
  
Abstract—Most halftoning techniques allow screen dots to 

overlap. They rely on the assumption that the inks are 
transparent, i.e. the inks do not scatter a significant portion of the 
light back to the air.  However, many special effect inks such as 
metallic inks, iridescent inks or pigmented inks are not 
transparent. In order to create halftone images, halftone dots 
formed by such inks should be juxtaposed, i.e. printed side by 
side. We propose an efficient juxtaposed color halftoning 
technique for placing any desired number of colorant layers side 
by side without overlapping. The method uses a monochrome 
library of screen elements made of discrete lines having rational 
thicknesses. Discrete line juxtaposed color halftoning is 
performed efficiently by multiple accesses to the screen element 
library.  
 

Index Terms—Color halftoning, discrete lines, juxtaposed 
halftoning, Neugebauer primaries, opaque inks 
 

I. INTRODUCTION 
ALFTONING algorithms try to reproduce the visual 
impression of a continuous tone image by taking 

advantage of the low-pass filtering property of the human 
visual system (HVS). In classical color halftoning algorithms, 
such as clustered dot and blue noise dithering, a halftone layer 
is created for each ink separately [1]. The final color halftone 
image is formed by the superposition of all the layers. The 
screen dot layers form partially overlapping screen dots. 
Overlapped screen dots form new colorants1 under the 
assumption that the inks are transparent, i.e. they do not scatter 
light back to the surface. There are however applications with 
strongly scattering inks such as opaque inks, metallic inks, or 
inks providing special effects such as daylight fluorescent inks 
and iridescent inks. In such applications, in order to obtain 
predictable halftone colors, one needs to print the different 
colorant halftone dots side by side without overlapping.  

Previous attempts for side by side printing of colorants 
comprise Kueppers approach of 7 color printing [2], error 
diffusion in color space [3]-[5], multi-color dithering [6], 
juxtaposed halftoning using screen libraries [7] and error 
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diffusion of Neugebauer primaries [8], [9]. Ostromoukhov and 
Hersch [6] presented a juxtaposed multi-color dithering 
technique where amounts of colorants are converted into 
dither value intervals. The resulting colorant surfaces form 
colorant rings that follow the level lines of the dither function. 
By using a space filling curve [10] as dither function, partially 
clustered juxtaposed screen shapes can be generated [11]. 
Within the framework of fluorescent imaging, Hersch et al. [7] 
created a new clustered-dot juxtaposed halftoning algorithm 
for printing images with fluorescent inks. The resulting 
halftone screens allow three colorants to be printed side by 
side within a given screen tile. Morovič et al. [8], [9] proposed 
an approach for printing with freely chosen amounts of 
Neugebauer primaries by relying on error diffusion halftoning. 
Color separation is performed by segmenting the color space 
into convex subspaces (e.g. tetrahedra) whose vertices are 
formed by the Neugebauer primaries.  

Ideally, juxtaposed2 halftoning should have similar 
properties as conventional halftoning. It should provide the 
possibility of printing with a sufficient number of colorants 
and tone variations. It should also provide some clustering 
behavior, be able to reproduce image details at a frequency 
higher than the screen frequency, exhibit as least artifacts as 
possible and offer support for an efficient implementation 
[12].  

In this paper, we introduce a new juxtaposed halftoning 
algorithm which creates side by side laid out colorant halftone 
lines without limitation in the number of colorants. The 
proposed method relies on discrete line geometry which 
provides subpixel precision for creating discrete 
parallelograms. The screen elements are formed by 
parallelograms made of discrete line segments whose relative 
subpixel thicknesses are set according to the desired colorant 
surface coverages. The parallelogram screen elements form a 
library comprising all possible discrete line thickness 
variations. The final color halftone screen is created by 
accessing and combining binary screen elements stored within 
the library. In Section II, we introduce the discrete line which 
is the building block of our juxtaposed halftoning algorithm. 
In Section III, we describe the discrete line drawing algorithm. 

