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Abstract 

The color of materials such as paints, prints and glass may be characterized by a reflec-
tance or a transmittance spectrum. Modeling their reflectance and their transmittance 
requires describing the interaction of light, from the light source to the observer, across 
the different layers and interfaces. Each layer and interface behaves as a light reflector 
and transmitter, and is given the generic name of “biface”. Multilayer specimens, called 
“multifaces”, result from the superposition of various bifaces between which light is sub-
ject to multiple reflections and transmissions. 

 We establish a multiple reflection-transmission model which describes the transfers of 
fluxes between the different bifaces using the basic laws of geometrical optics. This ap-
proach is valid for multilayer specimen composed of strongly scattering and/or nonscat-
tering layers and flat interfaces. Weakly scattering layers and rough interfaces are allowed 
if they are surrounded by strongly scattering layers. 

 We first develop the multiple reflection-transmission model in a general manner, i.e. 
regardless to the specific optical properties of the bifaces. The light multiple reflection-
transmission process is represented by a Markov chain. The well established mathematical 
tools provided by the Markov theory enable deriving the formulae for the reflectance and 
transmittance of superposed bifaces. Then, we show how the multiple reflection-
transmission formulae are applied for a specific multiface and for a specific measuring 
geometry. We retrieve as special cases of our general model the Kubelka model for 
stacked intensely scattering layers, the Williams-Clapper model for a diffusing back-
ground coated with a non-scattering layer, the Saunderson correction, and the Clapper-
Yule model for high quality halftone prints. We finally explore new possibilities offered by 
the multiple reflection-transmission model, both for developing new reflectance or trans-
mittance models and for checking the relevance of parameters deduced from measured 
data. We develop a method for characterizing papers independently of the measuring ge-
ometry by modeling two superposed sheets of paper and draw the bases of a reflectance 
and transmittance prediction model for recto-verso halftone prints. 

 

Keywords : Multilayer reflectance and transmittance, multiple reflections and transmis-
sions, compositional spectral prediction model, Kubelka-Munk theory, Williams-Clapper 
model, Clapper-Yule model, Markov chains.  
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Résumé 

 La couleur de matériaux multicouches que l’on rencontre dans les peintures ou les im-
primés peut être caractérisée par un spectre de réflectance ou de transmittance. Pour pré-
dire de tels spectres, il est nécessaire de décrire l’interaction de la lumière avec les diffé-
rents constituants du multicouche (couches et interfaces), de la source lumineuse à 
l’observateur. Chacun de ces constituants se comporte comme un réflecteur et un trans-
metteur lumineux, auquel on donne le nom générique de “biface”. Dans les multicouches, 
“appelés multifaces”, la lumière est sujette à un phénomène de réflexion-transmission 
multiple entre les différents bifaces superposés. 

 Nous proposons un modèle de réflexion-transmission multiple où les transferts de flux 
entre bifaces sont établis d’après les lois de l’optique géométrique. Cette approche est 
valable pour des multicouches composés de couches fortement diffusantes, de couches non 
diffusantes, et d’interfaces planes. Elle reste valable avec des interfaces rugueuses et des 
couches faiblement diffusantes lorsque celles-ci sont directement bordées par des couches 
fortement diffusantes.  

 Nous développons d’abord le modèle général de réflexion-transmission multiple, sans 
spécifier la nature diffusante ou non des bifaces. Le processus de transfert lumineux est 
représenté par une chaîne de Markov. La théorie de Markov nous offre les outils mathé-
matiques permettant d’obtenir efficacement les formules de réflectance et de transmit-
tance du multicouche. Nous montrons ensuite comment la réflectance et la transmittance 
des faces doivent être spécifiées pour un multicouche et une géométrie de mesure donnés. 
Nous obtenons ainsi un modèle compositionnel valable pour tout type de multicouche 
correspondant à un multiface régulier. Le modèle de Kubelka, spécifique aux empilements 
de couches fortement diffusantes ayant toutes le même indice de réfraction, le modèle de 
Williams-Clapper, spécifique aux fonds diffusants couverts d’une couche transparente 
colorée, la correction de Saunderson, ainsi que le modèle de Clapper-Yule valable pour les 
imprimés en demi-ton à linéature élevée deviennent des cas particuliers de notre modèle 
compositionnel. Enfin, nous explorons quelques nouvelles possibilités offertes par notre 
modèle, tant pour prédire des réflectance et des transmittances de multicouches (papiers, 
imprimés), que pour vérifier des valeurs de spectre déduites de mesures (spectre de 
transmittance d’une encre, paramètres intrinsèques d’un papier). Nous établissons égale-
ment les bases d’un modèle de prédiction spectral pour des échantillons imprimés en de-
mi-tons à la fois sur le recto et sur le verso. 

 

Mots-clés : Réflectance et transmittance multicouches, réflexions et transmissions multi-
ples, modèle compositionnel de prédiction de spectres, théorie de Kubelka-Munk, modèle 
Williams-Clapper, modèle Clapper-Yule, chaînes de Markov. 
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Introduction 

 For thousands of years, the visual aspect of man-made objects has undergone multiple 
modifications due to the ingeniosity of craftmen and artists, creating new styles and satis-
fying new clients. The increasing complexity of the crafmanship (and later on the indus-
try) of potteries, ceramics, glasses, paintings and printing processes, etc. has been devel-
oped on a basis of trial-and-error. In a very late stage, with geometrical optics in the 17th 
century and wave nature of light in the 19th century, a thorough understanding of these 
complex processes has taken place. It has appeared that the concept of “color” is very 
complex because it mixes three agents : light itself, matter and the human vision system 
[ZB03].  

 This practical complexity of the domain of color and the growing needs of industry in 
terms of quality and reproducibility explains that more or less ad hoc models have been 
proposed in a sporadic manner, for different classes of material. On the one side, physical 
models describe the changes of propagation and of spectrum that light undergoes when 
interacting induced with material objects. On the other side, psychophysical models study 
how the spectral image of objects carried by light is analyzed and interpreted by the hu-
man visual system in terms of color, contrast [HV04], transparency [SIM02], gloss 
[OKV04], etc.  

 The present work focuses on the physical aspect of color, i.e. on the relationship be-
tween light spectra considered respectively before and after reflection or transmission by 
an object, given by a reflectance or a transmittance spectrum. For predicting such spectra 
for a given multilayer object, it is necessary to describe the behavior of light in each layer 
and at each interface between the layers, which may extremely complex due to coexis-
tence of multiple phenomena of reflection, refraction, scattering [Cha60, BS63], diffrac-
tion, extinction or interference [BW99], generally dependent on the directionality and the 
polarization of light.  

 In order to simplify the multilayer reflectance and transmittance model, we consider 
only natural incident light, which is incoherent and unpolarized [BW99]. We also consider 
multilayers as being superpositions of layers and interfaces between these layers, each one 
being responsible of light reflection, transmission and possibly absorption. We assume 
that the reflectance and the transmittance of the different layers and interfaces can be 
determined independently, using for each one a specific model relying on geometrical op-
tics: non-scattering layers may be characterized thanks to Beer’s law [Per95]; intensely 
scattering layers thanks to the Kubelka-Munk two-flux theory [KM31]; categories of 
weakly scattering layers thanks to a particular solution of the radiative transfer equation 
[Cha60]; flat interfaces thanks to Fresnel’s formulae [BW99] and rough interfaces with 
large roughness thanks to a microfacet model [TS67]. Thanks to the principle of conserva-
tion of energy, absorption is considered as the complementary of reflection and transmis-
sion. Multilayers containing layers or interfaces for which the wave nature of light should 
be explicitly taken into account are excluded from the present study. Non-scattering lay-
ers are assumed to be thick enough for avoiding interference phenomena.  

 For predicting the reflectance and the transmittance of the multilayer specimens speci-
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fied above, we introduce a new modelization methodology which has been primarily de-
veloped for paper and prints but may also be suitable for other multilayer objects, such as 
glass slices or photographs. In our approach, light interacting with colored objects consists 
of a collection of directed photons that are subject to reflection or transmission. Various 
models using this reflection/transmission basis have appeared in the 1950s. They concern 
complex materials, such as paper or pigmented coating, but use a reduced number of pa-
rameters and a relatively simple mathematical development: Kubelka’s model [Kub54] 
expresses the reflectance and the transmittance of superposed intensely scattering layers 
as functions of the reflectance and the transmittance of each layer; Williams and Clapper 
[WC53] modeled the reflectance of a diffusing background coated with a non-scattering 
absorbing layer, as a function of the reflectance of the background and the transmittance 
of the non-scattering layer; Clapper and Yule [CY53] developed a model for halftone 
prints similar to the Williams-Clapper model, with some simplifications in the equations 
[HH04]. The accuracy of these models has been experimentally stated for the type of 
specimens that they concern. However, as a major drawback, they are not general enough 
for being simply extended to new types of colored supports. For instance, the Williams-
Clapper model, initially developed for photographs, cannot be used anymore if one likes 
to protect a photograph with a tinted glaze. None of the models mentioned above enables 
considering such a multilayer comprising a paper sheet, a colored coating and a glass 
layer with an eventual air layer between them, all layers having reflecting and transmit-
ting interfaces. One would have to develop a specific model for that special case [SHH06]. 
Furthermore, if one places behind the glaze a halftone print instead of a photograph, an-
other specific model should be again developed. We thus see the practical interest that 
would provide a more general model where the optical phenomena of reflection and 
transmission would be described independently of the material.  

 Radiometry defines functions permitting to characterize illuminations, reflections and 
transmissions regardless of specified objects. We follow the same idea for multilayers, by 
describing light reflections and transmissions inside an abstract specimen composed of 
unspecified superposed elements. Every element able to reflect or/and transmit light, i.e. 
every layer and interface between layers, is represented by a single concept named “bi-
face”. The adjacency of two bifaces and the mutual exchange of light between them due 
to multiple reflection-transmission are represented by the fundamental concept of “com-
position” of bifaces. In a first step, the reflectance and the transmittance of the bifaces 
are characterized for its both sides (named “faces”). In a second step, a multiple reflec-
tion-transmission model describes the transfers of fluxes between the faces contained in 
the multilayer specimen (named “multiface”). The obtained general expressions for reflec-
tance and transmittance of multifaces are, in the most general case, irreducible infinite 
sums, but they can often be reduced to exact closed-form formulae. These formulae char-
acterize the composition of bifaces and are by consequent called “composition formulae”. 

