
Thomas Bugnon, Roger D. Hersch, Ecole Polytechnique Fédérale de Lausanne, Switzerland,
 final version published in  Color Research and Applications, Vol. 39, No. 3, pp. 216-233 (J. Wiley). 

 1/33 
 

Recovering Neugebauer colorant reflectances and  
ink spreading curves from printed color images 

Abstract 
Spectral reflection prediction models, although effective, are impractical for certain industrial 
applications such as self-calibrating devices and online monitoring because their calibration requires 
specific color-constant calibration patches. Using the CMYK Ink Spreading enhanced Yule-Nielsen 
modified Spectral Neugebauer model (IS-YNSN), we propose a method to recover the colorant 
reflectances (Neugebauer primaries), the ink spreading curves, and the Yule-Nielsen n-value using 
only tiles extracted from printed color images. There is no prior knowledge about the reproduction 
device. Thanks to a set of constraints based on Principal Component Analysis (PCA) and the 
relationships between composed Neugebauer primaries and the ink transmittances, good 
approximations of the Neugebauer primaries are achieved. These approximations are then optimized, 
yielding an accurately calibrated IS-YNSN model comparable to one obtained by classical 
calibrations. A detailed analysis of these calibrations shows that 25 well-chosen CMYK image 
calibration tiles are sufficient to accurately recover both the Neugebauer primaries and the ink 
spreading curves. 

Keywords: color prints, color reproduction, dot gain, halftones, ink spreading, prediction model 
calibration, spectral reflection prediction, image tiles, Neugebauer primaries 

1 Introduction 
The characterization of printing devices is part of color management systems aiming at ensuring the 
consistency of colors across different color input and output devices [1]. Characterizing a printing 
device consists in mapping the control values of the device to colors represented in a device-
independent color space. The control values specify the amount of inks to be printed, further referred 
to as the nominal ink surface coverages. The independent color space is usually either the CIELAB or 
the CIE-XYZ colorimetric space. A spectral reflection prediction model can be used to characterize a 
printing device [2]. Such a model comprises mathematical equations modeling the interaction between 
the incident light, the inks, and the paper substrate. For given nominal ink coverages, a spectral 
prediction model predicts the reflection spectra of printed patches. These reflection spectra can then be 
converted into CIELAB or CIE-XYZ. 

The Yule-Nielsen modified spectral Neugebauer model (YNSN) is a widely used spectral reflection 
prediction model [2]-[5]. The YNSN model incorporates parameters which must be learned for each 
combination of paper, inks, and printing device. This step, further referred to as the calibration of the 
model, consists in determining the best values for the different model parameters. The calibration of 
the YNSN model requires the spectral measurements of predetermined color patches representing the 
Neugebauer primaries, i.e. the reflectances of paper, of the solid inks, and of superpositions of the 
solid inks, as well as a few halftones to determine the Yule-Nielsen n-value. The YNSN model 
actually performs a linear interpolation between the extremities of the space formed by the 
reflectances of the Neugebauer primaries raised to the power of 1/n. In order to further improve its 
accuracy, the YNSN model has been enhanced with an ink spreading model accounting for physical 
dot gain (IS-YNSN, [6]). The calibration of the IS-YNSN model requires the spectral measurements of 
a set of predetermined halftone patches.  

In the case of a 4 ink IS-YNSN prediction model, 36 spectral measurements of predetermined color-
constant halftone and solid patches are required. Since these color-constant patches are not present 
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within normal printed images, they need to be added, for example in the margins of printed pages. 
Once measured, they must be removed. Instead of calibrating the IS-YNSN model with predetermined 
color-constant patches, we propose a calibration procedure relying on the measurements of image tiles 
extracted from printed color images. In previous contributions of the present authors [7]-[9], the 
content of printed color images has already been used for the calibration of ink spreading, but not for 
the YNSN model itself, i.e. the Neugebauer primaries still had to be measured and the Yule-Nielsen 
n-value determined. Balasubramanian proposed to recalibrate the Neugebauer primaries based on a 
training set of measured samples, but only as an optimization step based on initially measured primary 
reflectances [10]. 

In the current contribution, we show how to recover the Neugebauer primaries from printed color 
images. We propose a two-step procedure to calibrate both the YNSN model and the ink spreading 
model using tiles extracted from printed color images without relying on prior knowledge. In the first 
step, constraints are imposed both on the ink spreading model and on the Neugebauer primaries to 
prevent large variations when the information contained in the image calibration tiles is not sufficient. 
In the second step, the Neugebauer primaries are refined to improve the calibration accuracy. We then 
show how to determine the Yule-Nielsen n-value. 

The remainder of this paper is organized as follows. We first detail in Section 2 the Yule-Nielsen 
modified Spectral Neugebauer model (YNSN) and in Section 3 the ink spreading enhanced YNSN 
model (IS-YNSN). Section 4 proposes an unconstrained gradient-descent algorithm to fully calibrate 
the IS-YNSN model. In Section 5, we explain the limitations of the unconstrained approach and 
introduce a set of constraints to calibrate both the reflection spectra of the colorants (Neugebauer 
primaries) and the ink spreading curves. In Section 6, the colorant spectra are refined to improve the 
accuracy of the calibration. The algorithm selecting image calibration tiles from printed color images 
is described in Section 7. Section 8 describes the measurement setup. Section 9 verifies the accuracy 
of the fitted colorant reflectances and Section 10 compares the prediction accuracy according to 
different calibration procedures. The calibration of the Yule-Nielsen n-value is discussed in Section 11 
and the importance of accurately calibrating the reflectances of the Neugebauer primaries is underlined 
in Section 12. The conclusions are drawn in Section 13. 

2 The Yule-Nielsen modified Spectral Neugebauer Model (YNSN) 
One of the first color prediction models is the Neugebauer model [11]. In its original form, it predicts 
the RGB values of a color halftone patch. Yule and Nielsen modified this model to account for optical 
dot gain [3], Yule and Colt applied it for CIE-XYZ tri-stimulus values [12], and Viggiano extended it 
to spectral reflectances [4]. This model, now known as the Yule-Nielsen modified Spectral 
Neugebauer model (YNSN), predicts the reflection spectra of color-constant patches whose ink 
surface coverages are given. The equation used to perform a spectral reflectance prediction is: 

  1/
( )( )   

nn

i i
i

a RR  (1) 

where R() is the predicted reflection spectrum, Ri() the reflection spectra of the colorants 
(Neugebauer primaries), ai the relative area coverages of the colorants, and n the Yule-Nielsen 
n-value. In a classical calibration setup, the reflection spectra of the colorants are measured and the 
scalar n-value is calibrated by relying on a limited number of color-constant halftone patches 
(Section 11). In the following sections, the n-value is considered to be known. 

The relative area coverages of the colorants are computed from the relative ink surface coverages 
using the Demichel equations. For four inks, the Demichel equations are the following: 
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where c, m, y and k are the ink surface coverages.  

When calibrated, the YNSN model is a function taking the ink surface coverages of a color halftone as 
input and yielding its reflection spectrum. It is possible to deduce ink coverages from a given spectrum 
by minimizing a difference metric between predicted and measured reflection spectra as follows: 

  2
argmin ( , ) ( )  

  
 
opt k k

kcovs
covs predSpectrum covs R  (3) 

where covs = {c, m, y, k} are the ink coverages, R() the measured reflection spectrum, and 
predSpectrum the YNSN reflectance prediction function combining Eqs. (1) and (2). 

Due to the physical dot gain, ink coverages deduced using Eq. (3) are usually larger than the 
corresponding nominal ink coverages. As a consequence, spectral predictions made from nominal ink 
coverages are not accurate. Therefore, an enhanced YNSN model was proposed which incorporates an 
ink spreading model [13][6]. 

3 The Ink Spreading Enhanced YNSN Model (IS-YNSN) 
When a reproduction device reproduces a color with given nominal ink coverages by depositing inks 
on paper, the inks spread out on the paper, resulting in effective coverages usually larger than the 
requested nominal ink coverages. This ink spreading phenomenon is called mechanical or physical dot 
gain. The amount of dot gain depends on whether the ink halftone is printed alone on paper or in 
superposition with one or more other inks [14]. The goal of the ink spreading model is to compute the 
effective ink surface coverages from the nominal ink surface coverages. These effective ink surface 
coverages are then used as input to the YNSN model. 

3.1 Ink spreading curves 
The proposed ink spreading model relies on ink spreading curves (Fig. 1a). An ink spreading curve 
maps the nominal surface coverages of an ink halftone into its effective surface coverages, i.e. to the 
surface that the ink halftone effectively covers after being printed. We can approximate an ink 
spreading curve by a parabola characterized by its mid-point v: 
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where ui is the nominal surface coverage of ink i, fi/jk is the ink spreading curve of ink i superposed 
with solid inks j and k, and vi/jk = fi/jk(0.5) is the effective surface coverage at 50% nominal surface 
coverage, also called mid-point of the ink spreading curve [7]. Equation (4) represents a parabola that 
passes through the three points (0,0), (0.5, vi/jk), and (1,1), as shown in Fig. 1a. The parabola is a 
monotonic increasing function if vi/jk is between 0.25 and 0.75. 

