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Abstract  
The classical definitions of color are well adapted to diffusing objects, whose color is almost 
independent of the viewing angle, and to very glossy object observed in the specular direction in 
respect to the light source. For glossy or iridescent objects, the color is difficult to characterize due to 
its dependence on the viewing direction. In order to cope with such objects and to represent their 
angle-dependent colors in a colorimetric space, we adapt the CIELAB space to “goniocolorimetric” 
measurements. A crucial point when defining this space is the statement of the viewing solid angle. 
First, we suggest performing a BRDF measurement at high angular resolution in order to characterize 
the gloss of the specimen. Then, since for the definition of colors the CIE recommends cones of half-
angle of 2° or 10°, we propose to convert the measured BRDF into a reflectance factor defined in 
respect to these solid angles. This procedure is eased by a planar multispectral image of the BRDF, 
where solid angles are specified by the pixel size. At last, the reflectance factors are converted into 
CIELAB coordinates. By using this procedure, the perfect white diffuser but also the perfect mirror 
can be represented in this colorimetric space.   
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1. Introduction 

The visual appearance of objects is a major criterion of acceptability for manufacturers, especially in 
the domains of printing, automotive, cosmetic, textiles and food. Appearance is usually described 
according to five distinct factors: form, texture, transparency, gloss and color. These visual attributes 
are the response by the human visual perception system to the light signal issued from the object after 
possible complex light-matter interactions.  

 Color is the visual attribute whose mechanism of perception by the human visual system has been 
the best characterized, in particular thanks to the works by the Commission Internationale de 
l’Eclairage (CIE) along the 20th century [1]. Color is related to the spectral distribution of light in the 
visible wavelength domain, which can be measured using a spectrophotometer. But the stimulated 
regions in the retina have also an influence in the perception of color. The color science, called 
colorimetry, has been eased by a mathematical representation where each color is represented by the 
tristimulus values X, Y and Z defined from the CIE color matching functions of the standard observer 
[1, 2, 3]. They take into account the differences in color appreciation in terms of the retinal area 
reached by the light. In 1931, the CIE established the standard observer trichromatic functions for light 
contained within a cone of 2° half-angle centered on the optical axis. This solid angle was selected to 
stimulate the foveal area, region of the retina where the cone cells are numerous and the rod cells are 
almost absent. In order to obtain a better matching between color definitions and the viewing 
conditions in the everyday life, the CIE defined in 1964 different standard observer color matching 
functions by considering a larger solid angle, i.e. a cone of 10° half-angle.  

 In the case of objects, color is related to a spectrum modification, i.e. to a variation of the incident 
spectrum due to the reflection by the object. Before being interpreted as color, the sensorial response 
by the retina to the reflected light (tristimulus values X, Y and Z) is combined with other information, 
especially the response by the retina to the light reflected by a reference diffuser (tristimulus values 
Xref, Yref and Zref). In order to take into account the relative perception mechanism with respect to the 
illumination source, several color spaces were defined, e.g. the CIELAB coordinate system [1, 2, 3]. 
Color coordinates are calculated in respect to a standard illuminant whose spectrum is fixed by the 
CIE. 

 The angular distribution of the reflected light determines the type of geometry that should be used 
for measurement, especially the solid angle of detection. When an object is strongly scattering, e.g. a 
matte paint or paper, its spectrum is almost independent of the incident and viewing directions. Since 
the detector is filled with the homogenous diffuse light, the quantity of collected light is proportional 
to the solid angle of the detector. In contrast, when the object is very glossy, e.g. a metallic plate or a 
dielectric plane surface for optical coating [4], collimated incident light is reflected around a single 
direction, called the specular direction. If the reflected light pencil is infinitely thin, the size of the 
detector and its solid angle have no influence on the measurement.  

 In many cases, the object is neither very scattering nor very glossy but in between [5, 6, 7]. A 
satin-finish painting, for example, reflects a diffuse colored component issued from the painting itself 
as well as an uncolored component scattered by the surface. The proportion of these two components 
varies with the observation direction. Since they are added, the spectrophotometer measures them at 
the time and cannot distinguish them. However, they are perceived by a human observer as distinct 
appearance attributes, i.e. as color and gloss. The perception of gloss relies on an analysis of angle-
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dependent color variations by the human visual system, which is still a subject of investigation [8, 9, 
10].  

