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Abstract

We propose in this paper a new approach to three-dimensional dig-
ital lines (3DDLs) based on the study of the integer lattice generated
by the projection of Z® onto an euclidean plane which reduces the
problem to dimension 2. The many properties of this lattice lead to
an arithmetical definition of 3DDLs in accordance with a topological
characterization. This definition is then used in an algorithm that cal-
culates the intersection between a naive 3DDL and an arbitrary digital
plane. We also show that this algorithm can be extended to calculate
the intersection between a plane and a set of adjacent 3DDLs incre-
mentally in a very efficient manner.

1 Investigating a definition of 3D digital lines

1.1 Introduction

Finding the closest integer points to a given integer direction is a question
that is solved in dimension 2 through Euclid’s and related continued fraction
algorithms [HW79] and a theorem of Klein [Rev91]. However such a prob-
lem has not been efficiently solved in a three-dimensional space. Most of
the works on the subject are attempts to generalize Euclid’s and continued



fraction algorithms to higher dimensions [Jus92, Ros42]. In fact this theoret-
ical problem is closely related to computer graphics and more especifically
to the definition and properties of three-dimensional digital lines (3DDLs).
The study of 3DDLs can thus take great advantage of the results obtained
in arithmetics and that is what guided this research.

More precisely our goal is to find a definition for a line of direction
(a,b,¢) € 7% in a discrete 3-dimensional space and to examine its prop-
erties. Qur original approach is to consider the projection of the discrete
space Z> along this direction onto an orthogonal plane. Such a projection
vields a rational lattice of points the study of which leads to many results
partially described in this paper. Among these is a convenient arithmetical
definition of 3D digital lines.

1.2 A topological definition of 3D digital lines.

Two-dimensional digital lines are generally defined by the digitization of
continuous lines which can be done in several ways [CM91]. This defini-
tion has been developed into more synthetic representations of 2D digi-
tal lines [DS84]. A more flexible arithmetical definition has also been pro-
posed [Rev91], which allows the representation of standard 8-connected lines
(which are called naive) as well as thicker and thiner lines and thus leads to
a much more general theory of these objects. However such a theory does
not exist for 3DDLs and most people working on computer graphics restrict
their point of view on 3DDLs to the simple digitization of their continuous
equivalent.

As a starting point we propose to define topologically the set that we
will call a naive 8D digital line :

Definition 1.1 A naive three-dimensional digital line is a subset of Z> de-
fined by the intersection of two digital planes and verifying the following
conditions :

- it 15 26-connected,

- it 1s minimal in the sense that removing any element splits the subset
into two separate 26-connected components.

We will show that for any rational direction there exists at least one such



subset and that the discretization of a three-dimensional continuous line is
a naive 3DDL according to this definition.

1.3 Projection of 7> onto an euclidean plane

Since 3DDLs are subsets of Z3, it is natural to try to ease their study by
reducing the problem to two dimensions. We obtain this reduction by pro-
jecting onto a plane orthogonal to the direction of the 3DDL. As we will
see the properties of this projection define accurately the line in the three-
dimensional space.

For convenience in the mathematics we will only consider directions
(a,b,¢) such as 0 < @ < b < ¢. This is not properly a restriction since
the problem has inherent symmetries which allow a straightforward gen-
eralization to the other directions. Moreover, in order to simplify some
calculations we also impose that (a,b, ¢) should be mutually prime. Then
we define (u,v) and (u',v') :

au+ev=1 bu'+cv =1 (1)

In addition let w? = a? + b% 4+ ¢? and P be the euclidean plane, P : ax +
by+cz = 0. We denote 7() the projection operator on P along the direction

(a,b,c).
A point A(z,y,2) € Z2is projected along the direction (a,b,c) onto a
point A’(a',y’, z") of the plane P through the relation :

1 b2 + 2 —ab —ac
A'=7(A)=MA where M= — —ab  a’+c? —be (2)
“ —ac —be a’ + b2

We project Z3 as a whole using this relation. This yields a rational lattice
£ on the plane P. We also call £, the sparse lattice generated on P by the
projection of the integer points of the main plane 2Oy and we call £4 (for
dense lattice) the result of the scaling by 1/c of £,. The integer points of
2Oy being part of Z3 it is obvious that :

LsCL

and by definition we also have £, C L4, we will show later that £ C £4 and
thus we have the global relation (see Figure 1) :

L CLCLy
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Figure 1: The lattices L4, £ and £, associated to the projection of Z> on
P(5,9,17) seen in basis (7, 7).

