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1. INTRODUCTION

Predicting the reflectance factor of multilayer samples
such as printed or painted samples requires modeling of
the interaction of light with a medium made of several su-
perposed layers that have different spectral absorbances,
light scattering properties, and possibly different refrac-
tive indices. Two classical models enable prediction of
spectral reflectance factors: the Kubelka—Munk model,:l
and the Williams—Clapper model.? The Kubelka—Munk
model and its extensions®? are restricted to diffusing lay-
ers all having the same index of refraction. The Williams—
Clapper model is restricted to a single coloring nondiffus-
ing layer superposed on top of a diffusing layer of the
same refractive index.

In the present contribution, we propose a model pre-
dicting the reflectance of a diffusing support coated with
nondiffusing coloring layers of different refractive indices.
Fresnel reflections and refractions occur at the interfaces
between neighboring layers. In each of the nondiffusing
layers, pencils of light propagate along straight lines, are
absorbed according to Beer’s law, and are internally re-
flected or refracted into an adjacent layer in a direction
given by Snell’s laws and with a proportion given by the
Fresnel formulas. Beneath the coloring layers, the diffus-
ing support reflects toward the coloring layers a Lamber-
tian light composed of an infinity of pencils of light that
have uniformly distributed orientations. Neither the
Kubelka—Munk model nor the Williams—Clapper model is
able to predict the reflectance of such a multilayer
sample.

The Kubelka-Munk model! predicts the reflectance
and transmittance of a diffusing and absorbing layer for
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light propagating according to the layer’s normal direc-
tion. This model has been extended by Saunderson to ac-
count for the internal reflections at the interface between
the scattering medium and the air,” by Kubelka to ac-
count for diffuse light,? and again by Kubelka® to account
for multiple superposed layers all having the same index
of refraction.

The Williams—Clapper model,?> in contrast to the
Kubelka—Munk model, requires the color layer to be non-
diffusing. In the original model, the illuminating light is
collimated and incident at an angle of 45° and the exiting
light is captured by a radiance detector at a zero angle.
Extensions have been proposed for any measuring
geometry.&8 The Williams—Clapper model computes for
each pencil of the diffuse light reflected by the reflecting
diffuse substrate its absorption according to Beer’s law
and its reflectance at the interface with the air due to the
Fresnel reflectivity. The attenuation of diffuse light due to
absorption in the coloring layer and reflection at the in-
terface with the air is thus obtained by summing up the
attenuation of all light pencils composing the diffuse
light. However, the Williams—Clapper model is limited to
a color layer of the same refractive index as the underly-
ing reflecting diffuse substrate.

Since the Kubelka—Munk model is not applicable to
nonscattering layers, we pursue the Williams—Clapper
approach in order to predict the reflectance of a diffusing
support superposed with several nondiffusing coloring
layers of different refractive indices. The resulting com-
prehensive multilayer reflectance model includes as spe-
cial cases the Williams—Clapper model? as well as the
air—paint7 and the air—varnish—paint9 reflection models.

© 2006 Optical Society of America
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In Section 2, we recall the basics of light reflection and
transmission at an interface both for collimated and for
diffuse natural light. In Section 3, we first establish the
reflectance and transmittance of a single nonscattering
coloring layer bounded by two interfaces. By replacing the
reflectance (respectively, transmittance) of a simple inter-
face between two media with the reflectance (respectively,
transmittance) of a bounded layer, we are able to deduce
the reflectance and transmittance of multiple stacked
nonscattering layers of different refractive indices. In Sec-
tion 4, we compute the global reflectance and the bidirec-
tional reflectance distribution function (BRDF) of stacked
nonscattering layers superposed on top of a diffusing me-
dium that has its own intrinsic reflectance and refractive
index. The Williams—Clapper model becomes a special
case of the proposed comprehensive multilayer reflec-
tance prediction model. In Section 5, we draw the conclu-
sions.

2. BASIC CONCEPTS: REFLECTION,
TRANSMISSION, AND ABSORPTION

All irradiances, reflectances, transmittances, and absorp-
tion coefficients are wavelength dependent.

When a light pencil reaches an interface between two
media j and % of different refractive indices n; and n, one
part is reflected and one part is transmitted (refracted).
The reflection and refraction directions satisfy Snell’s
laws (Fig. 1):

n;sin ;= ny, sin 6. (1)

For the considered interfaces, within the visible wave-
length range, we assume that the imaginary part of the
refractive index is very small compared with the real
part. Nevertheless, all expressions can be generalized to
complex refractive indices.

The reflectivity and the transmittivity of the interface,
i.e., the fraction of incident irradiance that is reflected
and transmitted by the interface, are given by the Fresnel
formulas. They depend on the polarization of the incident
light!® and may be expressed in terms of the reflectivity
and transmittivity associated with polarization in both
the parallel and the perpendicular directions with respect
to the incidence plane. The reflectivity for the parallel
component, denoted by superscript (p), is

tan®(¢; - 6,)

0)=—5—0),
tan“(6; + 6,)

(2)

and the reflectivity for the perpendicular component, de-
noted by superscript (s), is

sin2(0j - 6,)

RY(p)=z — L
i (6) sin®(6; + 6,)

3)

