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We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing
particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws
of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its
absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose
reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration.
The reflectance of an infinite particle medium is derived from a description of multiple reflections and trans-
missions between many superposed particle sublayers. When the binder has a refractive index different from
that of air, the medium’s reflectance factor accounts for the multiple reflections occurring beneath the
air–binder interface as well as for the measuring geometry. The influences of various parameters, such as the
refractive indices and the particle absorption coefficient, are examined. © 2008 Optical Society of America

OCIS codes: 080.0080, 080.2710, 080.2720, 160.2710, 290.4210, 290.5850.
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. INTRODUCTION
any opaque objects are composed of a homogeneous me-

ium in which particles of a distinct refractive index are
esponsible for the scattering of light. The prediction of
heir color requires establishing the relationship between
heir reflectance spectrum and the physical properties of
heir constituting elements. Once every significant
arameter of the model has been determined, the spectral
eflectance of the objects can be predicted given the
onditions of observation and illumination.

The reflectance of a thick particle medium depends on
he optical properties of the binder as well as the optical
roperties, size, shape, relative locations, and concentra-
ion of the particles. This high number of relevant param-
ters gives rise to a large number of models, which are
artitioned into the categories of single and multiple scat-
ering models. The first ones focus on the interaction of
ight with a single particle. They enable the complete de-
cription of diffusion in particle media of weak concentra-
ion. When the particle concentration is higher, multiple
cattering models describe the succession of events under-
one by the incident light. They embed parameters repre-
enting averaged physical phenomena, e.g., backscatter-
ng and absorption, which are either determined by

easurement or related to parameters issued from single
cattering models.

Mie’s theory describes the scattering of waves by a
ingle particle with a simple shape, e.g., a sphere, for any
article size [1,2]. However, as the particle size becomes
uch larger than the wavelength of light, the incident
ave is modeled as a collection of light rays, and Mie’s
odel evolves toward a model of geometrical optics. Scat-
1084-7529/08/071521-14/$15.00 © 2
ering involves two types of light rays: Those that hit the
article, which are subject to reflections, refractions,
nd/or absorption according to the laws of geometrical op-
ics and those that pass very close to the particle and are
iffracted [3]. At a large particle size, diffraction becomes
nsignificant since it represents a small quantity of light,
roportional to the particle radius, compared to the quan-
ity of light hitting the particle, proportional to the square
f the particle radius.

In most multiple scattering models, the particle me-
ium is assumed to be homogeneous with a random lay-
ut of the particles. According to a first approach, quali-
ed as the continuous modelization, an infinitesimal
olume element is selected within the homogeneous scat-
ering medium, and the flux variations are described by
quations. The radiative transfer equation provides an
rientational description of the flux variations for every
ncoming and outgoing direction [4]. Various methods
ave been proposed to solve this integrodifferential equa-
ion [5,6], but their computation is tedious and time con-
uming. In the so-called “N-flux models” [7], the flux
ariations are described for a set of N equal solid angles
lling the space by a system of N differential equations.
n the case of very densely populated media, only two
olid angles are considered, i.e., the upper and the lower
emispheres [8] and a system of two differential equa-
ions describes the variations of two opposite diffuse
uxes propagating upward and downward. This continu-
us two-flux model is known as the Kubelka–Munk model
9,10]. Its differential equation system has analytical so-
utions giving closed-form expressions for the reflectance
nd the transmittance of a thick particle layer [10,11].
008 Optical Society of America
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owever, because the flux variations are described at the
nfinitesimal scale, the continuous models are not directly
ompatible with a single scattering model, where scatter-
ng is described at the noninfinitesimal scale of a particle.
s an alternative, multiple scattering can be modeled
ithin a volume element or sublayer having approxi-
ately the average size of the particle (“particle volume

lement” or “particle sublayer”). Corresponding models
re qualified as discrete models. A discrete two-flux model
escribes the multiple scattering in terms of multiple re-
ections and transmissions between superposed sublay-
rs. Classical formulations have been proposed by Stokes
12], Kubelka [13], and Kortüm [14]. Recent contributions
erive an equivalent formulation on the basis of random
alks or Markov chains [15–17]. Both the continuous and

he discrete two-flux models rely on the same assumption,
.e., a sufficiently high degree of scattering to ensure the
niform angular distribution of the diffuse light.
The first reflectance models for particle media explicitly

ncluding a modelization of single scattering by large par-
icles were proposed by Stokes [12] and Bodo [18]. The re-
ectance of the particle medium was developed according
o the discrete two-flux model with the particle sublayer
eflectance and transmittance derived from the single
cattering model. On the same basis, Melamed [19] in
963 presented a model for powders and pigments, later
efined by Mandelis et al. [20] and recently extended by
aray et al. [21] to the case of nonspherical particles.
elamed’s major contribution concerns the modelization

f the particle sublayer reflectance and transmittance.
he incident flux, assumed to be diffused after its first
enetration into particles, is subject to multiple events of
eflection, transmission, and/or absorption inside each
article. The total outgoing flux is calculated and then de-
omposed into backward, forward, and sideward compo-
ents. These three components are combined to give the
eflectance and the transmittance of a particle sublayer.
ue to the sideward component, an attempt is made for
odeling lateral scattering within the particle medium.

n the calculation of the outgoing flux, the events of re-
ection, transmission, and absorption are represented by
veraged attenuation factors, implicitly assuming that
one of these events modifies the Lambertian angular dis-
ribution of light. This approximation is suitable for the
ase of nonideal particles, e.g., with random shapes or
ough interfaces, but it fails when particles are spherical
nd smooth because of the angle-dependence of Fresnel’s
oefficients and of Beer’s attenuation law. During the past
ecade, Shkuratov and coworkers [22,23] proposed a
lightly different model in the domain of astrophysics to
nterpret the scattering of light by regolithic media on lu-
ar and planetary surfaces. Like Melamed, Shkuratov et
l. derived the total flux scattered by a single particle
rom a description of multiple reflections, transmissions,
nd absorptions of Lambertian light. Afterward the total
cattered flux is decomposed into a backward component
nd a forward component. These two components are cal-
ulated according to the following simple model: The rays
eflected on the exterior side of the particle are considered
s backscattered when they form an acute angle with the
ncident ray; their contribution to the backward compo-
ent, given by Fresnel’s reflectivity, takes into account the
ay orientation. The rays crossing the particle without in-
ernal reflection are assumed to be scattered forward, and
he rays undergoing internal reflections within the par-
icle are assumed to equally contribute to the forward and
ackward components. Due to its simplicity, this model
oes not render well the influence of the particle refrac-
ive index and the absorption-dependence of the back-
ard component (see Section 9).
To account for the particle concentration into the par-

