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Spoonhower3 have extended the Williams–Clapper
model to any refractive index of the coating and for any
angular measurement geometry including the integrat-
ing sphere geometry.

Most printed colors are produced by halftoning, where
the ink is distributed on the paper as little ink dots ac-
cording to given nominal coverage values. Simple mod-
els like the Murray–Davies model4 assume that between
the dots the surface properties are those of the coated
paper. In practice however, the light interacts both with
printed and unprinted areas during its propagation
within the paper. This phenomenon is called optical dot
gain. In 1952, Clapper and Yule presented a model to
predict the spectrum of a halftone print on paper, includ-
ing the modeling of optical dot gain, taking into account
multiple internal reflections and lateral scattering of light
within the paper bulk.5 The Williams–Clapper2 as well
as the Clapper–Yule model5 are the starting points for a
wide range of color prediction models.6,7

In the present contribution, we study the interaction
of light with a coated Lambertian substrate by relying
on the laws of optics and by following the conventions
of radiometry. We make the following  assumptions:
• the substrate is a perfectly diffuse reflector,
• the refractive index of the substrate is the same as

the refractive index of the coating, thereby avoiding
any Fresnel reflection or refraction at the interface
between the substrate (paper bulk) and the paper
coating,

• the air-coating interface is a perfectly planar interface,
• the incident light is perfectly collimated and

unpolarized.

Along this line of theoretical development we point
out the respective contributions of Judd,1 Willams and
Clapper,2 Saunderson,8 and Clapper and Yule,5 specify-
ing and analyzing for each contribution its context and
assumptions. Below, we introduce the basic notions of
radiometry and optics such as radiant flux, radiance,
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Introduction
Color reproduction by printing images on paper results
from the interaction of light with the printed paper.
Light is partly reflected at the paper surface, partly
absorbed by the inks, scattered within the paper bulk
and partly internally reflected at the interface between
the paper and the air. The study of the optical proper-
ties of the combination of paper, coating and inks is
therefore crucial to ensure the quality of color repro-
duction. The aim of this article is to present and review
the classical contributions in this field, by following a
strict radiometric approach.

The first investigations about optical properties of
prints dealt with photographic paper, where the paper
is coated with gelatin. The gelatin coating is at the ori-
gin of the Fresnel internal reflection of light within the
paper. In 1942, Judd published a table specifying the
diffuse Fresnel reflectance at the gelatin-air interface,
for several refractive indices of the coating material.1 In
1952, Williams and Clapper proposed a model to predict
the spectral reflectance of a Lambertian paper, coated
with a uniform ink film, taking also into account inter-
nal reflections at the interface formed by the coating and
the air.2 It was developed for the classical 45°/0° mea-
surement angles: the incident collimated beam illumi-
nates the printed patch at an incidence angle of 45°,
and the reflectance is measured according to the nor-
mal of the patch’s surface, for a particular value of the
refractive index of the gelatin. Recently, Shore and
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irradiance, Lambertian reflector, Snell’s laws, Fresnel
formula and then derive the internal reflection of dif-
fuse light on an interface1 as well as its transmission
through that interface. This allows us to derive the re-
flectance of a transparent solid layer located on top of a
diffusely reflecting substrate. A straightforward exten-
sion yields the reflectance factor of a colored layer as
derived by Williams and Clapper2 and Shore and
Spoonhower,3 both for freely selected illumination and
viewing angles and for integrating sphere measuring
geometries.  Using the same radiometric approach, we
derive the Clapper–Yule model5 and propose adaptations
in order to account for the different measurement ge-
ometries and white references. We also highlight the
simplifications underlying the Clapper–Yule model, in
respect to the more rigorous Williams–Clapper model.

Elements of Radiometry
Modeling reflectances requires us to manipulate radio-
metric quantities and to take into account the geometry
of the measurement device. We recall here definitions
and properties9 necessary for the next sections. Note that
each of the following quantities may be wavelength de-
pendent.

Basic Definitions. We call radiant flux Φ the energy
flowing through a surface per unit time.

The irradiance E (also called brightness) is the radi-
ant flux per unit area that is incident on, passing
through or emerging from a specified surface (Fig. 1).
All directions in the hemispherical solid angle are to be
included. For an element of radiant flux dΦ and a sur-
face element of area ds,

E(ds) = dΦ/ds. (1)

A solid angle dω formed by an area dA on a sphere of
center S and radius x is said to be subtended by dA at
point S and is defined as

dω = dA/x2. (2)

The infinitesimal surface dA is, according to geomet-
ric considerations (Fig. 2), dA = x sinθ dφ ⋅ x dθ. Thus,
the expression of the solid angle becomes

dω = sinθ dθ dφ. (3)

The radiant intensity I is the radiant flux per unit solid
angle that is incident on, passing through or emerging
from a point in space and propagating in a specified di-
rection. For an element of radiant flux dΦ through an
element of solid angle dω

I(dω) = dΦ/dω. (4)

The radiance L is the radiant flux per unit projected
area and per solid angle that is incident on, passing
through or emerging from a point in a specified surface
(Fig. 3).

