and cannot
interfere with each other. Delivering message 2 before message 3
or message 3 before message 2 therefore leads to the same state
with messages 4 and 5 in transit.

If we reach a single final state, we ensure that no message race or
deadlock can occur for the given application input data. If a bug
in the merge operation causes the content of the output message or
the value of the local process variables to depend on the ordering
of the delivery of messages 4 and 5, the final state will be different
(Figure 5). When several final states are reached, we reveal the
paths (i.e. the message orderings) leading to these states to enable
their replay and study the erroneous execution. Although any set
of paths will do, we choose the ones with the longest common
prefix in order to help the developer focus on the ordering
variation that caused the divergence in the executions, e.g., in
Figure 5, paths 1-2-3-4-5 and 1-2-3-5-4.

Message-passing state graphs have the benefit of taking local and
global synchronizations into account. Figure 6a displays the
message-passing graph of a two-phase computation. For a single
phase, the message-passing graph accepts 6 orderings of length 6,
i.e. testing all orderings requires delivering 6·6 messages. For two

phases, there are 36 orderings of length 11, which imply the
delivery of 396 messages to execute all orderings. In contrast, the
number of messages delivered while building the message-passing
state graph is given by the number of edges in the graph and
grows linearly (from 13 to 26) with the number of phases.

 (a)

(b)

1

1
2

3

4

5

6

2
3

4
3

2
5

4
5

3

2

4

5

6

2

3

4

3

2

5

4

5

1

3

2

5

4

Figure 4. (a) A message-passing graph and (b) its

corresponding state graph. Edge labels identify the

delivered message triggering the transition, and node

labels indicate which messages are in transit.

1
2
3

4
3

2
5

4
5

3

2

4

5

2

3

4

3

2

5

4

5

1

3

2

5

4

6

6’

Figure 5. Resulting state graph if the output of the merge

operation is dependent on the ordering of its inputs (4

received before 5, vs. 5 received before 4).

 (a)

(b)

Phase 1 Phase 2

Phase 1 Phase 2

Figure 6. The barrier synchronization caused by the

merge-split sequence in the original flow graph (a) is

reflected in the state graph (b).

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

4. REDUCING THE NUMBER OF VISITED

STATES
In the general case, many of the orderings contained in the full
message-passing state graph are equivalent. Indeed, for a given
ordering we may for instance exchange two consecutive messages
that trigger operations running on different processes without
modifying the computation results. If we can determine a priori
that different subpaths in the message-passing state graph will
produce identical results, we may cut redundant branches by not
sending all the messages that are in transit at a given state.
Looking back at Figure 4b for example, sending only message 2
after the delivery of message 1 avoids testing all orderings where
message 3 is delivered before message 2, and removes two states
from the graph.

Detecting equivalent orderings and determining which messages
we may avoid delivering at every state therefore requires a priori
knowledge about future computations. The computations
triggered by two messages a and b delivered to distinct processes
do not directly interfere, i.e., one computation cannot modify the
process variables used by the other computation. However, future
computations triggered by a successor of b may interfere with the
computations triggered by a. If they do not, we may avoid
delivering b; if they do, we have to deliver both a and b.

In our context, the DPS flow graph of the application provides
this information: it specifies which operations may be triggered by
a message and by its successors, as well as the process collection
on which these operations execute. Figure 7 displays an example
based on the application described in Section 2. Message 1
triggers operation C1, and one of its successors will eventually
trigger an instance of operation E, which is a successor of C in the
flow graph. However, since messages 1 and 2 are synchronized by
operation D1, we do not need to consider E while determining the
operations potentially interfering with messages 1 and 2. On the
other hand, the first common successor of messages 1 and 3 is
operation F1. Since the destination of each message is computed
at runtime, the operation E1 triggered by a successor of message 1
may potentially be executed on the same process as operation C3.
If this is the case, a race may appear if E1 modifies local process

variables read by C3.

DPS messages carry a unique identifier [6]. Identifiers are built
hierarchically by keeping the list of pending split operations that
determines the flow graph branch to which the message belongs,
e.g., in Figure 7, A1.B1 for message 1 and A1.B2 for message 3.
The first common successor of two messages is therefore the
merge operation that matches the split operation identified by the
innermost split in the common prefix of their identifiers.

