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The Clapper—Yule model is the only classical spectral reflection model for halftone prints that takes explicitly
into account both the multiple internal reflections between the print—air interface and the paper substrate and
the lateral propagation of light within the paper bulk. However, the Clapper—Yule model assumes a planar
interface and does not take into account the roughness of the print surface. In order to extend the Clapper—
Yule model to rough printing supports (e.g., matte coated papers or calendered papers), we model the print
surface as a set of randomly oriented microfacets. The influence of the shadowing effect is evaluated and in-
corporated into the model. By integrating over all incident angles and facet orientations, we are able to express
the internal reflectance of the rough interface as a function of the rms facet slope. By considering also the
rough interface transmittances both for the incident light and for the emerging light, we obtain a generaliza-
tion of the Clapper—Yule model for rough interfaces. The comparison between the classical Clapper—Yule model
and the model extended to rough surfaces shows that the influence of the surface roughness on the predicted
reflectance factor is small. For high-quality papers such as coated and calendered papers, as well as for low-
quality papers such as newsprint or copy papers, the influence of surface roughness is negligible, and the clas-
sical Clapper—Yule model can be used to predict the halftone-print reflectance factors. The influence of rough-
ness becomes significant only for very rough and thick nondiffusing coatings. © 2005 Optical Society of
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1. INTRODUCTION

For more than 50 years, attempts have been made to
build models predicting the color of printed halftone im-
ages. To offer accurate predictions, the models need to
take into account the phenomena determining the inter-
action of light and halftone prints and of inks and paper.

Many different phenomena influence the reflection
spectrum of a color halftone patch on a diffusely reflecting
substrate (e.g., paper). These phenomena comprise the
surface reflection (Fresnel reflectivity) at the interface be-
tween the air and the paper, light scattering and reflec-
tion within the substrate (i.e., paper bulk), and the inter-
nal reflections (average Fresnel reflectivity for a diffuse
incident light) at the interface between the paper and the
air. The lateral scattering of light within the paper sub-
strate and the internal reflections at the interface be-
tween the paper and the air are responsible for what is
generally called the optical dot gain (also known as the
Yule—Nielsen effect).

Existing models for predicting the reflection spectra of
color halftone patches rely on the Yule—Nielsen-modified
spectral Neugebauer model,’™ on the analysis of light
propagation within the paper,>® or on the Clapper—Yule
model. ™

The Clapper—Yule model is the only classical model for
halftone prints that takes explicitly into account both the
multiple internal reflections between the paper substrate
and the print—air interface and the lateral propagation of
light within the paper bulk. Since the Clapper—Yule
model assumes that lateral propagation of light within
the printing support is significantly larger than the half-
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tone screen period, it is adapted to halftones printed only
at high screen frequencies. However, extensions have
been proposed for middle to low screen frequencies.n’12

The classical Clapper—Yule model assumes a perfectly
smooth air—print interface. Only very glossy papers have
a smooth interface. However, despite the fact that most
prints have a rough surface yielding a matte appearance,
the Clapper—Yule model yields excellent prediction
results.’® We therefore establish a model extending the
Clapper—Yule model to rough surfaces. Then we analyze
the impact of the print surface roughness on the predicted
spectral reflectance factor.

The reflectance of the halftone print characterizes the
spectrum of the reflected light, according to a given mea-
suring device geometry (illumination and detection orien-
tations). A print is illuminated by an unpolarized colli-
mated light beam oriented according to a fixed direction
L. Two measuring geometries are thus considered: the
L/diffuse geometry, where the spectral irradiance re-
flected by the print is collected by an integrating sphere,
and the L/R geometry, where a radiance detector cap-
tures the spectral radiance reflected by the print along a
given direction R. Both geometries are supposed to dis-
card the specular reflection at the surface of the print. We
discard the specular reflection in the case of L/R geom-
etries by choosing asymmetric directions of L and R with
respect to the print surface normal direction, e.g., an in-
cident angle of 45° and a viewing angle of 0° (45°/0° ge-
ometry). Integrating spheres generally have a hole for
discarding the specular reflection.

By dividing the reflection spectrum captured by a
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photospectrometer by the reflection spectrum of a refer-
ence white support captured under the same conditions,
we obtain the spectral reflectance factor of the halftone
print. We consider here two reference white supports: a
perfectly white diffuse reflector, such as a barium sulfate
white tile, and the unprinted printing support.

We can find in the literature several contributions
about reflection or transmission of a light ray onto or
through a rough interface between transparent
media.'*!® These contributions may be useful for model-
ing the penetration of the incident light beam into the
print. However, since they do not deal with the case of dif-
fusely reflected light, they are neither suitable for calcu-
lating the interface’s internal reflectance nor for charac-
terizing the emergence of diffuse light from the print.
Germer®® proposes a model for incident light crossing a
rough interface, being diffused by a substrate, undergoing
multiple internal reflections, and crossing again the
rough interface to the air. However, in contrast to our ap-
proach, he does not compute the internal reflectance of
the rough interface but rather relies on a Monte Carlo
simulation to average over all possible internal reflection
directions.

We extend the Clapper—Yule model to rough air—print
interfaces. This extension yields a closed-form expression
allowing us to predict the reflection spectra of halftones
printed on matte supports. We perform a detailed analy-
sis of the impact of the interface roughness on the pre-
dicted spectral reflectance factors. This analysis confirms
that, for high-quality matte papers, the classical Clapper—
Yule model yields reflection spectra that are very close to
the reflection spectra calculated thanks to the model ex-
tended to rough interfaces.

As an introduction to our model, we first recall the
principles of the classical Clapper—Yule model for a pla-
nar air—print interface, by pursuing a strict radiometric
approach (Section 2). In Section 3, we model the rough
air—print interface, assuming that the rough interface av-
erage height and correlation length are larger than the
wavelengths of the visible spectrum. This allows one to
model the rough interface by a set of randomly oriented
microfacets and to use the laws of geometrical optics.’’
We show that the coating thickness has a direct impact on
the light propagation between the paper bulk and the in-
terface. The shadowing phenomenon, as well as multiple
scattering between adjacent facets of the interface, is also
considered. In Section 4, we deduce the internal reflec-
tance coefficient as a function of the interface roughness
and establish the closed-form expressions for the ex-
tended Clapper—Yule model. In Section 5, we evaluate the
extended Clapper—Yule model as a function of the inter-
face roughness for different combinations of measuring
geometries and reference white supports. We draw the
conclusions in Section 6.

2. CLAPPER-YULE MODEL FOR A PLANAR
INTERFACE

The halftone print is produced by depositing inked screen
dots onto a printing support. The print’s color is charac-
terized by its wavelength-dependent reflectance factor,
which can be predicted by the Clapper—Yule model if the
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printing support, the ink, and the periodic screen satisfy
the following conditions.

The printing support is composed of a diffusely reflect-
ing substrate having a flat interface with the air (e.g.,
glossy paper). The relative index of refraction n, of the
air—print interface is the same in inked and in noninked
regions, in both cases close to 1.5. The screen period is as-
sumed to be small compared with the lateral propagation
of light within the diffusing substrate. Therefore, the re-
gion (inked or noninked) from which the light penetrates
the substrate is uncorrelated with the region (inked or
noninked) toward which the light is reflected by the sub-
strate.

The diffusing substrate is characterized by its spectral
reflectance pp(\), expressing the portion of irradiance that
is reflected by the substrate. The ink layer is character-
ized by its spectral transmittance ¢(\), expressing the por-
tion of irradiance crossing the ink layer without being ab-
sorbed.

Under these assumptions, the Clapper—Yule model de-
scribes the interaction of light with the halftone print
(Subsection 2.A). It takes into account lateral propagation
of light within the paper substrate and the multiple inter-
nal reflections that occur between the diffusing substrate
and the print surface (print—air interface). In Subsection
2.B, we derive the expression of the halftone-print reflec-
tance factor, depending on the measuring geometry and
the selected reference white. We consider both the
L/diffuse and the L/R geometries. The incident light is a
collimated beam arriving at an orientation L. In the case
of an L/R geometry, the reflected light emerges at an ori-
entation R and is captured by a radiance detector. We
consider as reference white supports both a perfect white
diffuse reflector and the unprinted paper support.

A. Interaction of Light with a Planar Halftone Print

The interaction of light with the halftone print can be
separated into three components forming the Clapper—
Yule model: the Fresnel transmittivity for the incident
light crossing the air—print interface, the multiple reflec-
tions of the diffused light between the paper substrate
and the print-air interface, and the Fresnel transmittiv-
ity for the emerging light crossing the print—air interface.
All irradiances, radiances, and light fluxes are wave-
length dependent (for the sake of simplicity, N is men-
tioned only on the first occurrence of a wavelength-
dependent variable).