 Our compositional model aims at embodying all types of interfaces (flat, rough) and 
layers (transparent, weakly or intensely scattering). It should be capable of considering as 
well polished glass slices as matte paper sheets, in which light behaves in an extremely 
different manner. For the purpose of generality, we have created an appropriate formal-
ism comprising: 1) a classification of the bifaces according to their light scattering proper-
ties, 2) different well-defined types of reflectances and transmittances, 3) a graphical 
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framework permitting to visualize the multiple reflection-transmission of light within mul-
tifaces, 4) a notational framework including a matrix-like formulation for the composition 
of bifaces.  

 The notion of composition and the compositional formulae, as well as the conditions 
for their validity and the way for using them in special applications, are the main contri-
bution of this thesis. The present dissertation is structured according to four parts, each 
one being composed of two chapters:  

Part I (Chap. 1 and 2) − Basic definitions  

 Chapter 1 gives the definitions of reflectance and transmittance and presents briefly 
commonly used measuring devices. Chapter 2 gives the definitions of face, biface and mul-
tiface, on which our formalism relies. Bifaces and multifaces are classified according to 
their scattering properties.  

Part II (Chap. 3 and 4) − Optical properties of interfaces and layers 

 This second part presents the characteristics of bifaces, i.e. of interfaces and of layers. 
The different types of interfaces and of layers are presented in two chapters according to 
their scattering properties. Chapter 3 concerns flat interfaces and transparent layers 
(grouped into the concept of “transparent bifaces”), which have in common the property 
of being nonscattering. Chapter 4 deals with rough interfaces and scattering layers (“scat-
tering bifaces”). Intensely scattering layers (“Lambertian bifaces”) are considered sepa-
rately. 

Part III (Chap. 5 and 6) − The compositional model 

 The compositional model is presented in two parts: in the first part (Chapter 5), the 
reflectance and transmittance formulae for multifaces (the “compositional formulae”) are 
established regardless to the nature of the bifaces. Then, in Chapter 6, we show how the 
reflectance and transmittance of each biface are specified, first in general, then in the spe-
cial cases of multifaces considered in the existing models of Kubelka [Kub54], of Saunder-
son [Sau42], of Williams and Clapper [WC53], of Shore and Spoonhower [SS00] and of 
Simonot, Hébert and Hersch [SHH06]. 

Part IV (Chap. 7 and 8) − Application of the compositional model to papers and prints  

 We apply our compositional model to papers, in Chapter 7, and to prints, in Chapter 
8. We develop a method for characterizing papers independently of the measuring geome-
try by modeling two superposed sheets of paper. We also compare the coherence between 
ink transmittances deduced from the measure of the reflectance and of the transmittance 
of monocolorant prints. Finally, we draw the bases of a reflectance and transmittance 
model for recto-verso halftone prints. 
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Crown-shaped glossy coating deposited on a matte magenta flat tint. The surface 
reflection on top of the glossy area as well as the multiple reflections taking place 
beneath the air-coating interface are responsible of remarkable changes of color 
compared to the matte area (Front page of [Hel02], photograph by Siegfried Marque). 
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Chapter 1. 

Reflectance and transmittance 

Radiometry aims at characterizing rigorously the intuitive concepts of light quantity 
and spatial location, without having to consider specifically any type of material. In 
the present chapter, we first recall the four fundamental radiometric quantities: flux, 
irradiance, intensity and radiance (Sect. 1.1). They permit to characterize the two 
main phenomena of interest in our study, i.e. reflection and transmission. The frac-
tions of incident light that are reflected and transmitted by the material are thus rep-
resented by the reflectance and the transmittance (Sect. 1.2) whose definition necessi-
tates specifying explicitly the conditions of illumination and the conditions of observa-
tion. We define special types of reflectance and transmittance for the needs of the 
next chapters, called “directional” when the incident light comes from a single direc-
tion, “diffuse” when it comes from the whole hemisphere with a nonhomogenous an-
gular distribution, and “Lambertian” when it comes from the hemisphere with a ho-
mogenous angular distribution. Finally, we propose a survey of common devices used 
for measuring reflectances and transmittances (Sect. 1.3).  

1.1 Basic concepts of radiometry 

 Radiometry defines four fundamental quantities relative to radiations: radiant flux, 
irradiance, radiant intensity and radiance [McC94]. These quantities can be applied to 
light and can be measured in practice with instruments in laboratories.  

 We consider that incident light is natural, i.e. incoherent and unpolarized. Natural 
unpolarized light may be modeled by two independent and equal linearly polarized com-
ponents [BW99]. The radiometric quantities may therefore be decoupled into these two 
components. There is no time-dependent behavior in the system, which excludes phospho-
rescence1. The energy of different wavelengths is decoupled, i.e. the energy associated with 
a certain region of space or surface at wavelength λ1 is independent of the energy at 
wavelength λ2, which excludes phenomena of fluorescence2. Every radiometric quantity 
may therefore be a wavelength-dependent function.  

1.1.1 The four fundamental radiometric quantities 

 Radiant flux Φ (or simply flux) is the energy flowing through a surface per unit time. 
Flux is expressed in watts.  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

1 Phosphorescence: Persistent emission of light following exposure to and removal of incident radiation. 
2 Fluorescence: The emission of electromagnetic radiation stimulated in a substance by the absorption of 
incident radiation and persisting only as long as the stimulating radiation is continued. 
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S
x

x dθ dA

dφ

dθθ

x sinθdφ

N

dω

flux element 
d 2Φ  

ds

ds cosθ

θ

(a) (b)  

Fig. 1.1: Geometry for the definitions of (a) solid angle and (b) radiance.  

The solid angle dω subtended by area dA at point S is the ratio of the area dA of a portion 
of sphere of center S to the squared radius x of this sphere  

 2/d dA xω =  (1.1) 

A solid angle subtended by an infinitesimally small area on a sphere, whose location is 
specified by the zenithal angle θ and the azimuthal angle φ, is called a differential solid 
angle (Fig. 1.1a). Its relation with angles θ and φ is given by 

 sind d dω = θ θ φ  (1.2) 

In order to clarify some angle-dependent expressions, we will often designate directions 
using a differential solid angle instead of a pair of zenithal and azimuthal angles.  

 The irradiance E (also called brightness) is the radiant flux per unit area that is inci-
dent on, passing through or emerging from a specified point in a specified surface (ex-
pressed in watts/m2). Considering a flux dΦ flowing through a given set of directions (e.g. 
the hemisphere) relatively to an element ds of area, the irradiance is 

 
d

E
ds
Φ

=  (1.3) 

A flux element d2Φ(dω) flowing within a differential solid angle dω defines an element of 
irradiance ( )dE dω  

 ( )
( )2d d

dE d
ds

Φ ω
ω =  (1.4) 

The radiant intensity I is the radiant flux per unit solid angle that is incident on, passing 
through or emerging from a point in space and propagating in a specified direction dω 
(expressed in watts/steradian). For a flux element dΦ(dω) flowing through a differential 
solid angle dω 
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 ( )
( )d d

I d
d

Φ ω
ω =

ω
 (1.5) 

The radiance L is the flux per unit projected area and per solid angle that is incident on, 
passing through or emerging from a specified point in a specified surface in a specified 
direction [expressed in watts/(steradian.m2)]. The defining equation of radiance is 

 ( )
( ) ( )

  

2 2

cos sinP

d d d d
L d

ds d ds d d
Φ ω Φ ω

ω = =
ω θ θ θ φ

 (1.6) 

where d2Φ( )dω  is the element of flux, sind d dω = θ θ φ  is the differential solid angle in a 
specified direction (θ,φ), and cosPds ds= θ , called projected area, is the area of the projec-
tion of elemental area ds onto a plane perpendicular to direction (θ,φ) (Fig. 1.1b).  

1.1.2 Relation between irradiance and radiance 

 Combining (1.4) and (1.6) yields the following relation 

 ( ) ( ) cosdE d L d dω = ω θ ω  (1.7) 

where the solid angle sind d dω = θ θ φ  denotes the direction of radiance L and element of 
irradiance dE. An equivalent angular notation would give 

 ( ) ( )  , , cos sindE L d dθ φ = θ φ θ θ θ φ  

Summing up the elements of irradiance over the hemisphere Ω yields an irradiance E. By 
integrating (1.7), one obtains the relationship between irradiance and radiance 

 ( ) ( ) ( )
π π

   

2 /2

=0 0
cos , cos sin

d d
E dE d L d d L d d

ω∈Ω ω∈Ω φ θ=
= ω = ω θ ω = θ φ θ θ θ φ∫ ∫ ∫ ∫  (1.8)  

1.1.3 Radiance invariance 

 The radiance emitted by a surface element ds1 towards a second surface element ds2 is 
equal to the radiance received by ds2 from ds1. This property is called the radiance in-
variance principle [McC94, p. 111]. It allows saying, for example, that the radiance cap-
tured by a detector observing a piece of paper is equal to the radiance emitted by the 
paper towards the detector.  

 Let us call N1 and N2 the normal vectors of ds1 and of ds2 and take a point P1 on sur-
face element ds1 and a point P2 on surface element ds2 (Fig. 1.2). The segment [P1P2] of 
length x forms an angle θ1 with N1 and an angle θ2 with N2. Differential solid angle dω1, 
subtended at point P1 by ds2, and solid angle dω2, subtended at point P2 by ds1, are [see 
Eq. (1.1)] 

 2
1 2 /Pd ds xω =    and   2

2 1 /Pd ds xω =  (1.9) 

where 2 2 2cosPds ds= θ  and 1 1 1cosPds ds= θ  are the projected areas of ds2 and of ds1 respec-
tively. It follows from (1.9) that  
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 1 2

2 1

P Pds ds
d d

=
ω ω

 (1.10) 

which may be written in the form 

 1 1 1 2 2 2cos cosds d ds dθ ω = θ ω  (1.11)   

Eqs. (1.11) is called the principle of reciprocity of transfer volume [Gla95, p. 655]. 