icle medium, a “shadowing ratio” is introduced that cor-
esponds to the average probability for the diffuse inci-
ent light to strike a particle. Thus, the particle sublayer
eflectance and transmittance are combinations of the
article backward and forward components and of this
hadowing ratio. The global reflectance of the particle me-
ium is derived from the particle sublayer reflectance and
ransmittance according to the classical discrete two-flux
odel.
The model we propose relies on the lines of thought of

he model of Shkuratov et al., but with the intent to more
igorously apply the laws of geometrical optics with re-
pect to the ray orientations. We introduce a 3D-vector
odel giving both the direction and the attenuation of the

cattered rays depending on their orientation and their
itting position on the particle. The backward and for-
ard components of the scattered flux are combined to-
ether with the shadowing ratio of Shkuratov et al. to
ive the reflectance and the transmittance of a particle
ublayer. Then, using the classical discrete two-flux model
ith the particle sublayer reflectance and transmittance,
e determine the reflectance of a semi-infinite particle
edium. When the particle medium is observed from a
edium different from the binder, e.g., air, we have mul-

iple reflections beneath the air–binder interface. We give
he reflectance factor of the interfaced particle medium
ccording to the observation geometry.
This paper is structured as follows. We first recall basic

otions of geometrical optics in Section 2. The 3D-vector
odel is presented in Section 3. It is used to determine

he total scattering (Section 4) and the backscattering
Section 5) of diffuse light by a single particle. The reflec-
ance and transmittance of a particle sublayer are pre-
ented in Section 6. The discrete two-flux model is used in
ection 7 to obtain the reflectance of an infinite particle
edium. The reflectance factor accounting for the binder-

ir interface is given in Section 8. In Section 9, we develop
lements of comparison between the model of Shkuratov
t al. and the present model. Conclusions are drawn in
ection 10.

. LAWS OF GEOMETRICAL OPTICS
medium is perfectly clear when it is homogeneous, iso-

ropic, nonscattering, and nonabsorbing. It is character-
zed by its refractive index having a real value. A trans-
arent medium is nonscattering but absorbing. It is
haracterized by its wavelength-dependent complex re-
ractive index n̂���=n����1+ i�����, where n��� is the real
efractive index and ���� is the attenuation index [[2], p.
19]. The attenuation index characterizes the attenuation
f light by the medium, i.e., its absorption. It is related to
he linear absorption coefficient ���� [[2], p. 219]
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���� =
4�n�������

�
. �1�

ccording to Beer’s law [[2], p. 219], the light traversing a
ath of length d in a medium with absorption coefficient
��� is attenuated by the wavelength-dependent factor

t��� = e−����d. �2�

light ray striking a smooth interface between two media
and j, having distinct complex refractive indices n̂i and

ˆ j, is reflected and refracted. According to Snell’s laws, the
ncident, reflected, and transmitted light rays belong to a
ame plane, called the plane of incidence, which also con-
ains the normal of the interface at the point of impact of
he incident light ray. The incident angle and the reflec-
ion angle are equal. The refraction angle �j in medium j
s related to the incident angle �i in medium i according to

ni sin �i = nj sin �j. �3�

he flux fractions being reflected and refracted are given
y Fresnel’s formulas. They depend on the complex re-
ractive indices of the two media as well as the angle and
he polarization of the incident light. In contrast to metals
hose attenuation index is high, transparent media have
very low attenuation coefficient. The absorption occurs

n the transparent medium volume but not at its inter-
ace; the Fresnel coefficients can thus be approximated to
epend only on the real refractive indices. Concerning po-
arization, superscripts s and p denote the electric fields
eing, respectively, perpendicular and parallel to the
ncidence plane. The reflectivity of the interface between

edia i and j, with parallel polarized illumination from
edium i at angle �i, is

Rij
p��i� =

tan2��i − �j�

tan2��i + �j�
�4�

nd its transmittivity is

Tij
p��i� = 1 − Rij

p��i�. �5�

he reflectivity for identical illumination with a perpen-
icular polarization is

Rij
s ��i� =

sin2��i − �j�

sin2��i + �j�
�6�

nd its transmittivity is

Tij
s ��i� = 1 − Rij

s ��i�. �7�

n the following sections, we consider natural incident
ight, i.e., incoherent and unpolarized incident light de-
oted by superscript u. Natural incident light is modeled
y two components for parallel and for perpendicular po-
arization [2]. The two components have equal amplitude
nd are reflected and/or transmitted, possibly multiple
imes, independently of each other. The different reflec-
ions and transmissions of the parallel and perpendicular
omponents are quantified by the reflectivities and trans-
ittivities given by Eqs. (4) and (5) and by Eqs. (6) and

7), respectively. An observer perceives the average of the
wo polarization components. For natural light reflected
y a single interface, the corresponding reflectivity is
Rij
u��i� = 1

2 �Rij
s ��i� + Rij

p��i��. �8�

o simplify the notation of the following equations, polar-
zation is not specified. Reflectivities and transmittivities
re simply noted as Rij��� and Tij���.
When angles �j and �i are related according to Eq. (3),

e have

Tji��j� = Tij��i� �9�

nd therefore

Rji��j� = Rij��i�. �10�

f nj�ni, the light rays incident from medium j at an
ngle �j higher than the critical angle arcsin�ni /nj� are
otally reflected. Therefore, in that case

Rji��j� = 1,

nd

Tji��j� = 0. �11�

he reflectance of a flat interface illuminated by
ambertian light is called diffuse reflectance. For an

llumination from medium i, it is derived from Fresnel’s
eflectivity according to [24]

rij =�
�i=0

�/2

Rij��i�sin 2�id�i. �12�

ince the energy is conserved at the interface, 1−rij cor-
esponds to the diffuse transmittance of the interface for
n illumination from medium i

tij = 1 − rij. �13�

hen the interface is illuminated from medium j, its dif-
use reflectance and transmittance are noted as rji and tji,
espectively. Transmittances tij and tji are related accord-
ng to [25]

tji = �ni/nj�2tij. �14�

rom Eqs. (13) and (14), we obtain the relation between
he diffuse reflectances rji and rij

1 − rji = �ni/nj�2�1 − rij�. �15�

. DIFFUSE ILLUMINATION OF A
PHERICAL PARTICLE
spherical particle illuminated with Lambertian light

eceives a collection of light rays that are reflected and
efracted at the particle surface. The direction and the
roportion of reflection and refraction for each incident
ay depend on their orientation in space and striking po-
ition on the particle. To precisely specify the orientation
nd the striking position of rays, we introduce a 3D-vector
odel. This model combined with the rules of radiometry

ives the flux received by the particle as well as the flux
eflected at its surface.