The print is illuminated by a collimated light of
wavelength-dependent irradiance V;(\). The air—print in-
terface transmits an irradiance W;(\) to the inked half-
tone layer and then to the paper bulk. An irradiance
W,.(\), resulting from multiple reflections between the pa-
per substrate and the print-air interface, is incident on
the print—air interface. The print—air interface transmits
an irradiance V,.(\) that can be captured by an integrat-
ing sphere or a radiance L,(\) captured by a radiance de-
tector (Fig. 1).

1. Transmission of the Incident Light through the Planar
Air-Print Interface

The incident collimated beam of irradiance V;, oriented
according to vector L, reaches the air—print interface of
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Fig. 1. Diagram of the interaction of light with the print accord-
ing to the Clapper—Yule model.

normal vector N. The ratio of light penetrating the print
is given by the wavelength-independent Fresnel trans-
mittivity T, (L,N), where n, is the relative index of re-
fraction of the air—print interface.'® The irradiance W; of
the light transmitted through the interface is therefore

Wi = TnV(L’N)Vi, (1)

where T, (L,N) is the transmittivity of the air—print in-
terface.

2. Multiple Internal Reflections between the Print-Air
Interface and the Paper Substrate

Having crossed once the air-print interface, the irradi-
ance W; is subject to multiple internal reflections, during
which light is alternately diffused and reflected by the pa-
per substrate and by the print-air interface, until it is
transmitted into the air across the print-air interface.
The Clapper—Yule model assumes that lateral propaga-
tion of light within the paper bulk is large compared with
the halftone screen period. Therefore, the probability of
exiting from a given colorant is proportional to that colo-
rant’s surface coverage. The total irradiance W, that is in-
cident onto the print side of the print—air interface is the
sum of the elementary irradiances that reach the inter-
face after each reflection by the paper bulk.

After having entered into the print, a part a of irradi-
ance W, traverses a colorant area of wavelength-
dependent transmittance ¢(\), and a part 1-a traverses
an uncolored area of transmittance 1, where «a is the frac-
tional area covered by the colorant. The resulting irradi-
ance is reflected back by the diffusing substrate of spec-
tral reflectance pg(\) toward the print—air interface:

Wo=pg(1-a+at)W,. (2)

This irradiance Wy(\) is decomposed into a first compo-
nent Wj,(\) that will be transmitted into the air through
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the print—air interface. This component W, reaches the
print—air interface either in a colorant area (transmit-
tance ¢, probability a) or in an uncolored area (transmit-
tance 1, probability 1-a):

W0r=(1—a+at)W0. (3)

A second component W1(\) comprises the light that is
internally reflected at the print—air interface (internal re-
flectance r;), either in a colorant area (probability a,
transmittance ¢2 due to two passes through the ink layer)
or in an uncolored area (probability 1-a, transmittance
1), and then is reflected back by the substrate (reflectance

pB):
Wl = ripB(l —-a+ atz)W().
After k internal reflections at the print—air interface,
the irradiance W,(\) is

Wk=(ripB(1—a +at2))kW0, k=1,2,3... .

It is decomposed into an irradiance component Wp,.(\)
that will be transmitted into the air,
Wk,=(1—a+at)Wk, k=1,2,3...,
and a component W, {(\) that is internally reflected by
the print—air interface and reflected back by the sub-
strate. Finally, we obtain the total irradiance W,.(\) that
will be transmitted through the print-air interface by

summing all components W,.(\). This yields the geomet-
ric series

W,= > W, =(1-a+at)| D (rpp(1-a+atd))t |W,,
k=0 k=0

(4)
which, after Eq. (2) is inserted, converges toward

pp(l—a +at)?

Wr= Wi‘ 5
1-r;pp(1-a+at? ®)

In the same manner as Judd,' let us compute the in-
ternal reflectance r; of the print—air interface. In Subsec-
tion 4.A we then generalize the internal reflectance to
rough interfaces.

3. Internal Diffuse Reflectance of a Planar Print-Air
Interface

The internal reflectance r; of an interface denotes the ra-
tio of reflected to incident irradiances when a Lambertian
diffuse light illuminates an element ds of the interface. It
corresponds to an average Fresnel reflectivity, taking into
account all incidence directions of the rays that illumi-
nate the interface. It is wavelength independent and de-
pends only on the relative index of refraction 1/n, of the
print—air interface.

An element ds of the interface is illuminated by a Lam-
bertian incident light of irradiance E;(\). Therefore, it re-
ceives the radiance E;/m from each direction V of the
hemisphere Qy, i.e., a flux element d?®;(\) defined as
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E;
d2®,; = —ds(V - N)dVy, (6)
o

where the dot product (V-N) designates the cosine of the
angle between V and N and dVy is the solid angle in
which the flux is contained (see Appendix A). A part
Fl/nV(V,N) of this incident flux element d2®; is reflected
by the interface, yielding a reflected flux element d2®,(\):

E;
d2P,=Fy,, (V,N)—ds(V - N)dVy. (7)
v ™

By dividing both members of Eq. (7) by ds, we obtain
the element of reflected irradiance d?®,/ds, oriented ac-
cording to direction V and contained within the solid
angle dVy. By integrating d?®,/ds according to dVy over
the hemisphere Qy, we obtain the reflected irradiance
E,(\):

do,
ds

E;
p= = _f Fy (V,NXV-N)dVy.
T oy
The ratio of the reflected irradiance E, to the incident
irradiance E; yields the internal reflectance r; of the inter-
face, which is wavelength independent:

1
ri=— f Fyjp (V,NXV-N)dVy. (8)
mJq v

N

Internal reflectance coefficient r; can be expressed by
an equivalent angular formulation. If (6, ¢) are the polar
and azimuthal coordinates of vector V defined with re-
spect to N, we can replace (V-N) with cos 6 and dVy with
sin #d6d ¢. We have

1 2m /2
ri= —f f F, (6)cos Osin 6d6d . 9)
TJ ¢=0 Y 9=0 !

Since the Fresnel factor does not depend on the azi-
muth angle ¢, the integration according to ¢ yields a fac-
tor of 27. Equation (9) becomes

/2
r= f Fyy, (6)sin 26d6. (10)
6=0

According to the principle of conservation of energy, the
transmittance coefficient of the print—air interface is

ti=1_ri' (11)

4. Transmission of the Emerging Irradiance through the
Planar Print-Air Interface

The irradiance emerging from the print is given by the
product of the interface’s transmittance [Eq. (11)] and the
irradiance W, incident at the print side of the interface
[Eq. (5)]:

V,=1-r)W,. (12)

The irradiance V, emerges from the print over the
whole upper hemisphere and may, for example, be cap-
tured by an integrating sphere. By inserting Eqs. (1) and
(5) into Eq. (12), we find that the expression of the emerg-
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ing irradiance V, corresponds to the product of the three
components of the Clapper—Yule model with the incident
irradiance V;:

pp(1l—a +at)?

Vr = Tny(L’N) : (1 - ri)Vi' (13)

1-rpp(1—a+at?) .

In expression (13), component Tnv(L,N) expresses the
Fresnel transmittivity of the air—print interface for the
incident light, the central fraction expresses the attenua-
tion due to the multiple internal reflections, and the com-
ponent (1-r;) expresses the average Fresnel transmittiv-
ity of the print-air interface for the diffuse emerging
light.

5. Transmission of the Radiance Emerging in the
Direction of a Radiance Detector
Because of the angular dependence of the Fresnel trans-
mittivity, the irradiance V, emerging from the print is not
Lambertian, in contrast to the incident irradiance W,. For
that reason, the radiance L, measured by a radiance de-
tector cannot be derived directly from V,. It is calculated
thanks to the Fresnel transmittivity by considering ex-
plicitly the measuring direction R.