1 We use the term “colorant” for unprinted paper, solid inks and the 
superposition of solid inks printed on paper. Classical halftones made with 
cyan, magenta and yellow inks comprise 8 colorants, also called Neugebauer 
primaries: paper white, cyan, magenta, yellow, blue as the superposition of 
cyan and magenta, green as the superposition of cyan and yellow, red as the 
superposition of magenta and yellow, and black as the superposition of cyan, 
magenta and yellow. 
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Section IV outlines the procedure of creating bilevel screen 
elements. Multi-colorant juxtaposed halftoning and its 
efficient implementation are presented in Section V. In 
Section VI, we discuss the parameters influencing the 
properties of the resulting halftones. Finally, in Section VII we 
show experimental results.  

II. DISCRETE LINES 
The arithmetic definition of a discrete line introduced by 

Reveillès is a fundamental notion in digital geometry [13]-
[15]. It allows mastering the creation of discrete lines of 
subpixel thicknesses. Since it is based on rational numbers, the 
discrete line plotting function does not propagate errors as is 
the case with floating point algorithms. A set D of points (x, y) 
in ℤ2 belongs to the discrete line if and only if each member of 
this set satisfies  

ax by wγ γ≤ − < +  (1) 

In other words 

{ }2( , , , ) ( , ) |D a b w x y ax by wγ γ γ= ∈ ≤ − < +

 (2) 

where parameters a, b, γ and w are integers, a/b is the line 
slope, γ defines the affine offset indicating the line position in 
the plane and w determines its thickness.  
In this work, pixels are represented by unit squares centered 
on integer points. A discrete line with 0 < |a| < |b| has two 
Euclidean support lines. The superior support line is given by  

sup
ay x
b b

γ
= −  (3) 

and the inferior support line is given by  

inf
a wy x
b b

γ
=

+
−  (4) 

By subtracting these two equations, we obtain vertical 
thickness w/b which is the vertical distance between the 
superior and inferior support lines. The arithmetic thickness 
parameter w controls the vertical thickness and the 
connectivity of the line:  

• If w < |b|, the line is disconnected and we call it thin 
line, 

• If w = |b|, the line is strictly 8-connected; it is called 
naive digital line and has exactly the vertical 
thickness of 1, 

• If w > |b|, the line is a thick line with thickness greater 
than 1.  

Fig. 1 shows discrete lines having different thicknesses. 
Another interesting property of a discrete line is its b-

periodicity. As shown in Fig. 2, for a given naive digital line 
in the first octant with parameters a and b, after b pixels in the 
horizontal direction, the same line segment is repeated. 
Therefore, the discrete line is invariant under the translation 
k[b a]T, for any integer k. The main advantage of b-periodicity 
is that we can limit our study to pixels x ϵ [0, b-1]. 
Furthermore, we can use this property for efficient discrete 
line plotting.  
 

 

 

 
Fig. 1.  Discrete lines with a = 4, b = 7 and γ = -3 having different thicknesses: 
(a) thin w = 4, (b) naive w = 7, and (c) thick w = 17. 
 

III. DISCRETE LINE PLOTTING 
The first step towards discrete line halftoning is the ability 

of generating discrete lines with any desired rational thickness 
and orientation. Due to the symmetry properties of discrete 
lines, without loss of generality, we limit our study to the first 
octant where 0 < a < b with a and b being mutually prime1. 
The plotting algorithm is explained for the naive line D(a, b, γ, 
b) and can be extended to thin and thick discrete lines. It has 
been first described by Reveillès [13].  

1 Horizontal, vertical and 45° oriented discrete lines can have only 
thicknesses in integer steps. They are therefore not usable for discrete line 
juxtaposed halftoning.  
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Fig. 2.  Illustration of the b-periodicity of discrete lines. A discrete line with a 
slope equal to a/b repeats the same structure every b pixels; here a = 4 and b = 
7.  

