
Towards a Color
Prediction Model

for Printed Patches

Patrick Emmel and Roger David Hersch

Ecole Polytechnique Fédérale de Lausanne (EPFL),

Switzerland

Reprinted from

IEEE Computer Graphics and Applications

Vol. 19, No. 4, July/August 1999

© 1999 IEEE. Institute of Electrical and Electronics Engineers.

Personal use of this material is permitted. However,

permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be

obtained from the IEEE.

http://www.computer.org/
http://computer.org/cga/


Today, calibrating a color printer requires
measuring a minimum of 1,000 patches

that sample the whole color space. By processing the
collected data, you can generate look-up tables that
convert input color data (for instance, calibrated RGB
or CIE-XYZ) into the printer’s output data (CMYK).
Since printing devices exhibit a highly nonlinear behav-

ior, getting reasonable precision
requires measuring a large number
of samples. Furthermore, the input-
output transformation of color data
depends on many different para-
meters: the spectra of the inks, the
properties of the paper, the halfton-
ing method, and so on. Hence,
changing any of these parameters
requires performing a new calibra-
tion, for example before using a
new kind of paper, a new ink car-
tridge, or a different halftoning
algorithm. This may lead to tedious
repetitions of the calibration
process and make high-quality
calibration impractical.

To circumvent this problem, color
printer calibration should employ a

physical model of the light reflection process, which pre-
dicts the color of printed patches. This would allow com-
puting a new calibration profile with only a few
measurements. Future generations of printers equipped
with sensors that provide the necessary data will then
recalibrate themselves automatically.

The literature usually presents the classical models
describing the phenomena involved in color prediction
separately. This article aims to unify these models into
a single framework through an adequate mathematical
formulation. We’ll successively integrate into the model
one phenomenon after the other. The resulting unified
physical model should be able to predict the diffuse
reflection spectrum of color samples illuminated by a
diffuse light source.

In this study, we limit ourselves to predicting uniform
color samples made of one or several superposed ink

layers. We’re currently investigating an extension of the
proposed model for halftoned samples.

Light absorption
The most widely known classical model for the

absorption of light is the Beer-Lambert-Bouguer law.1

This model describes the intensity variation of a light
beam crossing a medium that contains identical light-
absorbing particles at a concentration c. Let’s consider
an infinitely thin slice of thickness dx of this medium
(see Figure 1). The model relies on the assumption that
the particles are independent. According to the Beer-
Lambert-Bouguer law, the variation dφof the flux that
crosses this slice is proportional to the concentration c,
to the flux φof the beam, and to the thickness dx of the
slice. Hence, the flux of a collimated light beam φ that
crosses the infinitely thin layer varies as follows:

dφ= −ε(λ) ⋅ c ⋅ ln(10) φdx (1)

where the proportionality coefficient ε(λ) is the molar
extinction coefficient of the absorbing particles. Equa-
tion 1 is a linear differential equation of the first kind
whose solution is given by an exponential function. This
kind of function will play a central role in our model.
The integration of Equation 1 over a layer of thickness
d leads to

(2)

The transmission coefficient T(λ) is then deduced by
dividing the flux φ(d) by the incoming flux φ(0):

(3)

The value T(λ) = 1 corresponds to a transparent medi-
um, whereas the value T(λ) = 0 means no transmission
of light and hence an opaque medium. Beer’s law is
often expressed in its logarithmic form. The absorption
(or optical density) is proportional to the path length d,
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the concentration c, and the extinction coefficient ε(λ).
Hence, the optical density D(λ)—the sign-inverse of the
decimal logarithm of the transmission T(λ)—equals

D(λ) = d ⋅ c ⋅ ε(λ) (4)

In the density scale, D(λ) = 0 corresponds to a trans-
parent medium, and the values of D(λ) increase loga-
rithmically when the transparency decreases. The
extreme case of an opaque medium leads to an infinite
density D(λ)= ∞.

Diffuse light and diffuse
reflector

The absorption law presented in
the previous section is defined for a
collimated light beam—a beam with
parallel rays that follow the same
path. However, natural light exhibits
a rather diffuse behavior, where rays
don’t have a privileged orientation.
A punctual diffuse source or reflec-
tor emits rays in all directions of
space. A planar source or reflector
emits into all directions of one hemisphere. In this sec-
tion, we analyze the quantitative properties of this last
kind of light emitter.