In this paper, we consider that the incident light is in-
coherent and unpolarized (natural light). The directions
of vibration of natural light vary rapidly in a random
manner. The wave component polarized parallel to the in-
cidence plane, averaged over all the directions of vibra-
tion, forms an irradiance WE”). The average wave compo-
nent polarized perpendicular to the plane of incidence
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Fig. 1. Reflection and transmission of light at an interface be-
tween two media of refractive indices n; and n,.

forms an irradiance WES). Since natural light is incoherent
and unpolarized, the two linearly polarized irradiance
components are independent and equal:

WP =W =Wwy/2. (4)

The total incident irradiance W; is the sum of the two
linearly polarized irradiances:

W;= WP + W, (5)

When the irradiance W; is reflected by the interface,
the reflected irradiance W, is composed of a parallelly po-
larized component Wip) =Rj(»‘z)(o9j)W§p) and a perpendicu-
larly polarized component Wgs)sz(-z)(Gj)Wf-s). According to
Egs. (4) and (5), the Fresnel reflection coefficient R;;(6;)
for incident natural light is

R;(6) = 5[R®)(6) + R$)(6)]. (6)

The reflected light is partially polarized, since the two
linearly polarized irradiances Wg’” and Wgs) are different
due to the difference between the Fresnel reflection coef-
ficients RJ(»‘;;)(GJ«) and R;z)(ﬁj). The reflected light is still in-
coherent; i.e., the irradiances Wﬁp) and Wis) are indepen-
dent. If the reflected light reaches a new interface, the
Fresnel coefficient R;;(6;) expressed in Eq. (6) cannot be
applied. However, we may consider separately the reflec-
tion of the irradiance Wﬁp) and the reflection of the irradi-
ance Wf) and sum the resulting reflected irradiances.

Since the energy is conserved at the interface, the
Fresnel transmission coefficients Tj(-i?)(@), Tj(«z)(é?j), and
T () are related to the Fresnel reflection coefficients
R}Z)(Oj), Rj(-z)(Hj), and Rj;(6)), respectively, by

T(6)=1-R},(6). (7

Similarly to the reflected light, the transmitted light is
also incoherent and partially polarized; i.e., the two trans-
mitted linearly polarized irradiances are independent but
not equal. Therefore, if the incident natural light inter-
acts successively with several interfaces (reflections or
transmissions), we have to consider separately the
s-polarized component and the p-polarized component.

For both polarizations, and thereby for natural light,
the reflection and transmission coefficients verify the fol-
lowing property,

Rj(6) = Ry(6)), (8)

and consequently
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T3(6) = Ty (6;). (9)

A light pencil passing from a medium m; of refractive
index n; to a medium m,, of refractive index n;, is subject
to refraction. According to Snell’s laws, the refraction
modifies the pencil’s main direction 6; into a direction 6,
and its solid angle d{); into a solid angle d(},, according to

the relation!!

n;\%cos 6
do, = — dQ;. (10)
n;/ cos 6,

A. Diffuse Reflectance of an Interface
Let us consider an interface between media of different
refractive indices n; and n;, illuminated by a Lambertian
irradiance W; composed of natural light. The interface re-
ceives from all directions (6;, ¢;) of the upper hemisphere
a constant radiance L;=W;/m, composed of a p-polarized
component LE” ) and an s-polarized component LES):
LO=LP=—"=_—, (11)
2 27

Let us first consider the p-polarized component. The ele-
ment of irradiance dWEp )(Gj, ¢;) received from a direction
(6;, ¢j) is related to the radiance LL(-’” by

dWEp)(Gj, b)) = L% cos 6,d; =L cos 6, sin 6,d6,d ¢;.
12)

This element of irradiance dWl(p )(@,d)j) is reflected by
the interface within a proportion R}z)(ﬁj) given by the
Fresnel formulas. The reflected element of irradiance
dW)(g;, ¢)) is therefore

dW®)(9,, 4) =R%(6)LP cos ;sin 6,d6,d¢;.  (13)

Similarly, the interface receiving the s-polarized radi-
ance LES) from the same direction from the same direction
(6;, ¢;) reflects an element of irradiance dWiS)(QJ-, &)

dW(6;, ¢) =R (9)LY cos 6;sin 6,d6idg,.  (14)

The total reflected element of irradiance dW,(6;, ¢;) is

the sum of the components dWip)(ﬁj,qﬁj) and dWis)(&j,qﬁj).
Its expression is given by the sum of Egs. (13) and (14), in
which we replace Ll(p ) and LES) with W;/2 according to Eq.
(11), and we replace R}‘Z)( 0j)+RJ(-,Se)(0j) with 2R;,,(6;) accord-
ing to the definition of the Fresnel reflection factor for
natural light, Eq. (6). Therefore,

i

dW,(6;, ;) = Rj;,(6;)— cos 6, sin 6;d6,d ;. (15)
v

The total reflected irradiance W, is the sum of the ele-
ment of irradiance reflected in all directions of the upper
hemisphere:

2m /2 W
i
W, = J f Rjy(6)— cos 6;sin 6dfdd;.  (16)
T
¢,J=0 0j=0
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Since in Eq. (16) the integrated terms do not depend on
¢;, the integration according to ¢; yields a factor 27. With
2 cos 0, sin ¢;=sin 26, Eq. (16) becomes

w2
;=0

The ratio W,/W; then gives the diffuse reflectance r;;, of
the interface'®:

/2

0=0

Since the interface does not absorb light and since the
energy is conserved, the transmittance ¢, of the interface
for Lambertian incident light is

tjk=1_rjk' (19)

B. Attenuation of Light in an Absorbing Medium

A collimated light flux traversing a path of length x in a
nondiffusing absorbing medium, of linear absorption coef-
ficient «, is attenuated according to a proportion ¢ given
by Beer’s law

t=e ™, (20)

3. REFLECTANCE AND TRANSMITTANCE
OF NONSCATTERING SUPERPOSED
COLORING LAYERS OF DIFFERENT
REFRACTIVE INDICES

In the present section, we characterize the reflection and
transmission properties of a coloring (absorbing) nonscat-
tering layer surrounded by two other media of different
refractive indices. The difference of refractive index at the
interfaces induces Fresnel reflections. Hence, multiple re-
flections occur within the considered layer, which in-
creases the light absorption.