 There exists one special class of objects for which gloss can be easily discarded from color 
measurements: the objects composed of a diffusing material having a smooth surface. The colored 
diffuse component is spread rather homogeneously over the hemisphere whereas the gloss is directed 
only into the specular direction. To measure the color without gloss component, one can use a 
directional light source and capture light at an angle different from the specular direction, e.g. the 
45°:0° geometry recommended by the CIE, where the incident light comes at 45° and the reflected 
light is detected at 0°. For geometries relying on an integrating sphere, a gloss trap located around the 
specular direction enables discarding the specular component, e.g. the 8°:de geometry also 
recommended by the CIE [1]. Many measuring instruments, especially portative spectrophotometers, 
rely on these geometries and offer the possibility to discard the gloss. In practice, one can consider that 
gloss is effectively discarded when the material looks sufficiently diffusing and the surface looks 
sufficiently smooth, which already concerns a wide range of objects (e.g. glossy prints, photographs, 
ceramics…) But the threshold beyond which the surface is too rough to insure that no gloss 
component is captured is difficult to estimate, and there is no way to check it. Except for the special 
class of object described above, color and gloss are carried by mixed light components. Since color 
varies as a function of the viewing direction [5, 6, 7, 11, 12], intending to measure "one" color 
independently of gloss makes no sense. The problem becomes even more pregnant in the case of 
"effect materials", also called "goniochromatic materials", such as shot fabrics [13, 14], metal-
pigmented paints and pearlescent coatings [15, 16, 17, 18]. A specific color characterization is needed, 
able to render important angular color variations.  

 The solution that we propose relies on the bidirectional reflectance distribution function (BRDF) 
of the object. This function specifies for each couple of incident and observation directions the ratio of 
the emitted radiance to the incident irradiance. It is measured using a gonioreflectometer [19, 20]. For 
each couple of directions, the measured reflectance spectrum is converted into CIEXYZ trichromatic 
values, then into CIELAB color coordinates by choosing a white reference. We recommend 
representing two additional points in the CIELAB color space, representing the color coordinates of a 
perfect white diffuser and the color of a perfect mirror. The two points show intuitively to which 
extend the considered specimen is rather specularly or diffusely reflecting. 

      The conversion of reflectance spectra into color coordinates is well established when the 
measuring geometry is fixed (fixed observation direction), but difficulties appear when observation 
direction varies. A very small solid angle is highly recommended if one desires acquiring the BRDF of 
glossy specimen with a satisfying accuracy. But since the color matching functions were established 
by the CIE in respect to cones of 2° and 10° half-angles (CIE1931 and CIE1964 respectively), it seems 
preferable to perform reflectance measurements with these solid angles. A solution would be to 
perform two measurements using first a very small solid angle to obtain the BRDF, and then a larger 
solid angle to calculate the reflectance factors and the color coordinates. Instead, we show that the 
second measurement is equivalent to applying an undersampling operation on the first one. Thus, a 
single high resolution measurement is needed and the color coordinates are calculated by considering 
precisely the solid angle defined by the CIE for colorimetry (2° or 10°). 

     The present paper is structured as follows: in section 2, we recall some essential radiometric 
definitions for the characterization of light reflection. Section 3 defines the color for two particular 
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cases: the Lambertian and the specular samples. Then, Section 4 presents the goniocolorimetric space 
and recaps the different steps for converting measured spectra into color coordinates. Section 5 
illustrates the methodology with the example of a glossy and diffuse blue sample. Finally, Section 6 
draws the conclusions. 

 

2. Radiometric definitions  
 The angle-dependent reflection properties of an object are characterized by angular functions 
defined as ratios of radiometric quantities, e.g. the bidirectional reflectance distribution function 
(BRDF). This function can be measured using an instrument called gonioreflectometer which contains 
a movable collimated light source and a movable detector.  

 Let us consider a planar sample illuminated by a perfectly collimated light coming from a given 
direction ( ),i iθ ϕ . The sample reflects in direction ( ),r rθ ϕ  a radiance ( ), , ,i i r rL θ ϕ θ ϕ  defined as [21]: 

 ( ) ( )2 ,
, , ,

cos
r r r

i i r r
r r

d
L

dS d
Φ θ ϕ

θ ϕ θ ϕ =
θ ω

 (1) 

where ( )2 ,r r rd Φ θ ϕ  is the flux element reflected in the direction ( ),r rθ ϕ , dS  is an elemental area on 
the sample and sinr r r rd d dω = θ θ ϕ  is an infinitesimal solid angle in the considered direction. 