First let’s recall the definitions of a few radiometric
quantities (see Wyszecki and Stiles,2 p. 2). A surface ele-
ment ds receiving a light flux dφr is under an irradiance
E = dφr/ds. A surface element ds of radiance L emits a
flux φe in a solid angle dω making an angle θ with the
normal to the surface:

(5)

Finally, the intensity I of a light flux φin a solid angle dω
is defined by I = dφ/dω.

The radiance L of a perfect diffuse reflector doesn’t
depend on the angle of observation θ; it’s related to the
irradiance E by the relation L = E/π(see Wyszecki and
Stiles,2 p. 274). Such a reflector is called a Lambert sur-
face (see Wyszecki and Stiles, p. 273).2 Therefore we have

(6)

In the literature (Born and Wolf,3 p. 182), this formu-
la—called Lambert’s cosine law—is often presented in
terms of intensity:

(7)

Equation 7 implies that the indicatrix (locus of the
extremities of the intensity vectors) of such a surface is
a circle (see Figure 2a). We can compute the flux emit-
ted in the direction given by the angle θ by considering

the solid angle dω= 2πsin θ dθ (see Figure 2b). A sur-
face S that receives from the upper hemisphere a total
flux φr = ∫SEds emits a diffuse flux φe whose angular dis-
tribution is given by4

(8)

We’ll use this fundamental result for further calculations.
Now, we can calculate the average absorption A of an

infinitely thin slice of an absorbing medium under dif-
fuse illumination (see Figure 3). From Equation 8 we
know the angular distribution of the diffuse light flux.
Beer’s law gives the absorption in the direction θ, which
equals

Hence we can compute the average absorption A by inte-
grating over all directions:

(9)  
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1 Absorption of
light by an
infinitely thin
layer containing
light absorbing
particles at a
concentration c.
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θ 3 The average absorption of an infinitely thin slice
under diffuse illumination is related to the average path
of the light in the medium. The calculation shows that
the optical density is twice the density observed for a
collimated light beam.



The calculation made in Equation 9 shows that the
optical density under diffuse illumination is twice the
density observed for a collimated light beam. This fun-
damental result gives us a generalization of Beer’s law
for diffuse light:

dφ= −2ε(λ) ⋅ c ⋅ ln(10) φdx (10)

Interface reflection under diffuse light
Before we study the influence of the interface

between media of different refractive index, let’s recall
the basic laws of light reflection. A light beam that hits
a refractive surface with an incidence angle θ is partial-
ly reflected and partially refracted into the other medi-
um (see Figure 4). The reflected beam with the normal
to the surface makes the same angle i1 as the incident
beam, whereas the refracted beam with the normal
makes an angle i2 related to i1 by Snell’s law:

n1 sin (i1) = n2 sin (i2) (11)

where n1 and n2 represent the refractive indices of the
two media. Note that for n1 > n2, there exists a limit
angle i1max = asin (n2/n1) over which the incident beam
reflects totally.

We can calculate the amplitude of the reflected beam
by considering two polarized electromagnetic waves,
one polarized parallel and the other perpendicular to
the plane of incidence. It can be shown (see Born and
Wolf,3 p. 40) that the reflection coefficient ra for the par-
allel polarized wave and the reflection coefficient re for
the perpendicular polarized wave are given by

(12)

where i1 represents the angle of incidence and i2 the
angle of refraction according to Snell’s law (see Equa-
tion 11 and Figure 4). The literature terms these the
Fresnel relations. We use rn1,n2 (i1) to denote the reflec-
tion coefficient of a beam propagating in a medium of
refractive index n1, which has an incidence angle i1 on
the refractive surface delimited by a medium of index
n2. Since we can consider natural light as an equal mix-
ing of both types of waves, its reflection coefficient
equals the mean value of ra and re:

(13)

Let’s now compute an average reflection coefficient

rn1,n2 for diffuse light arriving on a plane refractive sur-
face. As we saw earlier, we can calculate such an average
by integrating over all directions the angular distribu-
tion of diffuse light given by Equation 8 multiplied by
the reflection coefficient of a natural light beam given
by Equation 13:

(14)

Judd5 did this calculation in 1942 for a large number of
refractive indices. A typical result is the particular case of
the surface reflection between air and plastic, where the
refractive index of air is n1 = 1 and the refractive index
of plastic is n2 = 1.5. The computation of Equation 14
leads in this case to r1,1.5 = 0.0919. This value expresses
the average reflection coefficient under perfect diffuse
illumination. The reflection of the diffuse light that cross-
es the refractive surface in the other direction, from plas-
tic to air, is called the internal reflection because the
reflection occurs within the material medium. In this case
the numerical result of the computation is r1.5,1 = 0.596.

