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Abstract
Existing models for serving continuous streams from disks
are generally based on worst-case deterministic head dis-
placement times and on a round-robin strand service
approach consisting of serving all strands once per round.
We propose an alternative approach, where the head dis-
placement time is described as a random variable with
known probability density and where strands are served in
a round-robin manner consecutively several times per serv-
ice period. By establishing the frame loss rate separately in
each cycle and for each of the strand’s display deadlines,
we compute the mean number of lost frames per second for
a given configuration. By serving strands consecutively
several times in consecutive cycles, we show that for a
given frame loss rate, less buffer space is needed than in
the conventional single round approach.

1 Introduction

Designing storage architectures for continuous streams is
central to many applications such as video on demand,
interactive TV and multimedia computing. With today’s
technology, storage server architectures are based on disk
arrays either directly interfaced by cross-bar switches to
high-speed networks [1] or hooked onto powerful comput-
ing systems offering network connections.

Since the data access rate from disks is generally the bot-
tleneck when serving simultaneously multiple continuous
streams, models capable of determining the number of con-
tinuous streams that can be served simultaneously and that
give a good estimation of the required buffer sizes are of
high importance.

A model for serving strands from disks has been estab-
lished by Rangan and Vin [6] for the deterministic case.
Tobagi [8] describes the trade-offs regarding the number of
served strands, blockset sizes and buffering requirements
for serving strands from multiple disks. The problem of
striping scalable video streams onto disk arrays for the
deterministic case has been analysed by Chang, Zakhor [3],

Keeton and Katz [5]. Chang and Zakhor propose a striping
strategy, where video data accessed during a single round is
striped across the disks. They compute an optimal round
time satisfying timing and buffer size limitation con-
straints. Keeton and Katz analyse by simulation and meas-
urements the effect of varying the striping unit size.

Let us first introduce the terminology used throughout the
paper. A continuous stream such as a video stream is com-
posed of frames. A certain number of compressed frames
forms a data block. A given number  of data blocks read
contiguously from a single disk form ablockset. Blocksets
associated with given streams are called strands. We con-
sider models for servingn strand blocksets with a subsys-
tem composed of a single disk andn buffers. We assume
that while buffers associated with different strands are suc-
cessively filled each with one blockset read from the disk,
buffers are emptied in parallel according to each stream’s
frame playing rate  (circular buffering).

We assume that the different strand blocksets located on
the same disk are stored at random disk locations and that
all disk head positions are equiprobable. We also assume
that disks have a constant data transfer rate and that the size
of contiguously read data units (blocksets) is larger or
equal to a single track, thereby enabling access cycles with-
out rotational latency.

Various strategies exist for serving multiple strands
simultaneously. One may for example, as in [2] define a
fixed repetitive time frame calledround, within which one
blockset per served strand is accessed and transferred into
its respective buffer. To respect deterministic isochronicity
constraints, the sum of disk access times for all the n
accessed blocksets should be smaller than the smallest dis-
play time of any of the considered strand blocksets. This
display time defines the round time.

Since disk access time is composed of head displacement
time and data transfer time, proportionally increasing the
blockset size of each strand has the effect of increasing the
round time, decreasing the influence of head displacement
time and increasing the global sustained throughput.
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In the approach we propose, we assume that we serve our
n strands repetitively duringm successive cycles. We
define onecycleas the time it takes to serve one blockset
per strand. Instead of waiting, as in other schemes [2], until
the buffered blocksets of the previously read access cycle
have been displayed, we continue accessing the disk form
successive cycles. Since track locations of strand blocksets
are equiprobable, we can establish the probability density
distribution for the head displacement. We then compute
the probability of missing one, two or several frames on
appropriate time intervals and compute for each strand a
mean frame loss rate due to buffer underflow.

If we assume that for each strand the blockset sizeki is
proportional to the display rate, the display time ofm
blocksets of any of the served streams defines aservice
period composed ofm service cycles and aslack time(Fig-
ure 1). Alternately, we may consider the service period to
be formed bym round times, the round time being defined
as the time it takes to display one blockset of any one of the
served streams. Since the cycle is generally lower than the
round, afterm cycles there is a high probability that the
number of resident blocksets is higher than the numberxi
of initial blocksets available at the start of the period. The
number of additional blocksets residing in the buffers after
m cycles defines theslack time during which no disk
accesses are made for the currently served strands and the
number of blocksets is reduced to its initial value.