For an element of radiant flux d2Φ, relative to a sur-
face element of area ds, contained within a solid angle
dω oriented according to direction (θ,φ), the radiance
L(θ,dω;ds) is

    
L

d
d ds

d ds( , ; )

cos
.θ ω

ω θ
=

2Φ
(5)

By combining Eqs. (1) and (5), we obtain the relation
between an element of irradiance dE(ds) and the radi-
ance L(θ,dω;ds), both relative to the same surface element
ds and the same solid angle dω around the same orien-
tation (θ,φ).

dE(ds) = L(θ,dω;ds) cosθ dω (6)

The relation between irradiance and radiance results
from the integration of Eq.  6) over the hemisphere Ω

    
E L dds d ds( ) ( , ; ) cos ,= ∫∫

Ω

θ ω θ ω

or, if we replace dω by sinθ dθ dφ  (Eq. 3),

    
E L d dds d ds( )

/
( , ; ) cos sin .= ∫∫

0

2

0

2 ππ
θ ω θ θ θ φ (7)

Radiance Invariance. A light flux d2Φ  propagates
between two elements of surface of respective area ds1
and ds2 and of respective normal N1 and N2. Let us
take a point P1 on ds1 and a point P2 on ds2 The seg-
ment [P1P2] of length x forms an angle θ1 with respect
to N1 and an angle θ2 with respect to N2. We call dω1
the solid angle subtended by the projected area ds2 cos
θ2 (area of the surface ds2 projected onto the sphere of
center P1 and radius x) at point P1 Similarly, we call
dω1 the solid angle subtended by the projected area
ds1 cosθ1 (area of the surface ds1 projected onto the
sphere of center P2 and radius x) at point P2. Accord-
ing to this configuration (Fig. 4),
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Figure 1. Irradiance is the flux relative to a surface element
ds through the whole hemisphere. S x
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Figure 2. Solid angle dω subtended by the projected area dA
of the closed curve Γ at point S.



Classical Print Reflection Models: A Radiometric Approach                  Vol. 48, No. 4, July/August 2004  365

    
d

ds

x
ω θ

1
2 2

2= cos
 and 

    
d

ds

x
ω θ

2
1 1

2= cos
. (8)

We call L1 the radiance defined at point P1 by d2Φ,
dω1 and ds1 (Eq. 5)

    
L

d
d ds

d ds
1

2

1 1 1

1 1 1( , ; )

cos
,θ ω

ω θ
= Φ

(9)

and we replace, according to Eq. (8), dω1 and ds1 by re-
spectively ds2 cosθ2/x2 and dω2 x2/cosθ1. Therefore, Eq.
(9) becomes

    
L

d
d ds

Ld ds d ds
1

2

2 2 2
2

1 1 1 2 2 2( , ; ) ( , ; )

cos
,θ ω θ ω

ω θ
= =Φ

(10)

where L2 is the radiance defined at point P2 by d2Φ,
dω2 and ds2. The equality of L1 and L2 is known as the
radiance invariance property [Ref. 9, p. 111], which is
valid only if the light flux propagates without losses
between ds1 and ds2.

Reflectance. The reflective properties of the surface
element, ds, can be characterized by the reflectance or
the reflectance factor according to whether the radio-
metric quantities are normalized with a reference or not.

The reflectance ρ is the dimensionless ratio of the re-
flected flux dΦr to the incident flux dΦi. If both fluxes
are relative to the same element of surface ds, the re-
flectance is also the ratio of the reflected irradiance E(ds)

to the incident irradiance Ei
(ds)

    
ρ = = =d

d
E ds

E ds

E

E
r

i

ds

i
ds

ds

i
ds

Φ
Φ

( )

( )

( )

( ) . (11)

The ratio E(ds)/Ei
(ds) defines a transmittance, τ, if E(ds)

is the irradiance of the transmitted light.
The reflectance factor R is the ratio of the reflected

flux dΦ to the flux dΦref that would have been reflected
by a perfectly diffuse surface under the same circum-

stances (same illuminant of irradiance Ei, same surface
element of area ds, same direction θ, same solid angle
dωv). According to that definition, R is also a ratio of
irradiances, a ratio of radiances and a ratio of
reflectances

    

R
d

d
dE

dE

L

Lref

ds

ref
ds

d ds

ref
d ds

ref

v

v
= = = =Φ

Φ

( )

( )

( , ; )

( , ; ) .
θ ω

θ ω
ρ

ρ (12)

Note that if the reference reflectance is unity, the re-
flectance factor and the reflectance indicate the same
dimensionless quantity. This may be the case when a
photospectrometer is calibrated with a perfect diffuse
white reflector. This may be one reason why the term
“reflectance” is often used in the literature instead of
the term “reflectance factor”.

Lambertian Emitters and Reflectors .The radiance
L(ds) emitted by a perfectly diffuse emitter is indepen-
dent of the direction of emission. Such emitters are
called Lambertian emitters since the elements of radi-
ance they reflect in each direction of the space verify
Lambert’s cosine law (this property is a consequence of
Eq. (6) with a constant radiance). According to Eq. (7),
the irradiance emitted by a Lambertian emitter is

    
E L d d Lds ds( ) ( ) /

cos sin= =∫∫ θ θ θ φ πππ
0

2
0
2

(13)

Similarly to Lambertian emitters, we define as
Lambertian reflectors the perfect diffuse reflectors. They
reflect a radiance L(ds) that is independent of the direc-
tion of observation, and an irradiance π L(ds). The re-
flectance of a Lambertian reflector is

    
ρ π= L

E

ds

i
ds

( )

( ) (14)

Measurement Geometry. According to the optical de-
vice used, the measuring device allows us to measure
either a radiance or an irradiance.10 In this study, we
consider two types of optical devices, in which the inci-
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Figure 3. Radiance is the flux contained within an element of
solid angle dω, oriented according to θ, and relative to the pro-
jected area ds cosθ of the surface element ds.
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Figure 4. Light flux following a path between two elements of
surface ds1  and ds2.
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dent light is a collimated beam. The first device is the
integrating sphere, which receives light emerging from
the print in every direction of the hemisphere, and there-
fore measures an irradiance. The second device is a de-
tector of fixed area dsv, receiving perpendicularly to its
surface the light flux d2Φ contained within a fixed solid
angle dωv. Such a detector measures the radiance Lv
defined as (Eq. 5)

    
L

d
d dsv

v v
=

2Φ
ω

. (15)

According to the radiance invariance property we can
express the radiance captured by the detector equiva-
lently in terms of radiance emerging from an element
ds of the sample’s surface

    
L

d

d ds
v v=

2

1

Φ
ω θcos

, (16)

where ds is the element of the sample’s surface that sub-
tends the detector’s radiance solid angle dwv, dω is the
solid angle subtended by the detector’s surface dsv at a
point of ds, and     θ1

v  is the angle between the normal N
of ds and a segment linking one point of ds to one point
of dsv (Fig. 5).