We may now establish rules for identifying sets of messages that
may potentially interfere with each other. Let S be a state in the
message-passing state graph with a set of messages in transit M.
Let Cm and Fm be the set of current, respectively future interferers
of a message m∈M.

1. Cm contains m and all messages m’∈M such that m and m’ are
delivered to the same process.

2. Given m’∈M, let Succm’ be the set of operations triggered by
successors of m’. Then Fm contains all messages m’ ≠ m such
that the first common successor of m and m’, or at least one
operation of Succm’\ Succm runs on the same process collection
as the operation triggered by m.

Both sets are computed dynamically for every message in transit
of every state of the message-passing state graph. If the sets Fm
and Cm associated to a message m are empty, the only message
from S that we deliver is m. Otherwise, for each message m ∈M
we augment its set Fm by recursively computing the union of Fm
with the sets Cn and Fn for all n∈Fm. We then compare the sets
Fm associated to every message m∈M, and pick the set Fm* with
the smallest cardinality. We then deliver all the messages
contained in Fm*. The rationale for selecting the smallest set is that
delivering fewer messages per state creates fewer branches in the
message-passing state graph, which tends to reduce the number of
states to be explored.

Messages that trigger read-only operations can be reordered freely
without any impact on the computation result. The number of
interfering messages in the sets C and F, and thus the number of
messages to be sent from each state can thereby be further reduced
if we know whether an operation only reads or modifies the local
variables of the underlying process. Given such information and
the sets Cm and Fm as defined above, we may remove from Cm and
from Fm every message m’ such that the operation triggered by m
does not write or read a variable modified by the operation
triggered by m’.

5. IMPLEMENTATION AND RESULTS
We implemented the proposed mechanisms within the Dynamic
Parallel Schedules (DPS) framework [5], and use its built-in
checkpointing and restart capabilities [6] to store and recover
intermediate application states.

The testing procedure starts right before delivering the input
message of the flow graph. We build the initial application state
by taking a checkpoint of each process and by making a copy of
the input message. Unprocessed message-passing graph states are
stored in a queue. For each unprocessed state S of the message-
passing state graph, we determine the set of messages in transit
that must be delivered. We then deliver one message from the set
by pushing it into the incoming message queue of its destination

 master Process collection proc master

master master

1

2

4

C D E

(a)

(b)

F A B

A1
B1

B2

D1

D2

F1 E1

E2

Process collection proc

C1

C2

C3

C4

3

Figure 7. (a) The flow graph of the application

illustrated in Figure 2 and (b) its message-passing graph

when deployed on two nodes. The first common successor

of messages 1 and 2 is operation D in the original flow

graph, while the first common successor of messages 1 and

3 is operation F.

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

process, thereby triggering the associated operation. After the
transition, we log the newly generated messages and checkpoint
the process to which the message was delivered. Together with the
checkpoints of the other processes, this forms the new state of the
application and a successor of S in the message-passing state
graph. If the new state of the application has not been reached be-
fore, we add it to the queue of unprocessed states. We then roll
back the application to its former state S and deliver the next
message. S is removed from the queue when all required messages
have been delivered.

5.1 Results
Let us present practical results for a few parallel applications. The
metric used for all measurements is the total number of messages
that must be delivered to test all considered orderings. In case of a
naive test of all possible executions, we compute the number of
messages that must be delivered by multiplying the number of
permutations by the number of messages sent during one
execution. When using a message-passing state graph, the number
of delivered messages corresponds to the number of edges in the
graph.

We first quantify the benefits of the state graph approach and of
the proposed optimizations using the neighborhood-exchange
(NE) application illustrated in Figure 2. Table 1 compares the
number of messages delivered for exhaustively testing two
iterations of the neighborhood-exchange computation when
naively executing all orderings, when using the full message-
passing state graph, and when applying the optimizations de-
scribed in section 4. Table 1 shows that it is impossible to naively
execute all orderings without building the state graph, even when
the application runs on only two processes. For two processes the
optimized message-passing state graph reduces the number of
messages that must be delivered by a factor of 1013 compared to
the naive execution of all possible orderings.