There is one ink spreading curve for each ink halftone in each superposition condition. For example, a 
cyan halftone may be printed alone, c; superposed with solid magenta, c/m; with solid yellow, c/y; 
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with solid black, c/k; with solid magenta and solid yellow, c/my; with solid magenta and solid black, 
c/mk; with solid yellow and solid black, c/yk; and with solid magenta, yellow and black, c/myk. There 
are 8 different ink spreading curves for each ink, yielding a total of 32 ink spreading curves. However, 
since any halftone superposed with solid black yields a reflection spectrum very close to the reflection 
spectrum of solid black, ink spreading curves where one ink halftone is superposed with solid black 
are discarded [6]. Table I lists the 20 ink spreading curves considered. 

Table I. List of the considered ink spreading curve indicia. 

Cyan Magenta Yellow Black  
c m y k k/y 
c/m m/c y/c k/c k/cy 
c/y m/y y/m k/m k/my 
c/my m/cy y/cm k/cm k/cmy 

Fig. 1b shows the dot gain curve corresponding to the ink spreading curve of Fig. 1a, where dot gain is 
defined as the difference between effective and nominal coverages. Each ink spreading curve is 
calibrated using three calibration patches at 0.25, 0.5, and 0.75 nominal ink surface coverages. The 
nominal surface coverage of the ink halftone determines the position on the x-axis of the ink spreading 
curve. The corresponding effective surface coverage is fitted using Eq. (3) and determines the position 
on the y-axis (Fig. 1a). The parabola is then fitted by minimizing the least-squares difference between 
the fitted and predicted dot gains. An ink spreading curve can be entirely characterized by the halftone 
at 50% nominal surface coverage, but as shown is Fig. 1b, 3 calibration patches per ink spreading 
curve reduce the influence of printing and acquisition inaccuracies. 

In order to avoid the ambiguity between the superposition of CMY inks and the black ink, the spectral 
measurements span both the visible wavelength range (380-730 nm) and a part of the near infrared 
(NIR) wavelength range (730-850 nm). The NIR wavelength range enables distinguishing the light 
absorbing pigment-based black ink from the superposition of CMY inks, which are dye-based and do 
not absorb light in the NIR wavelength range [15]. 

3.2 Ink Spreading Equations 
In order to obtain the effective surface coverages of the ink dots forming a color halftone, we weight 
the contributions of the different ink spreading curves as follows. The effective coverage of halftone 
ink i superposed with inks j and k is the weighted average of the ink spreading functions fi, fi/j, fi/k, and 

 
Fig. 1. (a) Example of an ink spreading curve fi/jk characterized by its mid-point vi/jk. (b) Corresponding dot gain curve, 
defined as the difference between effective and nominal surface coverages, with the fitted dot gains of three calibration 
patches (circles), the linearly interpolated dot gain curve (dashed line), and the corresponding least squares approximated 
parabolic dot gain curve (solid line). 
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fi/jk. The weights are computed according to the surface coverages of the underlying colorants 
(Neugebauer primaries) formed by inks j and k. For CMYK, the ink spreading equations are: 

 

/ /

/ /

/ /

/

/

/

' (1 ') (1 ') ( ) ' (1 ') (1 ') ( )

' (1 ') ( ) ' (1 ') ( )

(1 ') ' ( ) (1 ') ' ( )

' ' ( ) ' ' ( )

' (1 ') (1 ') ( ) ' (1

' (1 ') ( )

(1 ') ' ( )

' ' ( )

c m

c m m c

c y m y

c my m cy

y

y c

y m

y cm

c m y f c m c y f m

m y f c c y f m

m y f c c y f m

m y f c c y f m

y c m f y k

c m f y

c m f y

c m f y

     
   
   

 

   

 

 



/

/

/

/

/

/

/

') (1 ') (1 ') ( )

' (1 ') (1 ') ( )

(1 ') ' (1 ') ( )

' ' (1 ') ( )

(1 ') (1 ') ' ( )

' (1 ') ' ( )

(1 ') ' ' ( )

' ' ' ( )

k

k c

k m

k cm

k y

k cy

k my

k cmy

c m y f k

c m y f k

c m y f k

c m y f k

c m y f k

c m y f k

c m y f k

c m y f k

  
  
  
 
  

 

 



 (5) 

In Eqs. (5), when calculating the effective surface coverage c’ of cyan, (1-m’)(1-y’), m’(1-y’), (1-m’) 
y’, and m’y’ express, respectively, the effective surface coverage of colorants white, magenta, yellow, 
and red superposed with the cyan halftone layer. Since a cyan, magenta, or yellow halftone over solid 
black is assumed to yield black, the superposition conditions corresponding to an ink halftone over 
solid black have been discarded [6]. We have therefore 4 superposition conditions for the cyan, 
magenta and yellow ink halftones and 8 superposition conditions for the black ink halftone. 

We solve Eqs. (5) iteratively, starting by assigning the nominal ink halftone coverages (c, m, y, k) to 
the effective ink halftone coverages (c’, m’, y’, k’) [6]. Four to five iterations ensure sufficient 
convergence to determine the effective ink halftone surface coverages. 

4 Unconstrained calibration of the IS-YNSN model 
The IS-YNSN model needs to be calibrated for each combination of printer, halftone screens, inks, 
and paper. Such a calibration consists in recovering the reflection spectra of the colorants (Neugebauer 
primaries), fitting the mid-points of the ink spreading curves, and setting the Yule-Nielsen n-value to a 
suitable scalar value. In a classical calibration, the colorant reflectances are directly measured and the 
effective surface coverages used for creating the ink spreading curves are fitted using a predetermined 
set of color-constant halftone calibration patches.  

Instead of using predetermined color-constant patches, we show how to calibrate the IS-YNSN model 
using image calibration tiles extracted from color images and grouped in an image calibration set. The 
selection of these tiles is described in Section 7. In this section, we propose an unconstrained 
procedure to calibrate the IS-YNSN model using an image calibration set. This approach relies on a 
gradient-descent algorithm to find the optimal colorant reflectances and the mid-points of the ink 
spreading curves. In the present setting, we assume that the Yule-Nielsen n-value is known. Its 
calibration is discussed in Section 11. 

The gradient-descent algorithm uses as objective function the sum of square differences between the 
measured and predicted reflectance components of the image calibration tiles: 

 2( , ) [ ( , , , ) ( )]   
k p k

p k

f C v predSpectrum p C v R  (6) 
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wherek is the wavelength, p an image calibration tile, C the 48x16 matrix whose columns correspond 

to the 16 CMYK colorant reflectances sampled each 10 nm between 380 nm and 850 nm, 

v  a vector 

containing the mid-points of the 20 CMYK ink spreading curves, and Rp the measured reflection 
spectrum of image calibration tile p. Function predSpectrum uses the IS-YNSN model to predict the 
spectrum of image calibration tile p. 

The gradient-descent algorithm performs the following minimization using Eq. (6): 

 
min

/,
{ } argmin[ ( , )] such that

0.25 0.75

 
   


  i w

opt opt
i jkC v

R R R
C v f C v

v
 (7) 

where matrix Copt and vector 


optv  contain respectively the colorant reflectances and the mid-points of 

the ink spreading curves minimizing the sum of square differences between the measured and 
predicted reflectance spectra of the image calibration tiles. The only constraints imposed on the 
colorant reflectances and the mid-points of the ink spreading curves are their intrinsic bounds. In 
respect to the ink spreading curve mid-points, 0.25 and 0.75 are the bounds beyond which the 
quadratic ink spreading curves are not monotonic increasing functions anymore [Eq. (4)]. In respect to 
the colorant reflectances, Rmin and Rw correspond respectively to the minimal value allowed for a 
reflectance and the maximal value expressed by the measured paper reflectance. The lower bound for 
reflectances is actually 0, but Rmin is set to 0.001 to avoid searching for negative values. Moreover, on 
real prints, the darkest black has a reflectance larger than 0.001. 

Calibrations of the IS-YNSN model using Eq. (7) are not reliable. Because the colorant reflectances 
(Neugebauer primaries) are not constrained, they are set to spectra that are not smooth and therefore 
do not look like real CMYK colorant reflectances. In addition, the relationship between the 
reflectances of the inks and the reflectances of their superpositions is not preserved. Finally, the image 
calibration tiles do not always provide enough information to accurately calibrate the colorant 
reflectances. For example, if the image calibration tiles are primarily composed of cyan ink, it is not 
possible to calibrate the yellow colorant. In such cases, unconstrained procedures such as Eq. (7) tend 
to induce large variations in some spectral components in order to influence the difference metric of 
Eq. (6). As a consequence, the fitted reflectances do not reflect real measurements. Examples of such 
fitted reflectances are given in Section 9. 