Radiance factor and BRDF  

 The radiance factor, β, is defined as the ratio of the radiance ( ), , ,i i r rL θ ϕ θ ϕ reflected by the 
sample to the radiance Lref reflected by the perfect diffuser in the same illumination and observation 
conditions: 

 ( ) ( ), , ,
, , ,

θ ϕ θ ϕ
β θ ϕ θ ϕ = i i r r

i i r r
ref

L
L

 (2) 

The radiance coefficient q (in sr-1) is now widely preferred to the radiance factor. It is defined as the 
ratio of the radiance ( ), , ,i i r rL θ ϕ θ ϕ to the incident irradiance Ei: 

 ( ) ( ), , ,
, , ,

θ ϕ θ ϕ
θ ϕ θ ϕ = i i r r

i i r r
i

L
q

E
 (3) 

However, in most setups, the incident irradiance is not measured directly but evaluated from a 
measurement on a perfect diffuser, i.e., a white diffusing sample obeying Lambert’s law (appearing 
equally bright from all directions). The perfect white diffuser reflects a radiance Lref proportional to the 
incident irradiance Ei [21]:  
 /= πref iL E  (4) 

This yields the following relation between radiance coefficient and radiance factor: 

 ( ) ( ), , ,
, , ,

β θ ϕ θ ϕ
θ ϕ θ ϕ =

π
i i r r

i i r rq  (5) 

The BRDF is the function that describes the evolution of the radiance coefficient according to the 
directions of illumination and reflection. 
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Reflectance factor 

 In practice a detector does not measure a radiance but a flux in a finite solid angle. Since radiance 
factor and BRDF are defined in respect to an infinitesimal solid angle, they can not be measured 
directly. Hence, a reflectance factor R is defined as the ratio of the flux ( ),ΔΦ θ ϕr r r  reflected by the 
sample in the direction ( ),r rθ ϕ  and in a given solid angle to the flux ( ),ref r rΔΦ θ ϕ  reflected by the 
perfect diffuser exactly in the same illumination and observation conditions: 

 ( ) ( )
( )

,
, , ,

,
ΔΦ θ ϕ

θ ϕ θ ϕ =
ΔΦ θ ϕ

r r r
i i r r

ref r r

R  (6) 

 Let us calculate the flux rΔΦ  by assuming that the detector surface is perpendicular to the 
viewing direction and has a fixed area dSΔ . The viewing solid angle dΔΩ , also fixed, is a cone 
centered on the detector surface normal. Through this cone, the detector observes an elliptical region 
of the sample, whose area varies with the cosine of the viewing angle rθ . The observed area is 
generally different from the illuminated area, i.e. it is often wholly included within the illuminated 
area at small viewing angles and overpasses it at grazing angles. When calculating the measured flux, 
one should consider only the fraction of observed area that is illuminated, called the “emitting area” 

SΔ . This latter is a function of the observation direction ( ),r rθ ϕ .  

 

 
Figure 1: Geometry of a goniometric measurement.  

 

 The detector receives a collection of light rays, contained within the solid angle rΔΩ  based on the 
emitting area and subtended by its surface dSΔ  (Figure 1). Each light ray, propagating into a direction 
( ),r r′ ′θ ϕ , corresponds to a radiance ( ), , ,i i r rL ′ ′θ ϕ θ ϕ  defined in the same manner as in Eq.(1), and 
therefore to a flux element given by 

 ( ) ( )2 , , , , cos sinr r r i i r r r r r rd L S d d′ ′ ′ ′ ′ ′ ′ ′Φ θ ϕ = θ ϕ θ ϕ Δ θ θ θ φ  (7) 

The sum of the collected flux elements gives the measured flux. It may be expressed as a function of 
the radiance coefficient according to Eq. (3): 

 ( ) ( )
( ),

, , , , cos sin
′ ′θ ϕ ∈ΔΩ

′ ′ ′ ′ ′ ′ΔΦ θ ϕ = Δ θ ϕ θ ϕ θ θ θ ϕ∫
r r r

r r r i i i r r r r r rE S q d d  (8) 

The flux reflected by the perfect diffuser is obtained with 1/= πq  

 ( )
( ),

, cos sin
r r r

i
ref r r r r r r

E S d d
′ ′θ ϕ ∈ΔΩ

Δ ′ ′ ′ ′ΔΦ θ ϕ = θ θ θ ϕ
π ∫  (9) 
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From Eqs. (6), (8) and (9), one obtains the following expression for the reflectance factor  

 ( )
( )

( )

( )

,

,

, , , cos sin
, , ,

cos sin
′ ′θ ϕ ∈ΔΩ

′ ′θ ϕ ∈ΔΩ

′ ′ ′ ′ ′ ′θ ϕ θ ϕ θ θ θ ϕ
θ ϕ θ ϕ = π

′ ′ ′ ′θ θ θ ϕ

∫
∫

r r r

r r r

i i r r r r r r

i i r r
r r r r

q d d
R

d d
 (10) 

 The integral of the denominator of Eq. (10) can be given a geometrical interpretation, described by 
Figure 2, leading to the following result: 

 

 
( ) 2,

cos sin cos
′ ′θ ϕ ∈ΔΩ

Δ′ ′ ′ ′θ θ θ ϕ = θ∫
r r r

d
r r r r r

Sd d
r

 (11) 

where r is the distance between the detector and the emitting surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Interception of the solid angle rΔΩ  with the unit sphere and projection on the horizontal plane. 