 A flux element 2d Φ  flows along [P1P2]. By inserting relation (1.9) into the defining 
expression for radiance [Eq. (1.6)], one obtains 

 
2 2

1 2
1 1 1 2 2 2cos cos

d d
L L

ds d ds d
Φ Φ

= = =
θ ω θ ω

 (1.12) 

Hence, the radiance L1 emitted by ds1 is equal to radiance L2 received by ds2. 

 

N1

dω2

ds1

x

ds2cosθ2

ds2

ds1cosθ1

P1

P2

N2

dω1   

 

Fig. 1.2: The radiance emitted by 1ds  towards 2ds  is equal to the radiance re-
ceived by 2ds  from 1ds . 

1.1.4 Lambert’s law 

 The radiance L emitted by a perfectly diffuse emitter is independent of the direction of 
emission, i.e. it is constant. Such emitters are called Lambertian emitters since the ele-
ment of irradiance they reflect in each direction of the space verify Lambert’s cosine law 
(this property is a consequence of Eq. (1.7) with a constant radiance). According to 
Eq. (1.8), the irradiance emitted by a Lambertian emitter is [McC94, p.18] 

 
π π

π   

2 /2

0 =0
cos sinE L d d L

φ= θ
= θ θ θ φ =∫ ∫  (1.13) 

Conversely, when an irradiance E is emitted by a Lambertian emitter, a radiance equal to 
E/π flows in every direction of the hemisphere.  
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1.2 Definitions of reflectance and transmittance 

 The fractions of light that are reflected and transmitted by a given material are com-
monly called “reflectance” and “transmittance”. However, since materials generally have 
a directional dependence in their response to the incident light, there exist various types 
of reflectance and transmittance. One should consider the directions from which the inci-
dent flux incomes as well as the directions at which the reflected and transmitted fluxes 
are observed. We present here successively the three mains sorts of functions: bidirec-
tional reflectance and transmittance functions, (Sect. 1.2.1), reflectance and transmittance 
(Sect. 1.2.2), and reflectance and transmittance factor (Sect. 1.2.3).   

1.2.1 BRDF and BTDF 

 According to Nicomedus [Nic77], the reflection process of light is embodied in the fun-
damental equation relating an element of irradiance ( )idE dω , coming from direction idω , 
and the radiance ( )r rL dω  reflected in direction rdω  

 ( ) ( ) ( ),r r R i r iL d f d d dE dω = ω ω ω  (1.14) 

Function fR, depending on the incidence and reflection directions, is the bidirectional re-
flectance distribution function (BRDF). It is a ratio of reflected radiance to incident 
monodirectional irradiance 

 ( )
( )
( )

, r r
R i r

i

L d
f d d

dE d

ω
ω ω =

ω
 (1.15) 

The bidirectional transmittance distribution function (BTDF) fT is similarly defined, for a 
transmitting specimen  

 ( )
( )
( )

, t t
T i t

i

L d
f d d

dE d

ω
ω ω =

ω
 (1.16) 

Lambertian reflectors and transmitters: A reflector is said to be Lambertian when its 
BRDF is a constant, i.e., is independent of the incidence and the reflection directions. 
Likewise, a Lambertian transmitter has a constant BTDF.  

1.2.2 Reflectance and transmittance 

 The reflectance R is the dimensionless ratio of a reflected element of flux dΦr to an 
incident element of flux dΦi, both fluxes being respectively contained within specified solid 
angles Γr and Γi. The transmittance T is the ratio of a transmitted element of flux dΦt to 
an incident element of flux dΦi, respectively contained within solid angles Γt and Γi  

 
( )
( )i r

r r

i i

d
R

dΓ →Γ

Φ Γ
=

Φ Γ
   and   

( )
( )i r

t t

i i

d
T

dΓ →Γ

Φ Γ
=

Φ Γ
 (1.17) 

Assuming that the incident, the reflected and the transmitted fluxes are relative to the 
same element of surface, reflectance and transmittance are also ratios of irradiances 
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( )
( )i r

r r

i i

E
R

EΓ →Γ

Γ
=

Γ
   and   

( )
( )i r

t t

i i

E
T

EΓ →Γ

Γ
=

Γ
 (1.18) 

 Γi is called incidence solid angle, and Γr and Γt are called observation solid angles. The 
observation solid angles may be different from the sets of directions over which the inci-
dent light is reflected and transmitted. Every reflectance is related to the BRDF by the 
following equation 

 
( ) ( )

( )

, cos cos

cos
i i r r

i r

i i

R i r i i i i r r
d d

i i i i
d

f d d L d d d
R

L d d

ω ∈Γ ω ∈Γ
Γ →Γ

ω ∈Γ

ω ω ω θ ω θ ω
=

ω θ ω

∫ ∫
∫

 (1.19) 

where fR is the BRDF of the reflector, sini i i id d dω = θ θ φ  and sinr r r rd d dω = θ θ φ  are differ-
ential solid angles according to which the integrations are performed, and Li is a radiance 
function specifying the angular distribution of the incident flux within the incidence solid 
angle. The detailed calculation leading to relation (1.19) is given in Appendix A.1. An 
analog relation exists between the BTDF ( ),T i tf d dω ω  and the transmittance 

i r
TΓ →Γ   

 
( ) ( )

( )

, cos cos

cos
i i t t

i t

i i

R i t i i i i t t
d d

i i i i
d

f d d L d d d
T

L d d

ω ∈Γ ω ∈Γ
Γ →Γ

ω ∈Γ

ω ω ω θ ω θ ω
=

ω ψ ω

∫ ∫
∫

 (1.20) 

 However, definitions (1.19) and (1.20) are two general for the needs of our study. We 
will encounter only three configurations of incidence solid angle, reflection solid angle and 
incidence angular distribution. We consequently define three types of reflectance, named 
“directional”, “diffuse” and “Lambertian” (Fig. 1.3). Every reflector is assumed to be 
isotropic, i.e. to have a reflectance independent of the azimuth angle of incidence. Equiva-
lent definitions could be formulated for transmittance. 

Lambertian

Ω
Ω

Diffuse

Ω
Ω

Directional

dωi

Ω

 

Fig. 1.3: Directional, diffuse and Lambertian reflectances. 

− Directional reflectance, ( )iR θ , is defined for a directional incident light, i.e. for an 
element of irradiance ( )idE dω  coming from a single direction sini i i id d dω = θ θ φ . The 
whole flux reflected over the hemisphere is observed. The radiance reflected in a particu-
lar direction rdω  is given by Eq. (1.14). The corresponding element of irradiance is  

 ( ) ( ) ( ) ( )  cos , cosr r r r r r R i r i r rdE d L d d f d d dE dω = ω θ ω = ω ω θ θ ω  

By summing up all the reflected elements of irradiance over the hemisphere, one obtains 



Reflectance and transmittance 11 

 

the total reflected irradiance. The ratio of this total reflected irradiance to the incident 
irradiance ( )idE dω  gives the directional reflectance ( )iR θ , whose expression as a function 
of the BRDF fR is  

 ( ) ( ) , cos
r

i R i r r r
d

R f d d d
ω ∈Ω

θ = ω ω θ ω∫  (1.21)  

Directional reflectances will be used as directional functions characterizing the optical 
properties of certain optical elements.  

− Diffuse reflectance, difR , is defined for a nonuniformly distributed incident light com-
ing from all directions of the hemisphere (hemispherical incidence solid angle Ω). The 
angular distribution of the incident flux is characterized by a radiance function ( )i iL dω . 
All the flux reflected over the hemisphere is observed (hemispherical observation solid 
angle Ω). The diffuse reflectance is related to the BRDF by  

 
( ) ( )

( )

 

 

, cos cos

cos
i r

i

R i r i i i i r r
d d

dif

i i i i
d

f d d L d d d
R

L d d

ω ∈Ω ω ∈Ω

ω ∈Ω

ω ω ω θ ω θ ω
=

ω θ ω

∫ ∫
∫

 (1.22) 

It is also related to the directional reflectance R(θi) by  

 
( ) ( )

( )

 

 

cos

cos
i

i

i i i i i
d

dif

i i i i
d

R L d d
R

L d d

ω ∈Ω

ω ∈Ω

θ ω θ ω
=

ω θ ω

∫
∫

 (1.23) 

which derives from a combination of Eqs. (1.21) and (1.22). The angle distribution of the 
reflected light may be represented by a radiance function Lr related to the incident radi-
ance function Li and to the BRDF by 

 ( ) ( ) ( ) , cos
i

r r R i r i i i i
d

L d f d d L d d
ω ∈Ω

ω = ω ω ω θ ω∫  (1.24) 

− Lambertian reflectance, RL, is defined for a uniformly distributed incident light com-
ing from all directions of the hemisphere (Lambertian illumination). The angular distribu-
tion of the incident flux is characterized by a constant radiance Li (Sect. 1.1.4). The 
whole flux reflected over the hemisphere is observed (hemispherical observation solid an-
gle Ω). Lambertian reflectance is expressed as a function of the BRDF as in Eq. (1.22), 
but since here Li is a constant, it may be taken out of the integrals 

 
( ) , cos cos

cos
i r

i

i R i r i i r r
d d

L

i i i
d

L f d d d d
R

L d

ω ∈Ω ω ∈Ω

ω ∈Ω

ω ω θ ω θ ω
=

θ ω

∫ ∫
∫

 (1.25) 

The term Li disappears from the expression for RL, and the integral at the denominator 
can be simplified as 

 
2 /2

0 0
cos cos sin

i i i
i i i i i i

d
d d d

π π

ω ∈Ω φ = θ =
θ ω = θ θ θ φ = π∫ ∫ ∫  (1.26) 

Therefore, the relation between the Lambertian reflectance and the BRDF becomes 
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 ( ) 

1
, cos cos

i r
L R i r i i r r

d d
R f d d d d

ω ∈Ω ω ∈Ω
= ω ω θ ω θ ω

π∫ ∫  (1.27) 

The Lambertian reflectance may also be expressed as a function of the directional reflec-
tance, which will be frequently useful in the next chapters. The combination of (1.21) and 
(1.27) yields  

 ( ) ( )  

2 /21 1
cos cos sin

i i i
L i i i i i i i i

d
R R d R d d

π π

ω ∈Ω φ θ
= θ θ ω = θ θ θ θ φ

π π∫ ∫ ∫  (1.28) 

Furthermore, owing to the assumption of anisotropy of reflectors, the integrated terms 
are independent of the azimuth angle φi. The integration according to that angle yields a 
factor 2π. Using some trigonometry, one obtains the following relation between the Lam-
bertian and the directional reflectances 

 ( ) 

/2

0
sin

i
L i i iR R d

π

θ =
= θ 2θ θ∫  (1.29) 

1.2.3 Reflectance and transmittance factor 

 The reflectance factor R̂  is the ratio of the flux dΦ reflected by a specimen to the flux 
dΦref reflected by a certain reference support illuminated and observed in the same way. 
According to that definition, R̂  is also a ratio of irradiances, a ratio of radiances and a 
ratio of reflectances 

 
( )
( )

( )
( )

ˆ
ref ref ref ref

dE d L dd R
R

d dE d L d R

ω ωΦ
= = = =

Φ ω ω
 (1.30) 

The reference support is generally a perfect white diffuser, such as a barium sulfate 
(BaSO4) white tile, whose reflectance is almost 1 for the wavelengths in the visible spec-
trum. In the printing field, the reference support is sometimes chosen to be the unprinted 
printing support itself.  