5 Constrained calibration of the IS-YNSN model 
In order to prevent the calibration procedure from setting the colorant reflectances and mid-points of 
the ink spreading curves to extreme values, we impose constraints on these parameters. For the ink 
spreading model, we use the constraints proposed in [7] that were successful in calibrating the ink 
spreading model by relying on tiles extracted from color images. For the colorants, we propose a set of 
constraints that forces the calibration procedure to set their reflectances to spectra that are similar to 
real reflection spectra. 

5.1 Ink spreading constraints 
The problem faced by the calibration procedure when fitting the mid-points of the ink spreading 
curves is that the image calibration tiles do not always provide sufficient information about each ink 
spreading curve in order to set it with high confidence to a sensible value. The goal of the constraints 
imposed on the ink spreading curves is therefore to restrict the range of values that can be assigned to 
the mid-points when there is not enough information. 
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Ink spreading weight wi/jk, associated to ink spreading curve fi/jk of halftone ink i superposed with solid 
inks j and k, indicates if there is enough information to fit the mid-point vi/jk of ink spreading curve fi/jk. 
A weight equal to 0 indicates that no information is available. In this case, the effective surface 
coverage is made equal to the nominal surface coverage and the mid-point is set to 0.5, i.e. we assume 
that there is no ink spreading. A weight equal to 1 indicates that the mid-point vi/jk can be freely 
calibrated between 0.25 and 0.75, the bounds beyond which the ink spreading curves are not 
monotonic increasing functions anymore. For a weight wi/jk between 0 and 1, the mid-point vi/jk is 
constrained as follows: 

 / / /0.5 0.25 0.5 0.25     i jk i jk i jkw v w  (8) 

The ink spreading weights wi/jk are computed from the nominal ink coverages of the image tiles as 
follows. Given a tile p of the image calibration set, let ui,p be the nominal surface coverage and 
ui,p’(vi, vi/j, vi/k, vi/jk) be the effective surface coverage of ink i within tile p computed using the ink 
spreading model. The weight associated to ink spreading curve fi/jk of halftone ink i superposed with 
solid inks j and k is defined as the following gradient: 
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Since ink spreading curve fi/jk is fully determined by its mid-point vi/jk, the gradient wi/jk,p in Eq. (9) 
expresses the influence of ink spreading curve fi/jk on the resulting effective surface coverage ui,p’ of 
ink i within tile p. 

Since a calibration set is composed of several image tiles, we define the weight associated to ink 
spreading curve fi/jk for the entire image calibration set as the maximum of the weights of all the tiles: 
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We take the maximum of the derivatives across all the tiles because tiles with a high weight have the 
largest influence on the metric minimized by the ink spreading curve mid-point fitting algorithm 
[Eq. (6)], i.e. when there is at least one high weight tile and low weight tiles, the ink spreading curve 
mid-point is mainly fitted by the high weight tile. 

By inserting Eq. (4) into Eqs. (5), we can compute the gradients of Eq. (9) for each ink spreading 
curve. For example, the weight wc/m of the ink spreading curve fc/m of cyan halftones printed on solid 
magenta is: 

 /
/

/ /
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where c’, m’ and y’ are the effective surface coverages of the cyan, magenta, and yellow halftones, 
respectively, and c is the nominal surface coverage of the cyan halftone. Since neither the colorant 
reflectances nor the ink spreading curves are calibrated yet, the effective coverages m’ and y’ required 
in Eq. (11) cannot be computed. We use the nominal coverages m and y instead. This modification 
influences the weights, but since the difference between effective and nominal coverages is usually 
small, the weights are not largely affected and the ink spreading mid-point values can be accurately 
calibrated. This assertion is further discussed in Section 12. 
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5.2 Constraints in respect to colorant reflectances 
The constraints imposed on the ink spreading curves rely on the existence of a default value for the 
mid-points vi/jk = 0.5 that can be used when no information is available. There is no such default value 
for the colorant reflectances. Instead, we make the distinction between the following three groups of 
colorants: the paper, the inks, and the ink superpositions. We assume that the paper reflectance 
representing the white colorant can be measured. The white colorant is therefore known. We then 
impose different constraints on the ink reflectances and on the ink superposition reflectances. 

5.2.1 Ink reflectance constraints 
The reflectance of an ink depends on the substrate it is printed on. The first constraint imposed on ink 
reflectance Ri expresses this dependence by assuming that light reflected by the print is attenuated 
twice by the ink layer and once by being reflected by the paper: 

 2i w iR R T  (12) 

where Ri is the reflectance of ink i on paper, Rw the paper reflectance, and Ti the transmittance of ink i. 

Using Eq. (12), ink reflectances are expressed by the corresponding ink transmittances. We can 
therefore impose constraints on these transmittances. The spectrum of a transmittance should be 
smooth and should have a general shape given by the color of the ink. Using principal component 
analysis (PCA, [16][17]), we can constrain ink transmittances by limiting the number of principal 
components expressing these transmittances while retaining both smoothness and general shape of 
their spectra. For each ink color, we assemble a list of ink transmittances based on measurements 
coming from offset prints, ink jet prints, thermal transfer prints, etc. We then extract the average 
transmittance as well as the first three principal vectors from these ink transmittances. The principal 
vectors for ink i are stored in a matrix Wi. Wi has therefore three columns. The transmittance of an ink 
is then: 

 ,1 ,2 ,3   i i ii i i

T
c c cT W T  (13) 

where Ti is the transmittance of ink i; Wi is the matrix holding the principal vectors for the 

transmittances of ink i; iT  is the average transmittance of ink i; and ci,1 to ci,3 are three scalars, further 

referred to as the principal components of ink i. Using Eqs. (12) and (13), the reflectance Ri of ink i 
can be expressed using only three principal components, i.e. ci,1 to ci,3. The 12 principal components 
required for CMYK are listed in Table II. Appendix A provides more details about the accuracy of the 
implemented PCA. 

5.2.2 Ink superposition reflectance constraints 
The reflectance of superposed inks depends on the substrate on which they are printed as well as on 
the individual ink transmittances. However, a simple extension of Eq. (12) to multiple inks is not 
appropriate. Hersch et al. have shown that the relative thickness of a printed solid ink layer depends on 
the presence of other superposed inks [18]. Beer’s law enables expressing these ink thickness 
variations. We adapt Eq. (12) to account for modified relative ink thicknesses: 

 
2 2d d

ij w i j
Ij iJR R T T  (14) 

 
2 22d dd

ijk w i j k
Ijk ijKiJkR R T T T  (15) 
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Ijkl ijKl ijkLiJklR R T T T T  (16) 
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where Rij, Rijk, and Rijkl are the reflectances of the superposition of 2, 3, and 4 solid inks, respectively; 
Rw is the paper reflectance; Ti, Tj, Tk, and Tl are the transmittances of inks i, j, k, and l computed by 
Eq. (13); and dIj and diJ are the scalar ink thickness variation factors of ink i superposed with ink j and 
of ink j superposed with ink i. For four inks, we have 6 colorants that are composed of two inks, 4 
colorants composed of 3 inks, and a single colorant composed of all 4 inks. Based on Eqs. (14) to (16), 
only the 28 scalar ink thickness variation factors listed in Table II are required to model the 11 
colorant reflectances composed of 2 or more inks. 

Table II. List of the 12 principal components and 28 ink thickness variation factors required for 
CMYK prints. All these parameters are scalar values. 

Ink Principal components Ink thickness variation factors 

Cyan cc,1,  cc,2,  cc,3 dCm,  dCy,  dCk,  dCmy,  dCmk,  dCyk,  dCmyk 

Magenta cm,1,  cm,2,  cm,3 dcM,  dMy,  dMk,  dcMy,  dcMk,  dMyk,  dcMyk 

Yellow cy,1, cy,2,  cy,3 dcY,  dmY,  dYk,  dcmY,  dcYk,  dmYk,  dcmYk 

Black ck,1,  ck,2,  ck,3 dcK,  dmK,  dyK,  dcmK,  dcyK,  dmyK,  dcmyK 

5.3 Constrained gradient-descent calibration of the IS-YNSN model 
Using the constrained colorant reflectances expressed by Eqs. (12) to (16), we can modify the 
objective function of Eq. (6) as follows: 

 2( , , ) [ ( , , , , ) ( )]  
    

k p k
p k

f v c d predSpectrum p v c d R  (17) 

where we have added ,

c  the vector containing the principal components of the inks, and ,


d  the vector 

containing the ink thickness variation factors of the ink superpositions. 

Finally, using Eq. (17) and the ink spreading constraints of Eq. (8), the calibration procedure becomes: 
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/ /
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 (18) 

where 


optv , 


optc , and 


optd  are respectively the optimal mid-points of the ink spreading curves, optimal 

principal components of the ink transmittances, and optimal ink thickness variation factors. These 
optimal values minimize the sum of square differences between the measured and predicted spectra. 
Note that we maintain the intrinsic bounds for the colorants expressed by Rmin and Rw, i.e. the minimal 
value allowed for a reflectance and the maximal value expressed by the paper white. 