 

 

In the special case where the detector is located at 0rθ = ° , rΔΩ  is then called 0ΔΩ  and Eq. (11) can 
be written as: 

 
( ) 0

2,
cos sin

r r

d
r r r r

Sd d
r′ ′θ ϕ ∈ΔΩ

Δ′ ′ ′ ′θ θ θ ϕ =∫  (12)  

and since the detection was assumed to be in a cone of half-angleα , we also have: 

 
( )

( )
0

2

, 0
cos sin 2 cos sin sin

r r r
r r r r r r rd d d

α

′ ′ ′θ ϕ ∈ΔΩ θ =
′ ′ ′ ′ ′ ′ ′θ θ θ ϕ = π θ θ θ = π α∫ ∫ . (13) 

Finally, according to Eqs. (10) to (13), we obtain 

 ( )
( )

( )

( )
,

2

, , , cos sin
, , ,

sin cos
′ ′θ ϕ ∈ΔΩ

′ ′ ′ ′ ′ ′θ ϕ θ ϕ θ θ θ ϕ
θ ϕ θ ϕ =

α θ

∫
r r r

i i r r r r r r

i i r r
r

q d d
R  (14) 

Reflectance 

 The reflectance ρ is the ratio of the total flux reflected by the sample Φr to the incident flux Φi : 
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 Φ
ρ =

Φ
r

i

 (15) 

The total flux element Φr  reflected by the area element ΔS is given by the sum of the flux elements 
( )2 ,r r rd Φ θ ϕ  over the whole hemisphere. By extension of Eq. (8) to a hemispherical solid angle 

( )2ΔΩ = πr , we obtain 

 ( )
/2 2

0 0
, , , cos sin

π π

θ = ϕ =
Φ = Δ θ ϕ θ ϕ θ θ θ ϕ∫ ∫

r r
r i i i r r r r r rE S q d d  (16)  

As the incident flux Φi is equal to i iE SΔ , where iSΔ  is the illuminated area, Eq. (15) becomes 

 ( )
/2 2

0 0
, , , cos sin

π π

θ = ϕ =

Δ
ρ = θ ϕ θ ϕ θ θ θ ϕ

Δ ∫ ∫
r r

i i r r r r r r
i

S q d d
S

 (17) 

 Reflectance can be measured with an integrating sphere, whose geometry usually ensures that 

iS SΔ = Δ .  

 The reflectance factor tends towards the radiance factor when the solid angle becomes 
infinitesimal ( )0rΔΩ →  and tends towards the reflectance when all the upper hemisphere is taken into 
account ( )2ΔΩ = πr . Note that radiance factor and reflectance factor may reach values higher than 1, 
whereas reflectance is always lower than 1. 

 

3. Color of Lambertian and specular samples 
 The colorimetric coordinates can be calculated from the reflectance factor and represented in 3-
dimensional spaces defined by the CIE [1, 2, 3]. This calculation can be performed for any object but 
two types of samples are of particular importance when studying the angular colorimetric variations: 
the Lambertian and the specular samples. 

3.1. CIEXYZ and CIELAB colorimetric spaces 

 The color of an object is represented by a set of three values deduced from the object reflectance 
factor. The CIEXYZ tristimulus values are obtained by multiplying the standardized illuminant 
radiance spectrum S(λ), the object reflectance spectrum R(λ) and each of the matching color functions 
( )x λ , ( )y λ  and ( )z λ , then summing the resulting spectrum over the visible wavelength domain: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

λ

λ

λ

⎧ = λ λ λ
⎪⎪ = λ λ λ⎨
⎪

= λ λ λ⎪⎩

∑
∑
∑

X k R S x

Y k R S y

Z k R S z

  (18)  

where factor k is a normalization factor giving 100Y =  for the perfect white diffuser whose 
reflectance spectrum is ( ) 1λ =R , i.e.  

 100
( ) ( )

k
S y

λ

=
λ λ∑

 

 The color matching functions ( )x λ , ( )y λ  and ( )z λ  have been determined for a fixed observation 
solid angle with half-angle α = 2° in the standard of CIE1931 and α = 10° in the standard of CIE1964.  