. Three-Dimensional-Vector Model
he Lambertian incident light comes from the upper
emisphere. It is composed of light rays whose direction is
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pecified by a unit vector L oriented “upward,” i.e., within
he upper hemisphere. The propagation direction is speci-
ed by the opposite unit vector −L. In the classical
artesian coordinates system �x ,y ,z�, the coordinates of
ector L are

L = �
sin � cos �

sin � sin �

cos �
�

ith 0	�	� /2 and 0	�	2� (Fig. 1). However, due to
he azimuthal isotropy of spheres, we may only consider
ight rays whose direction L belongs to the xz plane
�=0�

L = �
sin �

0

cos �
� . �16�

ight rays oriented according to vector L illuminate a
alf-sphere inclined according to vector L (Fig. 1). The
oint where a given L directed ray hits the particle is
pecified by a unit vector G characterized by angles
�1 ,�1� in respect to L. Since G coincides with the normal
f the particle surface at the illumination point, angle �1
ormed by G and L is the ray’s local incident angle
0	�1	� /2�. Angle �1 is the angle between G and the xz
lane �0	�1	2��. We consider a new orthogonal coordi-
ate system �x� ,y� ,z��, where the z�axis corresponds to
ector L and the y� axis is identical to the y axis. In this
oordinate system, vector G has the coordinates

G� = �
sin �1 cos �1

sin �1 sin �1

cos �1
� , �17�

nd vector L has the coordinates

dA

x

x

x'

y

z

z
z'

L

L G

G

φ1

ψ

θ1
θ1

Light rays oriented

according to L

ig. 1. Light ray coming from direction L hitting a surface
lement dA located according to vector G. The bold half-sphere
epresents the area illuminated by the L directed light rays.
L� = �
0

0

1
� . �18�

o obtain the classical �x ,y ,z� coordinates of G, we apply
o the �x� ,y� ,z�� coordinates a rotation of angle −� around
he y axis

G = �
cos � 0 sin �

0 1 0

− sin � 0 cos �
��

sin �1 cos �1

sin �1 sin �1

cos �1
�

= �
cos � sin �1 cos �1 + sin � cos �1

sin �1 sin �1

cos � cos �1 − sin � sin �1 cos �1
� , �19�

here the 3
3 matrix characterizes the rotation [26]. As
xpected, the dot product L ·G gives the cosine of the local
ncident angle �1.

. Diffuse Incident Flux
et us consider a Lambertian light source of irradiance
i. We calculate the corresponding flux �i received by the
article. Every light ray striking the particle corresponds
o a same radiance Li=Ei /� and therefore to a flux
lement [27]

d2�i�L,G� =
Ei

�
dA cos �1d�, �20�

here dA=r2 sin �1d�1d�1 is the elementary surface
lluminated by the light ray, r is the particle radius, and
�=sin �d�d� is the infinitesimal solid angle containing
adiance Li. Therefore,

d2�i�L,G� =
Ei

�
r2 cos �1 sin �1d�1d�1 sin �d�d�. �21�

he set of L directed light rays illuminating the particle
orms a flux element d�i�L�. It is the sum of all flux ele-

ents d2�i�L ,G� for 0	�1	� /2 and 0	�1	2�. Then,
umming up the flux elements d�i�L� over the upper
emisphere, i.e., for 0	�	� /2 and 0	�	2�, we obtain
he total flux �i received by the particle

�i = r2
Ei

�
�

�=0

2� �
�=0

�/2 ��
�1=0

2� �
�1=0

�/2

cos �1 sin �1d�1d�1�

sin �d�d� = 2�r2Ei. �22�

. External Reflectance
et us now calculate the fraction of Lambertian incident

ight that is reflected by the particle having a refractive
ndex n2 and being surrounded by a medium of refractive
ndex n1. According to Fresnel’s formulas, a fraction

12��1� of each incident flux element d2�i�L ,G� is subject
o reflection. Therefore, the total flux �r reflected by the
article is



A

T
t
r

T
i

4
P
A
b
t
t
T
t
s
d

A
A
m
e
d
s
p
S
r
l
s
c
d

e
e
d
m
t
t
d
l
a

T
f
t

e
f

R
a
c

B
T
L
s
p
v
t
v
p
d
E
f

F
E

F
e
r
t

Simonot et al. Vol. 25, No. 7 /July 2008 /J. Opt. Soc. Am. A 1525
�r = r2
Ei

�
�

�=0

2� �
�=0

�/2 ��
�1=0

2� �
�1=0

�/2

R12��1�


cos �1 sin �1d�1d�1�sin �d�d�. �23�

fter simplification of Eq. (23), the reflected flux becomes

�r = 2�r2Ei�
�1=0

�/2

R12��1�sin 2�1d�1. �24�

he ratio �r /�i corresponds to the diffuse external reflec-
ance of the particle r12 that is identical to the diffuse
eflectance of a flat interface given in Eq. (12)

r12 =�
�1=0

�/2

R12��1�sin 2�1d�1. �25�

he same expression for the reflectance of a spherical
nterface was derived by Bohren and Huffman [28].

. SCATTERING OF LIGHT BY A SINGLE
ARTICLE
ccording to the ray-optics model, the scattering of light
y a transparent particle is described in terms of ray mul-
iple reflections and transmissions. Reflections occur at
he exterior and interior sides of the particle interface.
ransmissions occur through the particle interface and
hrough the particle medium with attenuation due to ab-
orption. Let us first consider the case of directional inci-
ent light and then the case of Lambertian incident light.

. Directional Nonabsorbance
spherical particle of diameter d is surrounded by a clear
edium 1 of refractive index n1. It is made of a transpar-

nt medium 2 whose wavelength-dependent refractive in-
ex is n2����n1��� and whose wavelength-dependent ab-
orption coefficient is ����. When a light ray strikes the
article surface, it is reflected and refracted according to
nell’s laws. The incident ray, the reflected ray, and the
efracted ray as well as the particle surface normal all be-
ong to the plane of incidence. Since the particle is a
phere, the surface normal passes through the particle
enter whatever the incident angle, and the plane of inci-
ence is an equatorial plane of the particle.
Let us call �1 the local incident angle of the ray on the

xterior surface of the particle. The reflection angle is
qual to �1. The refraction angle inside the particle, �2, is
educed from Eq. (3). The refracted light ray is subject to
ultiple reflections within the particle, all occurring in

he plane of incidence with a same angle �2 (Fig. 2). Be-
ween two internal reflections, the ray travels a distance
cos �2 and is attenuated by a factor t according to Beer’s

aw [Eq. (2)]. This attenuation factor may be expressed as
function of �1 according to Eq. (3)

t��1� = e−�d cos �2 = e−�d�1−�n1 sin �1/n2�2
. �26�

he directional nonabsorbance of the particle, FS, is the
raction of the incident element of flux that exits the par-
icle without being absorbed. It is the sum of the different
xiting components featured in Fig. 2 expressed as the
ollowing geometric series:

FS��1� = R12��1� + T12��1�T21��2�t��1�	
k=0




R21��2�t��1��k.