Radiance L,(\) is the flux element d2®(\) that the de-
tector receives along the normal of its surface ds; within
its solid angle dRg_ (Fig. 2). According to the radiance in-

variance principle,20 L, is also the flux element d® trans-
mitted by an element ds of the air-print interface and
contained within a solid angle dRy=sin 6,d6,d ¢, oriented
according to the direction R of the radiance detector:

d>d d>d
Lr = = 5
dssdRp-  ds(R-N)dRy

(14)

where ds(R-N) is the projected area of the interface ele-
ment ds along direction R. The emerging flux element

Detector surface dsy

Detector solid angle dR'g-

air (n=1) Solid angle dRy

% _;y(_ Interface element ds

x Projected interface

element ds (R:N)

coated paper
(n=ny)

Solid angle dV . = dVy

Fig. 2. Element ds of a planar interface, of normal vector N, re-
ceives a radiance from direction V-, within a solid angle dV_
=dVy=sin 6d#d ¢. The radiance transmitted into the air, in direc-
tion R within a solid angle dRy=sin 6,d6,d¢,, is equal to the ra-
diance received by the surface ds; of the detector within its solid
angle dRy_. Vectors V, N, and R are related according to Snell’s
refraction law.
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d?® is the transmitted part TnV(R,N) of the flux element
d?®,(\) that is incident onto the print side of the inter-
face:

d*® =T, (RN)d*D,. (15)

The direction R(6,, ®,) of the transmitted flux element
d?® and the direction V(6, ¢) of the incident flux element
d?®; are related by Snell’s refraction laws:

¢r=¢7

sin 6.=n,sin 6. (16)

The flux element d?®; incident onto ds from direction V
through the solid angle dVy=sin 6d6d ¢ yields a radiance
equal to W,/ since the irradiance W, is Lambertian:

w d*®;

r 12

— 17
7 ds(V-N)dVy

The relation between the term (R-N)dRy appearing in
Eq. (14) and the term (V-N)dVy appearing in Eq. (17) can
be calculated by considering the differential of expres-
sions (16):

dg,=de,

cos 6,d6.=n,cos 6d6. (18)

Then, according to Fig. 2 and by considering Eqgs. (16) and
(18), we have

(V-N)dVyn cos 6 sin 6d6d ¢
(R-N)dRy cos 6, sin 6,d6,d ¢,

= (19)
=—. 19
n,

By inserting Egs. (15), (17), and (19) into the expression
of L, in Eq. (14), we obtain

1 W,
L=T,RN——, (20)
v n, m

v

where the expression of W, is given by combining Egs. (1)
and (5). Finally, the radiance L, emerging from the print
in the direction R of the radiance detector is

pp(1—a +at)?
L.=T, (L,N)- PN 3 .
v 1-r;pp(1-a+at®) n, T

T, RNy,

(21)

B. Expressing the Clapper-Yule Reflectance Factor for a
Planar Interface

The expressions for the reflectance factor predicted with
the Clapper—Yule model depend on how the emerging
light is captured, i.e., either by an integrating sphere
(L/diffuse geometry) or by a radiance detector (L/R ge-
ometry). They also depend on the chosen reference white
(perfectly white diffuse reflector or unprinted printing
support).
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1. L/Diffuse Geometry

The reflectance of the halftone print is the ratio of the ir-
radiance V, captured by the integrating sphere to the ir-
radiance V; of the incident light beam. It is derived di-
rectly from Eq. (13).

The reflectance factor R, (\) defined in reference to a
perfectly white diffuse reflector is obtained by dividing
the print’s reflectance V,/V; by the reflectance of the per-
fectly white diffuse reflector, which is 1 at all wavelengths
of the visible range:

pp(1-a +at))®

Rou=T, LN)(1-r) (22)

—-ripg(1-a+atd)’

The reflectance factor Rq,(\) defined in reference to the
unprinted printing support is obtained by dividing the
print’s reflectance V,./V; by the reflectance of the un-
printed paper support. Under the condition that the inte-
grating sphere discards the light specularly reflected at
the air—print interface, the terms expressing the Fresnel
transmittivity for the penetrating and emerging light are
canceled out:

R % (1-r;pp)(1 —a +at)®
PV (@=0/V, 1-ripg(l-a+at?)

(23)

Expressions (22) and (23) are given in Clapper and
Yule’s original paper.10

2. L/R geometry

The radiance detector captures the radiance L, given by
Eq. (21). A reflectance factor is defined as a ratio of reflec-
tances (print’s reflectance to reference reflectance). It can
also be defined as a ratio of radiances if the illuminating
and measuring conditions are the same for the halftone
print and for the reference support. Therefore, the reflec-
tance factor Ry,(\) defined in reference to a perfectly
white diffuse reflector is obtained by dividing L, by the ra-
diance L .{(\)=V;/7 measured by the radiance detector
from a perfectly white diffuse reflector:

TnV(RyN)
2

14

pp(1l—a +at)?

Rr?w = TnV(L:N) (24)

1-ripgl-a+at?)’

If we choose as the reference the unprinted printing
support, we divide the radiance L, by the radiance that
the detector captures from the unprinted printing sup-
port, which is derived from Eq. (21), with a=0. The corre-
sponding reflectance factor R g,(\) is

P L, (1-ripp)(1-a +at)?
»- L(a=0) 1-rpg(l-a+at?)

(25)

Since R, and R 5, have the same expression, the reflec-
tance factors defined in reference to the unprinted print-
ing support are therefore identical for both the L/diffuse
and the L/R geometries.

The classical Clapper—Yule model assumes that the
air—print interface is perfectly smooth. It is therefore well
adapted for modeling the interaction of light with half-
tones printed on glossy printing supports, such as glossy
coated papers. In practice, however, the Clapper—Yule
model is often applied to matte printing supports having
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a rough surface and still seems to provide excellent pre-
dictions. We propose therefore an extension of the
Clapper—Yule model in order to predict the spectral reflec-
tance factor of halftones printed on matte printing sup-
ports. This extended model allows us to precisely quantify
to what extent the spectral reflectance factors depend on
the roughness of the print—air interface.

3. MODELING THE ROUGH AIR-PRINT
INTERFACE

The rough air—print interface is statistically described by
a set of randomly inclined microfacets, whose inclination
is parameterized by the standard deviation m of the in-
terface facet slopes (Subsection 3.A). In Subsection 3.B we
show that the illumination range of the rough interface by
the diffusing substrate depends on the substrate-to-
interface distance. In Subsection 3.C we introduce
Smith’s shadowing model, which expresses the illumina-
tion attenuation due to mutual shadowing at nearby in-
terface facets.

A. Microfacet Model of the Rough Air-Print Interface
The rough interface is modeled by a set of randomly in-
clined facets, in a manner similar to the Torrance—
Sparrow microfacet model.?* A facet inclination may be
described by its slope s as well as by its normal vector H.
The facet slope is statistically specified by a probability
distribution function. In order to apply the laws of geo-
metrical optics (Snell’s laws, Fresnel formulas), we are in-
terested in describing the inclination of facets according
to their normal vector. By determining the relationship
between the facet slope s and the facet normal vector H,
we can convert the slope distribution function into an
equivalent distribution function of the polar and azi-
muthal angles characterizing the facet normal vector H.

Let us consider a facet normal vector H, specified by its
spherical angles (6, ¢;) and by its corresponding Carte-
sian coordinates (sin 6, cos ¢y,,sin 6y, sin ¢y,,cos ;). A
facet of normal H can be assimilated to an inclined plane
in the (x,y,z) Cartesian space, of the equation

(sin 6}, cos ¢y,)x + (sin ), sin ¢,)y + (cos 6,)z=0. (26)
Let us express z as a function of x and y:
z =— (tan 6;, cos ¢p)x — (tan 6, sin ¢p)y. (27)

The derivative of z along x yields the slope component
s, of the plane along the x axis; similarly, the derivative of
z along y yields the slope component s, of the plane along
the y axis:

s, = dz/dx = — tan 6, cos ¢y,

s, = dz/dy = —tan 6, sin ¢,. (28)

The maximum slope of the plane (modulus of the gra-
dient vector) is

s=s2+ sf, =tan 6. (29)

These slope components s, and s, are typically assumed
to be independent random variables following a Gaussian
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distribution f parameterized by the standard deviation m
of the slope of the rough interface (also called rms slope):

exp(-s2/2m?) exp(- s/2m?)
flsg)=————, fls))=—F=—. (30)
\2mm Y \2mm

A given facet has a probability P(s,)=f(s,)ds, to have a
slope component in direction x between s, and s, +ds, and
a probability P(s,)=f(s,)ds, to have a slope component in
direction y between s, and s,+ds,. The joint probability
for this facet, per unit differential slope ds,ds,, to have an
effective slope s= \e"sf+s§ is therefore

exp(—s2/2m?2)

P(s) =P(s,)P(sy) = 3 ds,ds,,. (31)

2mm

In order to express this probability as a function of the
polar and azimuthal angles (6, ¢;,) of the facet’s normal
vector H, per unit solid angle dHy=sin 6,d6,d¢;,, we
carry out a change of variables. With Eqs. (28), the Jaco-
bian of this change of variables is

38,106y, 93,/ Iy, 1

ﬁsylaﬂh (98y/(9¢h

ds,ds, ds,ds, 1
dHN B sin ﬁhdﬁhdth B sin 0h

- cos® 6, '
(32)

By replacing, in Eq. (31), s with tan 6, and ds,ds, with
dHy/cos® 6, (Eq. (32)), we can express the probability
P(H) that the normal H of a facet belongs to the solid
angle dHy:

P(H)=DH)dHy, (33)

where D(H) is the probability distribution function of the
facet’s normal vector H:

exp(— tan? 6,/2m?)