We carry out the same analysis for a parallel implementation of
the Floyd-Steinberg halftoning algorithm (FS) which converts a
grayscale image into a black and white image [10]. It determines
for each grayscale pixel whether it should be black or white. The
error, i.e., the difference between the desired grey value and the
selected binary value, is then added according to an error-
diffusion weight matrix to the grey value of the unprocessed
neighboring pixels. Table 2 summarizes the results. For 4
processes, the optimized state graph reduces the number of
messages that must be delivered by a factor of 50 compared to the
full state graph.

Table 3 presents the results of our techniques running on a
parallel block LU factorization application [7]. Our
implementation requires at least three processes. Since the
iterations of the computation are loosely synchronized in order to
maximize the pipelining of the computation, messages have little
dependencies between each other, causing the size of the
message-passing state graph to explode, and almost cancelling the
benefits of the optimizations described in section 4.

Finally, Table 4 presents results for a branch-and-bound solver for
the Traveling Salesman Problem (no. of cities: 17). Messages
distribute the value of the current best solution to processes in
order to speed up the search, and a basic load-balancing scheme
distributes computations more evenly among processes. Finding a

good solution early will therefore impact the remaining
computations. This dependence of the content and destination of
messages on the ordering of prior computations increases the
number of possible message-passing graph states. The running
time therefore becomes prohibitive for testing the application
exhaustively on more than two processes. All tests produced
multiple final states, reflecting the existence of several solutions
for our dataset: all final states showed the same minimum length
for the total path, but with different orderings of cities.

In order to test our message race detection software, we artificially
introduced races by removing synchronizations or code that
reorders messages within merge operations. We also discovered a
few genuine potential message races in previous implementations
of the LU factorization application.

5.2 Scalability issues
While building the state graph, one often encounters the same
messages and process checkpoints many times. We therefore save
memory by keeping a single physical copy of every element, and
by discarding messages and checkpoints no longer needed. All
elements are stored in hash tables to be quickly compared and
retrieved.

Table 1. Number of delivered messages (neighborhood-

exchange application, two iterations).

 2 proc. 4 proc. 6 proc.

All orderings 5.6·1016 - -

Full state graph 1237 3.4·106 -

Optimized state graph 843 1.6·106 4.2·109

Table 2. Number of delivered messages (parallel Floyd-

Steinberg halftoning algorithm).

 2 proc. 4 proc. 6 proc. 8 proc.

All orderings 6.8·108 - - -

Full state graph 338 3.9·104 - -

Optimized state graph 47 765 2.7·104 1.0·106

Table 3. Number of delivered messages (pipelined parallel

LU factorization).

 3 proc. 4 proc.

All orderings >1017 -

Full state graph 4841 6.2·109

Optimized state graph 4780 6.2·109

Table 4. Number of delivered messages (traveling

salesman problem).

 2 proc.

All orderings >1010

Full state graph 8.1·104

Optimized state graph 2.8·104

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

Nevertheless, the number of delivered messages impacts both the
running time and the amount of memory required to build the
message-passing state graph. The first column of Table 5 provides
the regular application running time with four processes running
on a single dual-core computer, and the memory occupied by the
input data (e.g. a matrix or an image). When building the
message-passing state graph (columns two and three), we indicate
the full running time of the testing procedure, and the amount of
memory used by the testing process.

Scaling the tests from 2 to 4 and 6 processes leads to strongly
increased execution times and memory consumption. These
numbers need to be compared with the running time of executing
all orderings: on only two processes, we would already need in
the order of 1014 seconds for the neighborhood-exchange (NE)
application, and 105 seconds for the Floyd-Steinberg (FS)
application.

For three (NE, FS, LU) of our four test applications and for many
real-world codes, the number of messages sent and the
communication patterns are independent of the size or content of

the processed data. Testing small data sets is thus often sufficient
for revealing message races and programming errors.
Nevertheless, the numbers shown in Table 5 clearly point to the
fact that only tiny portions of a parallel program can be tested
exhaustively. One could for instance test orderings only between
two barrier synchronizations.

6. TESTING A SUBSET OF ORDERINGS
Despite the orders of magnitude decrease in the number of
explored states, using a message-passing state graph does not
change the fundamental fact that the number of states and
checkpoints grows exponentially with the number of processes. It
is therefore crucial that we can generate a subset of orderings that
reveals most if not all of the potential deadlocks and message
races.