�27�

educing the geometric series and using Eqs. (5) or (7)
nd Eq. (9), the directional nonabsorbance of the spheri-
al particle becomes

FS��1� = R12��1� +
�1 − R12��1��2t��1�

1 − R12��1�t��1�
. �28�

. Diffuse Nonabsorbance
he diffuse nonabsorbance corresponds to the fraction of
ambertian incident flux �i that is scattered, i.e., not ab-
orbed, by the particle. The total flux �i received by the
article is given by Eq. (22). Let us again use the 3D-
ector model developed in Section 3 to calculate the scat-
ered flux �S. Every incident light ray is specified by a
ector L for its direction and by a vector G for its hitting
osition on the particle. It corresponds to a flux element
2�i�L ,G� given by Eq. (20). A fraction FS��1� given by
q. (28) is scattered, where �1 is the angle of incidence,

ormed by L and G. The corresponding scattered flux is

d2�S�L,G� = FS��1�d2�i�L,G�. �29�

ollowing the same reasoning line as in Section 2 from
qs. (20)–(22), the total scattered flux � is

θ(3)

θ(2)

θ(1)

θ1
θ1

θ2θ2

θ2

θ1

θ2

θ1

L G

L1

−L

L2

−L

L3

n1
n2

T12(θ1)T21(θ2)t(θ1)

T12(θ1)T21(θ2)
×R21(θ2)t(θ1)

R12(θ1)

Incident ray

ig. 2. Multiple reflection of light within a spherical transpar-
nt particle of refractive index n2 surrounded by a medium of
efractive index n1�n2. All light rays belong to a same plane
hrough the center of the particle.
S
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�S = r2
Ei

�
�

�=0

2� �
�=0

�/2�
�1=0

2� �
�1=0

�/2

FS��1�cos �1 sin �1


sin �d�1d�1d�d�

= 2�r2Ei�
�1=0

�/2

FS��1�sin 2�1d�1. �30�

he particle diffuse nonabsorbance fS is given by the ratio
f scattered flux �S to incident flux �i

fS =�
�1=0

�/2

FS��1�sin 2�1d�1, �31�

hich becomes, according to the expanded expression (28)
f directional reflectance and the defining equation (25) of
12

fS = r12 +�
�1=0

�/2 �1 − R12��1��2t��1�

1 − R12��1�t��1�
sin 2�1d�1. �32�

he term �1− fS� corresponds to the particle’s diffuse ab-
orbance. Its expression derived from Eq. (31) is equiva-
ent to the one derived by Mayer and Madronich [29] for
ater droplets. In the case of perfectly clear particles

�=0� there is no absorption, and all the incident light is
cattered, i.e., t��1�=1 and fS=1.

. BACKSCATTERING BY A SINGLE
ARTICLE
he reflection of light by a thick particle medium is due to
combination of single scattering by each particle and of
ultiple scattering between neighboring particles. As a
rst step for describing multiple scattering, we introduce
n extension of the model presented in Section 4, where
nly the light rays propagated into the upper hemisphere
re accounted for. The corresponding fraction of incident
ight is called the backward component, noted as rS. It

ay be expressed as a function of the particle nonabsor-
ance fs

rS = xfS, �33�

here x is called the backscattering ratio. The forward
omponent tS corresponds to the fraction of light scattered
orward

tS = fS − rS = �1 − x�fS. �34�

. Backscattered Light Rays
et us consider an incident light ray characterized by its
irection vector L and its position vector G. We call LN
he exit direction of the Nth scattered rays, with
=1,2,3, . . .. The angle from −L to LN is called ��N�. We

an deduce from Fig. 2 that

��1� = � − 2�1, �35�

nd the recursive formula
��N� − ��N−1� = 2�2 − �, N � 1, �36�

here �2=arcsin�n1 sin �1 /n2� is the refraction angle of
he light ray into the particle. We finally obtain the
eneral expression for N�1 [2,30]

��N� = 2�N − 1��2 − 2�1 − �N − 2�� mod�2��. �37�

ectors L, −L, G, and LN �N�1� all belong to the plane of
ncidence. For every N�1, LN is the vector issued from
L by a rotation of angle ��N� in the incidence plane. The
otation is carried out counterclockwise for positive
ngles around the incidence plane normal specified by the
nit vector

I =
G 
 L

�G 
 L�
= �

cos � sin �1

− cos �1

− sin � sin �1
� .

he rotation according to axis I and of angle ��N� applied
o vector −L is given by the vector rotation formula [26]

LN = cos ��N��− L� + sin ��N�I 
 �− L�, N � 1,

hich yields the following Cartesian coordinates for the
ectors LN:

LN = �
− cos ��N� sin � + sin ��N� cos � cos �1

sin ��N� sin �1

− cos ��N� cos � − sin ��N� sin � cos �1
�, N � 1.

he third component of LN corresponds to the cosine of
ngle ��N�, formed by the Nth scattered ray in respect to
he vertical direction

cos ��N� = − �cos ��N� cos � + sin ��N� sin � cos �1�, N � 1.

�38�

he backscattered flux is formed by the scattered rays
hose vector LN is directed into the upper hemisphere,

.e., cos ��N��0. To select among all the scattered rays
hose that are scattered into the upper hemisphere, we
ntroduce the following function:

H�cos ��N�� = 1 if cos ��N� � 0

0 otherwise
. �39�

. Nth Backscattered Flux
very incident light ray corresponds to a light flux
2�i�L ,G� expressed by Eq. (20). Due to the multiple re-
ections occurring within the particle, it is decomposed

nto an infinity of scattered flux components d2�N�L ,G�,
N=1,2,3. . . �, each one being a fraction FN��1� of the
ncident flux element d2�i�L ,G�. For N=1, F1��1�
orresponds to the Fresnel reflectivity of the exterior par-
icle surface

F1��1� = R12��1�. �40�

or N�2, the path followed by the Nth scattered ray in-
ludes a refraction into the particle with a Fresnel trans-
ittivity T12��1�, �N−1� travels within the particle with

ttenuation t��1�, �N−2� internal reflections with Fresnel
ransmittivity R �� �=R �� �, and a refraction out of the
21 2 12 1
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article with Fresnel transmittivity T21��2�=T12��1�. The
otal attenuation is therefore

FN��1� = T12
2 ��1�R12

N−2��1�tN−1��1�. �41�

e call the Nth backscattered flux, �N, the sum of the
th scattered flux elements directed into the upper hemi-

phere for all L and G. Let us sum up the flux elements
�cos ��N��d2�N�L ,G� in the same manner as in Section 2

or Eqs. (20)–(22). Due to the azimuthal isotropy of the
ystem, the integrated term does not depend on the
zimuthal angle �, and the integral according to angle �
ields a factor 2�. We obtain

�N = r2Ei�
�=0

�/2�
�1=0

2� �
�1=0

�/2

H�cos ��N��FN��1�sin 2�1


sin �d�1d�1d�. �42�

. Backward Component
he ratio of the Nth backscattered flux �N given by Eq.