Remark: When the reference reflectance is 1, the reflectance factor and the reflectance 
indicate the same dimensionless quantity. This may be one reason why the term “reflec-
tance” is often used in the literature instead of the term “reflectance factor”. 

 The transmittance factor is the ratio of the flux transmitted by a specimen to the flux 
transmitted by a reference transmitter, which may be simply air (transmittance 1). 

1.3 Measuring geometries 

 Measurement setups are composed of a light source and a capturing device. Although 
there are many different sorts of sources and detectors, standard setups generally use a 
directional or a Lambertian light source and a radiance detector or an integrating sphere 
for the capture of light. BRDFs or BTDFs are measured using a goniophotometer, com-
posed of a collimated light source and a radiance detector that can be positioned at any 
angle.  
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1.3.1 Setups for reflectance and transmittance measurements 

 Integrating spheres are spherical cavities internally coated with a nonabsorbing mate-
rial behaving as a perfect diffuser [PER93], e.g. barium sulfate (BaSO4). In reflectance 
measurements, integrating spheres play the role of diffuser for the illuminating flux. The 
light reflected by the specimen is thus captured by a radiance detector, oriented at 0° or 
8°. The corresponding geometries are called the “diffuse/0°” geometry or respectively the 
“diffuse/8°” geometry. Integrating spheres may also be used for the capture of the light 
reflected by the specimen. The incident light is often directional and oriented at 0° or 8°, 
yielding the so-called “0°/diffuse” geometry or respectively the “8°/diffuse” geometry 
(Fig. 1.4).  

ΦrSpectro-
photometer Sample

Light source

Φi

ΦrSpectro-
photometer

Sample

Light source

Φi

 

Fig. 1.4: Integrating spheres used in a 0°/diffuse geometry (left) and a diffuse/0° 
geometry (right). 

 In contrast with integrating spheres, a radiance detector captures only a fraction of the 
flux having interacted with the specimen. This fraction depends on the detector area and 
solid angle, which are generally unknown. With radiance detectors, one often considers 
the capture of radiance instead of flux. Thus, the optical properties of specimens are char-
acterized by the ratio of the captured radiance Ld to the incident irradiance Ei, which is  
not precisely a reflectance, but is proportional to a reflectance  

 d
rad

i

L
R

E
= ξ ⋅    (1.31) 

where ξ, called “apparatus constant”, is defined by Eq. (A.12) (Appendix A.2). The ap-
paratus constant is characteristic of each detector, and is generally not known. In order to 
cancel it, measures are performed in reference to a perfect white diffuser. The ratio 
(Ld/Ei)ref for this reference support is equal to 1/π, yielding a reflectance /refR = ξ π . We 
thus characterize the specimen by a reflectance factor r̂adR , given by the ratio /rad refR R , 
which is independent on the apparatus constant (see Appendix A.2). 
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 ˆ d
rad rad

i

L
R R

E
π

= = π
ξ

 (1.32) 

 The so-called bidirectional geometry is formed by both a directional light source and a 
radiance detector. The so-called “45°/0° geometry”, widely used for measuring reflec-
tances, is a bidirectional geometry where light is incident at 45° and a radiance detector 
captures light at 0°. In order to reduce the influence of an unexpected anisotropy in the 
observed portion of the specimen, photospectrometers built on the 45°/0° geometry gen-
erally illuminate the specimen from all the azimuth angles instead of a single one. The 
light source has therefore the form of an empty cone of angle 45° (Fig. 1.5). 

 

45°

Φi

Φr

 

Fig. 1.5: Representation of the 45°/0° geometry for reflectance measurements. 

 For transmittance measurements, we may place the specimen between a diffusing light 
table and an integrating sphere or a radiance detector. The light table may be considered 
as a Lambertian emitter. The specimen is preferably raised from the light table, for ensur-
ing that it has a uniform relative refractive index with air, with a sufficient distance in 
order to avoid multiple reflections with the surface of the table.  

1.3.2 Measuring the BRDF  

 The measure of BRDF is performed with a goniophotometer. A directional light source 
and a radiance detector are attached to rotating arms, which permits to measure reflected 
flux for any couple of directions of incidence and observation.  

 The flux d2Φ captured by the radiance detector is proportional to the BRDF fR when 
the portion of the specimen’s surface observed by the detector is completely illuminated 
by the incident light beam 

 ( ) 

2 ,R id k fΦ = θ θ    (1.33) 

However, it frequently happens that the observed portion of specimen is only partially 
illuminated, especially when the observation direction reaches grazing angles for which 
the radiance detector intercepts a very large portion of the specimen’s surface. In this 
case, the flux captured by the detector is proportional to the BRDF multiplied by the 
cosine of the observation angle 
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 ( )  

2 , cosR id k fΦ = θ θ θ    (1.34) 

The operation of multiplication by cosθ permitting to convert the measured flux into the 
BRDF is called “the cosine correction”. We develop in Appendix A.3 a full explanation of 
the relationship between the flux captured by the detector and the BRDF, as well as a 
precise description of the cosine correction. 

Summary 

 The radiometric definitions of flux, irradiance and radiance, recalled at the beginning 
of this chapter, provide a solid theoretical framework for describing the spatial location of 
light with respect to materials. Thus, considering a single or a set of direction(s) for the 
incident and the observed lights, reflections and transmissions can be rigorously charac-
terized.  

 The most fundamental function describing the reflection property of a specimen is the 
BRDF, defined as the ratio of the radiance reflected in a given direction to the incident 
irradiance coming from a single direction. It is therefore a function of the incident and of 
the reflection directions. It may be interpreted as the “pulse responses” of the material, 
the “pulse” being the directional incident light.  

 Reflectance is defined as a ratio of fluxes, i.e. the ratio of a reflected flux to an incident 
flux. A same material may have several reflectances according to the way it is illuminated 
(incidence solid angle, angular distribution of the incident flux) and the way it is observed 
(observation solid angle). Three types of reflectances have been defined: “directional re-
flectance” for a directional incident light, “diffuse reflectance” for a non-uniformly dis-
tributed incident light, and “Lambertian reflectance” for a uniformly distributed incident 
light. For these three types of reflectance, the observation solid angle is the whole hemi-
sphere. 

 Since in most applications the incident flux is not directly measurable, another type of 
reflectance, called “reflectance factor”, is defined. It corresponds to the ratio of the flux 
reflected by material to the flux reflected by a reference white diffuser illuminated and 
observed in the same circumstances.  

 In analogy to reflection, transmission of light is characterized by a Bidirectional 
Transmittance Distribution Function (BTDF), by a directional, a diffuse or a Lambertian 
transmittance, or by a transmittance factor.  
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Chapter 2. 

Faces, bifaces, multifaces 

We introduce a general representation of multilayer materials, according to which 
they are decomposed into unit optical elements able to reflect or/and transmit light, 
called “bifaces”. Bifaces may be layers, or interfaces between layers. The multilayer is 
thus considered as a superposition of bifaces. The two sides of a biface are also con-
sidered as distinct optical elements, called “faces”. The concepts of face, biface and 
multiface allow a hierarchical representation of multilayer specimen (Sect. 2.1). Faces 
are characterized by their reflectance and their transmittance. They are classified ac-
cording to their propensity to scatter light (Sect. 2.2). Bifaces are characterized by 
the reflectances and the transmittances of their two faces, gathered into a pseudo-
matrix called “transfer matrix”. This pseudo-matrix has a general form, called the 
“fundamental transfer matrix” until the conditions of illumination and observation on 
both sides of the biface are specified. The specification of the illumination and the ob-
servation geometries allows obtaining a particular transfer matrix (Sect. 2.3). Multi-
faces result from a superposition of bifaces. Special definitions are introduced for their 
most external bifaces because their reflectance and transmittance depend on the type 
of detector and light source that are used (Sect. 2.4).  

2.1 Introduction 

 The interaction of light with planar multilayer specimens results from a succession of 
unit events where light may be reflected, refracted, absorbed, scattered, or subject to 
more complex phenomena such as diffraction, dispersion etc. However, many multilayer 
specimens may be considered simply as a superposition of homogenous unit optical ele-
ments, i.e. layers and interfaces between layers, between which the transfers of light can 
be described thanks to models relying on geometrical optics. The multilayers concerned 
by this approach are composed of non-scattering layers or/and intensely scattering layers  
with flat interfaces, as well as possibly some categories of weakly scattering layers and of 
rough interfaces specified in Chap. 4. 

 Layers and interfaces are all able to reflect and transmit light. They are called “bi-
faces” (Fig. 2.1). The multilayer specimen is thus called a “multiface”, corresponding to a 
superposition of bifaces. Layers or interfaces often have different reflection and transmis-
sion properties according to the side on which the incident light incomes. Bifaces are 
therefore considered as the junction of two “faces”, corresponding each one to a different 
side of the biface.  