DH) = (34)

27m? cos® 6,

The expression of D(H) depends only on the polar angle
0, of H. This is characteristic of the roughness azimuthal
isotropy that was implied by considering the same rms
slope m in the x and y directions. One may verify that the
integration of D(H) over the hemisphere Qy yields

f D(H)dHy = 1. (35)
)

N

Note that the planar interface is the limit case of a
rough interface with a rms slope m=0. The distribution
function D(H) of a planar interface becomes the Dirac
delta function S(N).

B. Illumination by the Diffusing Substrate According to
the Substrate-Interface Distance

The diffusing substrate, which reflects light toward the
interface, can be considered a diffuse light source illumi-
nating the facets composing the rough interface. Light
rays emitted by this source are reflected and refracted by
the rough interface according to their propagation direc-
tion. In contrast to planar interfaces whose illumination
range is necessarily the upper hemisphere Qy;, rough in-
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Fig. 3. (a) Cross section of an ink-jet print on uncoated paper (paper thickness of 106 um), (b) cross section of an ink-jet print on coated
paper (paper thickness of 118 um), (c) cross section of an ink-jet print on resin-coated paper (paper thickness of 157 um); courtesy of

Becker and Kasper.

terfaces may have a larger illumination range, depending
on the distance between the diffusing substrate and the
print—air interface.

The substrate—interface distance is considered to be
large when the minimal elevation of the rough interface
(i.e., the grooves’ bottom) is higher than the maximal el-
evation of the diffusing substrate. In such a case, a
substrate-to-interface straight path is possible only along
a direction included within the upper hemisphere. The il-
lumination range of a rough interface located at a large
distance from the substrate is therefore Qy.

In the opposite case, the substrate is in contact with
the interface. The facets are therefore completely illumi-
nated, over their full hemisphere. Since facet orientations
can be up to 90° (vertical facets), substrate-to-interface
straight paths are possible along the —N direction (inci-
dence angle of 180°). The illumination range of a rough
hemisphere at a short distance from the substrate is
therefore the full sphere Xy. Intermediate substrate—
interface distances obviously yield intermediate illumina-
tion ranges.

Examples of short and long substrate—interface dis-
tances are shown in Fig. 3. Figure 3(a) shows an uncoated
paper, whose diffusing substrate is in contact with the
rough print—air interface. Figure 3(b) shows a coated pa-
per, where the thick coating layer is responsible for the
large substrate-to-interface distance. Figure 3(c) shows a
resin-coated paper that has been laminated after being
printed, yielding a smooth print—air interface. Without
the laminating process, the air-print interface would
have been slightly rough as on the back side of the paper.
Here also, the diffusing substrate is at a large distance
from the print—air interface.

C. Shadowing

In contrast to a planar interface, which is equally illumi-
nated at each point whatever the illumination condition,
a rough interface may comprise shadow areas that in-
crease when one increases the interface roughness and
the illumination incidence angle. Interface elements be-
longing to shadow areas do not contribute to the reflected
and transmitted irradiances.

Smith’s shadowing model?® calculates the probability
G,,(V,H) that a given interface element of normal vector
H is illuminated, given the illumination direction V and
the rms slope m of the surrounding interface elements.
When V does not belong to the hemisphere Qg oriented
according to vector H (i.e., the angle between V and H ex-
ceeds w/2 and (V-H) is negative), the facets of normal

Gy(8,45%)
1
\\‘
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\
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Fig. 4. Smith’s illumination probability function for interface’s
rms slopes of m=0.05 (solid curve) and m=0.2 (dashed curve).
The illumination probability of facets inclined with an angle of
45° is plotted as a function of the light incidence angle 6. The il-
lumination probability is zero for incident angles 9<-45°.

vector H cannot be illuminated, and G,,,(V,H) is equal to
zero. Otherwise, G,,(V,H) is between 0 (facets completely
shadowed) and 1 (facets completely illuminated):

A(V-H) | —— Gfveq
Gm(V,H)=u= Agel HVEL

An(O)+1 1 GfV & Op)
(36)

where 6 is the light’s incidence angle (angle between V
and N), A(x) is the unit step function (0 for x negative and
1 for x positive), and

1 1 \,Em ( cot? 0) cot 0
A, (0) = p \/7—T ot exp o erfc \Em .

When the interface roughness is increased, facets are
shadowed by higher-slope neighboring interface elements,
and therefore at high incidence angles the illumination
probability G,,(V,H) decreases. In the example of Fig. 4,
the illumination probability G,,(6,45°) of facets inclined
at 45° [i.e., angle (H,N)=45°] is shown. At high incidence
angles, for a rough interface (rms slope m=0.2), the illu-
mination probability decreases more strongly than for a
smooth interface (m=0.05).

At small and medium incidence angles, the illumina-
tion probability function is close to 1. The shadowing ef-
fect is thus small enough to be neglected. However, if we
ignore the shadowing at high incidence angles, we may
overestimate the reflected and transmitted irradiances
and therefore violate the principle of conservation of en-
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ergy. Therefore, shadowing needs to be taken into ac-
count, according to Bruce?* and Caron et al.,15 when the
incidence angle is higher than a limit angle 6,4 depend-
ing on the rms slope m of the rough interface:

T —
Oshad = 5 arctan(y2m). (37

The shadowing effect also occurs when the rough inter-
face is viewed under a given angle by a radiance detector.
For viewing angles higher than the limit angle 6,4, the
illumination probability function G,, should be used, with
vector V denoting the direction of observation instead of
the direction of illumination.

As in other contributions on light scattering of rough
interfaces,'*!® we ignore cases where a light ray under-
goes several successive reflections or refractions at differ-
ent interface elements, since the product of the corre-
sponding Fresnel reflectivities or transmittivities or both
is close to zero.

With the criterion of Eq. (37), let us describe when the
shadowing effect is to be included in our extended
Clapper—Yule model. Hansson? has shown, thanks to
profilometric measurements performed on several repre-
sentative paper types, that the rms slope of most paper
surfaces does not exceed 0.2. Such a maximal rms slope
yields a worse-case limit angle 6.4 of 74°.

In order to avoid the shadowing effect at the air side of
the interface, we assume that the direction L of the inci-
dent light forms an angle 6;,<74° (for example, 45° as in
the 45°/0° geometry). We can neglect the shadowing ef-
fect on the coating side of the interface, since the rough
interface scatters the incident light into a range of angles
centered around the refraction angle (27.5° in the ex-
ample of 6;,=45°), which is a fortiori lower than 74°, since
arcsin(sin 6,/n,) < 6, < Oghaq-

The diffuse light reflected by the diffusing substrate is
either internally reflected at the rough interface or trans-
mitted and captured by the integrating sphere. In the
case where the diffusing substrate is close to the rough in-
terface, since the facets are completely illuminated (see
Subsection 3.B), the shadowing effect does not exist on
the coating side of the interface. In the case of a large
substrate—interface distance, since the incident diffuse
light comprises propagation directions exceeding 64,4,
Smith’s illumination probability function G,, [Eq. (36)]
needs to be included for calculating the rough interface’s
internal reflectance.

With respect to the diffuse emerging light captured by
an integrating sphere, shadowing occurs at the air side of
the rough interface for high exit angles, at which the cor-
responding Fresnel transmittivity is close to zero, or for
high-slope facets, which have a very low occurrence prob-
ability. We therefore ignore shadowing at the air side of
the rough interface for diffuse emerging light, in the cases
of both small and large substrate-to-interface distances.

With respect to the emerging light captured by a radi-
ance detector, the same considerations as for the incident
light apply. We therefore avoid the shadowing effect by se-
lecting for the radiance detector a viewing angle 6g infe-
rior to 74°.
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4. EXTENDED CLAPPER-YULE MODEL FOR
A ROUGH INTERFACE

We extend the Clapper—Yule model presented in Section 2
to rough air—print interfaces, whose facet inclinations fol-
lows a Gaussian distribution (Section 3). We express for a
rough print interface the irradiance V() captured by an
integrating sphere and the radiance L, (\) captured by a
radiance detector and then derive the reflectance factors
related to each measuring geometry.

The irradiance of the incident light beam V;(\), the
emerging irradiance V;(\), and the emerging radiance
L/(\) as well as the intermediate irradiances W;(\) and
W (\) for a rough interface are defined in the same way as
the corresponding variables V;(\), V,.(\), L,(\), W;(\), and
W,.(\) of the planar interface (Fig. 1).

A. Interaction of Light with a Rough Halftone Print

The random slope of the facets composing the rough
print—air interface follows a Gaussian distribution of
standard deviation m. The surface topology, i.e., the facet
slope distribution, is assumed to be the same in inked and
noninked areas.