 
A naive digital line is a single-valued function along one of 

the main axes. With 0 < a < b, for a given value of x, there is 
one single value of y such that  

axy
b

γ− =   
 (5) 

where the square bracket denotes the quotient of the Euclidean 
division. The value of y selects the pixels whose centers are 
located on or below the superior continuous line (Eq. (3)) and 
not located on or below the inferior continuous line (Eq. (4), 
with w = b). In order to derive an incremental formulation for 
drawing the naive lines, y (x+1) can be written as  

( 1) ax ay x
b b

γ− + = +  
 (6) 

Using the classical identity  

δ υ
δ υ δ υ ε ε

ε ε ε ε

    +    +          = + +           
  

 (7) 

where δ, υ and ε are integer numbers and the curly bracket 
denotes the Euclidean remainder, we get:  

( 1)

ax a
ax a b by x

b b b

γ
γ

 −   +    −        + = + +       
  

 (8) 

Since b > a, [a/b = 0] and {a/b = a}, we obtain 
( )( 1) ( ) r x ay x y x

b
+ + = +   

 (9) 

where  

{ }( ) axr x
b

γ−
=  (10) 

Therefore, an increment in x results in an increment of one 
unit in y or in no change. The corresponding remainder 
function r(x) is either increased by a or, respectively increased 
by a and decreased by b. The resulting naive line incremental 

plotting algorithm is:  

y = Div (a * x - γ, b)  Integer division 
r = Rem (a * x - γ, b)  Integer remainder 
for  x = 0  to  x = b - 1  do 
       Plot Pixel (x, y) 
       r = r + a  
       if  r >= b  
           r = r - b  
           y = y + 1  
       end  if  
end  for  

In a similar manner as Bresenham’s Algorithm [16], this 
algorithm generates incrementally a set of integer coordinates 
which compose a digital line having a single pixel height [15].  

When plotting a thin or thick discrete line of a thickness 
other than unity, instead of directly plotting the discrete line 
D(a, b, γ, w), we synthesize a top and a bottom naive line with 
parameters (a, b, γ, b) and (a, b, γnew, b) respectively, such that  

new btγ γ= +  (11) 

where t is the vertical thickness of desired discrete line. The 
plotted thin or thick discrete line is composed of pixels with 
pixel centers located between these two naive lines. Pixels 
belonging to the top naive line and, at the same time, not 
belonging to the bottom naive line as well as in between pixels 
are plotted. For a thin line, a pixel may belong to both the top 
and the bottom naive line. In this case, the pixel is left blank.  
 

IV. BILEVEL SCREEN ELEMENT GENERATION  
Classical ordered dither halftoning methods rely on 

dithering with dither matrices. In contrast to dithering 
methods, we create a library of predefined screen elements 
[17] obtained by synthesizing discrete lines. Library entries 
are screen elements corresponding to the different colorant 
surface coverages. Once the screen element library is created, 
halftoning is performed by traversing the output halftone 
image scanline by scanline and pixel by pixel and by finding 
the corresponding location in the input continuous tone image. 
The color at that location determines an entry within the 
screen element library. The current output pixel location 
determines the location within the screen element whose 
colorant is to be copied into current output pixel. Let us first 
present the generation of screen elements for black and white 
halftoning and then, in Section V, extend the algorithm to 
color halftones. 

The goal is to generate screen elements made of discrete 
lines and to halftone an input image by paving the output 
image plane with these discrete screen elements. The screen 
element is a discrete parallelogram whose surface is 
segmented into black and white parts according to the desired 
black/white surface coverages. These parallelogram screen 
elements are created using discrete lines of appropriate 
subpixel thicknesses. The parallelogram forming the screen 
element is defined by its sides given by vectors [0 T]T and [b 
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a]T where T is the vertical thickness of the discrete line 
forming a complete discrete parallelogram and a/b is the 
discrete line slope. Hence, within the parallelogram screen, a 
discrete line segment may have a vertical thickness between 0 
and T. As an example, Fig. 3 shows a parallelogram screen 
with 45% surface coverage. 