 A paper sheet, for example, is a multiface composed of three bifaces: the paper layer 
and its two bordering interfaces. A white background coated with a transparent coloring 
layer having the same refractive index is also a multiface composed of three bifaces: the 
white background, the transparent layer, and the interface between the layer and air. 
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More examples will be further encountered in the next chapters. This chapter presents 
the general definitions, properties and representations of faces, bifaces, and multifaces. 

 

Bifaces

Interfaces

Rough interfaces (isotropic)

Flat interfaces and mirrors

Layers

Scattering layers

Transparent layers

 

Fig. 2.1: Main categories of bifaces.  

2.1.1 Definitions 

 The term biface designates any infinitely large, planar, regular and azimuthally iso-
tropic optical element able to reflect or/and transmit light. It stands for (Fig. 2.1):  

− Layers, having parallel and plane boundaries; they may absorb or/and scatter light;  

− Interfaces between layers, or between a layer and a surrounding medium; they may be 
flat or rough; metallic mirrors are special cases of bifaces having a zero transmittance.  

 The concept of biface excludes curved optical elements, anisotropic roughness for the 
interfaces, nonconstant thickness and anisotropic scattering for layers. Bifaces may possi-
bly received light from their upper side and their lower side, the terms “upper” and 
“lower” being relative to a previously established convention.  

 The term face designates a single side of biface. It reflects light towards the side of 
incidence and transmits light at the other side of the biface. Thus, bifaces have an upper 
face and a lower face. 

 The term multiface designates any superposition of bifaces. 

2.1.2 Hierarchical representation of multilayer specimens 

 Multiface, biface and face concepts permit a hierarchical description of the interaction 
of light with the multilayer material (Fig. 2.2). The faces are at the basic level of the hi-
erarchy. The interaction of light with each face may be described according to an appro-
priate optical model, from which the face’s reflectance and transmittance may be derived 
(Chapter 3 and 4). The bifaces, at the middle level of the hierarchy, are characterized by 
the reflectance and the transmittance of their two faces. The multiface is at the top in the 
hierarchy. Its reflectance and transmittance are obtained by combining the reflectances 
and the transmittances of its bifaces (see Chapter 5). 
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Flat interface Face 3b 
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Fig. 2.2: Hierarchical representation of a multilayer specimen (multiface) com-
posed of a rough interface, a scattering layer, a flat interface and a strongly scat-
tering layer (bifaces). On the right-hand side, one finds the type of optical model 
that may be used for characterizing the reflectance and the transmittance of the 
corresponding faces. These models will be presented in Chapters 3 and 4. 

2.2 Faces 

 A face represents one side of layer or one side of interface. It is characterized by its 
directional reflectance R(θ) and its directional transmittance T(θ), which may be directly 
determined by optical laws or may be deduced from the BRDF or BTDF according to 
Eq. (1.21). Regarding the scattering properties of the different existing types of faces, we 
define the three following categories:  

− Transparent faces, which do not scatter light. There exists a bijective relation between 
the directions of incidence and of reflection, as well as between the directions of incidence 
and of transmission (Snell’s laws, see Sect. 3.1.1). The directions of reflection and of 
transmission are called the regular directions. The directional reflectance can be derived 
directly from the basic laws of optics, e.g. Fresnel formulae (see Sect. 3.2.1) and Beer’s 
law (see Sect. 3.3.1).  

− Lambertian faces, which scatter light uniformly. The incident light is assumed to be 
completely scattered as soon as it penetrates the face, with a subsequent cancellation of 
its angular distribution. The reflected and transmitted lights are Lambertian. Their re-
flectance and transmittance are invariant, i.e. independent of the illumination geometry. 

− Scattering faces, which scatter light nonuniformly. Their BRDF and BTDF are neces-
sary for the modelization of their reflectance and transmittance (see Chapter 4).  

Particular faces: a face of transparent layer has a null BRDF, and therefore a null reflec-
tance. Opaque layers and mirrors have a single face since they can be illuminated only on 
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one side. Their BTDF, and thereby their transmittance, is zero.  

2.3 Bifaces 

 A biface results from the union of its two faces, both characterized by their respective 
reflectance and transmittance. As long as the conditions of illumination and of observa-
tion are not specified, we express their directional reflectances and transmittances as 
functions of the angular variable θ. According to a certain convention of sense, one face is 
called the “upper face”, the other being called the “lower face”. The biface is therefore 
characterized by an upper reflectance R(θ) and an upper transmittance T(θ) characteristic 
of its upper face, and a lower reflectance R′(θ) and a lower transmittance ( )T ′ θ  character-
istic of its lower face.  

 In order to easy the development of the compositional model, we gather these four 
terms using a matrix-like notation: the upper transmittance and reflectance are placed on 
the first row, and the lower reflectance and transmittance on the second row, by respect-
ing the following order 

 
( ) ( )

( ) ( )

T R

R T

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥′ ′θ θ⎢ ⎥⎣ ⎦

 (2.1)  

This pseudo-matrix is called the fundamental transfer matrix of the biface1. 

 Once the conditions of illumination and observation on the faces are specified, we can 
determine their reflectances and transmittances. Thus, we obtain a particular transfer 
matrix. In order to express the conversion of the fundamental transfer matrix into a par-
ticular transfer matrix, we introduce special notations. The illumination geometry is de-
noted by the symbols dir, diff and L, standing respectively for directional, diffuse and 
Lambertian. The illumination on the upper face (resp. on the lower face) is specified by a 
left superscript (resp. a right subscript) associated to the brackets of the fundamental 
transfer matrix. When the biface is observed by a capturing device, we also specify the 
type of observation, using symbols sph for an integrating sphere or rad for a radiance de-
tector. 

 Let us take an example. Consider a biface illuminated by directional light at angle ψ 
on its upper face and by Lambertian light on its lower face. The left superscript dir(ψ) 
and the right subscript L are associated to the fundamental transfer matrix. The biface 
has the particular transfer matrix composed of the directional upper reflectance R(ψ), the 
directional upper transmittance T(ψ), the Lambertian lower reflectance r′ and the Lam-
bertian lower transmittance t ′   

 

( ) ( ) ( )

( ) ( )

( ) ( )dir

L

T RT R

r tR T

ψ →

←

⎡ ⎤ ⎡ ⎤ψ ψθ θ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥′ ′′ ′θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (2.2)  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 Transfer matrices are not matrices in the classical sense since matrix operations such as sum (+) 
and product (.) are not defined. The considered transfer matrices will be combined according to a 
special composition law, noted ○ (see Chap. 5). 
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Bifaces are classified according to the same categories as faces, i.e. transparent, scattering 
and Lambertian:  

− Transparent bifaces have two transparent faces; flat interfaces and transparent layers 
are examples of transparent bifaces. 

− Lambertian bifaces have two Lambertian faces; they correspond to strongly scatter-
ing layers. Their reflectance and the transmittance are independent of the conditions of 
illumination. Therefore, they are characterized by an invariant transfer matrix.  

− Scattering bifaces are bifaces that are neither transparent nor Lambertian. Rough in-
terfaces and scattering layers are examples of scattering bifaces. 

2.4 Multifaces 

 A multiface corresponds to the superposition of at least two bifaces. By definition, 
since it is able to reflect and transmit light, it is also a biface. As every biface, it has a 
transfer matrix defined for given angular distributions at the upper and the lower sides. 
This one is noted G and called global transfer matrix. Its components are called upper 
global reflectance (RU), upper global transmittance (TU), lower global reflectance (RV) and 
lower global transmittance (TV)  

 
U U

V V

T R

R T

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

G  (2.3)  

Among the superposed bifaces, the two most external ones are called external bifaces, the 
other ones being called central bifaces. External bifaces play a special role since they 
transfer light between the central bifaces and the surrounding media and are thereby di-
rectly concerned by the selected geometries for the light sources and for the capturing 
devices. The fundamental transfer matrices of the upper and the lower external bifaces 
will be generically denoted in the following way 

 
( ) ( )

( ) ( )

u u

u u

P S

R X

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

   and   
( ) ( )

( ) ( )

v v

v v

X R

S P

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

 (2.4)  

where subscripts u or v are relative to the upper or the lower biface respectively, and 
where:  

− S(θ) is the directional external reflectance, which characterizes the reflection of light 
from the light source to the capturing device;  

− P(θ) is the directional penetration transmittance, which characterizes the transmis-
sion of light from the surrounding medium to the central bifaces;  

− R(θ) is the directional internal reflectance, which characterizes the reflection of light 
from the central bifaces to themselves; 

− X(θ) is the directional exit transmittance, which characterizes the transmission of 
light from the central bifaces towards the capturing device. 

 Central bifaces are simply characterized by their upper and lower reflectance and 
transmittance, i.e. by a fundamental transfer matrix of the form 
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( ) ( )

( ) ( )

T R

R T

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥′ ′θ θ⎢ ⎥⎣ ⎦

 (2.5)  

Fundamental transfer matrices (2.4) and (2.5) will be converted into particular transfer 
matrices when the illumination and observation condition will have been specified. 
Fig. 2.4 shows a multiface composed of three bifaces, called “upper”, “central” and 
“lower”. Their respective upper and lower reflectances and transmittances are termed like 
in Eqs. (2.4) and (2.5).  

upper
biface

central
biface

lower
biface

RU TVTU RV T R R'

Pu Su

T'

Xu

PvSvXv Rv

Ru

 

Fig. 2.3: Global reflectances and transmittances of a multiface (left) and reflec-
tances and transmittances of the upper, the central and the lower bifaces (right). 
The letters S, P, R and X designate respectively external reflectances, penetration 
transmittances, internal reflectances and exit transmittances. 

 

 The classification into transparent, scattering and Lambertian bifaces introduced in 
Sect. 2.2.2 also applies for multifaces, with the following properties:  

− Transparent multifaces are composed only of transparent bifaces; 

− Lambertian multifaces have Lambertian external bifaces, but can have any type of 
central bifaces1; 

− Scattering multifaces are multifaces that are neither transparent nor Lambertian. 