Figure 1. Service period

2 Admission control in the deterministic case

We assume data streams with frame dis-
play rates [frames/s] being accessed from
disks at a granularity of [frames/blocks]
with frame sizes of [bytes/frame].

As described by Vin and Rangan [6] in the deterministic
case, when servingn streams simultaneously from a single
disk, assuming that client i accesses  blocks, and assum-
ing that consecutive blocks within a single blockset are
stored on consecutive disk locations, the following inequal-
ity must be satisfied:
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Lets us consider the case where the block size
 is constant for all strands and where

strands are displayed at a byte rate of respectively
 bytes/s. We assume that the number of

blocks  per blockset read from the disk for each strand
is proportional to the corresponding strand block display
rate  ; i.e. . Therefore (eq 1) becomes

By considering the mean display byte rate , we obtain
an inequality establishing a relationship between the
numbern of served streams and the proportionality con-
stantq indicating how many blocks per blockset are to be
read in each round for each strand.

In the case of a probabilistic frame loss rate model we
can use the same formula as above, but instead of taking
the maximal head displacement time  we take the
mean head displacement time . The maximal number
of clients doesn’t increase but at fixed blockset size we are
able to serve more clients than in the deterministic case.

3 Probabilistic frame loss rate model

This section describes the probabilistic approach for
establishing the frame loss rate of a server as a function of
the number of users, the initial buffer space, and the
number of rounds in a service period.

3.1 Probability distribution of disk head motion
delays

Since blocksets are larger than or egal to a single track,
we neglect the rotational latency and therefore model the
head motion timel as a linear function of the covered dis-
tance
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where  is the fixed delay required for starting the
head movement and  the maximum distance to be
covered.

Figure 2. Arm motion delay distribution

We add the constant part of the arm motion time to the
data transfer time. The random part of a single disk access
is a random variable with probability distribution

The disk access time for clienti is , with
 being deterministic and taking into

account the actual data transfer time, and the minimum
head latency. The actual data transfer time is a function of
the client’s throughput requirement. The admission control
condition for n clients during one round (duration :T)
described in section 2 is rewritten as:

The sum of theaverage delays for n disk accesses must
be smaller than the round time.

3.3 Strand service strategy

Our approach is based on the analysis of a single service
period, consisting ofm rounds. A cycle is the actual length
of time it takes to readn blocksets from disk. During a
cycle, each client performs one disk-access, and reads one
blockset per cycle (i.e.ki blocks per cycle for client i). The
admission control condition ensures that the average length
of a cycle is always shorter than the length of a round.

The cycle is a random variable. The access delay distri-
bution at the end ofd consecutive disk-accesses is given by
the sum ofd independent random variables having the dis-
tribution of a single disk access. Duringm cycles covering
a period, each disk access is started as soon as the previous
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disk access is complete : all disk accesses in a period are
consecutive.

3.4 Frame loss rate due to buffer underflow

Assuming each client has the same initial buffer size ofx
blocksets, we are sure to meet all deadlines until the end of
round x. At the end of roundx, the probability

that client 0 encounters buffer underflow (and

thus strand discontinuity) is the probability that the first
disk access be longer thanx rounds:

In the same round, the probability that client i encounters
buffer underflow is the probability of i+1 disk accesses
being longer than x rounds:

More generally, the probability that client i encounters
buffer underflow during round(x+r)  is given by:

wherej|n is the remainder of the division ofj by n.
Note that with this strategy the last clients served in each
round are underprivileged. To ensure similar service condi-
tion for all clients, we don’t start all the clients at the same
time but shift the starting time by T/n for successive cli-
ents: client 0 is started at time 0, client 1 at time T/n... In
that case, the right term of the previous equation becomes
xT+(r-1)T+iT/n.