The colorant reflectances recovered from the optimal principal components and optimal ink thickness 
variation factors fitted in Eq. (18) are close to the measured colorant reflectances if there is enough 
information to fit them. However, these recovered colorant reflectances are subject to strong 
constraints and cannot exactly match the measured colorant reflectances, even when there would be 
enough information in the image calibration set to achieve such a match. We therefore propose a 
second calibration step to improve the recovered colorant reflectances. 

6 Surface coverage based optimization of the colorant reflectances 
The constraints imposed on the colorant reflectances in Eqs. (12)-(16) enable the first calibration step 
in Eq. (18) to recover colorant reflectances similar to real reflectances even when there is not enough 
information in the image calibration set. However, because of the PCA, the recovered colorant 
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reflectances are restricted to a limited set of reflection spectra. If the real reflectances lay outside of 
this set, it is not possible to optimally fit the colorant reflectances to match these real reflectances and 
the IS-YNSN model will not be able to offer the most accurate predictions. To improve the match 
between the recovered and real colorant reflectances, we perform a second calibration step in which 
only the colorant reflectances are modified. The mid-points of the ink spreading curves are considered 
to be accurately calibrated by the minimization performed by Eq. (18) and are not modified in this 
second step. 

6.1 Surface coverage based colorant reflectance constraints 
Thanks to the first calibration step performed in Eq. (18), an approximation of the colorant 
reflectances is available and we can use a similar approach as in Section 5.1. If no information is 
available in the image calibration set to fit reflectance Ri of colorant i, the colorant reflectance 

recovered in the first calibration step old
iR  is not modified. The more information is available, the more 

freedom is given to fit colorant reflectance Ri. Colorant weight i, associated to colorant i, indicates 
the amount of information available to fit colorant reflectance Ri. A weight equal to 0 indicates that no 

information is available. In this case, the colorant reflectance is set to ,old
iR  the spectrum recovered in 

Eq. (18). A weight equal to 1 indicates that the colorant reflectance can be freely calibrated between 

the minimal value allowed for a reflectance and the paper reflectance. For colorant weight i between 
0 and 1, colorant reflectance Ri is constrained as follows: 

 
min

( ) (1 ) ( ) ( )

( ) (1 ) ( )

    
   

    


   

old
i i i i w

old
i i i i

R R R

R R R
 (19) 

where Ri is the considered colorant reflectance, old
iR  the corresponding colorant reflectance recovered 

in Eq. (18), Rw the measured paper reflectance, and Rmin the minimal value allowed for a reflectance. 

The colorant weights i are computed from the nominal ink coverages of the image tiles as follows. 
For each tile p of the image calibration set, we compute the effective ink coverages using Eq. (5). We 
then input these effective ink coverages to the Demichel equations to obtain the effective colorant 
coverages [Eq. (2)]. An effective colorant coverage ai,p indicates the area effectively covered by 
colorant i of reflectance Ri in tile p. The larger the area covered by colorant i, the more information 
about that colorant is available. We therefore consider the effective colorant coverage ai,p as a metric 
indicating the amount of information about colorant i contained in image tile p. We also define the 

weight i associated to colorant i for the entire image calibration set as the maximum effective 
colorant coverage among the tiles: 

 ,max[ ] i i p
p

a  (20) 

Note that in contrast to the ink spreading weights, the colorant weights are computed from effective 
coverages instead of nominal coverages. This is possible because the ink spreading curves are 

calibrated in the first calibration step performed in Eq. (18). Moreover, a weight i = 1 indicates that 
within the measured reflectances of the calibration set, there is also the measured colorant reflectance 
Ri. This is always true for the white colorant since the paper reflectance is measured. When a 
measured colorant reflectance is present, that colorant is removed from the set of unknown colorant 
reflectances to be optimized. 

The colorant weights i define the bounds within which the colorant reflectances can be set. However, 
because each colorant reflectance is a spectrum composed of many elements, usually 36 or 48, the 
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optimization procedure has a tendency to let not only high weight tiles influence the fitted colorant 
reflectances, but also middle weight tiles. Since information contained in middle weight tiles is not as 
relevant as information contained in high weight tiles, the influence of middle weight tiles must be 

reduced. We achieve this by defining weights p associated to the image tiles. An image tile is 
considered relevant for the calibration if at least one of its effective colorant coverages is large. Image 

tile weight p associated to image tile p is set to the maximum effective colorant surface coverage 
present: 

 ,{ | 1}
max [ ]





p i p
ii

a  (21) 

Note that the maximum only considers the effective coverages of colorants that must be optimized. 
Since the sum of the effective colorant coverages of a tile is equal to 1, a tile cannot have both middle 
and high colorant coverages. Either it has a single large colorant coverage and the remaining colorant 
coverages are small, or it has two or three middle colorant coverages and the remaining colorant 

coverages are also small. In the first case, its associated image tile weight p is large and the influence 
of this tile within the optimization procedure is not reduced. In the second case, its associated image 

tile weight p is small and its influence on the optimization procedure is reduced. 

Using both image tile weights p and colorant weights i, we show in Section 6.2 how to design an 
optimization procedure ensuring respectively that (1) an image tile contributes to the computation of 
the colorant reflectances only if it provides valuable information, and (2) a given colorant reflectance 
is modified only when valuable information is available. 

6.2 Obtaining the optimized colorant reflectances using a least-squares method 
The optimization procedure used for the second calibration step is based on a weighted and 
constrained least-squares approach derived from Eq. (1). The matrix and vector sizes have the values 
shown in Table III. Let us first rewrite Eq. (1) in a linear form [19]: 

 
1/1/

, ,( ) ( ) ( ) ( )      nn
p k p k i p i k i p i k

i i

Q R a R a Q  (22) 

where 1/ nQ R  is a nk x 1 reflectance raised to the power 1/n, further referred to as an n-modified 

reflectance. Since each wavelength k is independent, we can rewrite Eq. (22) as follows: 

 , , ,  
T

p k i p i k p k
i

q a q a  (23) 

where qp,k is the kth component of the n-modified reflectance of image tile p, ai,p the effective coverage 

of colorant i for image tile p, qi,k the kth component of the n-modified reflectance of colorant i, 


pa  the 

nc x 1 vector containing the effective coverages of all the colorants for image tile p, and 


k  the nc x 1 

vector containing the kth components of all the colorant reflectances. If some colorant reflectances are 

Table III. List of variables used to express matrix and vector sizes. 

Variable Description Typical value 

nc Number of colorants 16 in the case of CMYK 

ni Number of colorants satisfying i ≠ 1 15 if only paper is measured 

np Number of calibration patches 50 in Sections 8 through 11 

nk Number of wavelength components 
composing reflectances 

48 when sampled every 10 nm 
between 380 nm and 850 nm 
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known, i.e. i = 1, we adjust Eq. (23) by determining the reflectance part , p kq  of the unknown colorant 

reflectances: 

 , , , , , ,
{ | 1} { | 1} 


 

     


i

T
p k p k i p i k i p i k p k

ii i

q q a q a q a  (24) 

where  pa  and  


k  are both ni x 1 vectors. Eq. (24) can be written for each of the p image calibration 

tiles. By combining the equations of all the image calibration tiles, we obtain the following equation: 
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 (25) 

where A is a np x ni matrix whose elements correspond to the effective colorant coverages ai,p. Since 
the effective colorant coverages ai,p can be computed using the ink spreading curves and since the 

reflectances Rp(k) of the image calibration tiles are measured, colorant coverage matrix A and vector 


kq  of size np x 1 are known. Based on Eq. (25), we formulate the following typical least-squares 

problem:  

 arg min ( ) ( ) ( , )


        
    T

k k k kq A q A LSQ q A  (26) 

Let us now introduce the image tile weights p to weight the least-squares residuals and reduce the 
influence of calibration tiles that do not provide valuable information. We first construct a diagonal 
matrix W of size np x np with the following diagonal elements: 

 pp pW  (27) 

Using matrix W, we formulate the following weighted least-squares problem [20]: 
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The final least-squares problem becomes: 
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where Qi(k) is the kth component of the reflectance of the ith colorant raised to the power 1/n, i the 

colorant weight associated to colorant reflectance Ri, ( )old
iR  the reflection spectrum of colorant i 

recovered in Eq. (18), Rw() the reflection spectrum of the paper substrate, and Rmin the minimum 

value allowed for a reflectance. This least-squares problem is solved for each wavelength k to obtain 
the entire optimized colorant reflectances. 
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7 Selection of image calibration tiles 
As seen in previous works [7]-[9], we should use uniform image tiles to calibrate the IS-YNSN model. 
The algorithm used in this contribution to extract such uniform tiles from color images is similar to the 
optimized selection algorithm described in [9]. The algorithm creates two different sets of image tiles. 
The first set, further referred to as the image calibration set, is used to calibrate the IS-YNSN model 
and is composed of 50 image tiles. The second set, further referred to as the image test set, is used to 
test the accuracy of the calibrated model and is composed of 30 image tiles. 