1. Transmission of the Incident Light through the Rough
Air-Print Interface

The incident light beam illuminates the facets composing
the rough air—print interface with an irradiance V;. The
incidence direction L is chosen so as to ensure that the in-
cidence angle between L and N is lower than the limit
angle 6.4 [Eq. (37)]. We can therefore ignore the shad-
owing effect and assume that all facets are completely il-
luminated.

The facets contribute to the transmitted irradiance W,
in different proportions according to their orientation.
Given an orientation H, the rough interface comprises a
fraction P(H) of facets with normal vector H, which re-
ceive an irradiance V;P(H). Since this fraction of facets
has a Fresnel transmittivity T,LV(L,H), it transmits an ir-
radiance V.P(H) T, V(L,H). By considering all normal vec-
tors H within the upper hemisphere, we sum their contri-
butions V;P(H) TnV(L,H) and obtain the total
transmitted irradiance W. After replacing P(H) with
D(H)dHy according to Eq. (33), we obtain

W=V} f T, (L,H)D(H)dHy. (38)
[9)

N

Equation (38) is the generalization of Eq. (1). Let us
call 7, (L) the transmittance of the rough interface given
by the ratio W;/V/:

7, (L) = f T, (L, H)DH)dHy. (39)
Q

N

The transmittance of the rough interface 7, (L) de-
pends only on the light incidence direction L and on the
relative index of refraction n, of the interface. It is there-
fore wavelength independent. It represents the average
Fresnel transmittivity of the rough interface, where the
contribution of each facet orientation is weighted by the
probability of its orientation.
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2. Multiple Internal Reflections

As in the case of a planar interface, the irradiance W; is
subject to multiple internal reflections, during which light
rays are alternately reflected by the diffusing substrate
and by the rough print-air interface. The roughness of
the interface has no influence on the substrate reflectance
pB, the ink coverage a, and the ink transmittance ¢. It in-
fluences only the internal reflectance 7; of the print—air
interface. Therefore, the irradiance W, that reaches the
interface after multiple reflections takes the same expres-
sion as in Eq. (5), where the internal reflectance of the
planar interface r; is replaced by the internal reflectance
of the rough interface 7;:

pp(1—a +at)?
W= — —W. (40)
1-7,pp(1-a+at®)

The rough interface internal reflectance 7;, presented in
detail in Subsection 4.A.3, depends on the interface rela-
tive index of refraction (as for a flat interface), on the in-
terface roughness, and on the distance between the inter-
face and the diffusing substrate.

3. Internal Reflectance of the Rough Interface

The internal reflectance 7; is the ratio of a diffuse incident
irradiance that is reflected at the print side of the rough
air—print interface. It represents an average Fresnel re-
flectivity, taking into account the propagation directions
of the incident diffuse light (illumination range) and the
inclinations of the facets composing the rough interface.
The illumination range depends on the distance between
the substrate and the interface (Subsection 3.B).

For a short substrate—interface distance, the facets are
illuminated by a Lambertian light over their full hemi-
sphere, without any shadowing effect. The reflectance of
each facet is the internal reflectance r; of a planar inter-
face. The internal reflectance 7; of the rough interface is
therefore identical to r;, as expressed by Eq. (8).

Let us consider the case of a large substrate—interface
distance. Since the illumination range is Qy (Subsection
3.B), the facets are illuminated only over a part of their
hemisphere. Their contribution to the reflected irradi-
ance, and therefore to the interface’s internal reflectance,
depends on their orientation. For all facet orientations,
we sum up the local incident and reflected irradiances
and obtain the incident irradiance E; and the reflected ir-
radiance E, of the whole rough interface. The ratio E,/E;
yields the interface’s internal reflectance 7;=r;.

The diffusing substrate, assimilated to a Lambertian
emitter of uniform radiance L;, emits a flux element
d?®,(V) in a direction V& Qy through a solid angle dVy:

d*®;(V) = L;ds(V - N)dVy. (41)

The probability that this flux reaches the facets of nor-
mal vector HE Qy is G,,(V,H)P(H), where the illumina-
tion probability function G,,(V,H) gives the proportion of
the facet’s illuminated area [Eq. (36)], and P(H) gives the
proportion of facets with normal vector H contained
within the rough interface [Eq. (33)]. The flux element
d?®,(V,H) directed according to V received by facets of
normal vector H is therefore
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d*®;(V,H) = G,,(V,H)P(H)d?d,(V),
which becomes, after Egs. (33) and (41) are inserted,
d*®,(V,H) = L,dsG,,(V,H)D(H)X(V - N)dVydHy.

The flux element d2®,(V,H) reflected by the facets of
normal vector H is the product of the incident flux with
the Fresnel reflectivity Fy, (V,H):

d*®,(V,H) = LidsFy, (V,H)G, (V. H)DH)V - N)dVydHy.
(42)

By integrating d’®;(V,H)/ds and d?®,(V,H)/ds ac-
cording to dVy over Qy, we obtain, respectively, the irra-
diance incident to and the irradiance reflected by the fac-
ets of normal H. Then, by integrating these two
irradiances according to dHy over Qy, we obtain, respec-
tively, the irradiance E; incident to and the irradiance E,
reflected by the whole rough print—air interface. The ratio
E,/E; yields the internal reflectance r; of the rough print—
air interface when that interface is at a large distance
from the diffusing substrate:

!
r;

E,
-z

f f Fy, (V.H)G,,(V,HDMH)XV -N)dVnydHy
Heoy J veoy !

f f G,,(V,H)D(H)(V - N)dVydHy
Heqy J Veoy

(43)

In order to facilitate the numerical computation of r/,
we give in Appendix B an angular variant of Eq. (43). In
Table 3 below, we give numerical values showing the evo-
lution of r] with respect to the rms slope m and show the
influence of shadowing.

According to the principle of conservation of energy, the
transmittance Z; of the rough print—air interface is

Zi =1- 71" (44)

where 7;=r; is for short and 7;=r; is for large substrate-
to-interface distances.

4. Transmission of the Emerging Irradiance through the
Rough Air-Print Interface

Let us calculate the irradiance V, emerging from the
print and captured by an integrating sphere. It is the part
of the irradiance W, [Eq. (40)] that is transmitted through
the rough interface. Since the transmittance of the print—
air interface is 1-7;, the relation between the irradiance
V, emerging from the print and the irradiance W, inci-
dent onto the print side of the rough print—air interface is

Vi=(1-7)W. (45)

The expression of W, results from the combination of
Egs. (38)-(40):

pB(]. -a+ at)z
W, =1, (L) Vi. (46)
v 1 _7iPB(1 -a +(lt2)
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By inserting Eq. (46) into Eq. (45), we obtain the com-
plete expression of the emerging irradiance V)

pp(1—a +at)?

V=1, (L) -(1-7)Vi. (47

1- FLPB(l -a+ atz)

5. Transmission of the Radiance Emerging in the
Direction of a Radiance Detector
In contrast to the incident irradiance W), the emerging ir-
radiance V, is not Lambertian (see Subsection 2.A). Con-
sequently, the radiance L, captured by a radiance detec-
tor oriented according to R cannot be derived directly
from the emerging irradiance V. We therefore follow the
same reasoning line as in Subsection 2.A by starting from
the definition of radiance in order to express L, as a func-
tion of the Lambertian incident irradiance W;.

Let us express L, as the flux element d?® received by
the detector along the normal R~ of its surface ds; within
its solid angle dRg- (Fig. 5):

. d
" dsydRy.
We call d?®(R-,H) the flux received by the detector
from facets of normal H, which contribute to the flux ele-
ment d?® by a probability P(H). Since R was chosen to

make the shadowing effect insignificant, the flux d?® is
the sum of all flux elements d2®(R~,H). Therefore,

) J d*®R-,H)D(H)dHy
d“® Q

L al . (48)
dedR_ _

" dsudRy.