It is often the relative rather than the absolute ordering of two
messages that causes a message race. For example, an error may
occur for all orderings where message b is delivered before
message a, regardless of the ordering of other messages. Many
such errors occur when one message is unexpectedly delayed. We
therefore suspect that most message races can be revealed by
testing a small subset of carefully selected orderings.

We generate a first reference ordering by delivering messages in
the order in which they are sent by the application. This
corresponds to a breadth-first traversal of the message-passing
graph of the application. We produce the ordering using a single
FIFO queue: new messages are pushed at the back of the queue,
and at each transition we deliver the message at the head of the
queue (Figure 8b).

The second ordering is produced via a depth-first traversal of the
application message-passing graph, where we send all messages

Table 5. Running time [s] and memory consumption [MB] for

regular executions and for tests relying on the message-passing

state graph.

Regular execution

on 4 proc.
4 proc. 6 proc.

 [s] [MB] [s] [MB] [s] [MB]

NE 0.13 2 452 227 117617 5689

FS 0.014 0.066 0.716 1.9 48 19

LU 0.014 0.115 33804 302 - -

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
1 2

3

3
4
5

4
5
6

7

5
6
7

8

6
7
8

9

7
8
9

10

8
9

10

11

9
10
11

10
11
12

11

12

12

13

13

14

14

15
15 16

(a) (b)

1 2 3

4 5
3

3
5
8

3
5

3
9

3
12

3
14 3 6 7

7
10 7 11

13 15

16
3
4
9

3
4

3
8 6

11 6 10

6 7
2

2
6

11

2
6

2
10

2
13

2
15 2 4 5

5
8 5 9

12 14

2
7

10

2
7

2
11

4
9 4 8

(c)

2

3

4

5

6

7

6

7

4

5

1

8 5

12

9

9 4

14 3

10 7
12

11 6

10

13

10 7

11 6

13 15

8

11

10

2

8 5
9

9 4

8

12

15

14

Figure 8. (a) The message-passing graph of one iteration on two nodes of the neighborhood-dependent computation described

in section 2; (b) message-passing state graph for the breadth-first traversal; (c) message-passing state graph of all the possible

depth-first traversals (i.e. all branch orderings) of the message-passing graph. Highlighted numbers and edge labels represent

the messages triggering the transition from a state to the next.

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

from a single branch before sending a message from any other
branch. This scheme simulates delays on specific branches, and is
implemented as follows. Each state stores its messages in transit
as a stack (i.e., a LIFO queue) of sets. A set contains all the
messages generated by the delivery of a single message. A
transition is triggered by delivering one message from the set at
the head of the stack. Once a transition completes, we copy the
stack into the new state, remove the message that caused the
transition and, if new messages were generated, push them in a
new set onto the stack. If no messages are produced, the head of
the stack contains a set with unsent messages from a previous
transition. When the head set contains more than one message, the
choice of the message to deliver defines the order in which we
execute the branches of the message-passing graph.

Multiple branch orderings may be tested by delivering more than
one message from the head set. Testing all branch orderings for
instance ensures that we test executions that maximize and
minimize the delays that can be experienced by each branch.
Figure 8c displays a message-passing state graph representing all
the possible orderings of branches of the message-passing graph
in Figure 8a, created by always sending all the messages in the
head set. Each path in that state graph represents a single depth-
first traversal of the message-passing graph.

Table 6 displays the number of explored states for testing all
branch orderings of our applications when applying the heuristic
on the full message-passing state graph. We can see that for the
FS application, the test using the heuristic on the full state graph
delivers more messages than using the optimized state graph
(Table 1). For less constrained applications such as the pipelined
LU and the travelling salesman, testing only permutations of
branch orderings strongly reduces the number of delivered
messages.

The optimization and the heuristic could obviously be combined.
Moreover, in practice, existing symmetries in the computations
performed by different processes imply that a single error is
revealed by multiple orderings of branches. A few depth-first
executions with distinct branch orderings were sufficient to reveal
errors in all our applications.

Since one may conceive an application whose message races or
deadlocks are not exposed by the orderings defined above, we
may additionally execute randomly generated orderings in order
to further reduce the probability that errors remain undetected.
Such a technique was successfully used for detecting data races in
multithreaded applications [16]. By increasing the number of
randomly generated orderings, one can arbitrarily increase the

confidence that no message race or deadlock exists.

