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der the microscope. This approach lead to accurate color
predictions but it has two major drawbacks: firstly, the
simulated dot shapes are not realistic; secondly, the
number of different configurations and the number of
enlargement coefficients increases dramatically with the
number of ink layers.

Therefore, a new investigation method is proposed. It
is based on an impact model whose shape changes as a
function of the configuration of the neighboring impacts
and of the state of the surface. Because the number of
configurations is high, Pólya’s counting theory is used
to find a reduced set of cases whose analysis allows us
to deduce the spreading in all other configurations. By
building samples with this reduced set, standard mea-
suring instruments can be used to estimate the ink
spreading. This information will be used by our color
prediction model in order to compute accurately the
spectra of printed samples.

The Impact Model
In our color prediction software,2 high resolution grids
model the printed surface. One grid is used for each ink.
The value of a grid point corresponds to the local amount
of a given dye (see Fig. 2). The density profile of an iso-
lated ink impact was measured under a microscope and
approximated by a parabolic function.4 The resulting ink
impact model (see Fig. 2) is used as a stamp. Wherever
an ink drop hits the surface of the printed media, the
impact model is stamped at the same location on the
high resolution grid. Stamp overlapping is additive.

In a color print using n inks, the ink combination
covering a surface element at position (x, y) is given by
the set of n values of the grid points (x, y) in the n
superposed high resolution grids. The area covered by
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Introduction
In previous publications,1,2 we presented a color predic-
tion model for halftoned samples which is based on a
new mathematical formulation of the Kubelka–Munk
equations. This new model requires, like Neugebauer-
based methods,3 an estimation of the area covered by
each ink density combination. This estimation needs to
be computed by simulating the printing process.

In ink jet printing, the superposition of ink drops causes
a significant dot gain, i.e., a change of the covered area
(see Fig. 1). When ink drops are printed one over another
or just partially overlap, an ink spreading process takes
place. This phenomenon results from a complex physical
interaction between the ink drops and the surface of the
printed media. Changing the inks or the paper modifies
the magnitude of the spreading and induces color pre-
diction errors ranging up to ∆Ε = 20 in CIELAB.

According to observations made under the microscope,
the spreading depends on the state of the surface (“wet”
or “dry”) and the configuration of the neighboring im-
pacts. In our previous study,2 we analyzed samples made
of two ink layers, and deduced a set of empirical rules
describing the enlargement of the impact of an ink drop.
For each ink–paper combination twelve enlargement
coefficients were estimated by observing samples un-
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a given combination of n inks is estimated by counting
the number of surface elements having the same set of
n values.

In ink jet printing, the shape of an impact highly de-
pends on the configuration of the neighboring ink drop
impacts and on the state of the surface. Therefore we
need to extend the traditional circular or elliptic im-
pact model5 to more sophisticated shapes.

Most ink jet printers use a hexagonal grid when print-
ing in color. Hence, each impact has six neighbors.
Therefore, the circumference of an impact is param-
eterized by six vectors having a common origin at the
impact center. Each vector is oriented to the direction
of the midpoint between two neighboring impacts (see
Fig. 3). Let us denote ri(1 ≤ i ≤ 6) the length of the vec-
tor which is oriented in the direction given by the angle
θi = π/6 + (i – 1) · π/3. The shape of the impact is ap-
proximated by a parametric curve that joins the verti-
ces defined by the six vectors.

Let us denote ρ = r(θ) the equation in polar coordi-
nates of this parametric curve. Because we assume that
a neighbor influences only locally the shape of the im-
pact, the parametric curve depends only on ri and ri+1

when θi ≤ θ ≤ θi+1. In order to get realistic impact shapes,
we interpolate the values of the radius ρ between ri and
ri+1 by using a polynomial of degree three:

ρ = r(θ) = 2(ri – ri+1)t3 – 3(ri – ri+1)t2 + ri (1)

where
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These properties guarantee the continuity of r(θ) and of
its first derivative.