Detector surface ds;

Detector solid angle dR"g-

coated paper s,

Solid angle dR
(n=n,) & H

v(— Projected interface
element ds (R-H)

Interface element ds
of normal vector H

Solid angle dV'y- = dVy

Fig. 5. Inclined facet elements ds of a rough interface, of normal
vector H, receives a radiance from direction V-, within a solid
angle dV,_=dVy=sin #d6d¢. The radiance transmitted into the
air, in direction R within a solid angle dRg=sin 6,d6,d ¢,, is equal
to the radiance received by the surface ds; of the detector within
its solid angle dRp,_. Vectors V, H, and R are related according to
Snell’s refraction law.
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The term d?®(R™,H)/ds ;dRy. corresponds to the el-
ementary radiance received by the detector from the fac-
ets of normal vector H. According to the radiance invari-
ance principle,20 this elementary radiance can also be
expressed as the flux element d?2®(R,H) emerging from
the facets into direction R within the solid angle dRy
(Fig. 5):

d*®dR,H) d*®R,H)
dsydRy.  ds(R-H)dRyg'

(49)

The flux element d?®(R,H) is the transmitted compo-
nent of an incident flux element d?®;(V,H), emitted by
the diffusing substrate into a direction V, with vectors V,
H, and R being related according to Snell’s refraction
laws:

dz(I)(R,H) = TnV(R,H)dZCDi(VvH)v (50)

where TnV(R,H) is the Fresnel transmittivity. Since the
diffusing substrate is a Lambertian emitter of irradiance
W), the flux d?®;(V,H), contained in a solid angle dVy, is
related to the radiance W,/ by

!

d2®,(V,H) = —ds(V - H)dVy. (51)
v

Furthermore, by following the same reasoning line as
for Eq. (19), we have

(V-H)dVyg 1

— = 52
(R-H)dRyg n?® (52)
With Egs. (48)—(52), the radiance L, becomes
W1
Li=—- T, (R,H)D(H)dHg. (63)
™ n,J oy v

In a similar manner, as the integral Tnu(L) was defined
in Eq. (39), we define

7 (R) = f T, R,H)D(H)dHg. (54)
Q

N

Finally, by inserting the expression of W, [Eq. (46)] into
Eq. (53), we obtain the complete expression of the radi-
ance L, emerging from the halftone print into the direc-
tion R of the radiance detector:

pp(l-a+at)? TR V!

T ; (55)

L =7 (L) .
" 1-rpg(l-a+at? n’

r

Expressions (47) and (55) have the same form as ex-
pressions (13) and (21) but with the Fresnel transmittivi-
ties and the internal reflectances weighted according to
the facet orientations.

B. Expressing the Clapper-Yule Reflectance Factor for
Rough Interfaces

We can derive from Egs. (47) and (55) the reflectance fac-
tors of the matte halftone print for both the L/diffuse and
the L/R geometries. As in Section 2, we consider as the
reference white the perfectly white diffuse reflector as
well as the unprinted printing support. We obtain four re-
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Table 1. Main Expressions Resulting from the Classical and Extended Clapper-Yule Models”

Classical Clapper-Yule model

Extended Clapper-Yule model

print-air interface

Glossy support Short substrate-interface distance | Large substrate-interface distance
Transmission of the incident light 7, (L.N) 7, (L) (Eq. 39) 7,,(L) (Eq. 39)
Internal reflectance of the 5 (Eq. 8) F=r, (Eq. 8) Fr! (Eq. 43)

P
Attenuation due to the multiple pp(l-a+ar)

internal reflections 1-r,pp(1-a+ar?)

pp(1-a+at)’ pp(1-a+at)’

1-r,pp(1-a+ar?) 1-r/pp(1-a+ar?)

Transmission of the emerging
light (Integrating sphere and

1-r (Eq. 11)

1-7 (Eq. 44) 1-7 (Eq. 44)

L/R geometries) 7, (R,N)

7,(R)  (Eq.54) 7,(R)  (Eq.54)

Reflectance factor 7, (LN) (1-r,) p(1 —a+at)’

T, (L)(1-r,) pp (1 —a+at)’ 7, (L) (1-r) p5 (1 —a+at)’

for an integrating sphere geometry

and a white reflector reference 1-r,pp (1-a+at?)

1-r,pp(1-a+at?) 1-r/pp(1-a+at?)

Reflectance factor 7,(LN) T,(RN) pp(1-a+a 1)’

Tn‘,(L) Tn‘,(R) pp(l _a+at)2 Tnv(L) Tnv(R) pB(l_a+at)2

for an L/R geometry and a white

reflector reference n; ( 1-r;pp(1 —a+at2))

nVZ(l—r,.pB(l—a+at2)) nvz(l—ri'pB(l—a+at2))

Reflectance factor
for both geometries and an
unprinted support reference

(1 -7 pp)(1 —a+at)2
1-r,pp(1-a+at?)

(1-r/pp) (1-a+at)’
1-r/pp(1-a+at?)

(l—ri pB)(l—a+at)2
1-7,pp(1-a+ar?)

“Shaded cells designate roughness-dependent terms.

flectance factors R, (N), Rbp()\), R,(\), and R(’;p()\) for
rough interfaces, which are extensions of the four reflec-
tance factors R, (N), Rop,(N), Bs,(N), and R g, (N) expressed
in Eqgs. (20)—(25) for planar interfaces.

1. L/Diffuse Geometry

The reflectance V,/V; of the halftone print derived from
Eq. (47), divided by the reflectance of a perfectly white re-
flector that is 1 for all wavelengths over the visible range,

yields the reflectance factor Ry,

pB(]. —-a+ at)2

Ry, =1, L)(1-T7) (56)

1- FLPB(]' —-a+ at2) '
By dividing the reflectance V./V of the halftone print

12
[Eq. (47)] by the reflectance of the unprinted paper [ob-
tained by setting a=0 in Eq. (47)], we express the reflec-
tance factor Ry, of the halftone print by reference to the

unprinted paper:

. (1-Fpp(l-a+at)?
Rﬂp=

. (57
1 _FipB(l -a +at2) )

The expression (57) for R(’]p is very close to the expres-
sion (23) obtained for a planar interface. For large
substrate-interface distances, Ry, is roughness depen-
dent owing to the internal reflectance 7;=r; of the rough
interface. For short substrate—interface distances, the in-
ternal reflectance 7;=r; is equal to the reflectance of a pla-
nar interface. In this case, Rbp is roughness independent
and identical to the reflectance factor R, obtained in Eq.
(23), thanks to the classical Clapper—Yule model.

2. L/R Geometry
The radiance detector captures the radiance L, given by
Eq. (55). We obtain a reflectance factor R}, by dividing L]

by the radiance L, =V;/m captured by the detector from
a perfectly white diffuse reflector:

7, (R)

v

pp(1-a +at)?
Ry, =1, (L)

. 58)
n? 1-7pp(l-a+at? (

v

If we choose the unprinted paper as the reference, the
reflectance factor of the halftone print Rfsp is obtained by
dividing L, by the radiance captured from the unprinted
printing support, derived from Eq. (565) with a=0. As ob-
served in Subsection 1.B for planar interfaces, R}, is
equal to Ry,

, (1—?ipB)(1—a+at)2
R, =

. 59)
1 _FiPB(l -a +at2) (

The internal reflectance 7;=r; is independent of rough-
ness when the substrate is in contact with the print-air
interface.

5. DISCUSSION

Table 1 summarizes the main components of the classical
and extended Clapper—Yule models, as well as the reflec-
tance factors, according to the combinations of the mea-
suring geometry and the selected reference white. Col-
umn 2 contains the expressions according to the classical
Clapper—Yule model. These expressions were developed
for glossy coated papers having a smooth surface. Col-
umns 3 and 4 contain the corresponding expressions, tak-
ing into account the roughness of the print—air interface.
We distinguish large and short distances between the dif-
fusing substrate and the print—air interface.

The reflectance factors of printing supports whose in-
terface with air is at a large distance from the diffusing
substrate depend on roughness, independently of the
measuring geometry or the reference white support.
When the diffusing substrate is close to the interface and
the reference white is a perfectly white diffuse reflector,
the reflectance factor is roughness dependent only be-
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cause of the rough interface transmittances (average
Fresnel transmittivities). When the reference white is the
unprinted printing support, the reflectance factor be-
comes roughness independent.

In order to estimate the evolution of the transmittance
terms, the internal reflectance terms, and the reflectance
factors as a function of the print surface roughness, we
have performed numerical evaluations (Tables 3-6 be-
low). The coating refractive index is n,=1.53, as in the
original paper of Williams and Clapper.?® The reflectance
of the diffusing substrate is pp=0.9. Hansson?® has de-
rived from profilometric measurements the rms slope of
various types of paper (Table 2). The rms slope value of
coated matte paper is confirmed by confocal laser scan-
ning microscope measurements performed by Béland and
Bennett.?’

We choose four values of m between 0 and 0.2. When
m=0, we evaluate the classical Clapper—Yule model. For
other roughness values, we evaluate the extended model
and give the relative deviation from the classical
Clapper—Yule model.

Our extended Clapper—Yule model contains three
roughness-dependent components: the average Fresnel
transmittivity 7,, (L) of the rough interface for the inci-
dent light, the a:zerage Fresnel transmittivity 7, (R) of
the rough interface for the light emerging in the direction
of a radiance detector, and the internal reflectance r; of
the rough print—air interface at a large distance from the
diffusing substrate. We consider the 45°/0° geometry,
where L forms an angle of 45° with the print surface nor-
mal and R is normal to the print surface. Numerical
evaluations of 7, (45°), 7, (0°), and r; as functions of
roughness are presented in Table 3.