 The CIELAB color space, defined by the CIE in 1976, expresses three coordinates L*, a* and b* 
derived from the CIEXYZ tristimulus values according to the following formulas: 
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( )
( ) ( )
( ) ( )

*

*

*

116 / 16

500 / /

200 / /

ref

ref ref

ref ref

L f Y Y

a f X X f Y Y

b f Y Y f Z Z

⎧ = −
⎪
⎪ ⎡ ⎤= −⎨ ⎣ ⎦
⎪

⎡ ⎤= −⎪ ⎣ ⎦⎩

 (19) 

 
where  

 
( )

( )

3
1/3

3

24,                     
116

841 16 24,         (Pauli's correction)
108 116 116

f A A A

f A A A

⎧ ⎛ ⎞= >⎪ ⎜ ⎟
⎪ ⎝ ⎠
⎨

⎛ ⎞⎪ = + ≤ ⎜ ⎟⎪ ⎝ ⎠⎩

 (20) 

  
and where Xref, Yref and Zref are the CIEXYZ tristimulus values for a reference usually chosen as the 
perfect white diffuser, calculated for a constant spectrum ( ) 1λ =R .  

3.2. Lambertian samples 
 A Lambertian sample is defined by a radiance factor β independent of the incident and observation 
directions. Its BRDF is constant, equal to /β π . By angular integration according to Eqs. (10) and (17), 
the reflectance factor R and the reflectance ρ are equal to β. 

 The Lambertian sample is said to be a “perfect white” when it absorbs no light, i.e. when 
( ) 1λ =R . When it is itself chosen as the white reference, its CIELAB coordinates are 

( ) ( )* * *, , 100,0,0w w wL  a  b = . 

3.3. Specular samples 

 A sample is said to be “perfectly specular” when it reflects a collimated incident light into a single 
direction. Its reflectance ( )ρ θi  is a function of the illumination angle iθ . According to Snell’s laws, 
light is reflected at the angle iθ  and the azimuth angle iϕ + π . In the other directions, no light is 
reflected. The BRDF is given by the following bi-dimensional Dirac Delta function 

 ( ) ( ) ( ) ( ), , ,
cos sin

δ θ − θ δ ϕ + π −ϕ
θ ϕ θ ϕ = ρ θ

θ θ
r i i r

i i r r i
i i

q  (21) 

From Eq. (14), we obtain the following expression for the reflectance factor  

 ( )
( ) ( )2 ,  ,, sin cos

0                              otherwise

⎧ ρ θ
θ ϕ + π ∈ΔΩ⎪θ ϕ = ⎨ α θ

⎪⎩

i
i i r

r r r
R  (22) 

 ( )ρ θi  can be obtained by angular integration according to Eq. (17) with iS SΔ = Δ  and q given by 
Eq. (21), or by setting 2/α = π  and 0rθ =  into Eq. (22). 

 When ( ) 1ρ θ =i , the incident light is reflected without attenuation and the sample is called a 
“perfect mirror”. Its reflectance factor, called γ, depends only on the geometry of the measuring 
system and is given by Eq. (22) with ( ) 1iR θ =  and r iθ = θ  in the specular direction: 

 
( )2

1
sin cos i

γ =
α θ

 (23) 



9 

 The color of the perfect mirror in the specular direction, in respect to the perfect white diffuser is 
given by the CIELAB coordinates ( ) ( )* * * 1/3, , 116 16,0,0= γ −m m mL  a  b . 

 Both colors of the perfect white diffuser and the perfect mirror are located on the achromatic axis 
( ) ( ), 0,0a b∗ ∗ = . Since γ  is larger than 1, the perfect mirror has a brighter color than the white diffuser, 
i.e. m wL L∗ ∗> . For example, if the perfect mirror is measured at 0i rθ = θ = °  and if 2α = ° , we have 

821γ  and the lightness of the perfect mirror is * 1070mL . When 10α = ° , we have 33γ  and 
* 357mL .  

 
4. Goniocolorimetry 

 We present in this section a methodology to define color variations with the viewing direction in 
the CIELAB colorimetric space as a function of viewing direction. 

4.1. Choosing the viewing solid angle 

 Some objects have sharp angular reflection properties. For example, gloss is often focused on a 
precise direction. Measuring the BRDF of such objects requires a high angular precision, therefore a 
detector with small solid angle (cf. [8] for practical examples). The interpretation of gloss 
distinguishes the “specular gloss”, related to the reflection in the specular direction, the “distinctness 
of image” related to the specular peak width, and the “gloss contrast” related to the ratio between the 
specular and the diffuse fluxes [22]. To measure gloss accurately, especially the distinctness of image, 
the viewing solid angle has to be smaller than the ocular acuity, which is estimated to 1 minute of arc. 

 Nevertheless, Eq. (23) indicates that a small value of α induces a very high value for the geometry 
factor γ  and therefore an important source of imprecision in the colorimetric computations. For the 
color characterization, it is preferable to use a larger viewing solid angle and it looks judicious to 
select the one considered by the CIE when establishing the color matching functions, i.e. cones with 
half-angle α = 2° or 10°.  