7. APPLYING MESSAGE-PASSING STATE

GRAPHS TO MPI APPLICATIONS
We now present a conceptual generalization of the message-
passing state graph construction for MPI applications. We only
consider applications that perform deterministic computations and
use non-buffered blocking point-to-point and collective
communications. Under these restrictions, non-determinism only
stems from the use of wildcard receives that allow a single recv
call to receive a message from multiple sources. We therefore
want to test that the computation result remains the same no
matter which message is actually received.

In DPS applications, new computations are triggered by the
delivery of a message. In MPI applications that satisfy our
restrictions, new computations are triggered when a set of calls
from distinct processes are matched. For collective
communications, processes block until all participating processes
have joined the communication. For blocking point-to-point MPI
communications, a send call at the source must match a recv call
at the destination before any of the sending and receiving process
may resume its computation.

We represent an execution using an event model inspired by [20],
where every MPI call produces one event. We now construct a
message-passing state graph as follows. Starting from the initial
application state where all processes have called the MPI_Init
function, a transition occurs by matching a send event with a recv
event, or by matching a set of collective communication events,
thereby allowing the suspended processes to resume their
execution until the next MPI function call. In respect to the state
graph construction, the state of a single process is defined by the
value of its local variables and by the pending MPI call. The state
of the whole application is defined as the set of states of the
individual processes.

We illustrate the state graph construction of a simple parallel
merge sort application. Each process initially stores a local array
containing n/p sorted elements, that must be merged into a single
sorted array of size n. Figure 9 shows the MPI pseudocode of the
application. The number of participating processes p is a power of
2. The p/2 processes with the largest ranks send their array to one
of the p/2 processes with the smallest ranks. The p/2 receiving
processes merge together the received and local arrays. The p/2
processes with the largest ranks then exit the loop, and the p/2
processes with the smallest ranks enter the next iteration. At every
iteration, half of the remaining processes exit the loop. When all
the pieces have been merged, the last process exits the loop and
the application exits.

Figure 10a displays the message-passing graph of the expected
execution on four processes, when all processes move
simultaneously from one iteration to the next. The init and finalize
events from process i are denoted Ii and Fi, and are assumed to
behave as barrier synchronizations. A send from process i to
process j at iteration k is denoted as sk

i,j, while rk
*,j denotes the

matching wildcard receive event.

If the send s0
2,0 of process 2 is delayed however, the send event

s1
1,0 may instead match the r0

*,0 receive (Figure 10b). As r0
*,0

expects an array containing n/4 elements while process 1 sends

Table 6. Number of delivered messages [msgs], running time

[s], and memory consumption [MB] for testing all message-

passing graph branch permutations on 4 processes.

 [msgs] [s] [MB]

Neighborhood-
exchange

1737 8.32 10.0

Floyd-Steinberg 3513 1.92 4.6

LU factorization 4.7·105 92 31.0

Travelling salesman 481 240 4.4

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

n/2 elements, the MPI implementation may either deliver a
truncated message or raise a fatal error.

The corresponding message-passing state graph of the application
is displayed in Figure 11a. The match of the send event sk

i,j with
the recv event rk’

*,j is indicated as {sk
i,j , r

k’
*,j}. The incorrect match

{s1
1,0, r

0
*,0} is easily detected as message sizes are different. The

programmer can solve the problem by explicitly specifying the
source of the expected message in the receive call. Then s1

1,0 can
no longer match r0

2,0 (Figure 11b).

We can adapt the breadth-first and depth-first executions
described in section 6 as follows. We maintain for each process a
counter that stores the number of events that have been matched.
We then produce a depth-first (resp. breadth-first) execution by
always matching events for the process with the largest (resp.
smallest) counter value. In our example, the error is revealed by a
depth-first execution of the application. We initialize every match
counter to 0, and after matching the init events we match the
events of processes 3 and 1 {s0

3,1 , r
0

*,1}. Their match counter is
incremented to 2 and become the ones with the largest value. In
order to produce a depth-first execution, we therefore attempt to
match events from these processes in priority. The finalize event
of process 3 (F3) cannot be matched yet, but we may match the
send event s1

1,0 of process 1 with the receive event r0
*,0 of process

0, thereby producing the incorrect execution.