We assume that the density D at the location defined
by the polar coordinates (ρ, θ) (0 ≤ ρ ≤ r(θ)) is given by:
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where DM is the density at the center of the impact. Note
that a circular impact (r(θ) constant) has a parabolic
density profile as observed in our previous study.4

The amount of dye remains constant during the
spreading process, only the spatial distribution is
changed. Therefore, the maximal density DM at the cen-
ter of the impact must decrease when the impact is en-
larged. By integrating Eq. (2) over the area occupied by
the impact, we get the total amount of dye within the
impact (see Appendix). Because this amount must re-
main constant, we get the following equation for DM:
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(a)  (b)
Figure 1. Microscopic views of a halftoned cyan sample (a) and of a green halftoned sample (b). The green sample (b) is made of
the same cyan layer as (a) and covered with a uniform yellow layer. Note the enlargement of the cyan clusters in (b).

Cyan clusterPaper Green clusterYellow ink



Modeling Ink Spreading for Color Prediction                Vol. 46, No. 3, May/June  2002  239

each impact has six neighbors whose centers are the cor-
ners of a regular hexagon. In a three-ink color print, each
pixel of the printed surface is in one of the following four
states: no ink, covered with one ink drop, covered with
two ink drops or covered with three ink drops. Because
an impact has six neighbors, there are 46 = 4096 possible
neighbor configurations. On the considered center point,
a new ink drop is printed on a surface that is in one of
the following three states: dry (no ink), covered with one
ink drop or covered with two ink drops. Therefore, there
are 3 × 46 = 12288 configurations to consider.

Among these 12288 configurations, many are equiva-
lent by reflection or by rotation. Note that there are

Figure 2. High resolution grid modeling the printed surface.
The value of a grid point corresponds to the local amount of
dye. The density profile of an isolated ink impact is parabolic.

Figure 3. Six vectors define the circumference of the impact.
The dashed circles indicate the locations of neighboring impacts.

where r0 and D0 are respectively the radius and the maxi-
mal density at the center of an isolated circular impact
which did not spread.

This new impact model allows us to simulate the
spreading by changing the six ri coefficients according
to the configuration of the neighbors and the state of
the surface.

Pólya Counting
In this section, we derive the number of non-equiva-

lent ink-drop configurations with the help of Pólya’s
“counting theory.” (Readers interested mainly in the fi-
nal ink spreading model may skip over this section.)
Pólya’s counting requires three steps: first, defining the
group of symmetries acting on the set of corners, sec-
ond, factorizing each permutation into cycles, and third,
calculating the cycle index polynomial.

As we pointed out in the previous section, most ink jet
printers use a hexagonal grid when printing in color. So

Figure 4. There are six rotations and six reflections that bring
a regular hexagon onto itself.
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twelve symmetries that bring a regular hexagon onto
itself: six rotations and six reflections (see Fig. 4). By
considering only non-equivalent configurations, the
number of cases to analyze can be reduced.

At the beginning of the century, the mathematician
George Pólya developed a theory for this kind of count-
ing problem.6 Later, his work was translated into En-
glish7 and became known in the mathematical literature
as “Pólya’s counting theory.” In the forthcoming discus-
sion, we present only how to apply this theory to our
problem. Good presentations of Pólya’s counting theory
can be found in textbooks.8

As mentioned above, there are twelve geometric mo-
tions, six rotations and six reflections, which act as per-
mutations of the corners of the regular hexagon. Let us
denote ρ0

6, ρ1
6, ρ2

6, ρ3
6, ρ4

6 and ρ5
6 the rotations by an angle

of θ = 0, θ = π/3, θ = 2π/3, θ = π, θ = 4π/3 and θ = 5π/3
respectively. Furthermore, we denote τad, τbe, τcf, the re-
flections whose axes are the lines (ad), (be), (cf) respec-
tively, and τab, τbc, τcd, the reflections whose axes are the
mediators of the segments [ab], [bc], [cd] respectively.
This set of twelve symmetries with the composition op-
eration has a group structure:9 the unit element is ρ0

6,
each symmetry has an inverse, and the composition of
two symmetries is still a symmetry. Let us denote this
group D6. The group is acting on the set of corners of
the hexagon.