Note that for diffuse light, internal reflection values
are always much higher than those for surface reflec-
tion. When the first medium has a higher refractive
index than the second, according to Snell’s law there
exists a limit incidence angle above which light reflects
totally. This total reflection is responsible for the high
values of rn1,n2 when n1 > n2.

Simple reflection model
Assume we print a uniform layer of light-absorbing

ink on paper that behaves like an opaque diffuse reflec-
tor of reflectance Rg. The printed ink behaves like a light-
absorbing filter in optical contact with the paper; this
means no air layer separates ink and paper. To model
this system, we follow the path of the diffuse light flux.
The incident flux first crosses the refractive surface
between air and ink, then travels through the ink layer
where absorption takes place. Since the ink is in optical
contact with the paper, the paper reflects the flux like a
diffuse reflector. The light flux is oriented upwards and
goes through the light-absorbing ink layer a second
time. Finally, it crosses the ink-air interface going from
the ink layer into the air (see Figure 5).

We must take three different processes into account
here: the crossing of the air-ink layer interface, the
absorption of the light in the ink, and the reflection on
the paper. First we’ll consider the flux balance at the air-
ink interface. Only then will we also incorporate the
light absorption in the ink and the reflection on the
paper. We distinguish here between two diffuse light
fluxes: one oriented downwards, denoted i, and the
other oriented upwards, denoted j.

Let’s first consider the flux balance at the air-ink inter-
face (see Figure 6). As the incident light flux i hits the
interface, a fraction rs i is reflected and the remaining
amount (1 − rs)i is transmitted into the ink-layer. Note
that the surface reflectance rs equals the average reflec-
tion coefficient when light goes from the air into the ink-
layer of refractive index n:
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(15)

In the same way, the internal
reflection ri equals the average
reflection coefficient for diffuse
light:

(16)

The upward-oriented flux inside the ink layer, j(X),
hits the interface on the internal side. While the fraction
ri j(X) is internally reflected, the remaining (1 − ri) j(X)
is transmitted to the air. The balance of the fluxes leads
to a set of two linear equations (see Figure 6):

(17)

which we can reorder into a matrix to express i and j,
the fluxes in air, as a function of i(X) and j(X), the flux-
es in the ink layer:

(18)

We call this matrix the interface correction matrix.
Due to the high value of the internal reflection coef-

ficient ri (see the previous section), more than half of
the light flux that has penetrated the ink layer must go
several times back and forth between the interface and
the paper. These multiple internal reflections cause a
nonlinear light absorption. This phenomenon—well
known in the literature (see Color Physics for Indus-
try6)—was studied by Saunderson,7 who proposed a
correcting equation taking it into account. As we’ll see,
we can derive Saunderson’s formula (Equation 27)
using the interface correction matrix.

Now, let’s look at the second process mentioned
above: light absorption in the ink layer. According to the
generalization of Beer’s law for diffuse light (see Equa-
tion 10), the following system of equations determines
the variations of the fluxes i(x) and j(x):

(19)

where K = 2ε(λ) ⋅ c ⋅ ln(10). By abuse of language, K is
called the “absorption coefficient” of the ink under dif-
fuse light, whereas it differs from the absorption by a
factor ln(10). Note that due to the axis’ upward orien-

tation, the first equation of the system in Equation 19
contains no minus sign. The boundary condition on the
bottom of the ink layer is given by the reflectance Rg of
the paper: j(0) = Rg ⋅ i(0), where i(0) and j(0) repre-
sent the intensities of the fluxes i and j at x = 0. For 
reasons that will appear clearly in the next section, we
rewrite Equation 19 in a matrix form:

(20)

This kind of matrix differential equation has a well-
known solution given by the exponential of the matrix.8

Note that the exponential of a matrix M is defined by
the power series:

(21)

Here again, the exponential function plays a central role
in the resolution of the differential equation. Since we
have to perform the integration of Equation 20 between
x = 0 and x = X, the solution is

(22)

The ratio ρ = j(X)/i(X) is called the body (or true)
reflectance of the analyzed sample. It corresponds to an
internal reflection coefficient that doesn’t take multiple
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5 Simple reflection model for an
ink layer of thickness X in optical
contact with the paper. The arrows
represent diffuse light fluxes. This
means that light comes from all
directions of one hemisphere with
an angular distribution correspond-
ing to the one produced by a Lam-
bert surface.
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internal reflections into account—the light crosses the
ink layer only twice. From Equation 22 and the bound-
ary condition j(0) = Rg ⋅ i(0), which represents the
reflection on the paper (the third process mentioned
above), we deduce