42) to the incident flux �i given by Eq. (22) is called rN

rN = �N/�i, �43�

nd the backward component rS is the sum of the rN

rS = 	
N=1



rN. �44�

ince the contribution of the fourth and following scat-
ered rays is low compared to the one of the three first
cattered rays, we may simplify rS by grouping the fourth
nd following rays into a single term r4+. Equation (44)
ecomes

rS = r1 + r2 + r3 + r4+. �45�

urthermore, we consider that the fourth and following
cattered rays equally contribute on average to the back-
cattered and forward fluxes. Thus, the backscattered flux
s half the total scattered flux �4+. Flux �4+ is derived
rom a geometric series similar to Eq. (27) with omissions
f the first scattered ray (specular reflection), the second
cattered ray (exponent k=0 in the infinite sum), and the
hird scattered ray (exponent k=1 in the infinite sum) by
n angular integration similar to Eq. (30)

�4+ = r2
Ei

�
�

�=0

2� �
�=0

�/2 ��
�1=0

2� �
�1=0

�/2

�T12��1�T21��2�t��1�


	
k=2




R21��2�t��1��k�cos �1 sin �1d�1d�1�sin �d�d�.

�46�

he reduction of the geometrical series and of the inte-
rals yields

�4+ = 2�r2Ei�
�1=0

�/2 T12
2 ��1�R12

2 ��1�t3��1�

1 − R12��1�t��1�
sin 2�1d�1.

�47�

hen, the term r is given by
4+
r4+ =
1

2

�4+

�i
=

1

2�
�1=0

�/2 T12
2 ��1�R12

2 ��1�t3��1�

1 − R12��1�t��1�
sin 2�1d�1.

�48�

. Numerical Evaluations
igure 3 shows the evolution of the terms r1, r2, r3, r4+,
nd backward component rS as functions of the diametri-
al absorbance �d of the particle for a relative refractive
ndex n2 /n1=1.5. The term r1 represents the external re-
ection on the particle and is independent of the particle
bsorbance. Its expression is given by inserting Eq. (40)
nto Eqs. (42) and (43)

r1 =
1

2�
�

�=0

�/2�
�1=0

2� �
�1=0

�/2

H�cos ��1��R12��1�sin 2�1


sin �d�1d�1d� �49�

ith ��1�=cos�2�1�cos �−sin�2�1�sin � cos �1 obtained
rom Eqs. (37) and (38).

Terms r2, r3, r4+, and thereby rS decrease as the par-
icle absorbance increases. For highly absorbing particles,
ince light is almost completely absorbed during its first
ravel within the particle, terms r2, r3, and r4+ are close to
ero, and rS is close to r1. As expected, the contribution of
he fourth and following scattered rays, r4+, is very low
ompared to the contribution of the first three scattered
ays, but it is important to include it in the calculation of
S to ensure the conservation of energy. Omitting the
ourth and following ray contribution r4+ represents in
he case of multiple scattering a loss of energy compa-
able to absorption. Even though for a single particle the
nduced error is small, it is exponentially increased when

odeling multiple scattering between several particles.
The backward component, rS, the particle nonabsor-

ance, fS, and the backscattering ratio, x, are plotted in
ig. 4 as functions of the particle’s diametrical absorbance
d for a relative refractive index n2 /n1=1.5. In the case of
highly absorbing particle, only the reflection outside the
article yields relevant scattering, and fS and rS become
ndependent of the particle absorbance. The backscatter-
ng ratio x slightly increases with the particle absorbance.

20 4 6 8 αd

0.1

0.2

0.25

0.05

0.15
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ig. 3. Evolution of r1, r2, r3, r4+, and rS as functions of diametri-
al absorbance.



I
t
t
f

6
A
p
m
b
i
n
w
t
b
o
t
p
i
s

w
T
t
t
t

T
t
t
t
o
t

b
b
w
l
b
l
b
t
t

I
s
d
i
a
a
u

T
t
e
i
i
t
r

a

7
A
d
e
e
r

F
b
a

F
m

1528 J. Opt. Soc. Am. A/Vol. 25, No. 7 /July 2008 Simonot et al.
t strongly depends on the binder-particle relative refrac-
ive index n2 /n1 as shown in Fig. 5. A high relative refrac-
ive index increases Fresnel’s reflectivities and therefore
avors the backscattering.

. PARTICLE SUBLAYER
s a first step for considering several particles within the
article medium, we select a thin sublayer containing al-
ost coplanar particles called the particle sublayer. The

inder is a perfectly clear medium 1, and the particles are
dentical, large, spherical, and made of an absorbing and
onscattering medium 2, such as in Sections 3–5. We
ould like to express the reflectance and the transmit-

ance of the particle sublayer. Since there is some space
etween the particles, only a fraction a, called the shad-
wing ratio, of the diffuse incoming light interacts with
he particles. This part of light is backscattered within a
roportion of rS, i.e., the backward component presented
n Section 5. Therefore, the reflectance rL of the particle
ublayer is

20 4 6 8 αd

0.2

0.4

0.6

0.8

1

fS

x

rS

r1

r12

ig. 4. Backward component rS, diffuse nonabsorbance fS and
ackscattering ratio x=rS / fS as functions of diametrical
bsorbance.
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= 1.25

n
2
/n
1
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n
2
/n
1

= 2

x

ig. 5. Evolution of the backscattering ratio as functions of dia-
etrical absorbance for various relative refractive indices.
rL = a rS = axfS, �50�

here x is the backscattering ratio defined in Eq. (33).
he particle sublayer transmittance is formed by the frac-

ion �1−a� of incident light that does not strike any par-
icle and by the fraction a of light scattered forward by
he stroked particles

tL = 1 − a + a�1 − x�fS. �51�

he multiple reflections of light between neighboring par-
icles (lateral scattering) and the shadowing of each par-
icle by its neighboring particles are ignored, assuming
hat the overestimation of incident light due to omission
f shadowing is compensated by the underestimated at-
enuation of scattered light due to lateral scattering.