In the following sections, the radiance captured by
the detector will be defined by Eq. (16) rather than Eq.
(15), i.e., we will consider the radiance emerging from
the print through a surface element and a solid angle
implicitly related to dωv, dsv and     θ1

v  by the radiance
invariance property.

The combination of an incident collimated beam (illu-
mination or incidence angle     θ1

i ) and a detector (viewing
angle     θ1

v ) is called     θ θ1 1
i v/  measurement geometry. Clas-

sical devices are based on the 45°/0° geometry: a colli-
mated light beam illuminates a small area ds of the
surface, with an angle of 45° in respect to the normal N
of the surface (Fig. 6). The detector receives the light
emerging from the sample along N.

Optics of a Planar Interface Between Two
Transparent Media
In this section, we consider a planar interface, of nor-
mal vector N, made of two transparent, i.e., non absorb-
ing, media of respective refractive indices n1 and n2.
The subscript 1 is relative to air, and the subscript 2 is

relative to the coating. The superscripts i and v denote
incident and viewing angles.

Snell’s Laws and Fresnel Formulae. A ray of light
falling onto the interface with an incidence angle θ1 is
partially reflected by and partially transmitted through
the interface (Fig. 7). Snell’s first law insures that the
incident, the reflected and the refracted rays belong to a
same plane containing the surface normal vector N. Ac-
cording to Snell’s second law, the reflected ray propagates
into the specular direction, so that the reflected ray and
the incident ray make the same angle θ1 with the normal
N. The transmitted ray is refracted and propagates in
the medium 2 with an angle θ2 with respect to –N, re-
lated to θ1 by Snell’s third law11

    
sin sin .θ θ2

1

2
1=

⎛
⎝⎜

⎞
⎠⎟

n
n (17)

The ratio of reflected to incident fluxes, called Fresnel
reflection factor, is determined by Fresnel’s formulae11

as a function of the angles θ1 and θ2, where θ2 is derived
from Eq. (17) for a given relative refractive index n1/n2.
The reflection factor is also defined as the ratio of the
reflected to incident intensities. Both this definitions
are equivalent since the incidence and reflection solid
angles are equal. For non-polarized light,

    

rn n1 2 1

2
1 2

2
1 2

2
1 2

2
1 2

1
2/

tan

tan

sin

sin
θ

θ θ
θ θ

θ θ
θ θ

( ) =
−( )
+( )

+
−( )
+( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ . (18)

Equations (17) and (18) are symmetric with respect to
θ1 and θ2. Therefore, if θ1 and θ2 verify Eq. (17), we have

    
r rn n n n1 2 2 11 2/ /( ) ( )θ θ= (19)

which means that the Fresnel reflection factor takes the
same value if the light beam is transmitted from me-
dium 1 to medium 2 as if it were transmitted from me-
dium 2 to medium 1.

The ratio of incident intensity that is transmitted
through the interface, called transmission factor, is also
given by Fresnel’s formulae. It is generally expressed
as a function of the reflection factor, according to the
principle of conservation of energy

dsv

ds cos

vωd

ωd

N

θ

θds

Detector

v
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v

1

N

d   
45°

ds

ω

dsv

Detector

v

Collimated

incident beam

Figure 5. Radiance invariance between the detector and an
element ds of the sample’s surface.

Figure 6. Configuration of a measuring device for a 45°/0°
measurement geometry.
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t rn n n n1 2 1 21 11/ /θ θ( ) = − ( ). (20)

The transmission factor is also independent of which
side of the interface the light is incident on.

Internal Reflection of Diffuse Incident Light on
an Interface: Judd’s Diffuse Internal Reflectance.
The aim of this section is to calculate the internal re-
flectance of an interface, i.e., to specify, for diffuse inci-
dent light, the ratio of incident irradiance that is
reflected by the interface.

A source S of irradiance Ei, located in medium 2, is
assumed to be a Lambertian emitter. It emits a radi-
ance Ei/π, independent of direction. We can express this
radiance as a function of the flux d2Φ emitted by an
element of surface dss of normal N through a solid angle
dωs oriented in a direction (θ,φ).

    

E d
d ds

i

s sπ ω θ
=

2Φ
cos (21)

The solid angle dωs subtends a portion of area ds of
the interface’s surface (Fig. 8). If P is a point of ds, we
call dω the solid angle subtended by the projected area
dss cosθ at point P. Thus, thanks to the radiance invari-
ance property (Eq. 3),

    

E d
d ds

i

π ω θ
=

2Φ
cos

. (22)

The flux incident to the interface is therefore

    
d

E
d dsi2Φ =

π
ω θcos . (23)

A ratio 
    
rn n2 1/ ( )θ  (Fresnel reflection factor, Eq. 18) of

this incident flux d2Φ is internally reflected by the in-
terface. According to the Snell’s laws, the reflection
angles equal the incidence angles θ and ϕ, and thus the
reflected solid angle equals the incident solid angle dω.
The reflected flux d2Φr is

    
d r d r

E
d dsr n n n n

i2 2
2 1 2 1

Φ Φ= ( ) = ( )/ / cosθ θ
π

ω θ (24)

The quantity d2Φr/ds is an element of irradiance. If we
replace dω by sinθ dθ dφ (above), we have

    

d
ds

r
E

d dr
n n

i
2

2 1

Φ = ( )/ cos sinθ
π

θ θ θ φ . (25)

By integrating this quantity over the hemisphere,
we obtain the irradiance E internally reflected by the
interface

    
E r

E
d dn n

i= ∫∫ 2 10
2

0
2

/
/

( ) cos sin .θ
π

θ θ θ φππ
(26)

The integration over φ yields a factor 2π (since the
terms inside the integral are independent of φ), the term
cosθ sinθ can be replaced by sin(2θ)/2, and the constant
Ei can be extracted from the integral. The radiance in-
ternally reflected by the interface is therefore

    
E E r di n n= ∫ 2 10

2
2/

/
( ) sin .θ θ θπ

(27)

The ratio E/Ei gives the internal reflectance ri of the
interface

    
r r di n n= ( )∫

0

2

2 1
2

π
θ θ θ

/

/ sin . (28)

In the case of a coated Lambertian substrate, the
source S models the light sent by the substrate, and ri
gives the ratio of light that is internally reflected upon
the coating-air interface. Judd1 computed the value of
ri as a function of the coating’s refractive index n2 for
n1 = 1 (air) by applying a discrete version of Eq. (28).