The nonscattering layer m has a refractive index nq, a
wavelength-dependent absorption coefficient «;, and a
thickness A ;. Surrounding media m, and my have respec-
tive refractive indices ny and ny. The interface iy; between
mq and m, and the interface i, between m; and m, are
parallel planes. The distance h; between these parallel
planes is significantly larger than the wavelengths of
light, thereby avoiding interference phenomena (Fig. 2).

Wi Wi W

< Yo ’ 90
mg . Ky
—io1 T
my i ng h1
—i2 l
my:np

Wo W Wpo

Fig. 2. Reflection and refraction within a nonscattering coloring
layer m;.
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We distinguish the coloring layer alone, my, considered
without its interfaces with the surrounding media, and
the coloring layer with its interfaces, M, called the
bounded layer. Inside the colored nonscattering layer m1,
light is either absorbed or transmitted, but not reflected.
However, due to multiple reflections at the interfaces with
surrounding media of different refractive indices, the
bounded layer M; illuminated from medium m reflects
light back to medium m, and transmits light to medium
mgy. The reflectance and the transmittance of the bounded
layer M, are expressed according to the polarization of
the incident light, according to its geometry (collimated or
diffuse), and according to the side from which the
bounded layer is illuminated (medium m or medium m,).

The incident light is incoherent and unpolarized (natu-
ral light), collimated with an incidence angle 6, and
comes from medium m. The incident irradiance is decom-
posed into a p-polarized component and an s-polarized
component. The p- and s-polarized components are re-
flected by the bounded layer, with proportions R((f’l)2(00)
and Rgsl)z(ﬁo), respectively, and transmitted with propor-
tions Tg’l)2(00) and T(Osl)z(ﬂo), respectively. The global reflec-
tance and transmittance of the bounded layer illuminated
by natural light is called R;2(6p), and its transmittance is
called Ty19(6p). For a Lambertian illumination from me-
dium m, the bounded layer’s reflectance and transmit-
tance are called, respectively, rg19 and #g;9.

Let us express each of these reflectances and transmit-
tances. They depend on the refractive indices ng, ny, and
ng, the coloring layer’s thickness h; and its wavelength-
dependent absorption coefficient «;.

A. Reflectance and Transmittance of the Bounded
Coloring Layer for Collimated Incident Light

A collimated incoherent and unpolarized light (natural
light) illuminates the bounded layer M from medium m,
with an angle 6, (see Fig. 2). The incident irradiance W; is
decomposed into a p-polarized irradiance WE” ) and an
s-polarized irradiance WES), with

WP =W =Wwy/2. (21)

The components WE‘”) and WES) are subjected to multiple
reflections within the bounded layer M. To describe these
multiple reflections, we calculate the reflected irradiances
W) and W(rs) and the transmitted irradiances ng) and
Wgs). We then derive the reflectance and the transmit-
tance of the bounded layer for the p-polarized component,
the s-polarized component, and finally for natural inci-
dent light.

The phenomenon of multiple reflections is identical for
the two components Wl(-p) and Wl(-s), with different Fresnel
coefficients with respect to their respective polarizations.
Hence, the interaction of polarized irradiances Wl(-p ) and
WES) with the bounded layer is presented only once, with a
superscript " representing either superscript (p) or super-
seript (s).

A portion RSI(GO) of the polarized incident irradiance
W: is reflected by the interface i(;. It propagates along the
specular direction, i.e., at an angle 6,. The reflected ir-
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radance W:o is the first contribution to the total polar-
izaed reflected irradiance Wj:

W,o=Roy(60)W;. (22)

A portion T:;l(eo) of W; is transmitted into layer m; at
an angle 6, crosses the layer along a path of length
hi/cos 6;, and is attenuated by a factor #;(#;) due to ab-

sorption (Beer’s law):
t1(91) — e—alhl/cos 01. (23)

‘'The irradiance reaching the interface i;5 is therefore
T1(60)t1(61)W,;. A portion R},(6;) of this irradiance is in-
ternally reflected by the interface ij9, and a portion
T15(6)) is transmitted into medium 2 at an angle 6,. Ac-
cording to Snell’s law,

no sin 00 =nq sin 01 =Ny sin 62. (24)

The irradiance W, is the first contribution to the total
transmitted irradiance W,:

Wi = To1(60) T1o(6)t1(6) W (25)

The irradiance Tzl(eo)RjZ(el)tl(Gl)Wf that is internally
reflected by the interface i;5 again crosses layer m; [at-
tenuation factor ¢;(6;) due to absorption] and is either in-
ternally reflected by the interface iy, [Fresnel reflection
factor R10(01)] or transmitted [Fresnel transmission fac-
tor T10(01) across that interface io;. The irradiance W,
emerging from the interface i1, is the second contribution
to the total reflected irradiance W