The blockset deadline miss rate due to underflow, ,
over a complete service period ofm rounds, is given by:

It is possible to compute the mean frame deadline miss
rate. The number of frames that the client does not receive
depends on how long after the deadline a requested block-
set reaches the server memory. Considering a deadlinet,
and a blockset containingk frames (one frame per block)
that reaches the server memory att+∆t, the number of
frames that can be served to the client is

. Thus the probability that exactly f

frames are lost by client i during roundx+r  is:
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We get the mean frame loss rate due to underflow,

, over a service period of m rounds by:

We can not extend the service periodm indefinitely since
we will encounter buffer overflow. To avoid buffer over-
flow we perform a fixed numberm of cycles and then stop
serving clients during the slack time, assuming a positive
slack time. After the slack time, buffers reach their initial
level and clients are served again duringm consecutive
cycles. A negative slack time means that we are late. We do
not necessarily have a buffer underflow but the buffer size
is lower than the initial buffer size. In that case, we drop
the remaining disk-requests, and start the service period in
the original situation.

The mean error rate is thus the sum of the frame deadline
miss rate and the blockset drop rate at the end of the period.
The probability of having to dropat least one disk request
at the end of a period is

The probability of having to dropat least two disk requests
is

The probability of having to dropat least d disk requests is

The probability of droppingexactly d disk request is
. In order to restore the buffer

levels at the beginning of a service period, the maximum
number of blockset requests we might have to drop at the
end of the previous service period is equal to , the ini-
tial number of blocksets available in the server buffer at the
beginning of the period. The  blockset request-drop
corresponds to the case where, at the end of the period, the
server buffers are completely empty.

The average number of blockset drops at the end
of a period is
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The average number of frame drops at the end of a period
is the number of framesk per blockset multiplied by

the mean number of blockset drops. The frame drop rate
 is:

3.5 Avoiding buffer overflow.

The difference between the highest disk throughput and
the sum of the playing rates over the random length serving
cycles gives the throughput at which the buffers may fill up
over the initial number of blocksets. In order to avoid
buffer overflow, each strand buffer should be large enough
not to overflow during them-1 service cycles following the
initial disk access for the considered strand. The highest
buffer filling rate (worst-case) is given when during the
consideredm-1 service cycles, the head displacement time
is minimal ( ).

In the case where all strands have a blockset size propor-
tional to their playing rates and an identical number of
bytes per block , the worst-case required
buffer size per strand is given by the sum of the
numberxi of initial blocksets and them blocksets read from
the disks minus the size of the buffer played duringm-1
cycles, i.e during the shortest possible disk
access times.

Let us analyze the required worst-case buffer size
afterm cycles and for different blockset sizes, assuming all
streams having equal characteristics (identical blockset
sizek, identical number of initial blocksetsx, identical byte
display rate ). With a data transfer time

, the worst case buffer size
becomes

The required buffer space grows at a much higher rate
when the blockset size k increases than when the number of
cycles m increases. We will see that in order to achieve a
given frame loss rate, a certain combination of blockset
size and number of cycles minimizes the required buffer
space.
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4 Design trade-offs and further considerations

This section analyzes the effect of three parameters on
the server performance, namely the blockset sizek, the ini-
tial server buffer sizex and the number of cyclesm per
service period.

We consider a single disk with a minimum, respectively
average and maximum latency of 5ms respectively 10ms
and 20ms. The throughput is 6MBytes/s. Clients are visual-
izing a video sequence at a frame rate of 30 frames/s. Each
strand is displayed at a rate of 800KBytes/s. According to
(eq 3), we can accept 7 clients with a blockset size of at
least 32 frames for the minimal blockset size and of 63
frames in the deterministic case.

As explained in section 3.4, the mean frame loss rate is
the sum of the underflow and period-blockset-drop rates.
The underflow rate can be reduced and even decreased to
zero by increasing the initial number of buffered blocksets.
Another way of reducing the underflow rate is to increase
the blockset size, which reduces the number of disk
accesses and hence the relative disk-access latency cost.
The period-blockset-drop rate is independent from the ini-
tial number of blocksets. It only depends on the number of
disk accesses actually completed at the end of a period.
There are only two ways to reduce the period-blockset-
drop rate: increasing the blockset size or increasing the
period length.

Figure 3. Probability of having a positive slack time

Figure 3 displays the probability of having a positive
slack time as a function of the blockset size for a service
period lengthm of 1, 3, and 6 rounds. As expected, for
m=1, this probability increases with the blockset size and
becomes equal to 1 for a blockset sizek>62 since we fall
back on the deterministic case. If we increase the number
of cycles, the probability converges faster to 1.