Let (I,.J,K) be the fundamental basis of Z3. A basis (iz,73) of L, is
given by the projection of the two vectors (—I,—.J) which is described by

the first two columns of M. Then, a basis (7, ) of L4 is obtained by scaling
this basis by 1/c:

1 —(b? + %) ab
T: w—z ab f: w—z —(a2 -I— C2) (3)
ac be

We can prove that this basis is also a basis of £ thus showing that £ C L4



by solving the following equation :
x

V(z,y,2)e L, Ik1Hez* | M| y | =ki+1]

z

which gives :

k= —czx+az $:{_5i}+/\a
{ I = —cy+bs and y = —év }_|_/\b (4)
z = k?“}—l—/\c:{%}—l—/\c AEZ

Notation The square brackets [2], and the curly brackets {2} denote
respectively the quotient and the remainder of the euclidean division of m
by n.

A simple parameterization of the lattice £ in the basis (7,7) is deduced
from the expression of (k,[) in Equation 4 :

Ez{x(g)+y(2)—|—z(§)/V(w,y,z)€Z3} (5)

A proper linear combination of the first and third vectors generates a
minimum shift along the first axis :

(5) ()= )

Therefore the couple of vectors (( (c) ), ( blu )) is a basis of the lat-

tice L.

We call lattice of remainders of the fraction (or slope) ¢, the integer
lattice R (%) obtained by repeating periodically along the two directions

the pattern defined by : '
(g e



In the same way we also denote R+ (%) the integer lattice defined by the
repetition along the two directions of the pattern defined by :

() e
Thus we have :

Proposition 1.1 The projection of 73 along the direction (a,b,c) onto the
euclidean plane P associated to the basis (7,]) yields an integer lattice L

which coincides with the lattice of remainders R (b?“) and R+ (“T“/)

This result is fundamental since it offers a very simple parameterization
of £ and thus an efficient way to walk over the points of this lattice.

1.4 Characterization of digital lines of 73

Since we have considered the projection on a plane of normal direction
(a,b,c) it is natural to look for the projection of a naive 3DDL of direc-
tion (a,b,c) as the subset of £ of smallest area having for inverse image a
connected path in Z3. Let us then consider the points of £ such as :

0<k<ec¢ and 0<I<c (6)
According to Proposition 1.1, these points correspond to the set

{(i{)) /0<i<ef (7)

Then, Equation 4 maps these points to the following ones :

x:{‘Tvi}—l—/\a

bui
@/Z{Q}Hb
z:{%’}—l—Ac ANEZ

A simple calculation shows that this set is equivalent to the one defined by :
[

- [
z =1 LEZ



which corresponds to the discretization by truncation of the euclidean line
%.
{M eER3/OM=t(abc),t€e }R}. It is easy to show that this set is 26-

connected. Furthermore Equation 6 shows that it is equivalent to the inter-
section of two digital planes :

uw<  —cx +az < p+c
< —cy +bz <p +c

Therefore this set defines a naive 8D digital line.

Thus with the conditions (a,b,¢) € Z*> and 0 < @ < b < ¢ we can write :

Proposition 1.2 Let S be the subset of the squares of P(a,b,c) of edges
parallel to 7 or 7 and of edge length c, then the inverse image in 7> of any
square of S under the orthogonal projection onto P is a naive 3D digital line
of direction (a,b,c).

Proposition 1.3 The subset of 7> defined by the following system :

uw<  —cx +az < p+c
' < —cy +bz <p +c

is a naive 3D digital line of direction (a,b,c).
Proposition 1.4 The set of integer points contained in a cylinder of axis

(a,b,c) intersecting the base plane (xQy) on a unit square is a naive 3D
digital line.

The first two propositions were established before and the last one derives
directly from the former by considering z=0 in the equations.



2 Intersection of digital lines and planes

As shown on Figure 2 and due to the discrete nature of these objects, the
intersection between digital lines and planes is often a rather complex set
consisting of many voxels and the structure of which is not apparent. Our
goal in this part is to write an efficient walking algorithm for this kind of
intersection.

Figure 2: The intersection of a naive 3DDL D(7,15,23) and naive digital
plane P(-8,29,-15,-25).