We may extend the model by considering a colored
inder with absorption coefficient �M instead of a clear
inder. In this case, the particle layer is a slice of binder
hose thickness equals the diameter d of the particles. A

ight ray perpendicularly crossing the slice is attenuated
y a factor t=e−�Md given by Beer’s law [Eq. (2)]. An ob-
ique ray crossing it according to an angle � is attenuated
y the factor t1/cos �. Diffuse light is attenuated by a factor
M that embodies the attenuation of all the ray orienta-
ions

tM =�
�=0

�/2

e−�Md/cos � sin 2�d�. �52�

n a first approximation, we may consider that the binder
ignificantly attenuates only the fraction �1−a� of inci-
ent light that does not strike any particle. The rest of the
ncident light, which interacts with the particles, travels
lmost no distance within the binder and can be assumed
s not absorbed outside the particle. Thus, Eq. (50) is
nchanged and Eq. (51) becomes

tL = �1 − a�tM + a�1 − x�fS. �53�

he particle sublayer can also be composed of various
ypes of particles with different refractive indices, diam-
ters, and/or absorption coefficients. Each type of particle
s characterized by its nonabsorbance fSk, its backscatter-
ng ratio xk, and its shadowing ratio ak, where the sum of
he ak is lower than 1. Equations (50) and (51) become,
espectively,

rL = 	
k=1

N

akxkfSk �54�

nd

tL = 1 − 	
k=1

N

ak + 	
k=1

N

ak�1 − xk�fSk. �55�

. INFINITE PARTICLE MEDIUM
ccording to our model, an infinitely thick particle me-
ium corresponds to a semi-infinite pile of particle sublay-
rs. This section aims at determining its reflectance and
xamining its evolutions as a function of absorption,
efractive index, and shadowing ratio.
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. Infinite Reflectance
et us consider a semi-infinite pile of particle sublayers
ith Lambertian light illuminating the first layer. The
rst layer has a reflectance rL, given by Eq. (50), and a
ransmittance tL, given by Eq. (51). The second layer to-
ether with all lower layers form a reflecting background
hose directional reflectance is r. Figure 6 shows the
ultiple reflection process taking place between the first

ayer and this reflecting background. Summing the exit-
ng components featured in Fig. 6 yields a geometric se-
ies, such as the model of Kubelka [13]. After reduction,
he reflectance r1+ of the infinite particle medium is

r1+ = rL +
tL
2r

1 − rLr

. �56�

ince the number of particle sublayers is infinite, reflec-
ance r1+ is not influenced by the addition or the subtrac-
ion of one layer, i.e., r1+�r. Equation (56) yields the
ollowing equation:

r
2 −

1 + rL
2 − tL

2

rL
r + 1 = 0 �57�

hose single valid solution (the other solution is higher
han 1 and cannot represent a reflectance) is

r =
1 + rL

2 − tL
2

2rL
−��1 + rL

2 − tL
2

2rL
�2

− 1. �58�

ccording to Eq. (58), we may express reflectance r

nder the form

r = A − �A2 − 1 �59�

nd replace rL and tL according to Eqs. (50) and (51),
hich yields

A =
�1 − fS�

2xfS
+ �1 − a�1 − fS���1 +

�1 − fS�

2xfS
� . �60�

ince in the case of clear particles there is no absorption,
e have �=0, fS=1, and thereby r=1 independently of

he shadowing ratio a and the refractive index n2 /n1.
herefore, an infinite nonabsorbing particle medium
eflects all of the light that it receives.

. Numerical Evaluations
igure 7 shows that the reflectance r of the infinite par-

icle medium decreases as the particle absorbance �d in-
reases for every binder-particle relative refractive index

1st particle layer

Semi-infinite pile

of particle layers

r L
t L
r ∞
t L

t L
r ∞
r L
r ∞
t L

ig. 6. Infinitely thick particle medium modeled as an infinite
umber of particle sublayers.
2 /n1. Above a certain particle absorbance, since almost
ll of the light penetrating the particles is absorbed, only
he light reflected on the external face of the particles is
ble to emerge from the particle medium, and the reflec-
ance r becomes independent of the particle absorbance.

high binder-particle relative refractive index n2 /n1 in-
reases the reflectance r whatever the particle absor-
ance. The high Fresnel reflectivities favor the external
eflections on the particles, and the low Fresnel transmit-
ivities reduce the penetration and the absorption of light
nto particles.

The influence of the shadowing ratio is illustrated in
ig. 8, where r is plotted as a function of the diametrical
bsorbance �d for a small shadowing ratio a=0.005
dashed curve) or for a high shadowing ratio a=1 (solid
urve). The increase of reflectance r with the shadowing
atio, being up to 45% for a high particle absorbance, is
onsistent with the fact that interparticle multiple
cattering is favored by closer particles.

. INFINITE PARTICLE MEDIUM OBSERVED
ROM AIR

n many cases, the binder refractive index n1 is different
rom the refractive index of air, where the observer is lo-
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ig. 7. Infinite particle medium reflectance as a function of dia-
etrical absorbance for various relative refractive indices with a

hadowing ratio a=0.5.
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ig. 8. Evolution of the infinite particle medium reflectance as a
unction of diametrical absorbance for various shadowing ratios.
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ated. The reflections and transmissions of light at the
inder–air interface must be taken into account. The par-
icle medium, composed of a perfectly clear binder (me-
ium 1) with particles made from a transparent medium
, is assumed to have an infinite thickness and to behave
s a Lambertian reflector with reflectance r given by
q. (58). Its interface with air is assumed to be flat

Fig. 9). Due to the multiple reflections of light taking
lace beneath the air–binder interface and to the cone
preading of the observer’s viewing solid angle at the
nterface, the global reflectance of the particle medium
bserved from air is not r. Instead, the specimen is char-
cterized by a reflectance factor �, which depends on the
llumination and the observational geometries.

Directional incident light comes from the exterior at
ngle �0. A fraction T01��0�, given by Fresnel’s formulas,
rosses the binder-air interface and is subject to multiple
eflections between the stack of particles and the interior
ace of the upper interface. Since the light reflected back
y the particles is Lambertian, the internal face of the flat
nterface has the internal diffuse reflectance r10 defined
y Eq. (12), which depends on the refractive indices n0
nd n1. The light emerging into the external medium is
aptured by a radiance detector at an angle �0�. The radi-
nce captured by the detector at angle �0� is a fraction
n0 /n1�2T01��0�� of the radiance emitted by the particles it-
elf being a fraction 1/� of the Lambertian irradiance re-
ected by the infinite stack of particles [31].
The global reflectance of the specimen, divided by the

adiance to irradiance ratio 1/� of a perfect white dif-
user, gives the global reflectance factor ���0 ,�0�� of the
pecimen illuminated at angle �0 and observed at angle �0�

���0,�0�� = �n0/n1�2T01��0�T01��0��
r

1 − rr10
. �61�

he same expression would be obtained by applying
aunderson’s correction [32] to the reflectance r of the
tack of particles by considering a bidirectional measur-
ng geometry. We assume that �0���0 so that gloss is dis-
arded from the observation. Instead of directional inci-
ent light, we may have a diffuse light. The illumination
s assumed to be Lambertian when the incident light com-
ng from all directions of the upper hemisphere have the
ame radiance. This assumption only changes the Fresnel
ransmission of the incident light across the air–binder
nterface, which becomes t01 as defined by Eq. (13). When
iffuse illumination is used, the radiance detector is usu-
lly positioned at the normal of the specimen, i.e., �0�=0

n2

n1

n0

θ0 θ0′

ig. 9. Spherical transparent particles in a clear binding me-
ium forming a flat interface with a different external medium.
diffuse/0° geometry). The reflectance factor ��d ,0� mea-
ured according to the diffuse/0° geometry is