Transmission of Light Through an Interface. The
transmission of light through an interface is expressed
differently according to whether we consider radiances
or irradiances. We deal with irradiances when we are
interested in calculating the ratio of diffuse incident
light that is transmitted through the interface. By defi-
nition, the ratio of transmitted to incident irradiances
is given by the transmittance of the interface. If the
coated layer is non-absorbent, according to the principle
of conservation of energy the incident irradiance Ei is
decomposed into a reflected irradiance ri Ei where the
interface internal reflectance ri is given by Eq. (28), and
a transmitted irradianc, ti Ei. This yields the following
relation between the reflectance of the interface and its
transmittance

ti = 1 − ri . (29)

When the transmitted light is captured from within a
given solid angle, we deal rather with radiances. The
transmission through the interface is characterized by
the ratio of transmitted to incident radiances, which
includes, in addition to the ratio of transmitted light
(Fresnel transmission factor), the effect of refraction of
the pencil of rays on the solid angles (cone spreading).

We consider a small surface of the interface, of area
ds, receiving a light flux d2Φ2 contained into a solid
angle dω2 around direction (θ2,φ2). The corresponding
radiance 

    L
d ds

2
2 2θ ω, ;( )  (Eq. 5) is

    
L

d
d ds

d ds
2

2
2

2 2

2 2θ ω

ω θ
, ;

cos
.( ) = Φ

(30)

Figure 7. Reflection and refraction of a light ray at the inter-
face of two different media (n2 > n1).
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A ratio 
    
1

2 1 2− ( )rn n/ θ  (Fresnel transmission factor, Eq.
20) of the flux d2Φ2 is transmitted into medium 1 in
direction θ1 related to θ2 by Snell’s law (Eq. 17). The
transmitted flux d2Φ1 is therefore

    
d r dn n

2
1 2

2
21

2 1
Φ Φ= − ( )[ ]/ .θ (31)

We call     L
d ds

1
1 1θ ω, ;( )  the transmitted radiance, correspond-

ing to the element of flux, d2Φ1, emerging from ds and
contained into a solid angle, dω1 (different from dω2 due
to the refraction) around the direction (θ1,φ1) (Fig. 9)

    
L

d
d ds

d ds
1

2
1

1 1

1 1θ ω

ω θ
, ;

cos
( ) = Φ

(32)

A combination of Eqs. (30), (31) and (32) gives the
following ratio between the transmitted and incident
radiances,

    

L

L
r

d
d

d ds

d ds n n
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2

2
2 2

1 1

1 1

2 2 2 1
1

θ ω

θ ω
θ ω θ

ω θ

, ;

, ; /
cos
cos

,
( )

( ) = − ( )[ ]

where the solid angles can be written under the form
dω = sinθ dθ dφ  (Eq. 3). We know, according to Snell’s
first law, that the light transmitted through a horizon-
tal plane does not undergo any azimuthal deviation, i.e.,
dφ1 = dφ2. Therefore,

    

L

L
r

d
d

d ds

d ds n n
1

2

2
2 2 2

1 1 1

1 1

2 2 2 1
1

θ ω

θ ω
θ θ θ θ

θ θ θ

, ;

, ; /
cos sin
cos sin

( )

( ) = − ( )[ ]

The ratio, sinθ2/sinθ1, is given directly by Eq. (17).
By differentiating Eq. (17) we obtain

    
cos cos .θ θ θ θ2 2

1

2
1 1d

n
n

d=

By combining Eq. (17) with its differential form we
have

    

sin cos
sin cos

.
θ θ θ
θ θ θ

2 2 2

1 1 1

1

2

2
d
d

n
n

=
⎛
⎝⎜

⎞
⎠⎟ (33)

Therefore, the ratio of the radiances at the interface be-
tween media 1 and 2 is

    

L

L
r

n
n

d ds

d ds n n
1

2

2
1

2

21 1

2 2 2 1
1

θ ω

θ ω
θ

, ;

, ; / .
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⎝⎜

⎞
⎠⎟ (34)

The term (n1/n2)2, characteristic of the cone spread-
ing, appears since the radiance is transmitted through
an interface. For transmission of irradiance, the cone
spreading is not taken into account, even for a thin pen-
cil of light rays, since irradiance ignores the spatial dis-
tribution of the light.

Reflectance of a Solid Layer on a Lambertian
Substrate
In this section, we consider a layer of refractive index
n2,  in contact with a Lambertian substrate of
reflectance ρB on the one side, and in contact with air
on the other side. The substrate and the layer are as-
sumed to have the same refractive index, which avoids
any Fresnel reflection at the interface between the sub-
strate and the layer. The interface between the layer
and the air is a planar interface. The refractive index of
air is assumed to be n1 = 1. The relative refractive indi-
ces of the interfaces n2/n1 (layer to air) and n1/n2 (air to
layer) become respectively n2 and 1/n2.