For a given period length m and blockset sizek, the
number of lost frames at the end of the period is an irre-
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ductible part of the mean error rate. If we increase the
number of initial blocksets, the frame loss rate due to
buffer underflow will drop to zero and only the period
blockset drop remains. In our example, form=6 andk=32,
the frame loss rate due to blockset drop at period ends is
about 0.27 frames per second per client. The frame loss
rate due to buffer underflow is about 2.5 frames per second
per client for an empty initial buffer, 0.06 frames/s for an

initial buffer of 2/10 blockset per client, and 10-8 frames/s
for an initial blockset size of 3/10 blocksets per client. Thus
a small initial buffer size enables the elimination of the
error rate due to buffer underflow.

Figure 4 shows the mean frame loss rate as a function of
the number of cycles (period length) and the blockset size
for a fixed initial buffer size of 3/10 blockset per client.

Figure 4. Frame loss rate as a function of period length
and blockset size

We can reduce the frame loss rate by increasing the
number of initial blocksets, the number of cycles or the
blockset size. However all approaches increase the buffer-
ing requirements. The required buffer space grows at a
much higher rate when the blockset size k increases than
when the number of cycles m increases. For a given frame
loss rate, the blockset size is much greater form=1 than for
example form=5. Thus, in order to minimize the required
buffer space, the number of cyclesm should be greater than
1. This is the reason for proposing the multi-cycle approach
for serving continuous streams.

In our example, for a given frame loss rate, the blockset
size is reduced to the mean blockset size k=32 whenm
grows to infinity. We are however limited by the available
memory space. For a given error rate, we must choosek
and m so as to minimize the required buffer size. In the
case of our example, the plane in figure 5 represents the
total buffer requirement for a client in order to avoid buffer
overflow. The two curves on this plane are respectively the
buffer requirements for strands with a frame loss rate of 1/
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1000 frames/s and of 1/100 frames/s. For these two error
rates, the minimal required buffer sizesBmin(0.001fr/s) =
56.6 frames andBmin(0.01fr/s) = 54.6 frames are obtained
respectively for (m=3, k=41), (m=4, k=38). In the case of a
single cycle service period identical to the single round
approach developed in previous models [6], but assuming
random head displacement times, we would obtain for the
same frame loss rates as above a required buffer size of 65,
respectively 61 frames per client. In the deterministic case,
the required buffer size would be at least 72 frames per cli-
ent (see section 2). Thus, in this example, where the disk
utilization is nRa /Rd = 93%, the probabilistic approach
brings in the case of a standard single round approach a
reduction of 9.7% in buffer space at a frame loss rate of 1/
1000 frames/s and of 15% at a frame loss rate of 1/100
frame/s. The multi-cycle probabilistic approach brings a
reduction of 21.4% in buffer space at a frame loss rate of 1/
1000 frames/s and of 24.1% at a frame loss rate of 1/100
frame/s.

Figure 5. Total required buffer size as a function of
blockset size and number of cycles

5 Conclusion

We have presented a new approach for serving continu-
ous streams from disks. Instead of having a slack time at
the end of each round, we consider serving all strands con-
secutively in a round-robin manner duringm cycles. By
modelling the head displacement time as a random variable
and by accepting a given frame loss rate, we need to
reserve less buffer space for serving the same number of
clients than in the deterministic case. We have developed
an approach for computing precisely the mean frame loss
rate under given operating conditions, such as the blockset
size, the initial number of blocksets loaded into the buffer
before starting to display the strands, and the number of
cycles during which we consecutively serve all strands in a
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round-robin manner. Making use of this new strand serving
strategy, we are able to compute for a given frame loss rate
the number of cycles and the blockset size minimizing the
required buffer size. The greater slack times we obtain by
choosing a number of cycles greater than one enable block-
sets to be preloaded for strands whose service starts in one
of the following periods.

Instead of serving clients during a fixed period length of
m cycles, we could serve clients until buffers reach a maxi-
mal level and then initiate slacktime. Such a strategy would
have the benefit of avoiding blockset drop at the end of the
service period; it is however more difficult to model since
service period length becomes variable.

Our model could also be useful for analyzing variable bit
rate strands such as variable quality MPEG implementa-
tions. These MPEG coders may enforce output bitrates
having given predefined density probabilities. Combined
with a scan-edf sheduling algorithm, the head displacement
time is then nearly deterministic and the data transfer time
becomes the random part of the blockset data access time.
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