By applying the same operation, one of the symmetries
listed in Table I, iteratively to the hexagon, the corners
follow cyclic trajectories. After a finite number of itera-
tions, each corner gets back to the starting point. For
instance, by applying iteratively the rotation ρ2

6 to the
corner (a) of Fig. 4, we get the cycle [a, c, e]: a is first
moved to c, then to e, and finally comes back to a. Note
that for a given symmetry, an individual corner belongs
only to one cycle. A classical result from group theory
shows that each element of D6 acting on the set of cor-
ners of the hexagon can be factorized into disjoint cycles.10

The factorizations of the elements of D6 are listed in the
second column of Table I. The reflection τcf, for example,
is factorized into two cycles of one corner ([c] and [f]) and
two cycles of two corners ([a, e] and [b, d]).

Let the variable zi correspond to a cycle having i cor-
ners. To each symmetry we associate a monomial that
is the product of the (zi)’s according to the cycle factor-
ization as shown in the third column of Table I. The
reflection τcf is associated with z1· z1 · z2 · z2 = z2

1z2
2.

The sum of the monomials divided by the number of
the symmetries of the group D6 is called the cycle index:
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Let us denote k be the number of states in which a
corner can be. According to Pólya’s theory,11 the number
of non-equivalent hexagons is:

    
P k k k k k k k k k, , ,( ) = ⋅ + + + +( )1
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Therefore, the number of non-equivalent configura-
tions of six neighboring ink drop impacts being in one
of k states is given by P(k, k, k, k). Furthermore, a new
drop is printed on a surface which is in one of (k – 1)
states. So finally, the total number of non-equivalent
configurations is:

    N k P k k k k= − ⋅( ) ( , , , )1  (6)

In color prints using three inks, we have k = 4 states
(no ink, one ink drop, two ink drops, three ink drops).
Hence the number of non-equivalent configurations is
N = 1290. In four-ink printing (k = 5), N rises to 6020.
Note that for two inks k = 3 and N drops to 184.

Other geometric shapes, as for instance non-regular
hexagons, are mapped onto themselves by other groups
of symmetries. But the same procedure can be applied
to find the number of non-equivalent configurations.

A Simplified Model of Ink Spreading
The spreading process is a complex interaction between
the inks and the printed surface. It is strongly related
to physical properties like wettability and solvent ab-
sorption. Therefore the inks behave differently on ev-
ery surface. Furthermore, the number of cases in
three-ink-printing (N = 1290) is too large for perform-
ing exhaustive measurements.

We propose a simplified model of ink spreading. First,
the geometry of the problem is simplified.12,13 The hexa-
gon is subdivided into six triangles which share the cen-
ter O of the hexagon as a common vertex (see Fig. 5).
Second, the spreading in the direction of the mediator
of the segment [a, b] is supposed to depend only on the
state of the neighbors located in a and b, and the state
of the surface at the center O of the hexagon. This sim-
plified geometry allows to define a group S of symme-
tries acting on the segment [a, b], because only a and b
play equivalent roles in the triangle (a, O, b). The group
S has two elements: ρ0 the rotation by the null angle,
and the reflection τab whose axis is the mediator of the
segment [a, b]. The cycle factorizations and the mono-
mials of the group S are listed in Table II. The cycle
index is:
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Finally, the total number of non-equivalent configu-
rations is given by combining Eq. (6) and Eq. (7):
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where k is the number of states of a neighbor.
According to Eq. (8), in two-ink-printing (k = 3) we must

consider N = 12 cases; in three-ink-printing (k = 4), we
must consider N = 30 cases; and in four-ink-printing
(k = 5), we must consider N = 60 cases.

TABLE I. Cycle Factorizations and Monomials of the Group
D6 Acting on the Corners of the Hexagon

Symmetry Cycle factorization Monomial

ρ0
6 [a], [b], [c], [d], [e], [f], z6

1

ρ1
6 [a,b,c,d,e,f] z6

ρ2
6 [a,c,e], [b,d,f] z2

3

ρ3
6 [a,d], [b,e], [c,f] z3

2

ρ4
6 [a,e,c], [b,f,d] z2

3

ρ5
6 [a,f,e,d,c,b] z6

τad [a], [d], [b,f], [c,e] z2
1z2

2

τbe [b], [e], [a,c], [d,f] z2
1z2

2

τcf [c], [f], [a,e], [b,d] z2
1z2

2

τab [a,b], [c,f], [d,e] z3
2

τbc [b,c], [a,d], [e,f] z3
2

τcd [c,d], [a,f], [b,e] z3
2
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These sets of cases are small enough for performing
exhaustive measurements in order to calibrate the ink
spreading model. From each case, we can deduce the
value of a coefficient ri , which is used by our previously
defined impact model. The shape of a simulated impact
depends on six ri coefficients which are related to the
configuration of the neighboring impacts and the state
of the surface.