Reflectance of a Transparent Layer on a
Lambertian Substrate. A collimated light beam, of
irradiance Ei, arrives onto the air side of the interface
with an incidence angle     θ1

i  (Fig. 10). A proportion

    rn n
i

1 2 1/ ( )θ  of the incident light, which is equal to     rn
i

2 2( )θ ,
is reflected into the air along the specular direction.
Since the detector is not placed in the specular direc-
tion, this external specular reflection is neglected.

The beam penetrates the layer with a transmission
factor     1 2 2− rn

i( )θ  (Eqs. 19 and 20) and propagates into
the layer with a refraction angle     θ2

i  (Eq. 17) until reach-
ing the Lambertian substrate. The substrate, which re-
flects uniformly over the whole hemisphere a ratio ρB
of the incident irradiance,

    
1

2 2− ( )[ ]r En
i

iθ ,

n1

d

θ
θ

θ

n2

S

s

N

N

ds

ω

dω

dω
dss

Figure 8. Reflection of a diffuse pencil of light onto the inter-
face between two media of different refractive indices.
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Figure 9. The light contained in a solid angle dω2  in medium
2 is refracted into medium 1 within a solid angle dω1 (dω2 <
dω1  if  n2 > n1).
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can be modeled as a diffuse source S0 of irradiance

    
E r EB n

i
i0 21

2
= − ( )[ ]ρ θ .

A ratio ri of the irradiance E0 is internally reflected
on the coating-air interface back into the substrate. The
substrate reflects uniformly over the whole hemisphere
a ratio ρB of its received irradiance ri E0. Hence, after
one internal reflection, the substrate can be modeled as
a diffuse source S1 of irradiance

E1 = ρB ri E0.

Then, the light is reflected alternately by the interface
and by the substrate. After k internal reflections, the
substrate re-emits diffuse light like a source Sk of irra-
diance

    
E r E r r Ek B i

k
n

i
B B i

k
i= ( ) = − ( )[ ] ( )ρ θ ρ ρ0 21

2
.

By summing the contributions of the all sources Sk
we obtain a single diffuse source S which models the
light reflected by the substrate including the multiple
internal reflections. Its irradiance ES results from the
geometric series

    
E r r ES n

i
B

k
B i

k
i= − ( )[ ] ( )⎛

⎝⎜
⎞

⎠⎟=

∞
∑1

2 2
0

θ ρ ρ ,

which converges towards

    
E r

r
ES n

i B

B i
i= − ( )[ ] −

1
12 2θ ρ

ρ
.

The corresponding radiance LS independent of direc-
tion since S is a Lambertian emitter (see Eq. 13), is

    
L E r

r
ES S n

i B

B i
i= = − ( )[ ] −

1 1
1

12 2π π
θ ρ

ρ
. (35)

Until now, we have just dealt with the portion of light
that is internally reflected, without dealing with the por-

tion of light transmitted into air. For each ray incident
to the interface from direction     θ2

v , we obtain the radi-
ance of the light transmitted into air, i.e., toward the
detector, by applying a factor

    
1 1

2 2 2
2− ( )( ) ( )r nn

vθ /

to the incident radiance (see Eq. 34). It is equivalent,
by factorization, to apply this factor to the sum of the
all incident rays (coming from direction     θ2

v),  whose ra-
diance LS is expressed by Eq. (35). Hence, the radiance
of the light transmitted into the air along  direction     θ1

v ,
i.e., captured by the detector, is

    
L r r

n r
Ev

n
i

n
v B

B i

iθ
θ θ ρ

ρ π
1

2 2
1 1

1
12 2

2

2( ) = − ( )[ ] − ( )[ ]⎛
⎝⎜

⎞
⎠⎟ −

. (36)

Considering the radiance 
    
Lref

vθ1( )  that would be reflected
by a perfect white diffuse reflector illuminated with an
irradiance Ei (see Eq. 13)

    
L Eref i

vθ
π1( ) = / (37)

the ratio 
    L L

v v

ref
( ) ( )θ θ1 1  gives the reflectance factor RTL of

the substrate coated with a transparent layer

    
R r r

n rTL n
i

n
v B

B i
= − ( )[ ] − ( )[ ]⎛

⎝⎜
⎞
⎠⎟ −

1 1
1

12 22 2
2

2

θ θ ρ
ρ

. (38)

Equation (38) is the Shore and Spoonhower reflectance
equation applied to the case of a transparent coating.3
It reproduces the Williams–Clapper model2 if      θ1 45i = °,
    θ1 0v = °  and n2 = 1.53.

Williams and Clapper studied the case of ρB = 1 and
n2 = 1.53, and found that the reflectance of the coated
substrate was RTL = 1, i.e., all incident light is reflected.
They interpreted this result as compensation between
the effect of internal reflections and the effect of solid
angle spreading. Shore and Spoonhower have shown
recently that the compensation was accurate only for
the particular 45°/0° geometry and the particular refrac-
tive index of 1.53.3

The Lambertian substrate coated with a transparent
layer behaves nearly, but not exactly, as a Lambertian
reflector. This can be verified by comparing the element
of irradiance reflected by a perfect white diffuse reflec-
tor with and without coating. A perfect white diffuse
reflector reflects a constant radiance Ei/π (Eq. 37) in
every direction of the hemisphere; thus it reflects in a
direction     θ1

v  an element of irradiance,

    
dE d Eref

v
i

vθ
θ ω π1

1
( ) = cos / .

For a fixed solid angle, the plot of 
    
dEref

vθ1( )
 as a function

of     θ1
v  is a cosine curve (dashed line in Fig. 11, plotted

for dω = 1 and E1/π = 1) characteristic of a Lambertian
reflector. The coated white diffuse reflector reflects the
radiance     L

v( )θ 1  depending on     θ1
v  given by Eq. (36), and the

element of irradiance     dE L d
v v v( ) ( ) cosθ θ θ ω1 1

1= . The curve
of     dE

v( )θ 1  as a function of     θ1
v  (solid line in Fig. 11, for

    θ1
i = 45°, ρB = 1, n2 = 1.53, dω = 1 and Ei/π = 1) shows
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Figure 10. Path of the light from the source (collimated beam)
to the detector, with multiple internal reflections. The light
reflected by the substrate after having been internally reflected
k times by the interface is thought to be a source Sk.
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that the coated diffuse reflector does not exactly follow
Lambert’s cosine law: the coated diffuse reflector ap-
pears darker than the uncoated reflector if the viewing
angle is larger than 30° (ignoring the gloss due to ex-
ternal specular reflection).