 At first sight, the characterizations of gloss and of color look incompatible since they require 
different viewing solid angles, but in practice, it is sufficient to perform a single measurement at high 
angular resolution. This latter is subsequently undersampled for the color characterization, with a 
sampling angle of 2° or 10° to reproduce CIE’s standard solid angles. This undersampling operation is 
at the base of so-called “abridged goniophotometry”. 

4.2. High angular resolution measurement 

 Let us measure the fluxes reflected by the object and by the perfect white diffuser using a very 
thin viewing solid angle, which may be written as sinr r r rd dδΩ = θ θ ϕ  where angles rθ  and rϕ  denote 
the viewing direction. Since light rays flowing though it propagate nearly along the same direction 
( ),r rθ ϕ , the integrals in Eq. (10) are reduced to a simpler form:  

 ( ) ( ), , , , , ,θ ϕ θ ϕ = π θ ϕ θ ϕi i r r i i r rR q  (24) 

Reflectance factor is therefore proportional to radiance coefficient in this case. Sève [8] recommends 
using a detector with viewing solid angle smaller than the ones usually found in glossmeters, e.g. with 
0.5° half-angle solid angle, i.e. 42.10r sr−δΩ = .  
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4.3. Undersampling 

 We want to convert the measured spectral reflectance factor into color coordinates, i.e. into X, Y, 
Z tristimulus values, then into CIELAB coordinates. The color matching functions used for the 
computation of the tristimulus values have been established for a viewing solid angle rΔΩ  of either 
2° or 10° half-angle. It looks therefore suitable to calculate color coordinates from spectra defined in 
respect to this solid angle. Obtaining these spectra is permitted by the following method. 

 Let us assume that spectral reflectance factor ( ), , ,θ ϕ θ ϕi i r rR  is a continuous function of angles 
( ),r rθ ϕ . If it was measured at discrete positions with high angular resolution, interpolation may be 
used. The radiance coefficient q can therefore be deduced from Eq. (24). Then, Eq. (10) yields a new 
reflectance factor ( ), , ,i i r r′ρ θ ϕ θ ϕ  that would be measured with the new viewing solid angle rΔΩ . 
This reflectance factor is consistent with color calculations. 

 In order to simplify the computations, in particular to avoid calculating the integrals of Eq. (10), 
we recommend a discrete approach based on a planar mapping of the BRDF. This mapping, already 
used by Elias [23] for the representation of BRDFs, is a Lambert azimuthal equal-area projection [24]. 
Every point P on the hemisphere, specified by its spherical coordinates ( ),θ ϕ , is mapped to a point P' 
of polar coordinates ( ),r ϕ  contained within a horizontal disk of radius 2  tangent to the hemisphere 
at the North pole N (Fig. 3). The azimuth coordinate ϕ  is the same in the two coordinate systems. 
Coordinate r, which corresponds the distance NP, is given by  

 ( )2sin /2r = θ  

Point P' is also be specified by the following Cartesian coordinates 

 
( )
( )

2sin /2 cos

2sin /2 sin

u

v

= θ ϕ

= θ ϕ
 (25) 

 

 

Figure 3: Mapping of the hemisphere onto a disk of radius 2  according to Lambert azimuthal equal-area projection 
applied at the North pole N. 
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Figure 4: Sampled image of the BRDF projection disk where the pixel area corresponds to a viewing angle of 2° half-angle. 

 

This mapping conserves areas. A portion of hemisphere with area A is mapped into a portion of disk 
with same area A. Conversely, the area of a disk element equals the area of the corresponding sphere 
element, thereby the value in steradian of the corresponding solid angle. By partitioning the disk 
according to a uniform grid (Fig. 4), one obtains a partition of the hemisphere where all the solid 
angles are equal.  

 Applying this mapping and this partitioning to the BRDF yields a multispectral image, i.e. a 
discrete image containing as many channels as wavelengths. Each pixel of the image corresponds to a 
same solid angle. Pixels with side d represent solid angles of 2d  steradians. When one desires 
considering a partition with larger solid angles, one can undersample the image in such manner that 
the area of the new pixels corresponds precisely to the desired solid angle. Classical resampling 
technics in image processing, e.g. bilinear resampling, may be used. In our case, we are interested in 
conical solid angle with half-angle 2α = °  or 10°, whose area in steradian is ( )24 sin / 2π α . The pixel 
side should therefore be  

 ( )2 sin / 2d = π α  (26) 

Note that the pixelization without overlapping in the (u,v) plane induces to choose a square base cone 
instead of the classical circular base cone. It is also possible to use a partition grid whose cells have a 
more circular shape, e.g. a hexagonal grid. 