In order to establish the monochrome screen element 
library, the bilevel screen elements are generated level by 
level by creating each time within the parallelogram tile a 
“black” discrete line having a vertical thickness from 0 to T. A 
discrete line with a thickness of 0 (an empty set of pixels) 
corresponds to the screen element with 0 surface coverage.  A 
discrete line with vertical thickness T corresponds to the 
screen element with a surface coverage of 1, i.e. a black 
parallelogram.  

In order to create the halftoned output image, the image 
plane is paved by replicating the parallelogram screen element 
along its side vectors [b a]T and [0 T]T. Paving the image plane 
with a discrete parallelogram of the same first side vector [b 
a]T and a second side vector different from [0 T]T, but located 
within the same discrete line of parameters a and b and of 
vertical thickness T would yield the same screen. We therefore 
restrict our attention to the discrete parallelogram given by 
vectors [b a]T and [0 T]T. 

Instead of using parallelogram screen elements, we can 
produce equivalent rectangular screen elements tiling the 
plane according to Holladay’s algorithm [18]. Given a discrete 
parallelogram with sides [px py]T and [qx qy]T, Holladay’s 
algorithm yields an equivalent L by H rectangular tile (Fig. 3). 
Paving the image plane with this rectangular tile is equivalent 
to paving the plane with the original discrete parallelogram. 
Parameters of the equivalent rectangular tile are  

GCD( , ); x y x y
y y

p q q p
H p q L

H
−

= =  (12) 

Note that the discrete parallelogram surface is S = pxqy – qxpy. 
The L by H Holladay rectangular tile paves the plane by being 
replicated horizontally as well as diagonally [18] with 
replication vector (tx, ty) where  

; x
y x

y

v S H pt H t
p

− ⋅ + ⋅
= =  (13) 

For our special case with parallelogram side vectors [0 T]T and 
[b a]T the replication vector (tx, ty) is  

GCD( , );y xt T a t v b= = ⋅  (14) 

In (13) and (14) v is an integer which must be determined such 
that 0 < tx ≤ L. Note that all Holladay tile parameters L, H, tx 
and ty are integers.  

In order to create an L by H equivalent rectangular tile, the 
discrete parallelogram screen element is repeated as many 
times as necessary along the parallelogram vectors until it 
covers the surface inside the L by H rectangle. The final 
screen element library size is L × H × (S+1), where L and H 
are derived from Holladay’s algorithm and S+1 is the number 
of possible surface coverage levels (see Section VI).  

 
Fig. 3.  (a) Parallelogram screen element and its associated vectors and (b) 
paving a 20×12 output image with that screen element. Surface coverage is 
45%. The vertical thickness T is 4 and the slope is m = 2/5. The equivalent 
Holladay tile and its replications are also shown. The discrete line and 
Holladay’s tile parameters are a = 2, b = 5, L = 10, H = 2, and tx  = 5.  

 

V. SYNTHESIS OF JUXTAPOSED COLOR SCREENS 
Juxtaposed color halftoning relying on discrete lines aims at 

creating parallelogram screen elements within which 
successive discrete line segments are associated to different 
colorants. However, trying to create a screen element library 
containing the screens for each combination of colorants at 
every surface coverage level would need a very large memory. 
For example in case of 8 colorants, with a screen element 
having 256 distinct surface coverage levels, there are almost 
1.55 × 1013 different screen elements (see Appendix).  

 

 
Fig. 4.  Example of creation of the magenta part of a screen element by 
subtracting the tile of surface coverage c from the tile of surface coverage c + 
m. 

 
Instead of precomputing a fully populated color screen 

element library, we synthesize screen elements for multiple 
juxtaposed colorants by accessing several times the bilevel 
screen element library created for a single colorant (Section 
IV). At halftoning time, we compute the discrete line segments 
for the second, third and ith colorant by subtracting the screen 
element corresponding to the sum of the surface coverages of 
the previous colorants from the screen element representing 
the sum of the surface coverages of the new and the previous 
colorants. Note that screen elements are bilevel arrays 
containing 1 and 0 which, in the present work, represent black 
and white pixels, respectively. As an example, let us consider 
a screen of 25% cyan, 20% magenta and 10% yellow surface 
coverages with the halftoning order cyan, magenta and yellow. 
The cyan tile is picked directly from the bilevel screen
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2 2cos /b a bα = +