Reflectance of a Colored Layer on a Lambertian
Substrate: The Williams–Clapper Model. In this
section, the substrate is coated with a colored layer, which
absorbs light as a function of its wavelength λ. We call tλ
the transmittance of the layer along a single base-to-in-
terface path normal to the base. In the previous section,
we characterized the reflectance of a surface coated with
a transparent layer (tλ = 1). Here, we present an exten-
sion of Eq. (38) for a transmittance, tλ < 1 considering
any     θ θ1 1

i v/  geometries.
The transmittance of the layer depends on the length

of the path traversed by the ray, according to the Beer–
Lambert law.12 The unit length is the length of a path
along the normal N of the interface. If the ray traverses
the layer with an angle θ with respect to N, the path
length is 1/cosθ and the attenuation applied to the ray
is     tλ

θ2/ cos  Figure 12 shows the path length of rays enter-
ing, emerging from, and internally reflected into the
colored layer.

We have seen above that the internal reflectance of
the interface between the air and a transparent layer is
ri (Eq. 28). We may generalize the expression of ri to an
interface between the air and a colored layer of trans-
mittance tλ. Thus, we follow the same reasoning line as
before. The generalization consists of inserting into Eq.
(24) the transmittance term     tλ

θ2/ cos  corresponding to a
double path of length 1/cosθ within the coated layer

    
d r t dr n n

2 2 2
2 1

Φ Φ= ( )/
/ cosθ λ

θ (39)

According to the same considerations as for Eqs. (24)
to (28), we obtain the internal reflectance riλ of the in-
terface between the air and a coated layer

    
r t r di nλ

π

λ
θ θ θ θ= ( )∫

0

2
2

2
2

/
/ cos sin (40)

The print is illuminated by a collimated beam of irra-
diance Ei coming with an incident angle     θ1

i . The beam
penetrates the colored layer with an angle     θ2

i  and with
a transmission factor     1 2 2− rn

i( )θ .  After having traversed
a path of length     1 2/ cosθ i  within the colored layer, the
light reaches the substrate with an irradiance

    
1

2
2

2
1− ( )[ ]r t En

i
i

i

θ λ
θ/ cos .

A ratio ρB of this irradiance is diffused and reflected
back by the substrate towards the interface. The irradi-
ance E0 received by the interface

E0 = ρB
    
1

2
2

2
1− ( )[ ]r t En

i
i

i

θ λ
θ/ cos ,

is internally reflected by the interface (in a proportion
riλ) and then reflected back by the substrate (in a pro-
portion ρB).  The irradiance E1 reflected by the substrate
towards the interface after one internal reflection is
therefore

E1 = ρB riλ E0,

and the irradiance Ek reflected by the substrate towards
the interface after k internal reflections is

Ek = (ρB riλ)k E0.

The total irradiance ES reemitted by the substrate
results from the sum of the all irradiances Ek yielding a
geometric series

    
E r t r ES n

i
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k
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which converges towards
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Figure 11. Evolution in function of the viewing angle     θ1
v

of the element of irradiance reflected by coated (dE, solid
line) and uncoated (dEref, dashed cosine curve) white dif-
fuse reflectors.

Figure 12. Path length of rays of light traversing a colored
layer. The unit length corresponds to a path along the normal
vector N.
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We now consider a ray of light emitted by the substrate
in the direction    θ2

v . Since the substrate is Lambertian,
the radiance of this ray is ES/π. It reaches the interface
with an attenuation factor 

    t
v

λ
θ1 2/ cos  due to the transmit-

tance of the layer. The radiance     L
v

2
2( )θ  incident onto the

interface is therefore

    
L r t t

r
Ev i v

n
i B

B i

i
2 2

1 12

2
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1

θ
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θ
λ

θ

λ
θ ρ

ρ π
( ) = − ( )[ ] −

/ cos / cos . (41)

According to Eq. (34), the radiance     L
v

1
1( )θ  transmitted

through the interface into direction     ( , )θ φ1
v  and captured

by the detector is
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r
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= − ( )[ ] − ( )
−

/ cos / cos

.   (42)

Considering the radiance     Lref

v( )θ 1  that would be reflected
by a perfect white diffuse reflector illuminated with an
irradiance Ei (see Eq. 13)

    
L Eref i

vθ
π1( ) = , (43)

the ratio     L L
v v

ref
( ) ( )/θ θ1 1  gives the reflectance factor RCL of

the substrate coated with a colored layer, for incident
angle     θ1

i  and viewing angle     θ1
v .
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. (44)

This expression is presented in a similar form by Shore
and Spoonhower.3 It reproduces the equation of Will-
iams and Clapper for the special case of n2 = 1.53,

    θ2
i = 45°, and     θ2

v = 0°.

Reflectance of a Colored Layer on a Lambertian
Substrate Measured with an Integrating Sphere
Geometry.  Shore and Spoonhower3 have generalized the
Williams–Clapper model to the integrating sphere mea-
surement geometry. In this geometry, the incident light
is a collimated beam oriented with an angle     θ1

i  in re-
spect to N. The path of the light within the layered sub-
strate is the same as above. However, in contrast to the
detector which measures a radiance (the radiance     L

v

1
1( )θ

detailed in Eq. 42), the integrating sphere measures an
irradiance, i.e., it measures light emerging from the
coated substrate in the all directions of the hemisphere.