W,y = To1(60)R1o(0) To(0)E(0) W, . (26)

Then, owing to the multiple internal reflections, the
light alternately crosses layer m; toward interfaces iy;
and iq. Along the same line of reasoning, we obtain ob-
tained successive expressions of reflected in irradiances
W:Fk and transmitted irradiances W:k The sum of these ir-
radiances forms respectively the total reflected irradiance
W and the total transmitted iradiance irradiance W

Let us first calculate the total reflected irradiance irra-
dinace Wj The irradiances W:k, k=1,2..., are internally
reflected & times by the interface i;3 and £-1 times by the
interface iy9. They cross they the layer m; 2k times.
Therefore, the generic expression of W, for k=1 is

W:k = T;1( '90)[Rio( 91)]k_1[R§2( 91)]kt%k( '91)T§0( 91)W: .
(27)

The total polarized reflected irradiance W* which
emerges into medium m, with an angle 90, results from
the sum of all the reflected irradiances W

W, =Ry ()W

Toi(00)T1o(6) = .
O WS (R ()R, 0)E2( 6
R10(‘91) k=1

(28)

The infinite sum is a geometrical series. Since T:0(6‘1)
=T;1(6‘0) according to relation (9), Eq. (28) becomes
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[Tho(60) PR1(0)E3(6:)

W, =Ry, ()W, + . .
o 1- R (6)R,(0)E(6;)

(29)

The ratio W,/W, gives the reflectance Ry4(6) of the
bounded layer M; illuminated at an incidence 6, by a
p-polarized or an s-polarized collimated incident light:

[T10(60) R 15(61)£3(61)

Ri1o(60) = Roq(6p) + _ - )
orz( ) = Roa () 1-Ro(6)R 15(6)E3(6,)

30)

For natural incident light, the total reflected irradiance
W, is given by the sum of the resulting p-polarized and
s-polarized reflected irradiances given by Eq. (29):

W, =W + W = REL(6) WP + R\ (0)WE . (31)
By replacing WE”) and WES) with W,/2 according to Eq.
(21), we obtain

W, = 2[RE)(60) + R$15(66)IW;. (32)

1
2

The ratio W,/W,; gives the reflectance Ry9(6y) of the
bounded layer M; surrounded by media m, and m, illu-
minated from mg by collimated natural light at an inci-
dence 6:

Rou2(6o) = 3[REL(60) + R (6)]. (33)

Let us now calculate the total transmitted irradiance
W, and derive the expression of the transmittance of the
bounded layer for p-polarized, s-polarized, and natural in-
cident light. The irradiances W:k are internally reflected %
times by the interface i;5 and % times by the interface iy;.
They cross the layer m; 2k +1 times. The generic expres-
sion of W}, for £=0 is

Wy, = To1(60)[R10(0) TR 15(6) ¥t 1 () TF1T 56 W
(34)

The total transmitted irradiance W: that emerges into
medium my at an angle 6 results from the sum of all the
transmitted irradiances W},

W, = Toy(60)T1o(0)t:(8)W; >, [R10(6)R 1565 (61) 1%,
k=0

(35)

where the infinite sum is a converging geometric series.
Relation (35) becomes

~ To(60)T1o(00)t:(6)
T 1-Ri(6)Ru(6)E46)

(36)

t

The ratio W:/ W;k gives the reflectance T;m(&o) of the
bounded layer M; illuminated under an incidence 6, by a
p-polarized or an s-polarized collimated incident light:

T1(60) Tho(61)t1(61)

To1(6p) = : . :
oo 1 - Ryo(6)R15(61)E5(6))

(37)

For natural incident light, the total transmitted irradi-
ance W, is given by the sum of the p-polarized and the
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s-polarized transmitted irradiances Wip) and Wis), given
by Eq. (36). We replace W?” and W?) by W;/2 according to
Eq. (21) and obtain

W, = 2[TE,(80) + T15(60) W, (38)

The ratio W,/W, gives the transmittance 7T'y;5(6,) of the
bounded layer M; surrounded with media my and mo, il-
luminated from mg by a collimated natural light with an
incidence angle 6j:

To12(60) = 3L TH5(6) + T)a(60)]. (39)

Let us now assume that the collimated light comes
from my at an incidence angle 6. The description of the
multiple reflections occurring within the bounded layer is
the same as when the light comes from medium m,. We
obtain the same expressions of reflectance and transmit-
tance as above with exchanged subscripts 0 and 2. For the
p-polarized or the s-polarized incident irradiance compo-
nents, the bounded layer’s reflectance R;10(6‘2) is

[Tho(0) PR 0(0)£3(6)
1 _Riz(al)Rio(aﬂt%Wﬂ ’

Ry10(62) = Ry, (65) + (40)

For natural incident light, the bounded layer’s reflec-
tance R210(02) is

Ry10(6) = [REN(62) + R$1(65)], (41)

where Rg’l)o(ﬁz) and R(;I)O(Hz) are given by Eq. (40). Simi-
larly, for the p-polarized or the s-polarized incident irra-
diance components, the bounded layer’s transmittance
To10(0o) is

Tor(0) Tro(6)t1(6)
 1-Ry,(0)R,(0)t3(61)

T10(62) (42)

and for natural incident light, its transmittance Tg10(65)
is

To10(85) = 5[ THo(6) + Tslo(62)]. (43)

Since T';O(Gl):T:;l(GO) and TT2(01)=T;1(92) according to
relation (9), we observe that expressions (37) and (42) are
identical. Thus, for the linearly polarized components,
and thereby for natural light, the transmittance of the
bounded layer M; does not depend on the orientation of
light propagation:

T510(02) = T12(6p) - (44)

The bounded layer’s reflectance depends on the orienta-
tion of light propagation only in respect to the Fresnel re-
flection on the first interface encountered by the incident
light, i.e., Rzl(ﬁo) in Eq. (30) and Ry,(6,) in Eq. (40).