��d,0� = �n0/n1�2t01T01�0�
r

1 − rr10
. �62�

ote that, according to Eq. (15), we have t01
�1−r10� / �n0 /n1�2. The reflectance factor becomes

��d,0� = �1 − r10�T01�0�
r

1 − rr10
.

igure 10 shows the evolution of the reflectance factor
�d ,0� as a function of the diametrical absorbance, for the
ypical particle refractive index of chalk, n2=1.65. The re-
ractive index of the binder is n1=1 for air, n1=1.33 for
ater or n1=1.5 for oil, and the refractive index of the ex-

ernal medium is n0=1 (air). Like the infinite reflectance
, the reflectance factor ��d ,0� decreases as the particle
bsorbance increases. The reduction of reflectance due to
high value of n1 is first explained by the low value of the
inder-particle refractive index n2 /n1, which reduces the
eflectance r (see Fig. 7), and second by the high value of
he binder-air relative refractive index n1 /n0, which
ncreases the internal reflection of light beneath the
ir-binder interface and the chance for the light to be
bsorbed into particles.
In a dry powder, pigments are surrounded by air

binder refractive index close to 1). An important fraction
f light emerges from the medium after reflections at the
xterior of the pigments without absorption. This fraction
f light has a constant spectrum and a white color. At the
ame time, the proportion of light penetrating the par-
icles is low. This explains the bright and weakly satu-
ated color of dried pigment powders. When the powder is
ixed with oil (binder refractive index close to 1.5), less

ight is externally reflected on the pigments, and more
ight is absorbed inside them. This yields a strong con-
rast between spectral domains of high and of low absor-
ance and therefore a more saturated color for the
igment powder in oil.

0 0.5 1 1.5 αd

0.2

0.4

0.6

0.8

1

n1 = 1

n1 = 1.33

n1 = 1.5

ρ(d,0)

ig. 10. Infinite particle medium reflectance factor as a function
f the diametrical absorbance for various binder refractive indi-
es n �n =1.65� and for a diffuse/0° measuring geometry in air.
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In the special case, where the binder has the same re-
ractive index as the particles �n2=n1�, saturation would
e optimal, but since the particle medium is infinite and
here are no more reflections, the reflectance factor of the
article medium is zero, i.e., its color is black.

. COMPARISON WITH THE MODEL
F SHKURATOV et al.
xcept for the derivation of a reflectance factor, account-

ng for the multiple reflections of light beneath the air-
inder interface, the model we propose relies on the same
otions as the classical reflectance models for infinite par-
icle media: Nonabsorbance of a single particle, backward
omponent, reflectance and transmittance of a particle su-
layer, and multiple reflections and transmissions among
uperposed particle sublayers. We propose to compare our
odel with the model of Shkuratov et al., which is the

losest to the model we have presented. The main differ-
nces concern the particle nonabsorbance and the deriva-
ion of the backward component.

. Nonabsorbance
n the particle nonabsorbance model developed by
hkuratov et al. [22], the events of reflection and trans-
ission are described for diffuse light. They are each rep-

esented by an average reflection or transmission factor.
he light coming from the exterior of the particle is as-
umed to be Lambertian. A fraction r12 defined by Eq. (12)
s reflected at the particle exterior surface, and a fraction
12 given by Eq. (13) is transmitted into the particle. The
ight located within the particle is also assumed to be
ambertian. A fraction r21 is reflected on the particle in-

erior surface, and a fraction t21 is transmitted to the ex-
erior. Attenuation due to absorption is also represented
y an averaged factor M derived from Beer’s law

M = e−�d̄, �63�

here d̄ represents the average distance traveled by the
ight rays within the particle. It is calculated as the mean
f the path lengths d cos �2 traveled by the light rays ac-
ording to their orientation �2, knowing that rays oriented
y angle �2 form a fraction sin 2�2d�2 of the global light
ux

d̄ =�
�2=0

�/2

d cos �2 sin 2�2d�2 =
2d

3
. �64�

he Lambertian light is subject to a multiple reflection-
ransmission process within the particle. Its description is
imilar to the description performed in Subsection 4.A for
irectional light and leads to a formula similar to Eq. (27)
ontaining a geometric series

fS = r12 + t12t21M	
k=0




r21M�k = r12 +
t12t21M

1 − r21M
. �65�

quation (65) was also derived by Melamed [19] under
he same assumptions but with a different definition for
he factor M. It is a sum of attenuated flux elements, each
ux element corresponding to a fraction sin 2�2d�2 of the

nitial flux with � as its orientation angle and being at-
2
enuated by the factor exp�−�d cos �2� according to Beer’s
aw [Eq. (26)]

M =�
�2=0

�/2

e−�d cos �2 sin 2�2d�2 =
2

��d�2 �1 − ��d + 1�e−�d�.

�66�

igure 11 compares the diffuse nonabsorbance given by
ur model [Eq. (31)], by the model of Shkuratov et al.
Eq. (65) with M given by Eq. (63)], and by Melamed’s
odel [Eq. (65) with M given by Eq. (66)]. Nonabsorbance

s plotted as a function of the particle’s diametrical absor-
ance �d for a relative refractive index n2 /n1=1.5. The
hree curves are similar and with the same order of mag-
itude. However, the relative difference between our
odel and the models of Melamed or Shkuratov et al.

eaches 20% due to the assumptions of Melamed and
hkuratov et al. of Lambertian light inside the particle.
n the case of perfectly smooth spherical particles, light
nside the particle is not Lambertian because it is re-
racted from the exterior medium to the particle medium
f higher refractive index within a limited cone (and not
ithin an entire hemisphere). In Appendix A, we propose
n extension of the models of Melamed and Shkuratov
t al. accounting for this limited cone in the special case of
erfectly smooth spherical particles.

. Backward Component
hkuratov et al. proposed a model for quantifying back-
cattering and determining the backward component
eflected by a particle. The model of Shkuratov et al.
nd our model differ in the definition of “backward” and
forward” directions for scattering. According to our
odel, the backward component only comprises light rays

cattered into the hemisphere of incidence of the diffuse
ight (the upper hemisphere). In the model of Shkuratov
t al., the backward hemisphere is different for each inci-
ent ray. It is the hemisphere whose base is orthogonal to

20 4 6 8 10 αd

0.2

0.4

0.6

0.8

1

Melamed's model

Shkuratov's model

Orientational model

fS

ig. 11. Diffuse nonabsorbance fS given by our model (solid
urve), Melamed’s model (dashed curve), and the model of
hkuratov et al. (dotted curve) as functions of the diametrical
bsorbance.
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he incident ray. Thus, the backscattered rays are those
hat form an acute angle with the incident ray.