The irradiance E emerging from the coated substrate
can be derived from the radiance     L

v

1
1( )θ  according to Eq. (7)

    
E L d d

v
v v v= ∫∫ ( )

0

2

0

2

1 1 1
1

π θπ
θ θ θ φ

/
cos sin . (45)

After inserting the expression of     L
v

1
1( )θ  (Eq. 42) into

Eq. (45), we obtain
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The integral in Eq. (46) gathers elements expressed
according to two different variables (angles     θ1

v  and     θ2
v ).

In order to express all elements according to the same
variable, we refer to Eq. (33) where

cos    θ1
v sin    θ1

v d    θ1
v  =     n2

2 cos    θ2
v sin    θ2

v d    θ2
v

and we obtain the following expression for the irradi-
ance captured by the integrating sphere
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Finally, the ratio E/Ei gives the reflectance as well
as the reflectance factor of the coated substrate, since
Ei is the incident irradiance as well as the irradiance
that would be reflected by a perfect white diffuser.
Therefore, the reflectance factor of the substrate coated
with a colored layer measured with an integrating
sphere is

    
R r

t t

rIS n
i B i

B i

i

= − ( )[ ] −
1

12
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2
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θ
ρ

ρ
λ
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(48)

with

    
t r t di nλ λ

θ
π

θ θ θ= − ( )( )∫ 1 2
2

1

0

2
/ cos

/
sin . (49)

Note that in Eq. (47), the factor     n2
2 , characteristic of

cone spreading, has disappeared. It is thus confirmed
that this factor appears only for radiance transfer
through an interface, but not for irradiance transfer.

A further interesting point concerns the particular
case of a transparent layer. By inserting tλ = 1 into Eqs.
(40) and (49), we have riλ = ri and tiλ = 1 – ri. Thus, Eq.
(48) becomes

    
R r r

rIS n
i

i
B

B i
= − ( )[ ] −( )

−
1 1

12 2θ ρ
ρ

. (50)

The expression of RIS corresponds to the Saunderson
correction,8 for the case where the external specular
reflection is discarded. The Saunderson correction cor-
rects the reflectance ρB of a substrate in order to take
into account multiple internal reflections at the inter-
face between the air and the coating layer.

Reflectance of a Halftoned Layer on a Lambertian
Substrate
Halftone Prints. In halftone prints, the substrate is
coated with small ink dots, covering a fractional area a
of the substrate surface. We consider a planar interface
between the air and the substrate and we assume that
the ink and the substrate have the same refractive in-
dex n2 (Fig. 13).

The print is illuminated with a collimated beam ori-
ented with an angle     θ1

i  in respect to N. A ratio     rn
i

2 2( )θ  is
reflected specularly in the air and may either reach or
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not reach the detector. Factor K indicates if the detector
captures the specular reflection (K = 1) or not (K = 0).

In contrast to the solid layer, the transmittance of
the halftone print varies as a function of the position.
The position where the light enters the print and
where it emerges has to be considered. It is necessary
to model the lateral propagation of light within the
print. Two classical approaches are based on opposite
assumptions:
• Murray and Davies4 assumed that the lateral propa-

gation of light within the substrate is far smaller
than the printed dot size, i.e., light always emerges
from the same colorant (paper or ink) as the colorant
from which it enters. This model is not considered
here since it does not take into account multiple
internal reflections.

• Clapper and Yule5 assumed that the light propaga-
tion is considerably larger than the dot size, i.e.,
the probability of a light ray entering a given
colorant and the probability of it exiting from a given
colorant are completely uncorrelated.

Recently, reflectance models have been proposed where
the probability of light exiting from a certain colorant
depends on the distance light needs to propagate later-
ally to reach that colorant.6,7 However, these models are
outside the scope of the present paper.

The Clapper–Yule Model. The model proposed by
Clapper and Yule5 is initially adapted to an integrating
sphere measurement geometry. This model can also be
applied to a     θ θ1 1

i v  geometry if specular surface reflec-
tions are discarded. Thus, we detail the case of the in-
tegrating sphere geometry, and then discuss the case of
a     θ θ1 1

i v  geometry.
The incident collimated light, of irradiance Ei enters

the print with a Fresnel transmission factor 1 –     rn
i

2 2( )θ
either in a colored area (transmittance tλ, probability a,
where a is the fractional area covered by the ink dots) or
in an uncolored area (transmittance 1, probability 1 − a).
It is then reflected by the substrate of reflectance ρB
which reemits toward the interface an irradiance (Fig.
14)

    
E r a at En

i
B i0 21 1

2
= − ( )[ ] − +( )θ ρ λ . (51)

A ratio ri of the irradiance E0 is internally reflected
at the interface (see Eq. 28), either at a colored area
(probability a, transmittance     tλ

2 , owing to two passes
through the ink layer) or at an uncolored area (prob-
ability 1 − a, transmittance 1). The internally reflected
light returns back into the substrate (reflectance ρB).
The irradiance reemitted by the substrate toward the
interface after one internal reflection is therefore

    
E r a at Ei B1

2
01= − +( )ρ λ

and the irradiance reemitted by the substrate toward
the interface after k internal reflections is

    
E r a at Ek i B

k
= − +( )( )ρ λ1 2

0.

The total irradiance ES reemitted by the substrate
towards the interface results from the sum of the all
irradiances Ek yielding a geometric series
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The irradiance E collected by the integrating sphere is

    
E r a at E K r Ei S n

i
i= −( ) − +( ) + ( )1 1

2 2λ θ (53)

where (1 – ri) is the transmittance of the interface (recall
the definition of transmittance above), (1 – a + atλ) ex-
presses the weighted mean between the part of the light
emerging from a colored area and the part of light emerg-
ing from a non colored area, and where     K r En

i
i2 2( )θ  is

the irradiance of the external specular reflection (see Eq.
19). After inserting Eq. (52) into Eq. (53) and dividing
both members by Ei we obtain the reflectance ρCY of the
halftone print according to the Clapper–Yule model for
the integrating sphere measuring geometry
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Note that Eq. (54) also corresponds to the reflectance
factor of a halftone print measured by an integrating
sphere using as reference a perfect white diffuser.