Table 3 shows that, for the range of roughness levels
over which the evaluations are performed, the deviation
of the evaluated terms with respect to a planar interface
is small. The average Fresnel transmittivity Tny(0°) for an
incidence angle of 0° is constant. The deviation of the av-
erage Fresnel transmittivity 7, (45°) for an incidence
angle of 45° is less than 0.5%. To show the influence of the
shadowing effect, we first calculate the internal reflec-
tance r; according to Eq. (43), where shadowing is taken
into account, and then calculated it by ignoring shadow-
ing, i.e., setting G,,=1 in Eq. (43). For a close distance to
the diffusing substrate, the terms Tnv(45°) and TnV(OO) are
identical to the ones for a large distance. The deviation of
the internal reflectance r; of a print—air interface far from
the diffusing substrate is less than 0.6%. Let us see how
these terms influence the reflectance factors.

Table 2. Rms Slopes of Various Paper Types®

Type of Paper Rms Slope m
Cast-coated paper 0.025
Copy paper 0.193
Heavy-coated glossy paper 0.034
Heavy-coated matte paper 0.046
Lightweight coated paper 0.069
Newsprint paper 0.185
Supercalendered paper 0.075

2.
“Measurements performed by Hansson.?>
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Table 3. Evaluation of Roughness-Dependent
Terms for Various Roughnesses (rms Slope m)®

Average Fresnel Transmittivities and Internal

Reflectances

rms Slope m 0 0.05 0.1 0.2
arctan m 0° 2.9° 5.7° 11.3°
7, (45°) 0.946 0.945 0.943 0.935

’ ~0% 0.1% 0.5%
7, (0°) 0.956 0.956 0.956 0.956

' ~0% ~0% ~0%
rl 0.614 0.614 0.615 0.618
(with shadowing) 0.1% 0.2% 0.6%
r! 0.614 0.615 0.616 0.621
(no shadowing) 0.2% 0.3% 1.1%

“Average Fresnel transmittivity T, (45°) of the rough print-air interface for col-
limated light incident at 45°, average Fresnel transmittivity T, (0°) of the rough in-
terface for emerging light at 0°, and internal reflectance r{ of the rough interface at a
large distance from the diffusing substrate.

Table 4. Deviations of Reflectance Factor Ry,

rms Slope m 0 0.05 0.1 0.2
t=0.9
a=0.25 0.659 0.659 0.657 0.650
0.1% 0.3% 1.4%
a=0.5 0.593 0.592 0.591 0.584
0.1% 0.4% 1.5%
a=0.75 0.534 0.534 0.532 0.526
0.1% 0.4% 1.6%
t=0.5
a=0.25 0.456 0.456 0.455 0.449
0.1% 0.4% 1.6%
a=0.5 0.282 0.282 0.281 0.277
0.2% 0.5% 1.9%
a=0.75 0.169 0.169 0.168 0.166
0.2% 0.6% 1.9%
t=0.1
a=0.25 0.338 0.337 0.336 0.333
0.1% 0.4% 1.7%
a=0.5 0.138 0.138 0.137 0.135
0.2% 0.5% 1.9%
a=0.75 0.040 0.040 0.040 0.040
0.2% 0.5% 2%

“Reflectance factor Ry),, of a printing support coated with a thick transparent layer
defined for an integrating-sphere measuring geometry in reference to a white diffuse
reflector, for various roughnesses m, ink transmittances, ¢, and relative ink coverages
a. At m=0, the reflectance factor is the one of the classical Clapper—Yule model.

Tables 4-6 show the corresponding deviations of the re-
flection factors, for an interface that is far from the diffus-
ing substrate. Table 4 shows the reflectance factor Ry, for
a 0°/diffuse geometry and a perfectly white diffuse reflec-
tor reference, Table 5 shows the reflectance factor R}, for
a 45°/0° geometry and a perfectly white diffuse reflector
reference, and Table 6 shows the reflectance factor R,
with the unprinted printing support as reference white
(same expression for a L/diffuse geometry as for a L/R
geometry).

The reflectance factors yielded by our extended model
and by the classical Clapper—Yule model are nearly iden-
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tical for rms slopes lower than 0.05 (maximum deviation
of 0.2%). Therefore, with respect to the Clapper—Yule
model, a print—air interface that is far from the diffusing
substrate and whose rms slope is lower than 0.05 can be
considered flat. For rougher print surfaces, the evolution
of the reflectance factor depends mainly on the type of ref-
erence white support and to a smaller extent on the mea-
suring geometry.

When the reference white support is a perfectly white
diffuse reflector, the 45°/diffuse geometry yields reflec-
tance factor deviations up to 0.6% for m=0.1 and up to 2%
for m=0.2 (reflectance factor Rg,,, Table 4). The 45°/0°
geometry yields deviations up to 0.2% for m=0.1 and up
to 1% for m=0.2 (reflectance factor R,, Table 5). These
deviations are principally due to the average Fresnel
transmittivity for the incident light 7,, (45°) and the av-
erage Fresnel transmittivity for the :amerging light (1
-r}) or T,,n(0°)/ n%, respectively. Since 7',,n(0°) is almost
roughness independent, the 45°/0° geometry yields
smaller deviations than the 45°/diffuse geometry does.

When the reference white support is the unprinted
printing support, the reflectance factor R, does not con-
tain any Fresnel transmittivity term and depends on the
roughness level only because of to the print—air interface
internal reflectance r;. As a consequence, the evolution of
the reflection factor R, with respect to the surface rough-
ness is very small (maximum deviation of 0.6% between
reflectance factors calculated according to the extended
Clapper—Yule model for a rms slope m=0.2 and according
to the classical Clapper—Yule model for m =0).

The reflectance factors of printing supports whose dif-
fusing substrate is close to the print-air interface have

Table 5. Deviations of Reflectance Factor R}, “

rms Slope m 0 0.05 0.1 0.2
t=0.9
a=0.25 0.697 0.697 0.697 0.694
~0% ~0% 0.5%
a=0.5 0.627 0.628 0.627 0.524
~0% 0.1% 0.5%
a=0.75 0.565 0.565 0.565 0.562
~0% 0.1% 0.6%
t=0.5
a=0.25 0.483 0.483 0.482 0.462
~0% 0.1% 0.6%
a=0.5 0.299 0.299 0.298 0.296
~0% 0.1% 0.8%
a=0.75 0.179 0.179 0.179 0.177
0% 0.2% 1%
t=0.1
a=0.25 0.357 0.357 0.357 0.355
~0% 0.1% 0.7%
a=0.5 0.146 0.146 0.146 0.145
~0% 0.2% 0.9%
a=0.75 0.043 0.043 0.043 0.042
~0% 0.2% 1%

“Reflectance factor RY;, of a printing support coated with a thick transparent layer
defined for a 45°/0° measuring geometry in reference to a white diffuse reflector, for
various roughnesses m, ink transmittances ¢, and relative ink coverages a. At m=0,
the reflectance factor is the one of the classical Clapper—Yule model.
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Table 6. Deviations of Reflectance Factor

R,=Rp,=Rj,"
rms Slope m 0 0.05 0.1 0.2
t=0.9
a=0.25 0.898 0.898 0.898 0.897
~0% ~0% 0.1%
a=0.5 0.808 0.808 0.808 0.807
~0% ~0% 0.1%
a=0.75 0.728 0.728 0.727 0.727
~0% 0.1% 0.2%
t=0.5
a=0.25 0.622 0.622 0.621 0.620
~0% 0.1% 0.2%
a=0.5 0.384 0.384 0.384 0.383
0.1% 0.1% 0.4%
a=0.75 0.231 0.230 0.230 0.229
0.1% 0.2% 0.6%
t=0.1
a=0.25 0.460 0.460 0.460 0.459
~0% 0.1% 0.3%
a=0.5 0.188 0.188 0.187 0.187
~0% 0.2% 0.5%
a=0.75 0.055 0.055 0.055 0.055
0.1% 0.2% 0.6%

“Reflectance factor R [') of a printing support coated with a thick transparent layer
in reference to the unprinted printing support, for various roughnesses m, ink trans-
mittances #, and relative ink coverages a. At m=0, the reflectance factor is the one of
the classical Clapper—Yule model.

not been evaluated numerically, since the internal reflec-
tance of their print—air interface is equal to that of a pla-
nar interface and therefore roughness independent. The
evolution of the reflectance factor depends only on the se-
lected reference white.

When the reference white support is a perfectly white
diffuse reflector, both the reflectance factors R,,, and R},
have a roughness-independent average Fresnel transmit-
tivity for the emerging light [respectively, (1-r;) and
T,,n(0°)/ n,%]. Therefore, they vary with the roughness level
only because of the average Fresnel transmittivities for
the incident light 7, (45°). However, the deviation of
Tny(45°) is insignificant for rms slopes up to 0.1. There-
fore, with respect to the Clapper—Yule model, a print—air
interface that is close to the diffusing substrate and
whose rms slope is lower than 0.1 can be considered flat.