ρ = exp(−2KX) ⋅ Rg (23)

However, since real samples are measured in air, we
must take into account the changing refractive index,
which causes multiple internal reflections. Hence we
have to combine Equation 22 with Equation 18 to express
the fluxes i and j in air as linear combinations of the flux-
es i(0) and j(0). We can write the solution as a matrix
product with the boundary condition j(0) = Rg ⋅ i(0):

(24)

Let us denote by t, u, v, and w the elements of the
product matrix:

(25)

These coefficients combined with the boundary condi-
tion j(0) = Rg ⋅ i(0) enable us to calculate the reflection
coefficient R of the analyzed sample. By definition, R
corresponds to the ratio of reemitted to incident light.
Hence, we have

(26)

If we develop the product in Equation 26 alge-
braically, we obtain the well-known Saunderson cor-
rected reflection formula:7

(27)

where ρ represents the body reflection of the sample
defined in Equation 23.

Thanks to Equation 26, we can predict the reflection

spectrum of a purely light-absorbing ink layer printed on
paper. But the most interesting aspect lies in the matrix
form of Equation 24. Instead of using several functions
incorporated within each other, we simply model the ana-
lyzed sample using the product of two matrices. Further-
more, we can easily derive all classical results (body
absorption according to Beer’s law, Saunderson corrected
reflection formula, and so on) from this formulation.

Scattering media
Plastics and pigmented inks don’t just absorb light,

they also scatter it. In 1931 Kubelka and Munk9 pro-
posed a reflection model based on two diffuse light flux-
es in a scattering and absorbing medium, often called
the Kubelka-Munk model or the two-flux model in the
literature. Let’s study a sample made of a scattering and
absorbing medium of known thickness X in optical con-
tact with a substrate behaving as a diffuse reflector of
reflectance Rg (see Figure 7). One flux, denoted i(x), is
oriented downwards and the second one, denoted j(x),
is oriented upwards.

Let’s analyze the variation of these fluxes when they
cross a layer of infinitesimal thickness dx. Once again,
the x axis is oriented upwards, and the origin lies at the
top of the substrate. Let K represent the absorption coef-
ficient as defined in the previous section and S the scat-
tering coefficient corresponding to the fraction of the
light flux scattered backwards.

We first analyze the variation of j(x) when it crosses
the layer. According to Beer’s law, this reduces the flux
j(x) by an amount Kj(x)dx, and the back scattering
reduces the flux by an amount Sj(x)dx. The back-
scattered radiation will increase the flux i(x). In the
same way, the flux j(x) receives the light back scattered
when i(x) crosses the same layer. Putting these elements
together leads to the following equation:

(28)

The same analysis performed for the flux i leads to a 
similar relation (notice the orientation of the axis):

(29)

Together, Equations 28 and 29 provide a system of lin-
ear differential equations we can write in matrix form:

(30)

We can easily integrate this kind of differential equa-
tion between x = 0 and x = X. The solution is given 
by the exponential8 of the matrix in Equation 30:

  

di x

dx

dj x

dx

K S S
S K S

i x
j x

( )

( )
( )

( )
( )























= + −
− +









⋅











di x

dx
K S i x Sj x

( )
( ) ( ) ( )= + −

dj x

dx
K S j x Si x

( )
( ) ( ) ( )= − + +

  
R

j

i
r

r r

r
s

s i

i
= = + − ⋅ − ⋅

−
( ) ( )1 1

1

ρ
ρ

 
R

j

i

t R u

v R w
g

g
= = + ⋅

+ ⋅

  

i
j

t u
v w

i
j









 =









⋅











( )
( )
0
0

  

i
j

r

r

r
r

r
r

r r

r

K
K

X i
j

s

i

s

s

s
i

i s

s









 =

−
−
−

−
− −

−




























⋅
−









 −







⋅










1

1 1

1
1

1

0
0

0 0
0

exp ( ) ( )
( )

Color

58 July/August 1999

X

dx
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Substrate of reflectance Rg

7 A scattering medium of thickness
X in optical contact with a substrate
of reflectance Rg. This medium is
divided into parallel layers of infini-
tesimal thickness dx. We consider
two fluxes: i(x) oriented down-
wards and j(x) oriented upwards.