 
Fig. 5.  (a) A juxtaposed halftone screen of orientation a = 4, b = 7 and vertical thickness T = 10 with surface coverages of green: 20/70, yellow: 5/70, white: 
9/70, magenta: 8/70, red: 10/70, black: 7/70, blue: 0/70 and cyan: 11/70. (b)  Another screen with the same parameters but with a smaller vertical thickness T = 6. 
The corresponding parallelogram screen tiles are also shown.  

element library by finding the screen tile corresponding to 
its surface coverage of 25%. The magenta screen is 
obtained by subtracting the screen tile associated to the 
surface coverage of cyan (25%) from the screen tile 
corresponding to the addition of the surface coverages of 
cyan and magenta, i.e. 45%. This yields the magenta part of 
the halftone (See Fig. 4). Similarly, subtraction of the 
screen tile assigned to cyan and magenta (45%) from the 
screen tile of cyan, magenta and yellow (55%) yields the 
screen tile for the yellow layer.  

More formally, multi-colorant juxtaposed halftoning is 
performed by calculating the sequence of screen colorant 
tiles S1(c1), S2(c2), … SK(cK)  

 
1 1 1

2 2 1 2 1

1
1 1

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

B

B B

K K
i ii iK K B B

S c S c
S c S c c S c

S c S c S c−
= =

=

= + −

= −∑ ∑



 (15) 

 
where we assume that the current output image location is 
to be printed with c1, c2, …, cK surface coverages of the K 
colorants and SB(c) is the screen colorant tile associated to 
surface coverage c stored in the bilevel screen element 
library. This approach does not limit the number of 
colorants. Fig. 5a shows an example of a juxtaposed 
halftone screen, printed with the cyan, magenta, yellow, 
blue, green, red, black and white Neugebauer primaries.  
 

VI. SCREEN ELEMENT PROPERTIES, TRADE-OFFS AND 
SUPERSCREEN 

The number of possible surface coverages different from 
zero is given by the area of the discrete parallelogram tile, 
i.e. the cross product of the parallelogram vectors, [0 T]T × 
[b a]T = bT. There is a trade-off between the size of the 
parallelogram screen tile determining the number of 
possible surface coverages of the colorants and its visibility. 
A large screen tile provides many variations of colorant 

surface coverages and therefore a precise tone reproduction, 
but depending on the output device resolution, may become 
visible by the naked eye.  

For a fixed line slope m = a/b, let us investigate the role 
of the vertical thickness T. The number of possible colorant 
surface coverages increases proportionally with the vertical 
screen tile thickness T, yielding a larger number of discrete 
colors and larger screen dots. With a large screen tile 
thickness T, small surface coverages still yield connected 
lines. With a smaller thickness T, the same surface 
coverages result in thin, disconnected lines. Compare Fig. 
5a which shows a screen tile with a vertical thickness of T = 
10 and Fig. 5b which shows a screen tile with T = 6 where 
the same colorant surface coverages are reproduced. In the 
smaller screen tile of Fig. 5b, the colorant discrete lines are 
thin and therefore less clustered. This may cause a problem 
on some printers, where single isolated pixels of a given 
colorant either have a strong dot gain or tend to disappear.  

The main drawback of a large vertical thickness T is the 
low halftone frequency. According to Fig. 6, the screen 
frequency is 

2 2

cos
d d d a bf
h T b Tα

+
= = =

⋅
 (16) 

where f is the screen frequency in screen elements per inch 
(lpi), d is the printer resolution in pixels per inch (dpi) and α 
is the angle of the screen element parallelogram support line 
with . Due to symmetry, it is 
enough to consider 0 < α < 45°. Increasing T leads to a 
decrease of the halftone frequency and therefore to more 
visible halftones.  