B. Diffuse Reflectance of the Bounded Coloring Layer
The diffuse reflectance ry19 of the bounded coloring layer
M surrounded by nonscattering media m, and mq gives
the fraction of incident Lambertian irradiance coming
from medium m that is reflected by the layer back to me-
dium m,.

The incident light is diffuse, incoherent, and unpolar-
ized. It constitutes a Lambertian irradiance W;, composed
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of elements of irradiance dW;(6,,¢,) that can be ex-
pressed as a function of the direction-independent radi-
ance W;/ (see Section 2):

Wi
dWi(ao, ¢0) = — CO0s 90 sin 00d00d¢0. (45)
a

Each element of irradiance dW;(6,, ¢) is reflected by
the bounded layer M with a proportion R(;5(6y) given by
Eq. (33). The term R(;2(6y) accounts for the multiple re-
flections undergone by both linearly polarized compo-
nents within the bounded layer M;. The sum of all the re-
flected elements of irradiance Ry19(6)dW;(6y, do),
performed over the all incidence angles (6y,¢y) of the
hemisphere, yields the total reflected irradiance W,:

W f f R012(00)_ Cos 00 sin 00d00d¢0 (46)
$p=0

Op=

Since the integrated terms do not depend on the azi-
muth angle ¢, the integration according to ¢, yields a
factor 27. After rearranging the expression of W, in the
same manner as Eq. (17), the ratio W,/W; yields the dif-
fuse reflectance rg19 of the bounded layer M, surrounded
by media my and my and illuminated from mg by diffuse
light:

/2
ro12 = J R15(6)sin 26,d 6. (47)
0y=0

This expression generalizes the diffuse reflectance rg;
of an interface, Eq. (18), to a coloring nonscattering layer
that has a refractive index different from its surrounding
media.

C. Diffuse Transmittance of the Bounded Coloring Layer
The diffuse transmittance ¢y of the bounded coloring
layer M, surrounded by nonscattering media m and m,
gives the fraction of incident Lambertian irradiance com-
ing from medium m that is transmitted across the layer
and therefore emerges into medium m..

Each incident element of irradiance dW;(6,, ¢y) ex-
pressed in relation (45) is transmitted across the bounded
layer M with a proportion T19(6,) given by Eq. (39). The
sum of all transmitted elements of irradiance
To12(60)dE;(6y, o), performed over all the incidence
angles (6, ¢y) of the hemisphere, yields the transmitted
irradiance W,:

Wi
W, = f f T012(90); cos O sin 6yd Gyd dy. (48)
%o

After applying the same simplifications as previously,
we obtain the diffuse transmittance of the bounded color-
ing layer M;:

Wt /2
to12 = W To12(6)sin 26,d 6. (49)
i Jg=0

This expression generalizes the diffuse transmittance
of ty; of an interface to an absorbing layer that has an in-
dex of refraction different from air. However, since the
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bounded coloring layer M absorbs light, the energy is not
conserved and ¢y, is different from 1-rgqo.

D. Reflectance and Transmittance of Two or More
Superposed Nonscattering Bounded Coloring Layers
Two nonscattering coloring layers m; and ms, of respec-
tive refractive indices n; and no, thicknesses h; and h.,
and absorption coefficients a; and ay, are superposed and
surrounded by nonscattering media m, and ms. The three
interfaces i1, i19, and i93 are parallel planes.

The reflectance and transmittance of the two super-
posed bounded layers, for collimated illumination from
mq with an incidence angle 6,, are called, respectively,
Ry123(60p) and Ty103(6p). As previously, the incident light is
incoherent and unpolarized.

The reflectance Ryq935(6;) of two superposed bounded
layers is the average of the two reflectances obtained for
the p-polarized and the s-polarized components:

Ro123(6o) = 5[Ra5(60) + Rila3(60)]- (50)
Rg’l)zg(&o) and Rgsl)%(ﬁo) are extensions of the reflectances
R((ﬁ)z(eo) and RE)sl)Q(GO) of a single coloring layer M; sur-
rounded by media mg and my [Eq. (30)]. When deriving
the expression of R312(90), we considered the multiple re-
flections within the layer m, between the interfaces i(;
[Fresnel reflection coefficient R10(01)] and i,y [Fresnel re-
flection coefficient R1,(6;)]. In the present case, we con-
sider the multiple reflections within layer m between the
interfaces io; [Fresnel reflection coefficient R},(6;)] and
the bounded layer My surrounded by media m; and mg, of
reflectance R y5(6;). The expression of Rq5(6p) therefore
derives from the expression of REIQ(GO), in which Riz(el) is
replaced by RiZS(Bl):

R 0u(00) = Rin(6) [T31(00)]2R123(01)t%(9) -
0123(00) = Fo1(6p) + 1-Ro(0)R o5(0)%(6)

The thickness hy and the absorption coefficient ay of
the layer my are implicit within the term R93(6;).