(31)

where i(0) and j(0) represent the fluxes at the top of the
substrate, related to each other by the reflectance of the
substrate Rg: j(0) = Rg ⋅ i(0). The fluxes i(X) and j(X)
correspond respectively to the downward and upward
light flux at the top of the scattering layer. We call the
matrix in Equation 31 the Kubelka-Munk matrix. Note
that for S = 0 (no scattering), we have the same result
as in Equation 22. By developing Equation 31 with the
boundary condition j(0) = Rg ⋅ i(0), we deduce the body
reflectance ρ = j(X)/i(X) of the sample. We can derive
all remarkable results of the Kubelka-Munk theory—
listed in the literature10—from the expression of the
body reflectance through algebraic manipulations (see
Emmel,11 pp. 55-58).

Since the refractive index of the layer differs from that
of air, we have to take this change into account by using
the interface correction matrix (see Equation 18). The
following relation expresses i and j in air as linear 
combinations of i(0) and j(0):

(32)

We denote the elements of the product matrix by
t, u, v, and w. These coefficients and the boundary con-
dition j(0) = Rg ⋅ i(0) permit calculating the reflection
coefficient R:

(33)

This final equation allows computing the reflection
spectrum of a light-absorbing and light-scattering ink
layer printed on a substrate (in our case, paper) of known
reflectance Rg. Once again, the interesting aspect of this
study lies in the matrix formulation of Equation 32,
which gives a better overview of the modeled system.

This model can also account for the light-scattering
phenomenon fluorescence. Note that fluorescence intro-
duces a dependence between different wavelengths,
which implies the use of larger matrices, but the gener-
al framework remains unchanged. You’ll find the corre-
sponding mathematical development in our previous
work.12,13

Multiple layers
Some surfaces consist of several superposed layers in

optical contact. For example, in color printing the color
blue results from superposing a magenta ink layer and
a cyan ink layer. The various elements we have seen to

this point also let us solve the prediction problem for
such materials. We can model each additional layer by
the product of two matrices: an interface correction
matrix and a Kubelka-Munk matrix.

Consider a color print made of p superposed ink lay-
ers. We can model this sample with the product of 2p
matrices. Starting from the paper (substrate) where we
have the boundary condition j(0) = Rg ⋅ i(0), we alter-
nately multiply the (i(0), j(0)) vector by a Kubelka-Munk
matrix MK and by an interface correction matrix CK:

(34)

where

(35)

Kk and Sk respectively represent the absorption and scat-
tering coefficients of layer k, and Xk the thickness of the
layer. Since Ck is an interface correction between the
media of layers k and k+1 (layer k+1 being on top of
layer k), the surface reflection coefficient rs,k and the
internal reflection coefficient ri,k are given by

(36)

where nk represents the refractive index of layer k. Note
that for two successive layers with the same refractive
index, the interface correction matrix equals the iden-
tity matrix.

Finally, we compute the reflection coefficient R of a
multilayer color print by using Equation 33 and intro-
ducing the resulting values of t, u, v, and w computed
from Equation 34.

Conclusion
Our new mathematical framework for color predic-

tion models permits integrating traditional color pre-
diction models (Beer’s absorption law, the Fresnel
reflection, the Saunderson correction for multiple inter-
nal reflections, and the Kubelka-Munk model for scat-
tering media). Consequently, these traditional models
no longer exist as separate subjects applying to differ-
ent situations, but as various particular cases of the same
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unified model. Since the mathematical expressions
resulting from our approach contain only the exponen-
tial function, they are much simpler than traditional
equations—particularly the Kubelka-Munk equations,
whose original expressions include hyperbolic func-
tions. The matrix notation also allows clear and easy
modeling of multilayer samples. 

This new model makes it easy to compute the reflec-
tion spectra of printed samples made of uniform ink lay-
ers, since the problem reduces to matrix products and
exponential functions. The model assumes ideal condi-
tions: perfect diffuse reflector, uniform layers, and pla-
nar interfaces. It doesn’t take into account particularities
such as the violation of Beer’s law. But in close to ideal
conditions using high-quality paper and soluble dye
inks, we’ve achieved accurate spectral color predictions.
Using an extended version of this model, in a previous
study13 we predicted the spectra of fluorescent samples
with an average prediction error of ∆E = 2.3 in CIELAB.
Furthermore, we computed the spectra of multilayer
systems made of superposed Wratten filters on top of a
white reflector with high accuracy (see Emmel,11 pp. 79-
80); all elements were in optical contact.

Our model is general and can serve for other appli-
cations, including plastics, ceramics, paints, and so
forth. Future work will extend this model to halftoned
samples, where the halftoning method and light scat-
tering in paper play a major role in the synthesis of the
resulting color. ■
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