4.4. Color coordinates 

 Now, the undersampled multispectral image can be converted into CIELAB coordinates using 
Eqs. (18) and (19). Considering a given α  value (2° or 10°), one obtains a 3-channel image where 
each pixel contains the three color coordinates, e.g. the L*, a* and b* coordinates of the CIELAB color 
system. One may select a subset of pixels, corresponding to a subset of directions, and represent their 
associated color in the CIELAB space.  

 The geometry factor γ , given by Eq.(23), enables representing both the perfect white diffuser 
( ) ( )* * *, , 100,0,0w w wL  a  b =  and the perfect mirror ( ) ( )* * * 1/3, , 116 16,0,0= γ −m m mL  a  b  in the CIELAB space. 
Thanks to the undersampling procedure, the solid angle selected for color viewing is independent of 



12 

the one used for spectral measurements and the geometry factor γ , thereby the lightnesses of the 
perfect white diffuser and the perfect mirror, become independent of the experimental device. 

4.5. Goniocolorimetry in 3 steps 

 The complete procedure to follow from flux measurement to CIELAB coordinates may be 
summarized by the three following steps:  

1. Measurement: using a fixed collimated light and a gonioreflectometer with small solid angle, 
measure at high angle resolution the flux reflected by the sample to study and by the perfect white 
diffuser. Divide the measured flux of the sample by the measured flux of the perfect white diffuser. 
One obtains the reflectance factor of the sample.  

2. Undersampling: choose a viewing solid angle for the color calculation (2° or 10°). Undersample 
the reflectance factor calculated in step 1, with a sampling rate corresponding to the selected viewing 
solid angle.  

3. Colorimetry: calculate the color coordinates.  

This ideal procedure must be modified in practice because, nowadays, the devices seldom achieve to 
obtain both a high angular resolution (e.g. ΔΩ=10-4 sr) and a sufficient spectral resolution for 
colorimetric calculations (e.g. Δλ=5 nm). More sophisticated protocol should be proposed with sharp 
measurements for large BRDF variations, in particular around the specular direction, and more blur 
measurements elsewhere. In this last case, the second step should rather be called “resampling”. The 
operation consists in changing the initial non-uniform sampling to a uniform one. However, the same 
classical resampling technics adapted to an irregular grid can be applied.  

5. Example 
 We propose to illustrate the methodology introduced above with the example of a glossy sample 
illuminated at normal incidence ( )0i iθ = ϕ = . Its reflectance factor is supposed to be written as the 
superposition of a Lambertian diffuse component and a specular peak [25, 26] 

 ( ) ( )
2

2 3 2

1 tan, exp
2 cos 2

⎛ ⎞ξ
θ ϕ = λ + ρ −⎜ ⎟ξ ⎝ ⎠

r r d sR R
m m

 (27) 

where Rd is the volume diffuse reflectance factor, ρs is the surface specular reflectance, m is the r.m.s. 
slope of the rough interface and ξ is the local incidence angle, i.e. half the angle between the 
illumination direction ( ),i iθ ϕ  and the observation direction ( ),r rθ ϕ  [27]. At normal incidence, we 
have /2rξ = θ . The diffuse component Rd is a function of wavelength and corresponds to a blue color 
in the example whereas the reflectance ρs is assumed to be wavelength-independent (Figure 5). 
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Figure 5: Spectral variations of the specular component ρs and of the diffuse component Rd for the reflectance factor 

simulation (Eq.(27)). 

 
First, the flux reflected by the sample is acquired at a high angular resolution, i.e. with a small viewing 
solid angle δΩr. Then we proceed to the undersampling operation, choosing a sampling solid angle 
with 2° or 10° half-angle. Since 0iθ = ° , the geometry factor is accordingly ( )2

2 sin 2−
°γ = °  or 

( )2
10 sin 10−
°γ = ° . Figures 6 and 7 represent the reflectance factor before and after the two types of 

undersampling at the wavelength 700λ = nm where 0.5=dR , for a surface r.m.s. slope 0.1m =  and a 
surface reflectance 0.04ρ =s . The reflectance factors are represented in Figure 6 in (u,v)-coordinates, 
derived from the ( ),r rθ ϕ -coordinates according to transformation (25). In Figure 7, they are 
represented in the incident plane as a function of the viewing angle.  

 
Figure 6: Reflectance factor at a normal incidence, simulated with Eq. (27) with m = 0.1, Rd = 0.5 and ρs = 0.04 and projected 
onto the (u,v)-plane according to the transformation defined by Eq. (25); (a) before undersampling, (b) after undersampling 
with α = 2° (grid spacing Δu = 0.049) and (c) after undersampling with α = 10° (grid spacing Δu = 0.247). 
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Figure 7: Profile of the reflectance factor plotted in Figure 6 along the u-axis, before and after each type of undersampling.  