Although one could easily run a single breadth-first or depth-first
execution, building the state graph and avoiding restarting the
program for each sequence of event matches requires additional
checkpointing support. The Berkeley Lab Checkpoint/Restart
library has been successfully used with MPI implementations such
as LAM and OpenMPI [1, 18]. DéjàVu [17] specifically targets
MPI and distributed programs. Integrating one of these libraries
would also require means for performing fast process data
checkpoint comparisons.

DPS has the advantage of providing a high-level description of
dependencies between computations. In MPI, the lack of a flow

graph or equivalent information about future communication
patterns implies that we cannot readily apply the optimizations
described in section 4. However, the potential for optimizations
does exist. In Figure 11b for instance, all matches are
deterministic and both paths in the message-passing state graph
are guaranteed to produce the same result. One of the branches
could therefore be pruned. Such insight could potentially be
provided by a model of the tested application [20, 21]. Another
interesting approach consists in dynamically identifying
interesting backtracking points by collecting information during
the application execution [4].

/* myRank: process rank */
/* n: no of elements to be sorted */
/* p: no of processes (power of 2) */
/* procsInLoop: no of processes in the loop */
/* Every process stores a sorted subarray
 containing n/p elements */

MPI_Init()
procsInLoop = p
do {
 if (myRank ≥ procsInLoop/2)
 MPI_Ssend(array of size (n/procsInLoop)
 to myRank%(procsInLoop/2)

 else {
 MPI_Recv(array of size (n/procsInLoop)
 from any source)
 /* Merge the received and local arrays */
 }
 procsInLoop = procsInLoop/2
}
while(myRank<procsInLoop && procsInLoop>1)

MPI_Finalize()

Figure 9. MPI pseudocode for a parallel merge sort

application.

P0 r*,0
0

r*,0
1

r*,1
0

s1,0
1

s2,0
0

s3,1
0

Merge sort
iteration 0

Merge sort
iteration 1

r*,0
1

r*,0
0

r*,1
0

s2,0
0

s3,1
0

(a)

(b)

s1,0
1

I0

P1

P2

P3

P0

P1

P2

P3

I1

I2

I3

I0

I1

I2

I3

F0

F1

F2

F3

Figure 10. (a) Message-passing graph of a correct

execution on four processes and (b) of an incorrect

execution, where send from rank 2 is delayed.

0
1,3

0

0,2

0
1*,

0

0*,

s

s

r

r
0

1,3

2

0

1*,

1

0*,

s

F

r

r

3

0

0,2

1
0,1

0

0*,

F

s

s

r

3

2

1

0,1

1

0*,

F

F

s

r

 },{ 0

0*,

0

0,2 rs },{ 0
1*,

0
1,3 rs

},{ 0
0*,

1
0,1 rs

},{ 0

0*,

0

0,2 rs

},{ 1
0*,

1
0,1 rs

3

2

1

0

F

F

F

F

Mismatched
buffer sizes

Ø

(a)

0
1,3

0

0,2

0
1,3

0

0,2

s

s

r

r
0

1,3

2

0

1,3

1

0,1

s

F

r

r

3

0

0,2

1

0,1

0

0,2

F

s

s

r

3

2

1
0,1

1

0,1

F

F

s

r

},{ 0
1,3

0
1,3 rs

},{ 0
0,2

0
0,2 rs

},{ 1
1,3

1
1,3 rs

},{ 1

0,2

1

0,2 rs

3

2

1

0

F

F

F

F

Ø

(b)

3

2

1

0

I

I

I

I

{I0,I1,

 I2,I3}

0

0

0

0

I

I

I

I

{I0,I1,

 I2,I3}

{F0,F1,

 F2,F3}

{F0,F1,

 F2,F3}

},{ 0
1*,

0
1,3 rs

},{ 1
0,1

1
0,1 rs

Figure 11. (a) State graph of the application with

wildcard receives and (b) state graph without wildcard

receives. Nodes indicate the pending event of each

process, while edge labels indicate which event match

produces the transition.

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

8. RELATED WORK
Mosbah and Ossamy [12] and Otta and Racek [14] detect message
races by evaluating predefined predicates that consider both the
local and the global application state at various points of the
execution. Since no control is applied on the program execution,
the detection only works for executions where message races
actually occur.