Summary 

 Multilayer specimen are assumed to be composed of planar optical elements called “bi-
faces” having homogenous and isotropic properties at the macroscopic scale. Three types 
of bifaces are distinguished: those which do not scatter light are called “transparent bi-
faces”, those which scatter light are called “scattering bifaces”, and those which, due to 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 With Lambertian external bifaces, the incident light is perfectly diffused upon penetration. The 
light emerging at both sides of the multiface are uniformly distributed (Lambertian). Thus, the 
multiface as the same properties as a Lambertian biface.  
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strong scattering, reflect and transmit Lambertian light independently of the geometry of 
illumination are called “Lambertian bifaces”.  

 A biface has two “faces” corresponding to its two lightenable sides. Each face is char-
acterized by its directional reflectance and transmittance. Thus, the biface is character-
ized by a “fundamental transfer matrix” containing the directional reflectances and 
transmittances of its two faces. Lambertian bifaces are an exception, since their face re-
flectance and transmittance are invariant. They are characterized by an “invariant trans-
fer matrix”.  

 When specific geometries of illumination and observation are considered, faces have a 
particular reflectance and transmittance and bifaces have a “particular transfer matrix”. 
When the geometry of observation is not specified, it should be considered that the solid 
angle of observation is the whole hemisphere.  

 The multifaces result from the superposition of bifaces. The two bifaces in direct con-
tact with the surrounding media are called “external”. They are characterized by an “ex-
ternal reflectance”, a “penetration transmittance”, an “internal reflectance” and an “exit 
transmittance”.  

 The two next chapters are dedicated to the characteristics of transparent bifaces 
(Chapter 3), of scattering and Lambertian bifaces (Chapter 4), and of multifaces (Chap-
ter 5). The specification of the illumination and observation geometries is presented in 
Chapter 6, where the terminology specific to the external bifaces will be used.   
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Chapter 3. 

Optical properties of transparent bifaces 

Transparent bifaces reflect and transmit light without scattering. Directional light is 
split into a pair of reflection and transmission directions, called the regular directions, 
which are determined by Snell’s laws (Sect. 2.1). When the two surrounding media 
have different refractive indices, the directions of transmission and of incidence are 
different. We have three types of transparent bifaces: flat interfaces, characterized by 
the Fresnel formulae (Sect. 2.2), transparent layers, characterized by Beer’s law 
(Sect. 2.3), and transparent multifaces, resulting from the superposition of flat inter-
faces and transparent layers. Sect. 2.4 presents one example of transparent multiface, 
composed of a transparent layer bounded by flat interfaces.   

3.1 Generalities on transparent bifaces 

 Bifaces are transparent when they do not scatter light (Sect. 2.3). The images of an 
object that they reflect and transmit are perfectly clear. Among the transparent bifaces, 
we find the flat interfaces between two media of different refractive indices, and the trans-
parent layers, i.e. the absorbing but nonscattering layers of constant thickness. Stacked 
transparent layers, composed of an alternation of transparent layers and flat interfaces, 
are also transparent bifaces since none of their components scatter light. Mirrors are spe-
cial cases, composed of only one face having a zero transmittance. 

 The two faces of transparent bifaces may have a different reflectance and a different 
transmittance. However, both faces reflect and transmit a directional incident light into a 
single pair of directions, the regular directions, determined by Snell’s laws. They are com-
pletely characterized by their directional reflectance and transmittance, from which one 
may deduce their diffuse and Lambertian reflectances and transmittances.  

3.1.1 Snell’s laws 

 The principal characteristic of transparent faces consists of the bijective relations exist-
ing between the directions of incidence, of reflection and of transmission.  

 Let us consider an incident flux coming from direction ( ),i iθ φ , also denoted by the 
differential solid angle idω =sin i i id dθ θ φ . The reflected and transmitted fluxes are also di-
rectional, flowing respectively into directions ( ),r rθ φ  and ( ),t tθ φ , denoted by the differen-
tial solid angles sinr r r rd d dω = θ θ φ  and sint t t td d dω = θ θ φ  (Fig. 3.1). These directions are 
related by Snell’s laws, which are generally formulated for flat interfaces, but still remain 
valid for any transparent biface:  

 1. The three directions of incidence, of reflection and of transmission belong to a same 
plane, the plane of incidence, also containing the normal of the face. Therefore, zenithal 
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angles are such that r t iφ = φ = φ + π . 

 2. The angles of reflection and of incidence are equal, i.e. .r iθ = θ   

 3. The angles of transmission and of incidence are related by the “sine formula” involv-
ing the refractive indices of the biface’s surrounding media, ni and nt 

 sin sini i t tn nθ = θ  (3.1) 

Reflection and transmission directions given by Snell’s laws are called the regular direc-
tions. The regular direction of reflection is also called specular direction. When the media 
surrounding the transparent biface have different refractive indices ( i tn n≠ ), the direc-
tion of transmission differs from the direction of incidence and is called direction of re-
fraction.  

dω
i

dω
r = dωi

dω
t 

θ
r

θ
t

Transparent biface

θ
i

φ
i

φ
r = φt
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i
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Fig. 3.1: Directional incident flux illuminating a transparent face surrounded by 
media of respective refractive indices ni ≠ nt. The incidence, the reflection and the 
transmission solid angles belong to the plane of incidence. The reflection con-
serves the angle and the solid angle of incidence. The refraction modifies the angle 
and the solid angle of incidence.  

 Let us find the relationship between dωi, dωr and dωt. According to Snell’s first law, 
one has i r td d dφ = φ = φ . It follows from Snell’s second law that sin sini i r rd dθ θ = θ θ  and 
therefore that the reflection and incidence solid angles are equal ( r id dω = ω ). For the 
transmission, by differentiating Eq. (3.1), one finds that cosi i in dθ θ cost t tn d= θ θ . Let us 
write the member-by-member product of this relation with Eq. (3.1), and multiply both 
sides with the azimuthal solid angles i td dφ = φ . One obtains 

 sin cos sin cosi i i i i i t t t t t tn n d d n n d dθ ⋅ θ θ ⋅ φ = θ ⋅ θ θ ⋅ φ  (3.2) 

which may be written as 

   

2 2cos cosi i i t t tn d n dθ ω = θ ω  (3.3) 
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 Obviously, when ni = nt, the incident light exits the transparent biface in the same 
direction as the direction of incidence, with the same solid angle. 

3.1.2 Radiance invariance at a transparent face 

 We are now interested in the transmission of directional flux across a transparent bi-
face. We would like to find the relationship1 between the incident radiance Li and the 
transmitted radiance Lr.  

 The solid angles associated to these radiances satisfy Eq. (3.3). By multiplying both 
members of Eq. (3.3) by an elemental area ds, one obtains the relation 

     

2 2cos cosi i i t t tn ds d n ds dθ ω = θ ω  (3.4) 

which generalizes the principle of reciprocity of transfer volume expressed by Eq. (1.11). 
The incident element of flux 2

id Φ  is attenuated by a factor ( )iT θ  when crossing the bi-
face, ( )iT θ  being the directional transmittance of the biface. The transmitted flux is 

( )2 2
it id T dθΦ = Φ . The transmitted radiance Lt is 

 
( )

( )
( )

 

 

      

222 2

2cos cos/ cos

ti it i
it

it t i ii t i i

nT dd d
L T

nds d ds dn n ds d

θ Φ ⎛ ⎞Φ Φ⎟⎜ θ= = = ⎟⎜ ⎟⎜⎝ ⎠θ ω θ ωθ ω
 (3.5) 

The righter fraction in Eq. (3.5) corresponds to the incident radiance Li 

 ( )
2

t
it i

i

n
L T Ln

⎛ ⎞⎟⎜ θ= ⎟⎜ ⎟⎜⎝ ⎠
 (3.6) 

Eq. (3.6) generalizes the radiance invariance principle expressed by Eq. (1.12), embodying 
the refraction at the interface [Wol98]. The term ( )2

/t in n , characterizing the effect of the 
refraction, becomes one as the two media surrounding the transparent biface are of same 
refractive index.  

Remark: We may develop a similar expression as (3.6) for the reflection of radiance. It 
can be easily shown that 

 ( )r i iL R L= θ  (3.7) 

with ( )iR θ  the directional reflectance of the transparent biface.  

3.1.3 Reflectance and transmittance of transparent bifaces 

 A transparent face is completely characterized by its directional reflectance R(θ) and 
its directional transmittance T(θ), which may be directly determined by optical laws (e.g. 
Fresnel formulae for flat interfaces or Beer’s law for transparent layers) or should be ob-
tained using a model (e,g., for stacked transparent layers having different refractive indi-
ces, by a multiple reflection transmission model).  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 This relation has been established by McCluney in [McCL94, p. 112] in the particular case of a 
flat interface between two media of different refractive indices. 
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The polarization of the incident light shall be taken into account. We consider natural 
light, which is modeled as the sum of two independent linearly polarized components: a 
component polarized in parallel to the incidence plane, and a component polarized per-
pendicularly [BW99, p. 47]. We note iE ⊥  and iE  the corresponding irradiances and Ei the 
total irradiance of natural light 

 i i iE E E⊥= +  (3.8) 

 Since natural light is unpolarized in average, the polarized irradiances are equal 

 
2

i
i i

E
E E⊥ = =  (3.9) 

When the irradiance Ei is reflected by a transparent biface, the reflected irradiance Er is 
composed of a parallel component ( ) r iE R E⊥ ⊥ ⊥= θ  and a perpendicular component 

( ) r iE R E= θ . The directional reflectance R(θ) for incident natural light is  

 ( ) ( ) ( )
1
2

R R R⊥⎡ ⎤θ = θ + θ⎢ ⎥⎣ ⎦  (3.10) 

Likewise, the directional transmittance T(θ) for incident natural light is  

 ( ) ( ) ( )[ ] 

1
2

T T T⊥θ = θ + θ  (3.11) 

Every transparent face is characterized by a fundamental transfer matrix whose elements 
are its upper and lower directional reflectances and transmittances for natural light 

 
( ) ( )

( ) ( )

u u

v v

T R

R T

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

 (3.12) 

3.2 Flat interfaces 

 Two media of different refractive indices have in common a planar border called inter-
face. If one of the media is metallic, its refractive index is a complex number, whose real 
part ν represents the simple index of refraction and whose imaginary part κ represents 
the attenuation index [BW99, p. 737], also called extinction coefficient. The interface has 
a relative index of refraction 1 0/n n n=  defined as the ratio of the refractive index of the 
medium of transmission (n1) to the refractive index of the medium of incidence (n0).  