Similar considerations apply for the transmittance
To123(60):

To125(00) = 5[THa5(60) + Tiiloa(60)], (52)
where the expressmns T0123(00) and T§),4(6p) derive from

the expressmns T012(00) and T012(00) by replacing T12(01)
with T123(01) in Eq. (37):

(6= To1(00) T1a5(61)21(61) )
o 1-Riy(0)R55(0)E5(61)

By following the same line of reasoning but starting
with the reflectance and transmittance of the bounded
layer M, instead of the reflectance and transmittance of
the bounded layer M, we obtain expressions that are ex-
actly equivalent to expressions (51) and (53):

[T012(60) 2Ro5(0,)t5(62)
1 - Ry10(61)R3(6:)t3(6,)

Rzlzs(ao) =R;12(‘90) +

and
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T015(00) Ta3(6)to( 62)
1= Ry10(61)Ry3(0,)85(65)

T3123(00) = (55)

with
t2(92) - e—azhzlcos 02. (56)

Along this line of reasoning, we express the reflectance
and transmittance of £ superposed bounded coloring lay-
ers My, ...,M, surrounded by media mq and my,1:

Ry 41(00) = 5[RY 41 (60) + RS 1601, (57

To.. p1(6p) = %[T&f?_kﬂ(ﬂo) + T4 4.1(60)]. (58)

The resulting expressions of R;”kﬂ(ﬁo) and T;mkﬂ(ﬁo)
generalize Eqgs. (54) and (55) to &£ stacked nonscattering
coloring layers with distinct refractive indices:

[T 1(00) PRy js1(B0)E2(6)
1- R;:...O(ek)RZ,kﬂ(ek)tI%(ak)

Ry 4(60) =Ry 4(60) +

(59)
and
N TS.._k(eo)TZ,ku(@k)tk(ﬁk)
TO...k+1(60) = 3 * 2 ) (60)
1-Ry, o(6)R}, 1,1(6,)t(6,)
with
tk(ek) — e—akhk/cos O . (61)

If the incident light is Lambertian, we integrate ex-
pressions (57) and (58) over the hemisphere, as in the
case of Eqs. (47) and (49), and obtain the diffuse reflec-
tance rg ;.1 and transmittance ¢, ,,; of the & super-
posed bounded coloring layers My, ...,M; surrounded by
media mg and my,1:

/2
7o kel = J Ry 1+1(6p)sin 26,d 6, (62)
=0
and
/2
o he1= f To.. k+1(6p)sin 26,d 6. (63)
0y=0

4. REFLECTANCE OF NONSCATTERING
COLORING LAYERS SUPERPOSED ON TOP
OF A DIFFUSING MEDIUM

In the previous section, the reflectance and transmittance
of stacked nonscattering layers have been expressed, both
for collimated and for diffuse incident light, and for natu-
ral light or linearly polarized light. We now consider that
the stacked layers are surrounded on one side by a trans-
parent nonscattering medium and on the other side by a
diffusing background. Each medium may have a distinct
refractive index.

We express the reflectance of the background coated
with colored nonscattering layers, i.e., the fraction of the
incident irradiance that emerges from the interface iy;.
The incident light is assumed to be collimated. The de-
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rived reflectance expressions are compatible with reflec-
tance measurements performed with an integrating
sphere by reference to the reflectance of a perfectly white
diffuse reflector. For measurements performed with a ra-
diance detector, we develop the expression of a reflectance
factor, which takes into account the geometry of the cap-
turing device.

First, we consider a single colored nonscattering layer
m of refractive index nq, thickness #; and absorption co-
efficient a;, surrounded on one side by a nonscattering
medium m of refractive index ny, and on the other side
by a diffusing background my of refractive index ny. The
background is assumed to be a Lambertian reflector; i.e.,
it reflects a perfectly diffuse and unpolarized light. It is
characterized by its wavelength-dependent intrinsic re-
flectance p,.

After having established the reflectance of a single
bounded nonscattering coloring layer M, we can replace
it by any superposition of £ bounded nonscattering color-
ing layers M1, ...,M,. In the special case where layer m
is surrounded on one side by a reflecting background of
identical refractive index and on the other side by air, we
obtain the classical Williams—Clapper model.?

A. Background Coated with One Nonscattering Layer

A collimated irradiance W; (natural light) illuminates the
interface ij; at an angle 6. It crosses the bounded color-
ing layer M, with an attenuation factor T5(6) [Eq. (39)]
and penetrates into the diffusing background, where it is
diffused, with a portion p, being reflected. The reflected
Lambertian irradiance w; is

w1 = pgTo12(600)W;. (64)

The reflected irradiance w; is unpolarized, owing to
multiple scattering within the diffusing background, and
can be assimilated to natural light. The bounded layer M,
transmits a portion of w; into medium m and reflects a
portion ry1y [Eq. (47)] toward the background my. The
background reflects back toward the bounded layer m; a
Lambertian irradiance wy:

Wg = Pgla10W1 = (Pg’“21o)PgT012(90)Wi' (65)

The diffuse light is alternately reflected by the bounded
layer M; and the background msy. Since the background
emits an irradiance (pgrmo)kpgTom(Go)Wi at each internal
reflection £=0,1,2..., the total irradiance W, emitted by
the background toward the bounded layer M; is

%

W, = E (pngIO)kpgTOIQ(GO)Wi* (66)
k=0

The infinite sum yields a geometrical series that con-
verges toward

PgTo12(60)
W, = Pe” 012270 (67)
1 — Pgl'210

The irradiance W, that emerges into medium m re-
sults from the transmission of the irradiance W, across
the bounded layer M. Since the bounded layer M; has a
diffuse transmittance ¢91g, similar to that defined in Eq.