Several variants of controlled re-execution of message-passing
applications have been described in the literature. Mittal and Garg
[11] determine where to add synchronizations in order to maintain
a global predicate, thereby pointing to the location of
synchronization bugs. However, they do not allow events to be
reordered on a given process. Duesterwald et al. [1] describe a
slicing method to isolate only problematic statements when an
erroneous result is observed. The slice may then be re-executed
for identifying the source of error. Kilgore and Chase [9] identify
sets of messages that can be received in any order on a given
process, and propose an algorithm that generates a single ordering
that maximizes the number of reversed message pairs compared to
the original execution. In our previous work [19], we described a
static message-passing graph decomposition technique and a
partial-order reduction method to reduce the number of tested
orderings. In both approaches the destination, content and number
of messages sent by the application are assumed to be independent
of the ordering of their delivery.

Several authors argue that detecting the first message race is
beneficial [13, 15]. Correcting early races not only removes
subsequent instances of the same race, but also prevents potential
spurious races from being enabled. By identifying the longest
common prefix between message orderings yielding different
results, we can determine at which point the executions start to
diverge, allowing the developer to correct early races first.

Considering work that specifically targets MPI applications,
Siegel and Avrunin have been working on the development of
formal models of MPI applications [20, 21]. Their modelization
inspired the generalization described in the previous section. Very
recently, Vakkalanka et al. presented ISP [22], a tool that
automatically executes all relevant event orderings within MPI
applications. It implements no checkpointing however, and
therefore requires reexecuting the whole application for every
ordering.

A large body of work exists that focuses on the analysis and
verification of multithreaded applications. Since the number of
possible thread interleavings is even more intractable than the
number of message permutations in distributed memory message-
passing programs, a central goal is the detection of equivalent
interleavings. In particular, several proposals (e.g. [2, 3, 23]) use
information about read/write access to shared variables to
determine the commutativity of operations and reduce multiple
equivalent executions to the same serialized execution.

9. CONCLUSION
We present a method to dynamically test multiple message
orderings in a message-passing parallel application. We represent
the multiple orderings using a message-passing state graph built at
runtime, which ensures that parts common to multiple orderings
are executed only once. We then use information about future
computations and about how these computations read or write

local process variables to identify equivalent orderings within the
message-passing state graph. We also show how to generate a
subset of orderings that are still able to reveal most errors.

We integrated the dynamic message-passing state graph
construction and analysis method within the Dynamic Parallel
Schedules parallelization framework, which provides support for
checkpointing and restarting individual processes during a
computation. For four different parallel applications, we evaluated
the influence of the proposed techniques on the total number of
messages that must be delivered in order to test all orderings. The
message-passing state graph and the described optimizations
enable reducing the number of delivered messages by many orders
of magnitude compared to the naive approach. The proposed
partial tests revealed all errors present in our experiments.

We finally presented a generalization of the approach to MPI
applications using a subset of MPI calls.

The DPS software is available on the Web under the GPL license
at http://dps.epfl.ch.

10. REFERENCES
[1] A. Bouteiller, G. Bosilca, J. Dongarra, Retrospect:

Deterministic Replay of MPI Applications for Interactive
Distributed Debugging, Recent Advances in Parallel Virtual

Machine and Message Passing Interface, Lecture Notes in
Computer Science (LNCS), Vol. 4757, pp. 297-306,
Springer Verlag, 2007, doi:10.1007/978-3-540-75416-9_41

[2] F. Chen, G. Roşu, Parametric and Sliced Causality,
Proceedings of the 19th Conference on Computer Aided

Verification (CAV’07), Lecture Notes In Computer Science
(LNCS), Vol. 4590, Springer, pp 240-253, 2007

[3] C. Flanagan, S.N. Freund, S. Qadeer, Exploiting purity for
atomicity, Software Engineering, IEEE Transactions on,
vol. 31, no. 4, pp. 275-291, April 2005

[4] C. Flanagan, P. Godefroid, Dynamic Partial-Order
Reduction for Model Checking Software, Proceedings of the

32nd ACM symposium on Principles of programming

languages (POPL’05), pp. 110-121, Long Beach,
California, USA, 2005

[5] S. Gerlach, R. D. Hersch, DPS - Dynamic Parallel
Schedules, Proc. 17th Int’l Parallel and Distributed

Processing Symposium (IPDPS'03), pp. 15-24, Nice,
France, April 2003, see also http://dps.epfl.ch