Enumerating the Configurations
Pólya’s counting theory gives the number of configura-
tions that must be considered in order to calibrate the
ink spreading model. The configurations themselves are
computed by other means. Powerful generating algo-
rithms exist,14 but for the sake of simplicity, a naive sieve
method is used. A computer generates the list of all con-
figurations. Considering the first configuration, all
equivalent configurations are removed from the list. The
computer applies this procedure to the next configura-
tion of the list until the end of the list is reached. The
30 non-equivalent configurations for three-ink-printing
are listed in Fig. 6.

Prediction Results and Discussion
The new ink spreading model was combined with our
color prediction method2 in order to predict the spectra
of two series of 125 samples uniformly distributed in
the CMY color space. Each series is a set of 5 × 25
samples printed on five sheets of paper. The area cover-
age of the yellow ink is constant for all samples printed
on the same sheet, and varies from sheet to sheet. The
first series was printed on Epson Glossy Photo Quality
Paper using an Epson Stylus-Color™ printer which is
based on a piezo electric technology,15 and the second
series was printed on HP Photo Paper, using an HP-
DJ560C printer which is based on conventional ther-
mal ink jet techniques.16 All samples were produced with
a clustered dither algorithm with 33 tone levels.

For both series, the radius r0 of an isolated circular
impact was measured accurately under the microscope.
In the HP series, the superposed cyan, magenta and yel-
low ink drop impacts have almost the same size, whereas
in the Epson series, the radius of the yellow drop im-
pact is 20% larger than the radius of the cyan drop im-
pact, which is, in turn, is 30% larger than the radius of
the magenta drop impact.

Figure 5. A simplified geometry: the hexagon is subdivided
into six triangles that share the center of the hexagon as a
common vertex. The spreading of the ink drop impact in the
direction of the mediator of [a, b] depends only on the state of
O, a, and b.

TABLE II. Cycle Factorizations and Monomials of the Group
S of Symmetries Acting on the Segment [a,b]

Symmetry Cycle factorization Monomial

ρ0 [a], [b]     z1
2

τab [a,b]     z2

Figure 6. List of the 30 non-equivalent configurations in a
three-ink print. The dashed circles indicate the locations of
neighbors that are not covered with ink. The white disks cor-
respond to one ink drop, the gray disks correspond to two ink
drops, and the black disks correspond to three ink drops. The
vectors indicate the orientation of the spreading. The third
and sixth columns indicate which test-sample is used to deter-
mine the spreading coefficient.
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For each ink drop configuration, the corresponding
radius vector length ri is estimated by indirect means.
We observed that a given ink drop spreads only if the
local amount of solvent is higher than the amount of
solvent at the neighbor’s location. Therefore we assume
that there is no spreading in the following configura-
tions: 3, 4, 5, 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, and 30 (see
Fig. 6). Considering the other configurations we define
ten test samples, each of which being a mosaic composed
of a single pattern as shown in Fig. 7. Note that the dot
geometry of the test samples has been chosen to corre-
spond to the dot geometry of the clustered halftoning
algorithm being used. For example, test samples (a) and
(c) given in Fig. 7 correspond to the samples shown in
Fig. 1a and in Fig. 1b respectively. Each test sample is
used to determine one or two ink spreading coefficients
r = ri/r0. In other words, a given test sample contains
several occurences of one or two dot configurations
whose spreading coefficients are unknown. All test
samples are printed and measured. For each test sample
several simulation iterations are required to fit the pre-
dicted and the measured reflection spectrum by vary-
ing the values of the radius vectors lengths ri. The ink
spreading coefficients r = ri/r0 computed for each series
are given in Fig. 8. Note that the ink spreading coeffi-
cients for the Epson series are given for the magenta
drop impact.