In their study, Clapper and Yule use as reference the
unprinted substrate, i.e., paper coated with a trans-
parent layer only; ρref is derived from Eq. (54) by set-
ting a = 0
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Then, the ratio ρ/ρref gives the reflection factor RCY
of the halftone print for the integrating sphere ge-
ometry
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where the reference diffuse reflector used for calibrat-
ing the measuring instrument is the substrate coated
with a transparent layer.

Equation (56) is in conformity with the formula de-
veloped by Clapper and Yule. If the external specular
reflection is discarded from the measure (K = 0), Eq.
(56) gives a simpler expression of RCY

Air

Substrate

Ink dot

a 1 – a 

Figure 13. A halftone print is made small ink dots, covering a
fractional area a of the substrate surface.
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We can show that Eq. (57) is also valid for a     θ θ1 1
i v

measurement geometry if it excludes the specular com-
ponent (K = 0). The radiance     L

v

1
1( )θ  perceived by the de-

tector, oriented with an angle     θ1
v  in respect to N,

depends on the radiance ES/π (with ES given by Eq. 52)
that is incident to the substrate side of the interface
and the attenuation applied to this irradiance while
passing though the ink dots (factor 1 – a + atλ) and
through the interface (factor 
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After inserting Eq. (52) into Eq. (58) we obtain the
reflectance
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and the reference reflectance corresponding to the re-
flectance of the paper coated with a transparent layer
(Eq. 59 with a = 0).
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The ratio ρ /ρref thus obtained yields the same result
as Eq. (57). Therefore, the expression of the halftone
print reflectance factor does not depend on the measure-
ment geometry, provided that the specular component
is not captured and that the unprinted substrate is cho-
sen as reference reflector.
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If the reference reflector is a perfect white diffuser
(ρref = 1/π), the reflectance factor of the halftone print
for a     θ θ1 1

i v  geometry is given by suppressing the factor
1/π in Eq. (59).

An interesting point to discuss is the special case of a
solid layer (a = 1). We could expect the Williams–Clap-
per model to be a particular case of the Clapper–Yule
model, but it is not exactly. For the integrating sphere
geometry excluding the external specular reflection, the
reflectance factor predicted by the Clapper–Yule model
(Eq. 54 with a = 1 and K = 0) is

    
R r

t r

t rCY a n
i B i

B i
=( ) = − ( )[ ] −( )
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2
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12
θ

ρ
ρ
λ

λ
(60)

whereas the reflectance factor predicted by the Will-
iams–Clapper model (Eq. 48) is
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λ

θ
λ
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. (61)

The difference between Eq. (60) and Eq. (61) is due to
the fact that Clapper and Yule do not take into account
the oblique paths within the colored layer, assuming that
they induce a non significant error.5 Reasoning along
this line, Eq. (60) can be derived from Eq.  (61) if the
three following approximations are admitted

(i)
    t t

i

λ
θ

λ
1 2/ cos ≈

(ii)     r t ri iλ λ≈ 2 (62)

(iii)     t t ri iλ λ≈ −( )1

where ri, riλ and tiλ are detailed respectively in Eq. (28),
(40) and (49). The detailed form of these approximations

Figure 14. Internal reflections within a halftone print: Ei is the incident irradiance, Ek the irradiance reflected by the substrate
after k internal reflections onto the interface (k = 0, 1, …) and dashed arrows represent diffuse light fluxes.
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makes explicit the omission of the exponent 1/cosθ,
which is characteristic of oblique paths.

The plots in Fig. 15 compare the evolution of the Clap-
per–Yule (RCY(a=1)) and Williams–Clapper (RIS) reflec-
tance factors as functions of the value of the
transmittance tλ. For every tλ value between 0 and 1,
the approximations of Eq. (62) induce an overestima-
tion of the print reflectance factor. For tλ = 0.78, RCY(a=1)
is 27.4% higher than RIS (maximum error).

Conclusions
By following a radiometric approach in deriving the
mathematical expressions for the Williams and Clap-
per and Clapper and Yule models, we try to give a more
profound understanding of the physical phenomena in-
volved. In particular, we model the reflectance of a
coated color layer on top of a diffuse substrate by con-
sidering as input a collimated light beam having a given
irradiance, computing the irradiance transmitted into
the interface, and summing up all irradiance compo-
nents diffusely reflected by the substrate and internally
reflected by the interface. The transmitted output radi-
ance (in the case of a θi/θv measuring geometry) or out-
put irradiance (in the case of an integrating sphere) can
then be easily derived from the sum of irradiance compo-
nents incident to the layer-air interface. The ratio of out-
put to input radiances or irradiances yields the
reflectance. The reflectance factor is the relationship be-
tween this reflectance and the reflectance of a white dif-
fuser. Such an approach allows us to derive and adapt
the Williams and Clapper and Clapper and Yule models
for various measuring geometries and for different ref-
erence white diffuse reflectors (coated paper, perfect
white diffuser). In addition, by comparing the Williams
and Clapper and Clapper and Yule models, we show that
the Clapper and Yule model makes the simplifying as-
sumption that the path of light across the colored me-
dium has a length corresponding to the vertical thickness
of that medium, and that its predictions consequently

tend to overestimate the print reflectance factors. In
future work, we intend to extend with the radiometric
approach presented and establish models which are also
capable of predicting the radiance or irradiance trans-
mitted across a coated diffuse substrate.    
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Figure 15. Clapper–Yule reflectance factor RCY(a=1) (dashed
line), and Williams–Clapper reflectance factor RIS (solid line)
as a function of the layer transmittance tλ, for the integrating
sphere geometry with     θ1

i = 45°, n2 = 1.53  and ρB = 1.