3.2.1 Fresnel formulae 

 The fractions of directional incident flux (or element of irradiance) that are reflected 
and transmitted by the interface are respectively called reflection coefficient and trans-
mission coefficient. They are given by Fresnel formulae. They depend on the relative re-
fractive index of the interface and the direction and the polarization of the incident light. 
The notions presented here are stated in detail in [BW99, pp. 40–53].  
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Fig. 3.2: Fresnel reflection and transmission coefficients giving the directional re-
flectances and transmittances of both faces of a flat interface between two media 
of refractive indices n0 and n1.  

Let us consider a directional light coming from medium 0 at angle θ0. The corresponding 
angle of refraction is ( )1 0arcsin sin /nθ = θ  [Eq. (3.1)]. When n is complex (metallic reflec-
tion), θ1 is a complex angle having therefore only an algebraic meaning. For the perpen-
dicular component the reflection coefficient ( )01 0R⊥ θ  is  

 ( )
( )
( )

2
0 1

01 0 2
0 1

sin

sin
R⊥ θ − θ

θ =
θ + θ

 (3.13) 

For the parallel component, the reflection coefficient is 

 ( )
( )
( )

2
0 1

01 0 2
0 1

tan

tan
R

θ − θ
θ =

θ + θ
 (3.14) 

Fresnel formulae (3.13) and (3.14) can also be presented under an expanded form as func-
tions of the angle of incidence θ0, and the relative index of refraction of the interface 
n i= ν + κ  [Gla95] 

 ( )
( )
( )

 

 

2 2
0

01 0 2 2
0

cos

cos

a b
R

a b
⊥ − θ +

θ =
+ θ +

 (3.15) 

and  

 ( ) ( )
( )
( )

  

  

2 2
0 0

01 0 01 0 2 2
0 0

cos 1/cos

cos 1/cos

a b
R R

a b
⊥ + θ − θ +

θ = θ
− θ + θ +

 (3.16) 

with a and b given by 

  
( ) ( )

( ) ( )

22 2 2 2 2 2 2 2 2
0 0

22 2 2 2 2 2 2 2 2
0 0

2 sin 4 sin

2 sin 4 sin

a

b

= ν − κ − θ + ν κ + ν − κ − θ

= ν − κ − θ + ν κ − ν − κ − θ
 (3.17) 

When both media have a real refractive index, the relative index of refraction of the inter-
face n is also real. The reflection and the transmission are said to be vitreous. The Fresnel 
formulae become 
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 ( )
 

 

2
2 2

0 0
01 0 2 2

0 0

cos sin

cos sin

n
R

n
⊥

⎛ ⎞θ − − θ ⎟⎜ ⎟⎜θ = ⎟⎜ ⎟⎜ ⎟⎟⎜ θ + − θ⎝ ⎠
 (3.18) 

and 

 ( )
 

 

2
2 2 2

0 0
01 0 2 2 2

0 0

cos sin

cos sin

n n
R

n n

⎛ ⎞θ − − θ ⎟⎜ ⎟⎜θ = ⎟⎜ ⎟⎜ ⎟⎟⎜ θ + − θ⎝ ⎠
 (3.19) 

For natural incident light, according to Eq. (3.10), the Fresnel reflection coefficient is  

 ( ) ( ) ( )01 0 01 0 01 0

1
2

R R R⊥⎡ ⎤θ = θ + θ⎢ ⎥⎣ ⎦  (3.20) 

The polarized reflection coefficients ( )01 0R⊥ θ  and ( )01 0R θ  being different, the two linearly 
polarized irradiances rE ⊥  and rE  are also different [BW99, p. 46]. It follows that the re-
flected light is in average partially polarize. If that light reaches again an interface, the 
reflection on this second interface cannot be characterized by (3.20) since its incident 
light is not unpolarized. However, the reflected light is still incoherent, which means that 
irradiances components rE ⊥  and rE  are independent of each other. One can consider 
separately the reflection of each component by the second interface and sum afterwards 
their respective contribution. 

 The Fresnel transmission coefficient is defined by 

 ( ) ( ) ( )  01 0 01 0 01 0

1
2

T T T⊥⎡ ⎤θ = θ + θ⎢ ⎥⎣ ⎦  (3.21) 

It is related to the reflection coefficient by the principle of conservation of the energy at 
the interface 

 ( ) ( )01 0 01 01T Rθ = − θ  (3.22) 

which is also valid for the parallel and the perpendicular polarizations. Like for the reflec-
tion, the light transmitted across the interface is incoherent and partially polarized, i.e. 
the two transmitted linearly-polarized irradiances are independent but not equal.  

 For both polarizations, and thereby for natural light, the reflection coefficients satisfy 
the following properties of reciprocity  

 ( ) ( )01 0 10 1R Rθ = θ  (3.23) 

and 

 ( ) ( )01 0 10 1T Tθ = θ  (3.24) 

with θ0 and θ1 related by Snell’s third law [Eq. (3.1)]. 

3.2.2 Reflectance and transmittance of flat interfaces 

 Since reflection coefficients are defined as ratios of a reflected flux to a directional inci-
dent flux, they are directional reflectances. Likewise, transmission coefficients are direc-
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tional transmittances. Therefore, flat interfaces between media of refractive indices n0 and 
n1 have the fundamental transfer matrix 

 
( ) ( )

( ) ( )

01 01

10 10

T R

R T

⎡ ⎤θ θ
⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

 (3.25) 

In Fig. 3.2, the flat interface is illuminated at angle ψ on its upper face and at angle ψ1 on 
its lower face. Using the notations introduced in Sect. 2.3 for such an illumination geome-
try, the interface has the particular transfer matrix 

 

( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

0

1

01 01 01 0 01 0

10 10 10 1 10 1

dir

dir

T R T R

R T R T

ψ →

← ψ

⎡ ⎤ ⎡ ⎤θ θ ψ ψ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ ψ ψ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3.26) 

Let us now consider Lambertian illuminations. The Lambertian reflectance and transmit-
tance of the upper face are called r01 and t01. Those of the lower face are called r01 and t01. 
They derive from Fresnel reflection and transmission coefficients, which are directional 
reflectances and transmittances, according to Eq. (1.29) 

 ( )  

2

01 01
0

sin2r R d
π

θ=
= θ θ θ∫ , (3.27) 

 ( )  

2

01 01
0

sin2t T d
π

θ=
= θ θ θ∫ , (3.28) 

 ( ) 

2

10 10
0

sin2r R d
π

θ=
= θ θ θ∫ , (3.29) 

and 

 ( )  

2

10 10
0

sin2t T d
π

θ=
= θ θ θ∫  (3.30) 

Properties (3.22), (3.23) and (3.24) of Fresnel formulae permit to establish the relation-
ship between r01, t01, r10 and t10. Eq. (3.22) represents the conservation of energy at the 
interface for directional illumination. Energy is also conserved for Lambertian illumina-
tions 

 01 01 1r t+ =    and   10 10 1r t+ =  (3.31) 

There also exists a relation between t10 and t01. In (3.30), integration is performed accord-
ing to the angle in the upper medium (now denoted θ0). Thanks to the bijective relation 
between θ0 and the angle θ1 beneath the interface, one can perform a change of variable 
and integrate according to θ1. Relation (3.24) gives T10(θ1) = T01(θ0). The reciprocity of 
transfer volume (see Sect. 1.1.3), yields   

2
0 0 0sin2n dθ θ 2

1 1 1sin2n d= θ θ . Thus, t10 becomes 

 ( ) ( ) ( )   

0 0

2 22
10 10 0 0 0 0 1 01 0 0 0

0 0
sin2 / sin2t T d n n T d

π π

θ = θ =
= θ θ θ = θ θ θ∫ ∫  (3.32) 

where the most right integral corresponds to t01 [Eq. (3.28)]. The Lambertian transmit-
tances of the upper and the lower faces of a flat interface are therefore related by 
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 ( )2
10 0 1 01/t n n t=  (3.33) 

When both its faces receive a Lambertian illumination, using the notation introduced in 
Sect. 2.3, the flat interface has the particular transfer matrix 

 
( ) ( )

( ) ( )

01 0101 01 01 01

2 2
10 10 01 0110 10

1

1 / /

L

L

t tT R t r

r t t n t nR T

→

←

⎡ ⎤ ⎡ − ⎤θ θ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ −θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
 (3.34) 

Judd [Jud42] tabulated the values of directional (0° and 45°) and Lambertian reflectances 
and transmittances for real relative refractive indices comprised between 1 and 2. For 
instance, considering an interface of refractive index 1.5, Eq. (3.34) takes the values 

 
01 01
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0.6 0.4

t r

r t

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (3.35) 

3.3 Transparent layers 

 Transparent layers are layers made of a homogenous absorbing but nonscattering me-
dium having flat and parallel boundaries. Light crosses them along a straight line without 
reflection. They have therefore a null BRDF and a null reflectance. Their two faces have 
the same directional transmittance T(θ), determined by Beer’s law. They are always con-
sidered separately from their bounding interfaces, i.e. they are assumed to have the same 
refractive index as their surrounding media.  

3.3.1 Beer’s law 

 A directional flux traversing a path of length x within a nonscattering medium of ab-
sorption coefficient α is attenuated by a factor Θ given by Beer’s law [Per95] 

 xe−αΘ =  (3.36) 

3.3.2 Transmittance of a transparent layer 

 Directional light crossing a transparent layer perpendicularly to its surface is attenu-
ated by a factor t, called normal transmittance of the layer. It is assumed to be independ-
ent of the polarization of the incident light. According to Beer’s law, t is a function of the 
layer’s thickness h and of its absorption coefficient α  

 ht e−α=  (3.37) 

When directional light comes at angle θ, the length of its path across the layer is h/cosθ 
(Fig. 3.3). It is attenuated by a factor T(θ) that may be expressed as a function of the 
normal transmittance t  

 ( )   /cos 1/coshT e t−α θ θθ = =  (3.38) 

T(θ) is the directional transmittance of the transparent layer. The exponent 1/cosθ is 
called the relative path length of the oblique light.  
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θh

h/cosθ

 

Fig. 3.3: Path length traversed by a light ray crossing at angle θ a transparent 
layer of thickness h. 