Two concepts, non-uniformity and proximity in the CMYK color space, are used to select tiles. The 
non-uniformity value of a tile located within a small sub-domain of the considered color image is 
computed using its c, m, y, and k pixel values as follows: 

  2 2 2 2 / 4( ) ( ) ( ) ( )      u c m y k  (30) 

where u is the non-uniformity value; c, m, y, and k are the cyan, magenta, yellow, and black pixel 

values of the considered image tile ranging from 0 to 1; and the  function is the standard deviation. In 
addition to selecting uniform tiles, the algorithm ensures that the tiles are not too close to other already 
selected tiles. We define not too close using the Euclidian distance (norm) in the CMY or CMYK 
color space. For a CMY tile to be selected, it must not have any tile within a CMY norm of 0.5 and no 
more than one other tile within a CMY norm of 1.5. For a CMYK tile to be selected, it must not have 
any tile within a CMYK norm of 0.3 and no more than one other tile within a CMYK norm of 0.9. 
When a tile respects these constraints, it is said to be not too close to the already selected tiles. 

The first phase of the algorithm consists in listing the candidate tiles from which calibration and test 
tiles are selected. Each image is scanned horizontally and vertically in 2 mm steps. Successive 5 mm 
large square tiles form the candidate tiles. Each tile is associated with a non-uniformity value 
according to Eq. (30). Tiles with a non-uniformity value above 0.1 are discarded. 

The second phase consists in the actual selection of tiles. The selection algorithm not only selects 
uniform tiles, but also tiles best suited to calibrate the model. Because it is more important to 
accurately calibrate the colorant reflectances than the ink spreading curves, we define the best tiles as 

the tiles maximizing the colorant weights i computed in Eq. (20). To maximize the colorant weights 

i, the selection algorithm needs to find among the candidate tiles the tiles that both have large 
effective colorant coverages ai and are uniform. To account for both aspects, the effective colorant 
coverages are adjusted according to their non-uniformity value u as follows: 

 , ,

4( /0.05)
i p i p

pu
a a e

   (31) 

where ,i pa  is the uniformity-adjusted effective colorant coverage of tile p, ai,p is the effective colorant 

coverage of tile p, and up is the non-uniformity value of tile p computed in Eq. (30). If the given tile is 
uniform, i.e. its non-uniformity value up is low, the adjustment function is close to unity and the 
effective colorant coverage is not modified. If the tile is non-uniform, its non-uniformity value is high 
and the adjustment function is close to 0. In that case, the tile is discarded. For each colorant, the 
selection algorithm chooses the tiles (two for CMY images and one for CMYK images) having the 

maximum uniformity-adjusted effective colorant coverage ,i pa  and that are not too close to already 

selected tiles according to the CMY or CMYK norm. Since image tiles having a large maximum 

uniformity-adjusted effective colorant coverage ,i pa  also have a large colorant weight i, the proposed 

selection algorithm ensures that the colorant weights i computed in Eq. (20) are optimal. Once the 16 
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tiles maximizing the colorant weights i are selected, the algorithm completes the image calibration 
set by selecting the 34 most uniform image calibration tiles that are not too close to already selected 
tiles. The final calibration set is therefore composed of 50 image tiles. In Section 12, we examine if 
smaller sets can be used. 

The image test set created by the selection algorithm is composed of the 30 most uniform tiles not part 
of the image calibration set and not too close to already selected test tiles according to the CMY or 
CMYK norm. 

8 Setup of the experiments 
In order to analyze how the different calibration procedures perform, we use the 21 different sRGB 
images shown in Appendix B. The first three images come from a digital camera and the other 
eighteen from different sources providing standard test images [21]-[23]. The sizes of the images have 
not been modified, but they have been resampled to 600 dpi. Moreover, they have been converted to 
two different color spaces: CMY and CMYK. Both conversions have been performed using Photoshop 
and the U.S Web coated (SWOP) v2 CMYK profile. The conversions to CMY and CMYK have been 
performed without GCR (Gray Component Replacement) and with medium GCR, respectively. 

The image calibration and test tiles selected using the algorithm described in Section 7 are shown in 
Appendix C for the CMY images and in Appendix D for the CMYK images. They are printed on a 
Canon PixmaPro 9500 inkjet printer at 600 dpi using classical rotated halftone screens. The CMY 
images are printed at 150 lpi with CMY halftone screen angles at 75°, 15°, and 45°, respectively. The 
CMYK images are printed at 100 lpi with CMYK halftone screen angles at 75°, 15°, 0° and 45°, 
respectively. The size and shape of the image tiles are adapted to the Datacolor MF45IR 
spectrophotometer. The tiles are conceived as disks with a diameter of 3 mm. Since this device 
illuminates the sample using a directed source (45°d:0° geometry), we measure each sample four 
different times, each time rotating it by 90° and taking the average. This reduces errors due to the 
positioning of the device and irregularities of the illumination geometry. The non-uniformity value of 
a given tile is computed on an area slightly larger than the actual tile, i.e. a 5 mm disk instead of a 
3 mm disk. Ensuring that the area surrounding the actual tile is also uniform further reduces 
positioning errors. 

To compare the prediction accuracy of the different calibrations on color-constant patches well 
distributed across the printable gamut, we use four test sets composed of color-constant patches. The 
first test set, further referred to as the 117 CMY set, is composed of 125 color-constant CMY patches 
with all possible combinations of cyan, magenta, and yellow at 0%, 25%, 50%, 75%, and 100% 
surface coverages from which we exclude the 8 CMY colorants. The second set, further referred to as 
the 64 CMY halftone set, is composed of 64 color-constant CMY patches with all possible 
combinations of cyan, magenta, and yellow at 20%, 40%, 60%, and 80% surface coverages. The third 
and fourth sets, further referred to as the 117 UCR set and 64 UCR halftone set, respectively, are 
composed of 117 and 64 color-constant CMYK patches with nominal surface coverages obtained by 
converting the 117 CMY set and 64 CMY set to CMYK using the standard under color removal 
algorithm described above. 

9 Accuracy of the recovered colorant reflectances 
For each of the 21 image calibration sets extracted from the 21 sRGB images, we perform the 
following three calibrations: the unconstrained calibration described in Section 4, the constrained 
calibration described in Section 5, and the surface coverage based optimized image calibration 
described in Section 6. We then compare the recovered colorant reflectances with the measured 
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reflectances. Figures 2 to 6 focus on five different cases: the yellow colorant in the Hats image 
(Fig. 2), the red colorant in the Yacht image (Fig. 3), the blue colorant in the Hats image (Fig. 4), the 
green colorant in the Lighthouse II image (Fig. 5), and the black colorant in the Handa Island image 
(Fig. 6). In all the figures, the light gray region indicates the unconstrained colorant bounds introduced 
in Eq. (7), i.e. the area between Rmin and Rw. The dark gray region indicates the optimized colorant 

bounds determined by the colorant weights i in Eq. (19). The colorant reflectances recovered using 
the unconstrained (thin solid line) and constrained (dotted line) image calibrations are restricted to the 
light gray region, whereas the colorant reflectances recovered using the optimized image calibration 
(dashed line) are restricted to the dark gray region. The measured colorant reflectances (thick solid 
line) are also shown.  

As seen in Figs 2 to 6, the recovered unconstrained reflectances (thin solid lines) do not match the 

measured reflectances (thick solid lines) and show a CIELAB E94 error close to or above 20. 
Moreover, the unconstrained red colorant in Fig. 3 reaches the lower bound of the light gray region, 
which creates acute angles in the spectrum, angles that are not found in real reflectances. Such 
reflectances are not suitable for predictions and show the limits of the unconstrained calibration 
procedure. 

The recovered constrained reflectances (dotted lines) fit much better the measured reflectances, but the 
shapes of the reflectances are not always accurate. For example, in Fig. 2, the transition at 500 nm is 
not as sharp as the transition of the measured reflectance. In Fig. 3, the bump at 500 nm is not present. 
Conversely, in Fig. 4, a hollow is present at 570 nm in the constrained reflectance and not in the 
measured reflectance. Although not always perfectly aligned with the corresponding measured 
reflectances, the constrained reflectances have shapes similar to the measured reflectances and display 

an average E94 error of 5.79 as shown in Table IV. 

The largest E94 errors occur for the recovered reflectances of colorants incorporating the black ink, 
e.g. the colorant shown in Fig. 6. Because the GCR algorithm uses the black ink only to replace large 
percentages of cyan, magenta, and yellow, it is not possible for an image tile to have a large weight for 
a colorant including black. Since there is not much information about these colorants, their fitted 
reflectances are less accurate than the reflectances of colorants that do not include black. If we 

consider only the 7 CMY colorants, the average E94 error between the measured colorant reflectances 
and those recovered using the constrained calibration algorithm drops to 4.34. By comparison, the 

average E94 error is 4.16 for CMY prints (Table IV). It is slightly better than the 7 CMY colorant 
average in CMYK prints because the GCR algorithm reduces the surface coverage of some colorants, 
especially the CMY colorants.  

The detailed analysis of the 7 CMY colorants for CMYK prints is given in Table V. It confirms that 
the recovered reflectances that best match the measured reflectances are the optimized reflectances. 