When the reference white support is the unprinted
printing support, the reflectance factor R[’J is roughness
independent, independently of the measuring geometry,
since it does not contain any Fresnel transmittivity.
Hence this reflection factor can be predicted directly,
thanks to the classical Clapper—Yule model.

6. CONCLUSIONS

We extend the Clapper—Yule model in order to include the
effects of surface roughness in the prediction of halftone-
print spectral reflectance factors. The rough air—print in-
terface is modeled by a set of randomly oriented microfac-
ets whose slopes follow a Gaussian distribution. We apply
the laws of geometrical optics to each microfacet and ob-
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tain, by integrating over all facet orientations, an average
expression for the terms determining the interaction of
light with the rough air-print interface. We are able to ex-
press the average Fresnel transmittivity of the rough in-
terface for an incident collimated light of a given orienta-
tion, the internal reflectance of the rough interface, and
the average Fresnel transmittivity of the rough interface
for the emerging light. The expressions for the Clapper—
Yule model for smooth or rough surfaces differ only by the
value of the corresponding average Fresnel transmittivity
or reflectivity terms.

When the diffusing substrate is far from the rough
print—air interface (e.g., a thick nondiffusing coating), for
rms facet slopes of 0.2 and in reference to a perfectly
white diffuse reflector, the reflectance factors vary by 2%
for an integrated sphere measuring geometry and by 1%
for a 45°/0° geometry. For both geometries, in reference
to the unprinted printing support the reflection factor
variations are negligible (variations of less than 0.6%). At
rms slopes of 0.1, for all measuring geometries and white
references, the reflectance factor variations are also neg-
ligible (less than 0.5%).

When the diffusing substrate is close to the rough
print—air interface (e.g., calendered paper, paper with a
white diffusing coating, copy paper, or newsprint paper),
the internal reflectance of the rough interface equals the
internal reflectance of a planar interface and only the av-
erage Fresnel transmittivity terms for the incident and
emerging light differ. They yield, however, negligible re-
flectance factor variations (below 0.5%). Furthermore,
when reflection factors are expressed with the unprinted
paper printing support as the reference white, the aver-
age Fresnel transmittivity terms do not appear in the cor-
responding expressions. Reflection factors are therefore
identical for smooth and for rough interfaces.

High-quality papers such as coated and calendered pa-
pers have a rms slope of less than 0.1 (see Table 2). There-
fore, the influence of roughness on the reflectance factors
of high-quality papers is negligible (less than 0.5%), inde-
pendently of the distance between the interface and the
diffusing substrate, the measuring geometry, and the se-
lected reference white. Uncoated low-quality papers with
a rough interface, such as newsprint and photocopy pa-
pers, have a diffusing substrate close to the print-air in-
terface and therefore also negligible reflection factor
variations.

We may therefore conclude that, for the large majority
of papers, rough interfaces induce only negligible varia-
tions of reflection factors. The Clapper—Yule model is
therefore suitable for predicting equally well the reflec-
tion factors of both rough and glossy halftone prints.

APPENDIX A: NOTATION

Snell’s laws and Fresnel’s formula are generally ex-
pressed as functions of angles. However, since we intro-
duce a large number of orientations, we prefer to use unit
vectors. This simplifies considerably the formulation of
equations, since a unit vector is equivalent to two angles
(its spherical coordinates). Furthermore, the unit vector
notation is referential independent. The spherical coordi-
nates (0, ¢) of a unit vector V are defined with respect to a

Vol. 22, No. 9/September 2005/J. Opt. Soc. Am. A 1965

reference unit vector N. The dot product (V-N) therefore
denotes cos 6. A small variation of V around its initial po-
sition forms an elementary solid angle dVy=|sin 6|dfd¢
(since a solid angle is always positive, we take the abso-
lute value of sin 6 for 6> 7/2). The subscript N in the no-
tation dVy specifies the unit vector according to which the
angles are defined. This notation permits conversion of
the vector notation into angular notation without any
confusion in angles. A hemisphere whose basis is the
plane of normal vector N is noted as Q. It comprises all
vectors for which (V-N)>0. Vector V- defines the same
vector as V but in the opposite direction.

When a light ray oriented according to a vector V
reaches an air—print interface (relative index of refraction
n,) of normal vector N, the Fresnel reflectivity and trans-
mittivity are noted, respectively, as F, (V,N) and
T, (V,N). When the light ray reaches from below the
priVnt—air interface, the relative index of refraction is 1/n,,
and the corresponding Fresnel reflectivity and transmit-
tivity terms are Fy, (V,N) and Ty, (V,N).

APPENDIX B: CALCULATION OF THE
ROUGH INTERFACE’S INTERNAL
REFLECTANCE

The internal reflectance of a rough interface at a large
distance from the diffusing substrate is expressed in Eq.
(43) as the ratio of the reflected irradiance

E,= f f Fy), (V,H)G,,(V,H)D(H)
veay J HeQy

X(V - N)dVndHy

to the incident irradiance
E; = f f G,,(V.HID(H)V - N)dVndHy.
veay J Heoy

Let us express irradiances E, and E; as a function of
angles. Further simplifications will be possible thanks to
the roughness isotropy and to symmetry considerations.

The light direction vector V is defined by its spherical
angles (6, ¢), and the facets’ normal vector H is defined by
its spherical angles (6}, ¢;,). The polar angles # and 6, are
defined with respect to the mean surface normal vector N.
The azimuthal angles ¢ and ¢, are defined with respect
to the same arbitrary azimuthal direction. According to
these definitions, we have

(V-N)=cos 0,
dVy = [sin g/d6d ¢,

The illumination probability function G,,(V,H), ex-
pressed in Eq. (36), is
h(V-H))

Gn(V.H) = A (0)+1

(B2)

with
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1 1 \r2m cot? 0 cot 6
A, (0) = exp| — —erfc| —=

2 \,ﬁcot 0 2m? \2m

The unit step function A((V-H)) is 0 when (V-H) is
negative and 1 when (V-H) is positive, with

(V-H) = cos 0 cos 6, + sin 6sin 6, cos(¢p — ¢y,).

The facet orientation distribution function D(H), ex-
pressed in Eq. (34), is

exp(- tan? 6,/2m?)
DH) = 3 . (B3)
27m* cos® 6,

Thanks to expressions (B1)-(B3), the angular expres-
sion of E, is

1 U(cos 0vh)
E.= 2 Fl/n vh
2mm o= #=0 J 6=0 Anm(0) +

exp(— tan? ﬁh/2m )
X

3 cos f|sin 6||sin 6),|d6d ¢d 6,d ;.
cos® 6,

Two simplifications can be performed on this quadruple
integral. First, owing to the interface roughness isotropy,
the integrated terms are independent of the facet orienta-
tion azimuthal angle ¢;,. The integral over ¢, therefore
yields a factor of 277. The single integral over the polar
angle 6, is sufficient to take into account all facet orien-
tations. Let us consider that all facet normal vectors be-
long to the same vertical plane (¢,=0), which is consid-
ered the azimuth origin. The term cos 6,;, becomes

cos 6, = cos 6 cos 6, + sin 0 sin ), cos ¢,

and the azimuthal angle ¢, has completely disappeared
from the integrand. The reflected irradiance becomes

U(cos th)

Fn U
Lh LOJ TN L(0) +

exp(— tan? 6,/2m?)
X

3 cos 6|sin 6||sin 6),|dod¢d 6.
cos® 6,

(B4)

Second, the only term depending on ¢ in the integrand
is cos 6,,. However, cos 6,;, is an even function according
to ¢; i.e., it remains identical if we replace ¢ with —¢ or
27— ¢. Therefore, an integration from ¢=0 to 7 is suffi-
cient to take into account all directions of the incident dif-
fuse light, yielding a factor of 2:

U(cos 0Uh)
= _f J f Fl/n vh
0,=0 v ¢=0 m(ﬂ)

exp(- tan? 6,/2m?)
X

3 cos 6sin 6||sin 6,|d6d ¢d 6),.
cos” 6,

(B5)

In expression (B5), integrals do not have an analytical
solution. They are therefore calculated by a discrete sum-
mation:
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9 w2 w72 U(COS ayh)
2 2 EFl/n vh
-~ m? 6,=0 ¢=0 6=0 (9)

exp(— tan? 6,/2m?)
X 3 cos 6|sin 6||sin 6,|AOAHAG,.
cos” 6,

(B6)

The same simplifications apply to the incident irradi-
ance E;, which takes the same expression as Eq. (B6) but
without the Fresnel function F,,(6,,). In the final expres-
sion of r/ =E,/E;, the coefficients 2/m? cancel each other.

Corresponding author Mathieu Hébert can be reached
by e-mail at mathieu.hebert@epfl.ch.
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