Let us consider the case of the first scattered rays re-
ected on the exterior surface of the particle. According to
nell’s law, their angle with respect to their incident ray

s twice the local incident angle. Therefore, according to
he model of Shkuratov et al., they are considered to be
ackscattered when the local incident angle is inferior to
/4. Their contribution r1 to the backward component is

r1 =�
�1=0

�/4

R12��1�sin 2�1d�1. �67�

ince the second scattered rays undergo two refractions
hen crossing the particle, their exiting direction de-
ends on the relative refractive index of the binder-
article interface. Shkuratov et al. observed that for a
elative refractive index inferior or equal to 1.5, almost all
f the exiting rays form an obtuse angle with their inci-
ent ray. Assuming that this observation is also valid for
igher relative refractive indices, the model of Shkuratov
t al. neglects their contribution to the backward compo-
ent. The third and following scattered rays are assumed
o equally contribute to the backward and the forward
omponents.

In Fig. 12, the backward component rS calculated ac-
ording to the model of Shkuratov et al. (dashed curve)
nd the one calculated according to our model (solid
urve) are plotted as functions of the particle absorbance.
he two horizontal lines represent the components r1 de-
ived according to the two models [Eqs. (49) and (67), re-
pectively]. They represent the contribution of the first
cattered rays that is independent of the particle absor-
ance. The contribution of the other scattered rays, de-
endent on the particle absorbance, is represented by a
erm ra. According to Shkuratov et al., ra is half the total
cattered flux composed of the third and following scat-
ered rays. According to our model, ra gathers the terms
2, r3, and r4+ plotted in Fig. 3. The differences in the defi-
itions of the backward and forward directions induce sig-

20 4 6 8 αd

0.1

0.2

0.25

0.05

0.15 rS

rS
r1

ra

ra

ig. 12. Backward component rs and contribution ra of the sec-
nd and following scattered rays according to our model (solid
urve) and to the model of Shkuratov et al. (dashed curve) as
unctions of the particle absorbance.
ificant differences between the terms rS, r1, and ra de-
ived according to our model and according to the model
f Shkuratov et al. model.

In the multiple scattering model used by Shkuratov
t al. and by us, the backward component represents the
ontribution of a single particle to the particle sublayer
eflectance. In contrast to the approach by Shkuratov
t al., our computation of the backward component only
omprising the light rays scattered in the hemisphere of
ncidence of the diffuse light is consistent with Kubelka’s
ayering model [13] applied for computing the reflectance
f a pile of particle sublayers (e.g., Subsection 7.A).

0. CONCLUSIONS
he proposed reflectance model is dedicated to particle
edia formed by a collection of large, identical, absorbing,

nd spherical particles contained within a clear binder.
ive parameters are used: The refractive index of the par-

icles, their size, their absorption coefficient, their concen-
ration represented by the shadowing ratio, and the re-
ractive index of the binder. The model relies on the
otion of the particle sublayer whose reflectance and
ransmittance are obtained by describing the multiple
eflection-transmission of light inside a single particle.
he backscattering of a particle is calculated by consider-

ng the attenuation and the direction of each scattered
ight ray according to a 3D-vector model, assuming a
ambertian illumination from the upper hemisphere. The

nfinite particle medium corresponds to an infinite pile of
article sublayers. Its reflectance is obtained by describ-
ng the multiple reflection-transmission of diffuse light
etween the particle sublayers. The model is extended to
he case of a binder different from air, where both the in-
ernal light reflections beneath the binder-air interface
nd the measuring geometry have an importance. The dif-
erences between our model and the recent model of
hkuratov et al. are also examined. The influences of the
article absorption coefficient, the particle shadowing ra-
io, and the particle and binder refractive indices on the
eflectance of an infinite particle medium are illustrated
y numerical evaluations. The present model enables one
o predict the reflection spectrum of a particle medium
nd therefore estimate the variation of its color, bright-
ess, or saturation when the particle concentration or the
inder refractive index are modified. It provides a helpful
ramework for predicting the aspect of powders and may
e used for the color formulation of pigmented paints.

PPENDIX A
he models of Shkuratov et al. and of Melamed for the
ultiple reflection and transmission of diffuse light
ithin a particle are presented in Subsection 9.A. Their
xpression for the diffuse nonabsorbance of a spherical
ransparent particle notably differs from the one given by
ur model. This is because, in the case of transparent par-
icles whose refractive index is higher than the refractive
ndex of the surrounding medium �n2�n1�, the orienta-
ion of light rays refracted into the particle cannot exceed
he critical angle �L=arcsin�n1 /n2�. Since, for each light
ay, the multiple reflection process occurs with an identi-
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al incidence angle for each reflection, and since there is
o diffusion, it is impossible to have Lambertian light,

.e., rays of equal radiance propagating over the whole
emisphere inside the particle.
Assuming that the diffuse light is uniformly distributed

ver the angular range 
0,�L�, the average attenuation
actors should be expressed by integrals between 0 and �L
nstead of the integrals between 0 and � /2 expressing r21
n Eq. (12) or M in Eq. (66). The diffuse internal reflec-
ance r̃21 of the particle interface becomes

r̃21 =

�
�2=0

arcsin�n0/n1�

R21��2�sin 2�2d�2

�
�2=0

arcsin�n1/n2�

sin 2�2d�2

=
�n1/n2�2r12

�n1/n2�2 = r12

�A1�

ith the integrals being reduced due to the change of
ariable �2=arcsin�n1 /n2 sin �1� and the identity R21��2�
R12��1�. We observe that the spherical interface has the
ame diffuse reflectance at the interior and exterior.
hus, the diffuse nonabsorbance given by Eq. (65)
ecomes

fS = r12 +
�1 − r12�2M

1 − r12M
. �A2�

egarding the average attenuation factor M due to ab-
orption, the average travel length used in the model of
hkuratov et al. Eq. (64) becomes

d̄ =

�
�=0

arcsin�n1/n2�

d cos � sin 2�d�

�
�=0

arcsin�n1/n2�

sin 2�d�

, �A3�

nd the factor M then becomes

M = exp�− �d̄� = exp
− �2/3��d�n2/n1�2�1 − �3�� �A4�

ith

� = �1 − �n2/n1�2. �A5�

ccording to Melamed’s model, the average attenuation
actor becomes

M =

�
�=0

arcsin�n1/n2�

e−�d cos � sin 2�d�

�
�=0

arcsin�n1/n2�

sin 2�d�

, �A6�

.e., with � given by Eq. (A5)

M =
2�n2/n1�2

��d�2 
e−�d��1 + �d�� − e−�d�1 + �d��. �A7�

he improved models of both Shkuratov et al. and
elamed give nearly the same diffuse nonabsorbance as

ur model with relative differences lower than 1% for a
elative refractive index n /n =1.5.
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