However, this holds only when the colorant weights i are large enough. When the weight is low, as in 

Figs. 5 and 6, the optimized colorant reflectances may show a larger E94 error than the constrained 
colorant reflectances. In such cases, the dark gray regions may not always entirely cover the measured 
spectra and prevent the optimization algorithm from achieving better matches. However, the dark gray 
regions prevent the recovered optimized colorant reflectances from deviating too much from the 
constrained colorant reflectances due to lack of information. For example, in Fig. 5, the dark gray 
region prevents a good match in the near-infrared region above 750 nm, but also prevents a larger 
deviation between 550 nm and 600 nm. 
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Fig. 2. Measured reflectance (thick solid line), unconstrained
(thin solid line), constrained (dotted line), and optimized
(dashed line) recovered reflectances for the yellow colorant

of the Hats image (colorant weight yellow=0.80). The E94

error between the measured reflectance and the
unconstrained, constrained, and optimized fitted reflectances
are respectively 26.52, 2.66, and 0.56. 

 
Fig. 3. Measured reflectance (thick solid line), unconstrained 
(thin solid line), constrained (dotted line), and optimized 
(dashed line) recovered reflectances for the red colorant of 

the Yacht image (colorant weight red=0.46). The E94 error 
between the measured reflectance and the unconstrained, 
constrained, and optimized fitted reflectances are 
respectively 25.42, 4.72, and 3.74. 

 
Fig. 4. Measured reflectance (thick solid line), unconstrained 
(thin solid line), constrained (dotted line), and optimized
(dashed line) recovered reflectances for the blue colorant of

the Hats image (colorant weight blue=0.35). The E94 error 
between the measured reflectance and the unconstrained,
constrained, and optimized fitted reflectances are
respectively 34.82, 4.08, and 1.98. 

 
Fig. 5. Measured reflectance (thick solid line), unconstrained
(thin solid line), constrained (dotted line), and optimized
(dashed line) recovered reflectances for the green colorant of

the Sea image (colorant weight green=0.17). The E94 error
between the measured reflectance and the unconstrained,
constrained, and optimized fitted reflectances are
respectively 19.95, 5.48, and 8.25. 

 

Fig. 6. Measured reflectance (thick solid line), unconstrained
(thin solid line), constrained (dotted line), and optimized
(dashed line) recovered reflectances for the black colorant
(black ink) of the Handa Island image (colorant weight

black=0.02). The E94 error between the measured
reflectance and the unconstrained, constrained, and
optimized fitted reflectances are respectively 19.06, 7.23,
and 8.23. 



 
 

 17/33 
 

According to Table IV, the averageE94 error between measured and optimized colorant reflectances 
is 5.61, or respectively 4.02 if the colorants containing black are excluded. However, as shown in Fig. 

7, colorants whose weights i are above 0.4 induce a large accuracy improvement. When the colorant 
weight is lower, the accuracy remains stable, confirming that the constraints imposed on the optimized 
colorant reflectances successfully prevent the optimized calibration procedure from setting the 
colorant reflectances to spectra unrelated to the measured spectra because of lack of information. 

Finally, Fig. 8 shows that the higher the colorant weight i, the lower the E94 error between the 
measured and the recovered optimized colorant reflectances. 

The last column of Table IV shows the averageE94 error between the fitted and measured colorants 
for a calibration further referred to as the optimized distributed 117 patch calibration, i.e. the 
optimized calibration according to Section 6 performed using the 117 UCR set instead of an image 
calibration set. Such a calibration set is optimal since the tiles are evenly distributed across the entire 

printer gamut and do not contain any colorant. In this case, the average E94 error is further reduced to 
3.83 for CMYK prints, respectively to 2.19 when the colorants containing black are excluded, and 

 
Fig. 7. Average reduction in E94 error between recovered
optimized and constrained colorant reflectances according to

colorant weights i. A reduction of 1 E94 indicates that the
optimized reflectances are on average more accurate than the

constrained reflectances by 1 E94. 

 
Fig. 8. E94 error between measured and recovered
optimized colorant reflectances according to colorant

weights i. The figure shows that the higher colorant weight

i, the more accurate the recovered optimized colorant
reflectance. 

Table IV. Average E94 error between recovered 
and measured colorant reflectances according to 
different calibrations. For the constrained and 
optimized calibrations, the average is computed 
from the 21 different calibrations performed on 
the 21 images. The averages do not include the 
white colorant which is measured. 

Table V. Average E94 error between the
measured and 21 recovered colorant reflectances
for the constrained and optimized image
calibrations, as well as the average and standard
deviation of the corresponding colorant weights. 
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1.34 for CMY prints. These averages show the importance of measuring image tiles well distributed 
within the printer gamut. 

10 Comparison of different model calibrations 
Five different calibrations are compared. The first is the unconstrained calibration described in 
Section 4. The second is the constrained calibration described in Section 5. The third is the surface 
coverage based optimized image calibration described in Section 6. These first three calibrations are 
performed for each of the 21 image calibration sets. There are therefore 21 unconstrained calibrations, 
21 constrained calibrations, and 21 optimized image calibrations. The fourth calibration is the 
optimized distributed 117 patch calibration introduced in Section 9. It is the optimized calibration 
described in Section 6, performed on the 117 CMY or respectively for CMYK on the 117 UCR set 
instead of the image calibration set. The fifth calibration, used as reference, is the classical calibration 
of the IS-YNSN model relying on the measurements of the colorant reflectances and of predetermined 
color-constant halftone patches. 

Two test sets are used to compare the accuracy of the CMY calibrations: the 64 CMY halftone set and 
the test set merging all the 21 CMY image test sets. Since each image test set is composed of 30 image 
tiles, this merged test set is composed of 630 image tiles. The following CMYK test sets are used to 
compare the accuracy of the CMYK calibrations: the 64 UCR set and the test set merging the 21 
CMYK image test sets.  

Fig. 9. Comparison of the accuracy of 5 different types of calibrations. For the first three types of calibrations, the bar

corresponds either to the average E94 (above) or to the average root mean square error (RMSE, below) and the error bar to
the best and worst among the 21 calibrations. The test sets predicted are (a) the 64 CMY test set, (b) the 21 merged CMY
image test sets, (c) the 64 UCR test set, and (d) the 21 merged CMYK image test sets. 
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In Fig. 9, each calibration is used to predict each test set. We use the average E94 as a measure of 

accuracy. A lower average E94 prediction error implies a more accurate calibration. Since there are 
21 different calibrations for the first three types of calibrations, the first three bars represent the mean 

average E94 and the vertical lines indicate the minimum and maximum average E94. We first observe 
that the unconstrained calibration is not able to accurately calibrate the IS-YNSN model. The average 

E94 prediction error is 4 to 5 times larger in the CMY case (Figs. 9a,b) and up to 20 times larger in 
the CMYK case (Figs. 9c,d) compared with the classical calibration based on color-constant patches. 

When constraining the calibration, the average E94 prediction error is on average reduced below 2. 

Optimizing the colorant reflectances further reduces the average E94 to the point where even the 

worst optimized image calibration has an average E94 of 2. The surface coverage based optimized 
image calibration is therefore the best method to calibrate the IS-YNSN model using tiles extracted 
from color images.  

By comparing the performance of the optimized image calibrations to the performance of the 
optimized distributed 117 patch calibration, we see that the accuracy of the optimized distributed 117 
calibration corresponds to the best optimized image calibration. It is therefore important for the image 
calibration tiles to be well distributed in the printer gamut to achieve the most accurate calibration of 
the model. Moreover, a classical calibration may perform better than an optimized image calibration 
when predicting color-constant patches (Figs. 9a,c), but not when predicting image tiles (Figs. 9b,d). 
Classical calibrations are the most accurate when predicting color-constant patches, but optimized 
image calibrations are on average more accurate when predicting tiles extracted from color images.  

The average E94 error achieved by the optimized image calibrations may seem surprisingly low when 

compared with the larger E94 difference between the measured and fitted colorant reflectances shown 
in Tables IV and V of Section 9. This difference in prediction accuracy is explained as follows. The 
IS-YNSN model performs predictions by interpolating between the colorants. The colorants are 
therefore the extreme points of the interpolation domain. In a classical calibration, these extreme 
points are measured, but are not the best references because they do not correspond to the normal 
halftoning operation of the printing device. Conversely, by recovering the reflectances of the colorants 
from tiles extracted from color images, we rely on information that better represents these normal 
operational conditions. The resulting IS-YNSN model may not be the most accurate when predicting 
reflectances close to the colorants, but is highly accurate when predicting reflectances of halftones and 
image tiles. 

11 Calibration of the Yule-Nielsen n-value 
In the preceding sections, the Yule-Nielsen n-value is set to a fixed scalar value. Let us investigate 
how to fit this n-value for both the constrained and the optimized image calibrations. In a classical 
calibration, the n-value is fitted as follows. A list of candidate n-values is established, for example 
between 1 and 10 in 0.5 steps. For each n, the IS-YNSN is calibrated and used to predict the 
calibration set. The average root mean square error (RMSE) between the predicted and measured 
calibration patch reflectances is recorded for each n. The chosen n-value is the one yielding the lowest 
average RMSE. We apply the same selection procedure for both the constrained and the optimized 
image calibrations. 