2.1 Preliminary definitions and restrictions

We use here the definition of digital planes given by Reveilles in [DRR94]. A
digital plane with (d, e, f) normal vector is the set of integer points (z,y, z)
satisfying a double diophantine inequality :

P(d,e, foy,p) s y<dr+ey+ fz<~v+p (8)

where all parameters are integers.



We also consider a 3DDL under the form given in Proposition 1.3 :

] uw<  —cx +az < p+w
D(a,b,c) . { ,u/ < —cy —I-bZ < H/ ‘|‘W/ (9)
wherew=w'=¢ (0<a<b<c) (10)

Thus, the intersection of a naive 3DDL with a digital plane is in fact the
intersection of three digital planes which is similar to the equivalent contin-
uous problem.

For the clarity of the presentation we will consider the digital lines of
the standard simplex (0 < a < b < ¢) only and any kind of plane (not
necessarily naive and of any direction). Thanks to the group of symmetries
of the cube we will thus cover the general case.

2.2 Mathematical determination of the intersection

The following matricial system defines the intersection :

7 —c 0 a T w+c
pl<| 0 —c b y | <| nte (11)
gl d e f z TEp

Of course this system must be solved in Z3. The key idea is to find an
appropriate unimodular matrix U (ie of determinant equal to 1) defining a
bijective transform that turns the system easier to analyze.

After some calculation we are led to :

—v—and 0 a d =—dv+ fu
U=]| dm—-bnd -1 b where e =—e (12)
u — end’ 0 ¢ ff=ad+be+cf

with the additional condition that ¢’ and f’ be relatively prime which
ensures that there exist (m,n) such as me’ + nf’ = 1.

System 11 is reduced to the following form :

I 1 0 0 X Bt
p | < bu—mde ¢ 0 Y | < | p+ec (13)
v 0 e f z T+p



with (z y 2) =U(X Y Z)
This equation can be rewritten in the following algorithmic way :
p<X<pu+e
Y = mdX — [t
ey —y Y —y—p
-] 2 2 <[5

This shows that :
X steps through ¢ values
for each value of X there is a unique value of Y
for each value of Y there are N(Y') values for Z :

o] i <o (3]
NY)=-|F| -1 {22 > p - {3

Proposition 2.1 The intersection of a naive digital line D(a,b,c,p) and a
digital plane P(d, e, f,7, p) consists of N vozels with

—c[3#] e <V <[]

2.3 Incremental aspect of the digital line-plane intersection

The simple previous algorithm has nice properties when it comes to compute
the intersection between a digital plane and successive adjacent 3DDLs. We
will carry the demonstration for a set of naive parallel digital lines adjacent
along the x-axis. The problem being perfectly symmetrical, the results will
be easily transposed to adjacency on the other two axes.

We derive the arithmetical definition for the a line of direction (a,b,c)
going through the point (2, yo, 20) form Equation 9 :

{ —cxg+ azg < —cx +az < —cxg+azg+c (14)

—cyp + bz < —cy +bz < —cyg+ bz +c

In what follows we denote the following useful value as ¢ :

= {7 (13)




Let us consider the digital line going through the voxel (2o + 1, yo, 20)
and let us examine how the different parameters used in the computation
of the intersection with the plane P(d, e, f,v,p) evolve in regards to their
value for the line going through (zo, yo, z0).

Notation : We use the notation P for a parameter related to the line
going through voxel (zo, Yo, 20) and P, for the same parameter but related
to the line going through (z¢ + 1, yo, z0) (unit shift along the x-axis).

After some calculation the following results can be established :

=evi-af] o ]

= of#] o[22

a+{fi}

w=os ) r[24A1]
V=[5 - [#_}]

N
(
N
|
o
e
|
o

Table 1: Evolution of intersection parameters for X-contiguous lines.

From these equations it is clear that once the process is initialized for
the first line, there is very little computation to determine the intersections
of the following lines. In particular there are only add/subtract and test
operations involved.



3 Conclusion

We have shown that 3DDLs can be studied through an original approach
consisting in projecting them onto a real continuous plane orthogonally to
their direction. It has led us to an arithmetical representation similar to
the definition of 2DDLs and digital planes proposed by Reveilles [Rev9l].
Thanks to this definition a walking algorithm for the intersection of 3DDLs
and digital planes has been written. Boundaries for the number of voxels
in these intersections have also been found that depend only on the intrin-
sic parameters of the intersecting objects. This approach promises more
intersting results that are currently under study.
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