(49), the emerging irradiance is
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peTo12(6o)
W.=tgor———W,. (68)
1- Pgl"210
The reflectance R,,; of the background coated with the
bounded layer m; is given by the ratio W,./W;:

peTo12(60)

_— (69)
1- Pgl"210

R,1=t0

B. Reflectance Factors

Often, the incident irradiance is not directly accessible.
However, it is possible to measure it indirectly with a
white reference support, whose reflectance spectrum is
known and is generally close to 1 for all the wavelengths
of the visible range. The irradiance W, reflected by the
sample and the irradiance W, reflected by the white ref-
erence support are captured by the same measuring de-
vice under the same illumination conditions. The ratio
W,/ W, is called the reflectance factor.

The reflectance factor also depends on the geometry of
the measuring device. An integrating sphere captures the
reflected irradiance W, completely. If the white reference
support has a reflectance equal to 1, we have W,=W,,
and the expressions for the reflectance factor W,/ W, and
the reflectance are identical.

The reflectance factor and the reflectance have differ-
ent expressions if the capturing device is a radiance de-
tector. The radiance detector does not capture the total re-
flected irradiance W, but only the radiance L,(6))
reflected in the direction 6 of the detector. This radiance
L,(6p) is defined by the flux emerging from a surface ele-
ment ds of the sample within a solid angle dQ:

d2®

L.(6)) =———.
(%) ds cos 6,d()

(70)

Let us consider the case of a diffusing background
coated with a single nonscattering coloring layer m;. We
have shown that, owing to the multiple internal reflec-
tions, the background emits a total irradiance W, ex-
pressed in Eq. (67). We now derive, using the rules of
mdiometry,11 the relation between the irradiance W, and
the radiance L,(6;) captured by the radiance detector.

The flux d2® captured in the direction ) corresponds to
a collimated flux d2CDg emitted by the background ms in a
direction 6, such that ngsinfy=nysinéy. When crossing
the bounded layer M, the flux is attenuated by a factor
To10(65), equal to Tgio(6y) according to relation (44).
Therefore,

d%® = T5(6))d>D,. (71)

Because of the refraction, the solid angle d{), containing
the flux d?® and the solid angle d(), containing the flux
dzd)g are different and related according to Eq. (10):

ng\ 2cos 6;
dQQ =\ — ’dﬂo. (72)
ng/) cos by

The flux dchg emitted by the background in the direc-
tion 6, within the solid angle d(),, relative to the surface
element ds, defines a radiance. Since the background is a
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Lambertian emitter of irradiance W, the radiance emit-
ted into any direction is equal to W,/ 7. Therefore,
2
W, d“d,

—_— . (73)
7 dscos 6,dQ,

Let us express the reflected radiance L,(6;) using Eqs.
(67) and (70)—(73). First, in Eq. (71), we replace dzq)g by
(W,/m)ds cos 0,dQy according to Eq. (73). The resulting
expression of d?® is inserted into Eq. (70), which becomes

cos 6,dQy

W,
L,(6y) = —T12(0p) ————.
(6p) - o12( o)COS PRI

(74)
In Eq. (74) we replace W, with its expression (67) and

replace the fraction on the right by (n¢/n5)? according to
Eq. (72). Equation (74) becomes

1
L.(6) = —(no/n2)2T012(90)T012(96)LW;'- (75)
™ 1-pgrang
The ratio of the reflected radiance to the incident irra-
diance gives, by definition, the bidirectional reflectance
distribution function (BRDF) of the background coated
with a nonscattering coloring layer:

L) 1 P
——— —(no/n2)2T012(06)—.
i ™ 1- Pgl"210

(76)

BRDF (6, ) =

By measuring with the same illuminating and measur-
ing conditions the radiance L, .= W;/ 7 reflected by a white
reference support, we obtain the reflectance factor
R(6y, 6y) of the background coated with the coloring layer,
expressed as the ratio L,(6))/L,.z

’ ’ pg
R(60, 0p) = (no/ng)*To19(0p) ———. (77)
1-pgrang

The special case of computing the reflectance of a back-
ground coated with one scattering layer is identical to the
problem of computing the exact reflectance of a varnished
painting. One may verify that expression (77) is identical
to the reflectance expression developed by Elias and Si-
monot [Ref. 9, p. 21, Eq. (2), but with different notation].

Note that in the expressions (69) and (77), the specular
surface reflection component R(;9(6y) has been discarded,
as is the case in many photospectrometers.