The influence of angle α = arctan(a/b) is another 
interesting factor. According to (16), angles close to 45° 
deliver the highest halftone frequencies. This is of high 
interest since the human visual system has less acuity for 
diagonal lines than for vertical and horizontal lines. 
However, an angle of exactly 45° is a special case in which 
a = b = 1 where only integer vertical thicknesses are 
possible and therefore the number of different colorant 
surface coverages is limited to T. Nevertheless, angles close 
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to 45° have a relatively high frequency, offer bT different 
thicknesses and are less visible by the human visual system.  

A large vertical screen tile thickness T and/or large 
values of b (and consequently of a) result in a large number 
of colorant surface coverages and a small surface color 
discretization error. The term surface color discretization 
error describes the difference between the intended surface 
coverage of a particular colorant and the actual generated 
surface coverage which is limited by screen element 
surface, i.e. the number of screen element cells.  

 

 
Fig. 6.  Relationships between screen parallelogram orientation α, vertical 
thickness T, and screen period h. 

 
As presented, there is a trade-off between small surface 

color discretization error due to large values of T and/or b 
and the visibility of the screen element. In order to keep the 
surface color discretization error small, we would like to 
increase the number of surface coverage levels without 
making the screen element more visible. This can be 
obtained by extending the current discrete parallelogram 
screens to superscreens. Superscreens provide more surface 
coverage levels without modifying the shape of the screen 
dots.  

Classical superscreens may be created by replicating a 
dither tile a number of times, e.g. 4 times, by multiplying 
accordingly the dither threshold levels, and by distributing 
intermediate threshold values among the replicated tiles 
[12]. Fig. 7a shows an example of a dither tile having 
originally 5 dither levels, which thanks to the superscreen 
construction, is expanded to 20 levels.  

In order to create a superscreen for discrete line 
halftoning, we create a large discrete line parallelogram tile 
containing the desired number of surface coverages as 
superscreen. We split the parallelogram superscreen 
vertically into a desired number of sub-tiles, e.g. two sub-
tiles. The intended surface coverage of each colorant is then 
distributed as equally as possible between the sub-tiles of 
the superscreen. For this purpose, the vertical thickness of 
the superscreen is split into rational vertical sub-thicknesses 
of similar size. Note that if the sub-tiles have significantly 
different areas or if the colorant surface coverages within 
the sub-tiles are different, they may generate a beating 
effect visible on smooth color surfaces.  

 

 
Fig. 7.  (a) A classical superscreen where the original tile with 5 dither 
values is expanded to a superscreen of 20 dither values. (b) A discrete line 
superscreen composed of two smaller, but slightly different sub-tiles filled 
with two colorants. Within the sub-tiles, the colorants may have slightly 
different surface coverages.  

 
Fig. 7b shows a parallelogram superscreen with vertical 

thickness of T = 9 divided into two sub-tiles. The screen 
frequency appearing to the eye is the screen frequency of 
the sub-tile, whereas the number of surface coverages is 
given by the area of the superscreen.   

 

VII. RESULTS 
In this section we evaluate juxtaposed discrete line 

halftoning by a few examples. The selected parameters are 
m = 4/7 and T = 15. The vertical thickness T is divided into 
two rational sub-tile thicknesses of 52/7 and 53/7. This 
leads to a halftone with 106 surface coverage levels having 
a sub-tile line frequency of 92.14 lpi at a device resolution 
of 600 dpi. The halftone images are printed with the 8 
Neugebauer primaries whose surface coverages are 
calculated from amounts of cyan, magenta and yellow inks. 
For the sake of simplicity, color management and gamut 
mapping are excluded from the present analysis. Therefore, 
the reproduced colors may differ from the original image 
colors. The presented examples are printed with classical 
inks on paper. However, to show the full power of the 
presented approach, they should be printed with opaque or 
with metallic inks.  We start with an input image with given 
amounts of cyan (c), magenta (m) and yellow (y) inks and 
calculate the surface coverages of the eight Neugebauer 
primaries according to the Demichel equations [19] as 
follows  

 
(1 )(1 )
(1 )(1 )

(1 )(1 )

(1 )
(1 )

(1 )

(1 )(1 )(1 )

c

m

y

b

g

r

k

w

a c m y
a m c y
a y c m

a cm y
a cy m

a my c
a cmy
a c m y

= − −

= − −

= − −

= −

= −

= −
=

= − − −

 (17) 

 
where ac, am, ay, ab, ag, ar, ak, and aw are the surface 
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coverages of the colorants cyan, magenta, yellow, blue, red, 
green, black and white, respectively.  