The results are shown in Fig. 10. The average RMSE of the classical calibration [line (1)] decreases 
smoothly when n increases. n is therefore set to 10, but the difference is not significant between n = 7 
and higher values of n. When performing constrained image calibrations, the n-value is usually set to 
10, except for the Child, Peppers, and Sailboat III image calibrations where n is set to 9.5 (circles on 



 
 

 20/33 
 

the left). Generally, the average RMSE of such calibrations also decreases when n increases (dashed 
lines on the left), but some small local increases lead to a few n-values being set to values lower than 
10. However, since the average RMSE of the 21 constrained image calibrations behaves on average in 
the same manner as the average RMSE of the classical calibration [line (2)], the selected n-values 
correspond to the n-value chosen for the classical calibration.  

When optimized image calibrations are used to select n, the general shape of the average RMSE is on 
average a sharp drop between 1 and 2 followed by a straight line [line (3)], providing no useful 
information about the best n-value. As seen in Fig. 10b, many different optimal n-values are selected. 
However, since the lines are nearly flat, any n-value of 2 or above could be chosen. The flexibility 
introduced by the optimal calibration seems to make the n-value a redundant parameter. Nevertheless, 
we rely on the constrained image calibrations to choose the best n-value since this n-value corresponds 
to the choice for the classical calibration. Once the best n-value is chosen, we can optimize the 
colorants of the corresponding constrained image calibration to obtain an IS-YNSN model fully 
calibrated from color printed images without relying on prior knowledge about colorant reflectances or 
ink spreading parameters. 

12 Importance of accurately calibrating the colorant reflectances 
In the previous sections, we have shown how to calibrate the IS-YNSN model using a set of 50 image 

calibration tiles maximizing the colorant weights i defined in Eq. (20). In this section, we show the 

importance of maximizing the colorant weights i and provide more insights about the required 
number of image calibration tiles. 

In order to study the influence of the colorant weights i, we perform the following experiment. We 
first merge the 1050 available calibration tiles selected in the 21 different test images (see Appendices 
C and D). From this pool of image calibration tiles, we create calibration sets by randomly selecting 
tiles one after another and adding the chosen tile to the calibration set only if it increases the sum s of 

the colorant weights i:  

 ,max[ ]

  i i p

i
pi

s a  (32) 

Fig. 10. Average RMSE between the measured and predicted calibration patches, or image calibration tiles, according to
different Yule-Nielsen n-values. Solid line (1) corresponds to the classical calibration, the dashed lines in (a) to each of the
21 constrained image calibrations, solid line (2) to the average of the dashed lines in (a), the dashed lines in (b) to each of the
21 optimized image calibrations, and solid line (3) to the average of the dashed lines in (b). The circles correspond to the
n-value along each dotted line yielding the minimum average RMSE. 
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where the colorant weights i are computed with the current calibration set according to Eq. (20). 
Such image calibration sets are further referred to as iterative calibration sets. We create 100 different 
CMY iterative calibration sets containing each 25 image calibration tiles and 100 different CMYK 
iterative calibration sets containing each 40 image calibration tiles. Fig. 11 shows how the sum s of the 

colorant weights i increases with each additional calibration tile. The sum of the weights may slightly 
decrease when a tile is added because the colorant weights are computed based on the effective 
colorant coverages [Eq. (20)], relying themselves on ink spreading curves recalibrated each time a new 
calibration tile is added. As a reference, the CMYK image calibration sets created in Section 7 and 
shown in Appendix D are composed each of 50 image tiles and have sums between 3.14 (Sea image) 
and 5.37 (Hats image) with an average of 4.0. An average sum of colorant weights of 4 corresponds to 
iterative calibration sets composed of 12 image tiles. 

For each iterative calibration set, we perform as many optimized calibrations as tiles in the calibration 
set. The first calibration uses only the first tile of the set, the second calibration the first 2 tiles, the 
third calibration the first 3 tiles, etc. The last calibration therefore uses all the tiles of the calibration 
set. Based on an iterative calibration set, we calibrate the IS-YNSN model using the optimized 
calibration algorithm described in Section 6. However, instead of setting the starting point of the 
gradient-descent algorithm to the default values, i.e. setting the mid-points of the ink spreading curves 
to 0.5, the principal components of the ink transmittances to 0, and the ink thickness variation factors 
to 1, we use the values obtained by the previous calibration, i.e. the calibration performed with one 
calibration tile less. By using the values of the previous calibration, the ink spreading curves are 
already partly calibrated and the effective ink coverages can be computed to determine the ink 
spreading weights wi/jk (Section 5.1).  

The accuracy of the calibrations based on the iterative calibration sets is shown in Fig. 12 when 
predicting the 64 CMY halftone set and the 21 merged CMY image test sets, and in Fig. 13 when 
predicting the 64 UCR set and the 21 merged CMYK image test sets. We compare these predictions 
with the predictions of the optimized (*) and classical (‡) calibrations performed in Section 10. For 
both the CMY and CMYK test sets, the prediction error decreases with each additional calibration tile. 
This decrease correlates perfectly with the increase of the sum of the colorant weights shown in 
Fig. 11. Sets composed of 10 CMY or 16 CMYK image calibration tiles are sufficient to achieve an 
accuracy similar to the calibration sets used in Section 10 (*). The prediction error keeps decreasing 
slowly with each additional tile, but not significantly once the image calibration set contains 20 CMY 
or 30 CMYK tiles. Calibrations using the iterative calibration sets therefore show significant 
improvement over the optimized calibrations performed in Section 10 (*). 

 
Fig. 11. Sums of the CMYK colorant weights i according to the number of image tiles in the iterative calibration sets. The
bars represent the average sums over 100 different iterative calibration sets. The error bars represent the highest and lowest
sums among the 100 iterative calibration sets. 
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In respect to the classical calibration (‡), calibrations using the iterative calibration sets are more 
accurate when predicting the image test tiles and almost as accurate when predicting the CMY color-
constant halftone patches. Iterative optimized image calibrations are however not as accurate as a 
classical calibration when predicting the CMYK color-constant halftone patches. These results show 

the importance of maximizing the colorant weights i. Since these weights indicate the amount of 

information available to calibrate the colorant reflectances, large colorant weights i improve the 
accuracy of the recovered colorant reflectances, and therefore the accuracy of the IS-YNSN model.  

 
Fig. 12. Average E94 between the measured and predicted image tiles of the 21 merged CMY image test sets (light gray)
and the CMY 64 halftone test set (dark gray) according to the number of tiles in the iterative calibration sets. The iterative
image calibrations are compared with the optimized image calibration performed in Sections 9 and 10 (*) and the classical

calibration (‡). The bars indicate the mean average E94 of all the 100 iterative calibrations. The error bars indicate the

average E94 of the best and worst calibrations among the 100 iterative calibrations performed. Since the error bars are
similar for both test sets, they are shown only once. 

Fig. 13. Average E94 between the measured and predicted image tiles of the 21 merged CMYK image test sets (light gray)
and the CMYK UCR 64 halftone test set (dark gray) according to the number of tiles in the iterative calibration sets. The
iterative image calibrations are compared with the optimized image calibration performed in Sections 9 and 10 (*) and the

classical calibration (‡).The bars indicate the mean average E94 of all the 100 iterative calibrations. The error bars indicate

the average E94 of the best and worst calibrations among the 100 iterative calibrations performed. Since the error bars are
similar for both test sets, they are shown only once. 
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In order to ensure that the least-squares optimization of Section 6.2 is not rank deficient, the number of 
image calibration tiles should not be less than the number of colorant reflectances to calibrate. If the 
white colorant is the only measured colorant, there should be no less than 7 CMY or respectively 15 
CMYK image calibration tiles. We can see in Figs. 12 and 13 that calibrations using an insufficient 
number of calibration tiles are not stable and induce large variations in accuracy. In such cases, we 
advise using the constrained calibration (Section 5) instead of the optimized calibration (Section 6). 

13 Conclusion 
Spectral reflection prediction models are important tools for the characterization of color reproduction 
devices. Among such models, due to its simplicity and accuracy, the Yule-Nielsen model is the most 
widely used. However, many calibration patches are required for its calibration, patches that are 
usually not available within the printed document. In order to simplify the calibration of the prediction 
model and to prevent printing special color-constant halftone and solid calibration patches, we use 
image tiles extracted from printed color images. The model used in this contribution is the ink 
spreading enhanced Yule-Nielsen model (IS-YNSN model), a variant of the Yule-Nielsen model 
including an ink spreading model accounting for physical dot gain. 

Image tiles have previously been used by the authors to calibrate the ink spreading curves, but not to 
recover the reflectances of the Neugebauer primaries. In this contribution, we propose a method to 
recover the colorant reflectances (Neugebauer primaries), the ink spreading curves, and the Yule-
Nielsen n-value using only tiles extracted from printed color images. There is no prior knowledge 
about the reproduction device. The first calibration step introduces constraints for colorant reflectances 
derived from the principal component analysis of a large number of ink transmittances and surface 
coverage related constraints for the ink spreading curves. Such a constrained calibration is performed 
for a list of candidate Yule-Nielsen n-values. The n-value yielding the most accurate calibration is 
selected. In a second step, to improve the accuracy of the calibration, the colorant reflectances are 
optimized by a weighted least-squares approach where the weights are set according to the colorant 
surface coverages. 