C. Background Coated with Multiple Nonscattering
Layers

The expression of the reflectance of a background coated
with one nonscattering coloring layer mi, Eq. (69), con-
tains three terms relative to the bounded coloring layer:
the transmittance Ty12(6p) for a collimated illumination
from medium m,, the diffuse reflectance ry;y, and the
transmittance 9 for a diffuse illumination from medium
mgy [Egs. (39), (47), and (49)]. We may extend Eq. (69) di-
rectly to the case of & superposed layers m; ; by consid-
ering the superposed layers as a single bounded layer of
transmittance T ,,1(6,) for a collimated illumination
from medium m [Eqgs. (58)], of diffuse reflectance r;.;
and diffuse transmittance ¢,,;  for a diffuse illumina-
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tion from medium my,; [Egs. (62) and (63) with ex-
changed subscripts 0 and £+ 1]. The reflectance R,,;  ; of
the background coated with % superposed layers mq _j is
therefore

pgTOA.Ak+1(00)

Ry n=tra. 0 (78)

1- Pglk+1...0

In analogy to expression (77), for a collimated illumina-
tion with incidence 6, for an observation angle 6;, and for
a perfectly white diffuse reflector as reference, the reflec-
tance factor of the background coated with & superposed
layers is

p.
R (6o, 05) = (no/n2)*To. . 4s1(00)To.. po1 () —————.
1- Pglk+1...0

(79)

D. Particular Case: The Williams-Clapper Model
Because of the multiple internal reflections taking place
at both sides of the interface in contact with the diffusing
background, the reflectance model presented here is
slightly different from the Williams—Clapper model.? In
the Williams—Clapper model, the nonscattering layer m;
and the diffusing background mgy are assumed to have the
same refractive index, i.e., ny=ny. Therefore, at the inter-
face i,9, the Fresnel coefficients are Ry;(0)=R15(6)=0 (no
reflection) and T'91(0)=T15(0)=1 (total transmission). Ac-
cording to Eqgs. (30), (33), (37), and (39)—(41), R(12(6) re-
duces to Ry;(6), Ry10(#) becomes RlO(G)t%(H), and Ty12(60)
becomes Ty;(0)¢1(6), with £1(6) given by Eq. (23). The term
r910 becomes

/2
Fi10= f R1(0)t1(0)sin 26d0, (80)
6=0

and the term t5;9 becomes

72
t110= f Tlo(ﬁ)tl(ﬁl)sin 20(10 (81)
6=0

By inserting these simplified expressions into Eq. (77),
we retrieve the reflectance factor of the Williams—Clapper
model, expressed for a collimated incidence and observa-
tion (respective angles 6, and 6;):

peT01(60)To1(0)t1(61)t1(67)

R(6y, 6y = (ny/ny)*
1-perii0

In the case of a collimated illumination and an inte-
grating sphere measuring geometry, the reflectance given
by Eq. (69) reduces to

pgT01(66)t1(67)
R =tpno—/——. (83)
1- Pgl'110

We retrieve with this expression (83) the Shore—
Spoonhower generalization® of the Williams—Clapper
model for an integrating-sphere measuring geometry, also
derived independently by Elias et al.”
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E. Intrinsic Reflectance of the Background

The diffusing background is characterized by its intrinsic
reflectance p,. However p, is not directly measurable,
since the interface that separates the background (me-
dium 2) and the air (medium 0) induces multiple internal
reflections. However, it is possible to measure the reflec-
tance of the background and derive its intrinsic reflec-
tance pg from Eq. (69) if the measurements are performed
with an integrating sphere or from Eq. (77) if they are
performed with a radiance detector.

The background, medium m, is directly in contact with
the medium mg. Thus, the absorption coefficient is a=0;
the terms Ty19(6), and To12(6;) become, respectively,
To2(60) and To(6;); and the terms ry19 and £519 become, re-
spectively, rog and ¢9g. According to Eq. (69), the reflec-
tance p of the background measured with an integrating
sphere is

pgTOQ( 6o)

PR— (84)
1-pgrao

p=tg

and according to Eq. (77), the reflectance factor of the
background measured with a radiance detector is

p,
R(6o, 6)) = (no/ns)*Tos(80) Tool 6) ———.
1-pgrog

(85)

The intrinsic reflectance p, of the background can be ob-
tained by inversion of Eq. (84)

p
Pg= " (86)
€ t99To2(0p) +raop
or, respectively, by inversion of Eq. (85):
R(GO’ '9(/))
Pg (87)

" (no/n2)?Tool 00) Toa(60) + 730R (6, 6)

5. CONCLUSIONS

We propose a model for predicting the reflectance and
transmittance of multiple stacked nonscattering coloring
layers that have distinct refractive indices. The model re-
lies on the modeling of the reflectance and transmittance
of a bounded coloring layer, i.e., a coloring layer and its
two interfaces with neighboring media of different refrac-
tive indices. By replacing within the expressions for the
bounded layer reflectance (respectively, transmittance),
the reflectance (respectively, transmittance) of a simple
interface with the reflectance (respectively, transmit-
tance) of a bounded layer, we are able to deduce the re-
flectance and transmittance of multiple stacked nonscat-
tering layers of different refractive indices. This layer
composition rule is then applied to deduce the reflectance
of stacked nonscattering layers of distinct refractive indi-
ces superposed with a reflecting diffusing background
that has its own refractive index. The Williams—Clapper
model? as well as the air—paint7 and the
air—varnish—paint® reflection models become special cases
of the proposed stacked layer model. Since the proposed
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model takes into account different illumination and mea-
suring conditions, it is well suited for practical applica-
tions.

The corresponding author’s e-mail address is

lionel.simonot@univ-poitiers.fr.
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