[6] S. Gerlach, R.D. Hersch, Fault-tolerant Parallel Applications
with Dynamic Parallel Schedules, Proc. 19th Int’l Parallel

and Distributed Processing Symposium (IPDPS’05), p.
278b, 2005

[7] G. H. Golub, C. F. van Loan, Matrix Computations, The
Johns Hopkins University Press, pp. 94-116, 1996

[8] C.-E. Hong, B.-S. Lee, G.-W. On, D.-H. Chi, Replay for
debugging MPI parallel programs, Proc. MPI Developer's

Conference, pp. 156-160, July 1996
[9] R. Kilgore, C. Chase. Re-execution of distributed programs

to detect bugs hidden by racing messages. Proc. 30th Hawaii

Int’l Conference on System Sciences (HICCS), vol. 1, p.
423, 1997

[10] P. T. Metaxas, Parallel digital halftoning by error-diffusion,
Proc. Paris C. Kanellakis memorial workshop on Principles

of computing & knowledge: Paris C. Kanellakis memorial

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

workshop on the occasion of his 50th birthday, pp. 35-41,
2003.

[11] N. Mittal, V. K. Garg, Debugging distributed programs
using controlled re-execution, Proc. 19th ACM Symposium

on Principles of Distributed Computing, pp. 239-248, 2000
[12] M. Mosbah, R. Ossamy, Checking global properties for local

computations in graphs with applications to invariant
testing, Proc. 5th Mexican Conference in Computer Science,
pp. 35-42, 2004

[13] R. H. B. Netzer, T. W. Brennan, S. K. Damodaran-Kamal,
Debugging race conditions in message-passing programs,
Proc. SIGMETRICS Symposium on Parallel and Distributed

Tools, pp. 31-40, 1996
[14] M. Otta, S. Racek, A method for testing and debugging

distributed applications, Int’l Conference on Trends in

Communications (EUROCON'2001), vol. 2, pp. 548-551,
July 2001

[15] H.-D. Park, Y.-K. Jun, Detecting the first races in parallel
programs with ordered synchronization, Proc. 1998 Int’l

Conference on Parallel and Distributed Systems, pp.201-
208, 1998

[16] S. Qadeer, D. Wu, KISS: keep it simple and sequential,
Proc. ACM SIGPLAN 2004 Conference on Programming

language design and implementation, pp. 14-24, 2004
[17] J.F. Ruscio, M.A. Heffner, S. Varadarajan, DejaVu:

Transparent User-Level Checkpointing, Migration, and
Recovery for Distributed Systems, Proc. 21st Int’l Parallel

and Distributed Processing Symposium (IPDPS’07), pp. 1-
8, Long Beach, USA, March 2007.

[18] S. Sankaran, J.M. Squyres, B. Barrett, A. Lumsdaine, J.
Duell, P. Hargrove, E. Roman}, The LAM/MPI Check-
point/Restart Framework: System-Initiated Checkpointing,
Int’l Journal of High Performance Computing Applications,
Vol. 19, No. 4, pp. 479-493, 2005

[19] B. Schaeli, S. Gerlach, R.D. Hersch, Decomposing Partial
Order Execution Graphs to Improve Message Race
Detection, Proc. 21st Int’l Parallel and Distributed

Processing Symposium (IPDPS’07), pp. 1-8, Long Beach,
USA, March 2007.

[20] S.F. Siegel, G.S. Avrunin, Modeling wildcard-free MPI
programs for verification, Proc. ACM SIGPLAN Symposium

on Principles and Practices of Parallel Programming

(PPoPP’05), pp. 95-106, 2005.
[21] S.F. Siegel, G.S. Avrunin, Verification of halting properties

for MPI programs using nonblocking operations, Proc. 14th

European PVM/MPI Users' Group Conference, 2007.
[22] S.S. Vakkalanka, S. Sharma, G. Gopalakrishnan, R.M.

Kirby, ISP: a tool for model checking MPI programs. Proc.

ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pp. 258-256, 2008.
[23] L. Wang, S.D. Stoller, Runtime analysis of atomicity for

multithreaded programs, Software Engineering, IEEE

Transactions on , vol. 32, no. 2, pp. 93-110, Feb. 2006

Proc. of the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD'08), article 2, ACM, 2008, pp. 1--10