The proposed optimized image calibration is almost as accurate as a classical calibration when 
predicting color-constant halftone patches and more accurate when predicting image tiles extracted 
from color images. Moreover, this high accuracy is achieved with sets composed of less than 20 well-
chosen image calibration tiles. By entirely eliminating the need to print predetermined patches, these 
calibration procedures broaden the field of use of spectral reflection prediction models. Such models 
can now be used when it is impossible or too expensive to print extra patches or when the reproduction 
device is not available. It also enables the real-time monitoring of printing devices without modifying 
their print jobs. 

In respect to the optimized image calibration, in which colorant reflectances are relaxed from their 
initial constraints and further optimized, the Yule-Nielsen n-value seems to become a redundant 
parameter. Further research is needed to establish the relationship between colorant reflectance 
optimization and n-value. Future work also includes applying the presented approach for the real-time 
monitoring of reproduction devices. 

References 
[1] Phil Green, L.W. MacDonald, “Colour Engineering: Achieving Device Independent Colour”, 

New York: John Wiley and Sons, 2002, 482 p; 

[2] R. Balasubramanian, “Optimization of the spectral Neugebauer model for printer 
characterization,” Journal of Electronic Imaging, Vol. 8, No. 2, 1999, pp. 156-166; 



 
 

 24/33 
 

[3] J.A.C. Yule, W.J. Nielsen, “The penetration of light into paper and its effect on halftone 
reproductions,” Proc. TAGA, Vol. 3, 1951, pp. 65-76; 

[4] J.A.S. Viggiano, “Modeling the color of multi-colored halftones,” Proc. TAGA, vol. 42, 1990, 
pp. 44-62; 

[5] A. U. Agar and J. P. Allebach, “An Iterative Cellular YNSN Method for Color Printer 
Calibration,” Proc. of the 6th IS&T/SID Color Imaging Conference, Scottsdale AZ, 1998, pp. 
197-200; 

[6] T. Bugnon, M. Brichon, R.D. Hersch, “Simplified Ink Spreading Equations for CMYK Halftone 
Prints”, Color Imaging XIII: Processing, Hardcopy, and Applications, SPIE Vol. 6807, pp. 
680717-1 to 680717-12, January 2008; 

[7] T. Bugnon, R.D. Hersch, “Constrained Acquisition of Ink Spreading Curves from Printed Color 
Images”, IEEE Trans. Image Process., Vol. 20, No. 2, February 2011; 

[8] R.D. Hersch, M. Brichon, T. Bugnon, M. Hébert, “Deducing ink spreading curves from reflection 
spectra acquired within printed color images,” Journal of Imaging Science and Technology, Vol. 
53, No.3, 2009, paper 030502, pp. 1-7; 

[9] T. Bugnon, R.D. Hersch, “Optimized Selection of Image Tiles for Ink Spreading Calibration,” 
Color Imaging XVI: Displaying, Processing, Hardcopy, and Applications, SPIE Vol. 7866, 
pp. 786612-1 to 786612-16, January 2011; 

[10] Raja Balasubramanian, “The Use of Spectral Regression in Modeling Halftone Color Printers,” 
Proc. IS&T/OSA Annual Conference, Optics & Imaging in the Information Age, pp. 372-375, 
1996; 

[11] H.E.J. Neugebauer, “Die theoretischen Grundlagen des Mehrfarbendrucks”, Zeitschrift fuer 
wissenschaftliche Photographie, Vol. 36, 1937, pp. 36-73, translated by D. Wyble and A. 
Kraushaar in “The theoretical basis of multicolor letterpress printing,” Color Res. Appl., Vol. 30, 
2005, pp. 323-331; 

[12] J.A.C. Yule, R. Colt, “Colorimetric investigation in multicolor printing,” Proc. TAGA, Vol. 3, 
1951, pp. 77-82; 

[13] R.D. Hersch, F. Crété, “Improving the Yule-Nielsen modified spectral Neugebauer model by dot 
surface coverages depending on the ink superposition conditions,” Color Imaging X: Processing, 
Hardcopy, and Applications, SPIE Vol. 5667, 2005, pp. 434-445; 

[14] R.D. Hersch, P. Emmel, F. Collaud, F. Crété, “Spectral reflection and dot surface prediction 
models for color halftone prints,” Journal of Electronic Imaging, Vol. 14, No. 3, 2005, pp. 
033001-12; 

[15] Th. Bugnon, M. Brichon and R.D. Hersch, “Model-Based Deduction of CMYK Surface 
Coverages from Visible and Infrared Spectral Measurements of Halftone Prints,” Color Imaging 
XII: Processing, Hardcopy, and Applications, SPIE Vol. 6493, 2007, pp. 649310-1 to 649310-10; 

[16] H.S. Fairman, and M.H. Brill, “The principal components of reflectances,” Color Research and 
Application, Vol. 29, No. 2, October 2004, pp. 104–110; 

[17] D.-Y. Tzeng, and R.S. Berns, “A review of principal component analysis and its applications to 
color technology,” Color Research and Application, Vol. 30, No. 2, April 2005, pp. 84–98; 

[18] R.D. Hersch et al., “Deducing ink thickness variations by a spectral prediction model,” Color 
Research and Application, Vol. 34, No. 6, October 2009, pp. 432–442; 

[19] P. Urban, R.-R. Grigat, “Spectral-based color separation using linear regression iteration,” Color 
Research and Application, Vol. 31, No. 3, June 2006, pp. 229–238; 



 
 

 25/33 
 

[20] Å. Björk, “Numerical Methods for Least Squares Problems,” SIAM press, Philadelphia, PA, 
1996, pp. 165-171; 

[21] http://r0k.us/graphics/kodak/ 

[22] http://sipi.usc.edu/database/database.cgi?volume=misc 

[23] http://www.hlevkin.com/TestImages/additional.htm 

Appendix A 
In Section 5.2.1, principal component analysis (PCA) is used to constrain the transmittances of the 
inks. Given a set of ink transmittances sampled at k different wavelengths, a PCA yields a list of k 
principal components that allow the reconstruction of the ink transmittances such that the first 
component accounts for as much of the variability in the data as possible, and each succeeding 
component accounts for as much of the remaining variability as possible.  

By limiting the number of principal components to the first m components, only m scalars are required 
to reconstruct a transmittance. Moreover, as the first m principal components account for most of the 
variability of the data, we ensure that the reconstructed transmittances keep the intrinsic properties of 
real transmittances, i.e. their smoothness and characteristic shape. Note that one PCA is performed 
separately for each of the 4 basic c, m, y, and k inks. 

The data used for the PCAs is composed of the spectral reflectance measurements of the cyan, 
magenta, yellow, and black colorants as well as the substrate on which these colorants are printed. We 
measured the ink reflectances of 25 CMY and 37 CMYK reproduction devices, comprising a wide 
range of technologies such as ink jet, thermal transfer, and electrophotographic printers; offset presses; 
and proofing devices. Note that the Canon PixmaPro 9500 printer used in the present experiments was 
not used to build the principal vectors of the PCA. Once the reflectance measurements are available, 
the transmittances of the inks are computed using Eq. (12) and a PCA is performed on these 
transmittances. For different values of the number of components m, we reconstruct the transmittances 
and compute the reconstructed colorant reflectances using Eq. (12). We then calculate the following 
error metrics between the measured and reconstructed colorant reflectances: root mean square error 

(RMS), E94 average, 95 percentile (95%), and maximum E94. We also indicate the score of each 
principal component, i.e. the percentage of variability explained by the considered principal 
component, as well as the total percentage of variability explained by the m selected principal 
components. 

Tables VI to IX show the accuracy of the reconstructed transmittances according to the number m of 
retained principal components for the cyan, magenta, yellow, and black inks, respectively. Except for 
yellow, the first two principal components already account for more than 90% of the variance (score). 
Using three principal components, we are able to accurately reconstruct all the colorants with a 

maximum E94 of 2.97 and a 95 percentile E94 of 0.89. This accuracy is sufficient and provides us 
with a method to express the ink reflectances with only 3 scalars per ink. 
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Table VI. Accuracy of the PCA for the cyan 
transmittances according to the number of 
principal components used (#PC). 

 
 
Table VII. Accuracy of the PCA for the 
magenta transmittances according to the 
number of principal components used (#PC). 

 
 

Table VIII. Accuracy of the PCA for the yellow 
transmittances according to the number of 
principal components used (#PC). 

 
 
Table IX. Accuracy of the PCA for the black 
transmittances according to the number of 
principal components used (#PC). 
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Appendix B: Test images (scale 1:5) 
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Appendix C: CMY calibration and test image tiles 
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Appendix D: CMYK calibration and test image tiles 
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