Figs. 8, 9 and 10 show the results on different images. As 
can be seen from these figures, discrete line juxtaposed 
halftoning enables printing with many different colorants, 
preserves the edges, reproduces textures at a frequency 
higher than the screen frequency and does not introduce 
false contours or other significant artifacts on smooth color 
gradients. It is therefore well adapted for printing with 
custom inks and special effect inks.  

As in any other juxtaposed halftoning algorithm, the 
framework assumes high registration accuracy. 
Misregistration of colorant layers may yield significant 
color shifts [20], especially when printing with opaque or 
metallic inks.  

VII. CONCLUSION 
We presented a new juxtaposed color halftoning method 

based on discrete lines. It relies on a library of bilevel 
screen elements created by successions of discrete lines. As 
many colorants as desired can be juxtaposed within a single 
screen element. Discrete line halftones provide colorant 
segments having subpixel precision. The quality of the 

resulting halftones is comparable to classical line screen 
halftones. Juxtaposed halftoning requires however a high 
registration accuracy. Such a high registration accuracy 
between colorant layers can be achieved on modern digital 
printers.  

Juxtaposed halftoning can be a solution to many 
problems. It enables printing with partially or fully opaque 
inks. Therefore, printing halftone images with custom inks, 
iridescent inks and metallic inks becomes possible. 
Application domains comprise flexible packaging, poster 
design and art. In addition, the surface coverages of all 
colorants are exactly controlled, i.e. freely chosen relative 
amounts of cyan, magenta, yellow, blue, green, red and 
black colorants can be reproduced. This is an advantage in 
respect to classical rotated clustered-dot screens since 
independent selection of every colorant surface coverage 
may yield a larger color gamut and less usage of inks [8], 
[21].  

 
 

 
 

 
 
 

 
Fig. 8.  The “Fruits” and “Orchestra” halftone images reproduced by discrete line juxtaposed halftoning. Discrete line screen element parameters are a = 4, b = 7 
and T = 15 with two nearly equal inner rational sub-tile thicknesses. The image is produced at a resolution of 600 dpi, with a sub-tile line frequency of 92 lpi. 
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Fig. 9.  An example of a highly textured image with the same halftoning parameters as in Fig. 8. 
 

 
The limitations of the current juxtaposed line halftoning 

algorithm suggest directions for future work. The proposed 
juxtaposed line screens rely on parallelograms covering the 
full length of the screen element. In the future, it would be 
desirable to create juxtaposed dot screens instead of line 
screens, i.e. to divide the parallelogram screen surface into 
parallelogram sub-shapes to be allocated to the different 
colorants.  

 
Fig. 10.  Cyan-yellow 2D color gradient image with cyan-yellow 
varying from 0 to 75%, halftoned using surface coverages of the 
cyan, yellow and green colorants obtained from the Demichel 
equations. 
 

APPENDIX 
To compute the number of combinations of K colorant 

values, including paper white, such that each colorant can 
take an integer from 0 to N and the addition of these values 
is equal to N, one should solve the following equality  

 

1 2 Kx x x N+ + + =

 (18) 

where paper white is considered as the Kth colorant. The 
total number of solutions is the number of non-negative 
solutions of (18) which is known as the number of ways to 
distribute N indistinguishable balls into K distinguishable 
boxes [22] 

1N K
N

+ − 
 
 

 (19) 

For example if we consider a screen with 8 colorants and 
each colorant takes the value between 0 and 255, there are 

13255 8 1
1.55 10

255
+ − 

× 
 



 possible combinations. 
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