Using our prediction model and its extension for fluo-
rescent substances17 (the magenta ink of the Hewlett-
Packard printer being fluorescent), we computed the
spectra of 250 samples, and compared them with the
spectra measured under a tungsten light source whose
relative radiance spectrum is given in Fig. 9. The
CIELAB values of all samples were computed for the 2°
standard observer. The average colorimetric deviation
between measured and predicted spectra of the Epson
series and of the HP series are given in Table III and
Table IV respectively. The results obtained for the Epson
series are a little better than the results for the HP se-

Figure 7. List of the ten test patterns used to determine the
spreading coefficients. The dashed circles indicate the loca-
tions of neighbors that are not covered with ink. The white
disks correspond to one ink drop, the gray disks correspond to
two ink drops, and the black disks correspond to three ink
drops. Each test-sample is used to determine one or two spread-
ing coefficients whose numbers are given in the third column.
Note that the spreading coefficients of the configurations 1, 2,
11, 13, 14, 15 must be determined prior to 12, and that the
spreading coefficients of the configurations 21, 23, 26, 27, 28,
29 must be determinated prior to 22, 24, 25.

TABLE III. Prediction Results in CIELAB ∆E and ∆E94 for the
Epson Series

Series of
constant
yellow ink Maximal Maximal
percentage ∆E

    

∆E
n

2∑ ∆E ∆E94
    

∆E
n

94
2∑ ∆E94

0% 1.67 1.97 3.58 0.95 1.14 2.49
25% 1.81 1.96 3.11 1.10 1.22 2.37
50% 1.95 2.14 4.13 1.24 1.34 2.46
75% 2.91 3.02 5.59 1.85 1.97 3.56

100% 2.85 3.11 5.75 1.96 2.16 3.93

TABLE IV. Prediction Results in CIELAB ∆E and ∆E94 for the
HP Series

Series of
constant
yellow ink Maximal Maximal
percentage ∆E

    

∆E
n

2∑ ∆E ∆E94
    

∆E
n

94
2∑ ∆E94

0% 2.07 2.34 4.70 0.96 1.06 1.89
25% 2.57 2.85 4.85 1.19 1.28 2.64
50% 2.59 2.90 5.48 1.34 1.52 3.65
75% 3.27 3.49 6.85 1.97 2.13 4.13

100% 3.92 4.28 6.89 2.45 2.68 4.14
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ries. This could be due to the stronger spreading of the
HP inks.

In order to show how our ink spreading model im-
proves color prediction, we consider the 25 samples of
the series having a 100% coverage of yellow ink and
which are printed on HP Photo Paper with an HP
DJ560C printer. The prediction results corresponding
to this series are given in the last row of Table III. The
measured and computed spectra of the 25 samples are
converted into CIE-XYZ values that are shown in a
graphical form in Fig. 10. Figure 10a shows the devia-
tion between measured and computed colors taking ink
spreading into account; and Fig. 10b shows the devia-
tion between measured and computed colors without
taking ink spreading into account. Without taking ink

Figure 8. Spreading of HP inks printed on HP paper and spreading of Epson inks printed on Epson paper. For each of the 30 non-
equivalent configurations in a three-ink print, the spreading coefficients r = ri/r0 are respectively given in the columns entitled
HP and Epson. The second and sixth columns show the dot configurations. The dashed circles indicate the locations of neighbors
that are not covered with ink. The white disks correspond to one ink drop, the grey disks correspond to two ink drops, and the
black disks correspond to three ink drops. The vectors indicate the orientation of the spreading.

spreading into account, the prediction error is higher
than ∆E = 10 in CIELAB for samples made of more than
two inks, because printing ink drops one over another
significantly increases ink spreading. The spectra of
samples made with only one ink are well predicted be-
cause almost no ink spreading occurs.

The measured and predicted spectra of the cyan and
green samples shown respectively in Fig. 1a and Fig.
1b are given in Fig. 11a and Fig. 11b. Sample (b) is made
of the same cyan layer as sample (a) and covered with a
uniform yellow layer. In spite of the absence of absorp-
tion of the yellow ink at 630 nm, the measured reflec-
tion coefficient of sample (b) is lower than that of sample
(a) at this wavelength (compare Fig. 11b and Fig. 11a).
This difference is explained by ink spreading. The cyan



244  Journal of Imaging Science and Technology®          Emmel and Hersch

ink covers a larger area with a lower density, and there-
fore produces a higher light absorption. Note that in
the case of sample (b), the prediction error is ∆E = 9.2
in CIELAB if ink spreading is not taken into account.