 

 In the last step, the reflectance spectra calculated for each grid cell are converted into CIELAB 
coordinates, as well as the reflectance spectra of the perfect white diffuser and of the perfect mirror. 
All the corresponding points are placed in the goniocolorimetric CIELAB space. Note that lightness 
overpasses 100 when, in a given direction, more light is reflected by the sample than by the perfect 
white diffuser. For very glossy surfaces, lightness may vary over decades. Hence, it is preferable to 
represent lightness using a logarithm scale. 
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Figure 8: Color coordinates of a sample observed at different orientations θr represented in the (C*,logL*)-diagram (left) and 
the (a*,b*)-diagram (right) of the CIELAB space. Corresponding reflectance factors are simulated according to Eq. (27) at 

normal incidence, with Rd(λ) and ρs(λ) shown in Figure 5 and m = 0.1. The viewing solid angles are defined by α = 2° ( ) 
and α = 10° (  ). 

 

 Figure 8 shows the color variations obtained for viewing solid angles with 2° and 10° half-angle. 
We see that near the specular direction (θr tending to 0°), the color becomes paler (L* increases and C* 
decreases). This is the usual “goniocolorimetric behaviour” of glossy materials. It should be noticed 
that the two undersampling operations ( 2α = °  and 10α = ° ) give different color coordinates for a 
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same direction due to different viewing solid angle over which the reflectance is averaged. At 0rθ = ° , 
the CIELAB coordinates are respectively ( )98.3, 0.3, 8.8− −  and ( )94.6, 2.1, 8.3− − . However, these 
variations are small compared to the high lightness variation of the perfect mirror, detailed in Section 
3.3 ( * 1070.2mL =  for α = 2° and 356.7 for α = 10°). The small coordinate differences (especially a hue 
angle difference) observed in the diffuse part when θr>30°, ( )63.7, 0.7, 16.8  − −  and 
( )64.5, 4.0, 14.8− − , are due to differences between the standard observer color matching functions 
defined by the CIE in 1931 and in 1964, and more precisely to the different foveal area stimulated by 
the viewing solid angle with α = 2° and α = 10°.  

6. Conclusion 
 The goniocolorimetric space introduced in this paper is a CIELAB color space where the colors of 
a same object viewed at different angles are represented. Since the amount of light reflected in the 
specular direction may be much higher than the amount of light reflected by the perfect white diffuser 
used as reference, lightness may overpass 100. The highest lightness value is obtained from a perfect 
mirror viewed in the specular direction. This value is systematically represented in the 
goniocolorimetric space in such manner to have a scale of gloss, i.e. a scale for “reading” high 
lightness values. As an advantage of the proposed methodology, color coordinates are calculated by 
considering the viewing solid angles considered by the CIE when establishing the color matching 
functions, i.e. solid angles with 2° or 10° half-angle. This viewing solid angle is introduced while 
converting the BRDF, measured with a thinner solid angle, into a multispectral planar image whose 
pixel size is directly related to the considered solid angle. This mathematical procedure allows the 
independence of the color calculation from the measurement setup.  

 The method proposed here needs to be tested on a wide range of samples in order to evaluate its 
limitations. At first sight, it is difficult to evaluate the pertinence of the color coordinates computed in 
directions where the spectral BRDF varies very strongly within the considered solid angle. This 
question might necessitate a wide experiment based on visual testing. On the other hand, the 
connection between the BRDF (cone issued from the surface) and the visual field (cone issued from 
the detector) is not as simple as supposed in our paper. When the solid angle is very small, the 
radiance invariance principle ensures that the radiance emitted by the surface and the one received by 
the detector are equal. But when a larger solid angle is considered, the texture or the curvature of the 
surface may have an influence on the perception. It appears that our work is limited to samples whose 
surface is rather homogenous and plane. The case of objects presenting a strongly textured aspect or a 
non negligible radius of curvature is therefore beyond the scope of the present study and represents a 
challenge for further investigation. 

 The notion of goniocolorimetric space was presented for reflectance, but it can be extended in a 
straightforward manner to transmittance. The only difference concerns the reference samples. For 
direct transmission (the equivalent for specular in reflection), the reference is the direct measurement 
of the incident light without sample (in practice, this direct measurement is also often used as 
reference for specular reflection measurements instead of perfect mirror). A Lambertian reference for 
diffuse transmission measurements is not usual. In this case, the perfect white diffuser, reference for 
diffuse reflection measurements, can also be used as reference for diffuse transmission measurements.  
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