Conclusions
We introduce a new method for investigating ink
spreading. The spreading process is modeled by enlarg-
ing the drop impact according to the configuration of
its neighbors and the state of the surface. The number
of cases that must be analyzed is reduced to a small
set by using Pólya’s counting theory. In a three-ink-

printing process, only 30 cases must be considered in-
stead of 3 × 46 = 12288.

The printing process is simulated by stamping impacts
of different shapes on high resolution grids. Each shape
is determined by 6 radii. The value of each radius is esti-
mated by fitting the reflection spectra of ten test samples
in several simulation iterations. This allows us to com-
pute the relative areas occupied by the various ink com-
binations in a three-ink process. We predict accurately
the spectra of 250 samples produced by two different
printers. The average prediction error is about ∆E = 2.5
and the maximal error is less than ∆E = 7 in CIELAB.

Figure 9. Relative radiance spectrum of the tungsten light source.
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Figure 10. Projection onto the XY plane within the CIE-XYZ color space of the deviations between computed and measured
colors of 25 samples having a 100% coverage of yellow ink, and which are printed on HP photo paper using an HP DJ560C
printer. Each dot indicates the measured color, and the other end of the segment indicates the computed color: (a) shows the color
deviation when ink spreading is taken into account;, (b) shows the color deviation when ink spreading is not taken into account.
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(a)

 (b)

Figure 11. Measured spectra (continuous lines) and predicted spectra (dashed lines): (a) of the halftoned cyan sample shown in
Fig. 1a (25% cyan ink coverage), and (b) of the green sample shown in Fig. 1b (superposition of a cyan layer at 25% ink coverage
and a yellow layer at 100% ink coverage). Note that the reflection coefficient of sample (b) is lower than that of sample (a) at 630
nm in spite of the absence of absorption of the yellow ink at this wavelength.

In our view the proposed ink spreading model may
considerably increase the accuracy of existing advanced
color prediction models.18 It may also be used for im-
proved Neugebauer-based color prediction methods3

because they require an accurate estimation of the area
covered by each ink combination.

Appendix: Total Amount of Dye Within an Ink Drop
Impact
The density profile of an ink drop impact is given by
Eq. (2). The total amount T of dye within an ink drop
impact is obtained by integrating Eq. (2) over the area
covered by the impact:

    

T D
r

d d
r
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2 2
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( )

( )

θπ ρ
θ

ρ ρ θ (9)

During the spreading process, the amount of dye T
remains constant. We can establish a relationship be-
tween the maximal density D0 at the center of a drop

that did not spread, and the density DM at the center of
a drop that spread, by calculating T in both cases.

Within an isolated circular impact (r(θ) = r0) which
did not spread (DM = D0), the total amount of dye is:

    
T D r= ⋅ ⋅π

2 0 0
2 (10)

Let us now consider an ink drop that spread. In this
case, r(θ) is defined piecewise as shown in Eq. (1). The
integral in Eq. (9) can be written:
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where

    
θ π π

i i= + − ⋅
6

1
3

( ) .
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nm
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By integrating in Eq. (11) with respect to variable ρ, we
get:

    
T D

r
dM

i i

i=
=
∑ ∫ +

1

6 2
1

4θ

θ θ θ[ ( )]
. (12)

In the next step, the following change of variable is
performed: t = (3/π) (θ – π/6) – i. The integral (12) can be
written:

    

T

D
r r t r r t r dtM

i
i i i i i

=

⋅ − − − +[ ]
=

+ +∑ ∫π
12

2 3
1

6
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1

2 2
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By integrating Eq. (13) with respect to the variable t,
we get:

    
T

D
r r r rM

i
i i i i= ⋅ + ⋅ −





=
+ +∑π

12
13

1401

6

1 1
2( ) (14)

Finally, by combining Eqs. (10) and (14) we obtain
Eq. (3).
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