The fundamental transfer matrix of a transparent layer is 

 

 

 

1/cos

1/cos

0

0

t

t

θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.39) 

Its Lambertian transmittance T is derived from its directional transmittance according to 
Eq. (1.29)  

 ( )  

   

/2 /2
1/cos

0 0
sin2 sin2T T d t d

π π
θ

θ= θ=
= θ θ θ = θ θ∫ ∫  (3.40) 

3.3.3 Superposed transparent layers 

 Let us consider k superposed transparent layers having the same refractive index and 
having respectively the normal transmittances t1, t2, …, tk. They form again a transparent 
layer, whose normal transmittance t is the product of the normal transmittances ti 
(i = 1, 2, …, k). The directional transmittance of the multiface is also the product of the 
respective normal transmittances of the layers 

 ( ) ( ) ( ) ( ) ( )     

   

1/cos1/cos 1/cos 1/cos 1/cos
1 2 1 2 1 2... ... ...k k kT t t t t t t t T T Tθθ θ θ θθ = = = = θ θ θ  (3.41) 

The Lambertian transmittance T of the multiface is expressed as in Eq. (3.40) with the 
directional transmittance T(θ) given by Eq. (3.41). T cannot be obtained by the product 
of the respective Lambertian transmittances of the transparent layers. This is simply 
shown by the inequality 

 ( ) ( ) ( ) ( ) ( ) ( )= θ θ θ θ θ ≠ θ θ θ θ θ θ θ θ θ∫ ∫ ∫ ∫1 2 1 2... sin2 sin2 sin2 ... sin2k kT T T T d T d T d T d  (3.42) 

Such an inequality is encountered for every transparent multiface: its Lambertian reflec-
tance (idem for the transmittance) shall be calculated from its directional reflectance but 
not from the Lambertian reflectances of its faces. We call this the “principle of direction-
ality of multifaces”. 

3.4 Transparent multifaces 

 We just saw a special case of transparent multiface, composed only of transparent lay-
ers. Let us now consider superpositions of transparent layers and flat interfaces. When 
they contain two or more interfaces, light is subject to multiple reflections and transmis-
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sions. The reflected and transmitted lights, which are directional if the incident light is 
directional, are composed of a multitude of components, each one having been multiply 
reflected and transmitted a certain number of times. We shall first calculate the direc-
tional reflectance of the multiface for linearly polarized light, i.e. the parallel component 
and the perpendicular component. Then the contributions of these components are aver-
aged according to Eqs. (3.11).  

 By way of example, we consider a transparent layer surrounded by two different media 
of distinct refractive indices. The transparent layer together with its two flat interfaces 
forms a transparent multiface called “interfaced layer”. The refractive indices of the up-
per medium, the layer and the lower medium are denoted respectively n0, n1 and n2. In 
order to avoid interference phenomena, the transparent layer, having a normal transmit-
tance t, has a thickness h significantly larger than the wavelengths of light.  

 We call ( )012 0R⊥ θ , ( )012 0R θ  and ( )012 0R θ  the directional reflectances of the interfaced 
layer defined respectively for a ⊥-polarized, a ||-polarized and an unpolarized incident 
light coming from medium 0 with an angle θ0. The corresponding directional transmit-
tances are called respectively ( )012 0T ⊥ θ , ( )012 0T θ  and ( )012 0T θ . 

3.4.1 Multiple reflection-transmission of polarized directional light 

 Directional incident irradiance iE ⊥ , of perpendicular polarization, comes with an angle 
θ0 from the upper medium (refractive index n0). Once having penetrated the layer, it re-
mains directional but is subject to multiple reflections between the interfaces, illustrated 
by Fig. 3.4. At each interaction with an interface, it is split into a reflected component 
and a transmitted component. The transmitted components exit definitively the inter-
faced layer and contribute to the total reflected irradiance or the total transmitted irradi-
ance. The reflected components are alternately reflected by the two interfaces. Our goal is 
to express the total reflected and transmitted irradiances, called rE ⊥  and tE ⊥ .  

 

Er0 Er1 Er2

Et1 Et2 Et3

Er3
Ei

n0

n1

n2

i01

i12

θ0θ0

θ1
θ1 θ1

θ2
 

Fig. 3.4: Multiple reflection-transmission of light within a transparent layer inter-
faced by two flat interfaces.  
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During the multiple reflection-transmission process, light remains in the plane of incidence 
and therefore follows a constant azimuthal direction (Snell’s first law, Sect. 3.1.1). How-
ever, according to the medium in which it propagates, it follows different zenithal angles, 
noted θ0 in the upper medium, θ1 in the transparent layer and θ2 in the lower medium. 
According to Snell’s third law, angles θ1 and θ2 are related to θ0 by  

    0 0 1 1 2 2sin sin sinn n nθ = θ = θ  (3.43) 

 Let us express the irradiance components emerging successively in the upper and the 
lower surrounding media. A fraction ( )01 0R⊥ θ  of the incident irradiance iE ⊥  is reflected by 
the interface i01 and follows the specular direction. This reflected component forms an 
irradiance ( )0 01 0 r iE R E⊥ ⊥ ⊥= θ , which is a first contribution to the total reflected irradiance 

rE ⊥ . 

 A fraction ( )01 0T ⊥ θ  of iE ⊥  is refracted into the layer. Along its path of relative length 
 11/cosθ  across the layer, the transmitted light is attenuated by a factor  11/cost θ  due to 

absorption (Beer’s law). Once having reached the interface i12, the irradiance 
( )  

  
11/cos

01 0 iT t E⊥ θ ⊥θ  is transmitted into the lower medium (fraction ( )12 1T ⊥ θ ) and reflected 
back into the layer (fraction ( )12 1R⊥ θ ). The irradiance transmitted into the lower medium, 
called 0tE ⊥ , is the first contribution to the total transmitted irradiance tE ⊥ . 

 ( ) ( )  

  
11/cos

0 01 0 12 1t iE T T t E⊥ ⊥ ⊥ θ ⊥= θ θ  (3.44) 

The irradiance reflected back into the layer, equal to ( ) ( )   11/cos
01 0 12 1 iT R t E⊥ ⊥ θ ⊥θ θ , crosses again 

the layer (attenuation factor  11/cost θ  due to absorption) and is either internally reflected by 
the interface i01 (Fresnel reflection factor ( )10 1R⊥ θ ), or transmitted (Fresnel transmission 
factor ( )10 1T ⊥ θ ) into the upper medium. This irradiance transmitted into the upper me-
dium, 1rE ⊥ , is the second contribution to the total reflected irradiance rE ⊥  

 ( ) ( ) ( )  

   
12/cos

1 01 0 12 1 10 1 r iE T R T t E⊥ ⊥ ⊥ ⊥ θ ⊥= θ θ θ  (3.45)  

Then, light continues to be alternately reflected by interfaces i01 and i12, with an irradi-
ance component exiting the interfaced layer simultaneously to each reflection. By express-
ing the successive irradiances rkE ⊥  exiting in the upper medium and summing them, we 
obtain the total reflected irradiance, from which we deduce the reflectance of the inter-
faced layer for the perpendicularly-polarized component. The same is done for the trans-
mittance. The kth irradiance exiting into the upper medium, called rkE ⊥ , crosses 2k times 
the layer and is internally reflected k times by the interface i12 and k−1 times by the in-
terface i10. The generic expression for rkE ⊥  is therefore 

 ( ) ( ) ( ) ( ) ( ) ( )       
1

1 2 /cos
01 0 10 1 12 1 1 10 1 for 1, 2, 3...

k k k
rk iE T R R t T E k

−⊥ ⊥ ⊥ ⊥ θ ⊥ ⊥⎡ ⎤ ⎡ ⎤= θ θ θ θ θ =⎣ ⎦ ⎣ ⎦  (3.46) 

The sum of the reflected irradiances rkE ⊥  ( 0, 1, 2...k = ) yields the total reflected irradi-
ance rE ⊥  

 ( )
( ) ( )

( )
( ) ( )  

 

     
101 0 10 1 2/cos

01 0 10 1 12 1
110 1

 
k

rk i i
k

T T
E R E E R R t

R

⊥ ⊥ ∞
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ θ

⊥
=

θ θ ⎡ ⎤= θ + θ θ⎢ ⎥⎣ ⎦θ ∑  (3.47) 

The infinite sum is a geometrical series. Since θ0 and θ1 are related by Snell’s law, we have 
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( ) ( )10 1 01 0T T⊥ ⊥θ = θ . Eq. (3.47) can be simplified as   

 ( )
( ) ( )

( ) ( )
 

 

  

 

 

 
 

  

1

1

2 2/cos
10 1 12 1

01 0 2/cos
10 1 12 1

 
1r i i

T R t
E R E E

R R t

⊥ ⊥ θ
⊥ ⊥ ⊥ ⊥

⊥ ⊥ θ

⎡ ⎤θ θ⎣ ⎦= θ +
− θ θ

 (3.48) 

Similarly, the kth irradiance exiting into the lower medium, called tkE ⊥ , crosses 2 1k +  
times the layer. It is internally reflected k times by the interface i12 and k times by the 
interface i10. The generic expression for tkE ⊥  is therefore 

 ( ) ( ) ( ) ( ) 

  
1

2 1
cos

01 0 10 1 12 1 12 1    (for 0, 1, 2, 3...)
k

k k

tk iE T R R t T E k
+

⊥ ⊥ ⊥ ⊥ θ ⊥ ⊥⎡ ⎤ ⎡ ⎤= θ θ θ θ =⎣ ⎦ ⎣ ⎦  (3.49) 

The sum of the transmitted irradiances tkE ⊥  yielding a geometric series, gives tE ⊥   

 ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
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⊥ ⊥ θ
=

θ θ⎡ ⎤= θ θ θ θ =⎢ ⎥⎣ ⎦ − θ θ∑ (3.50) 

3.4.2 Directional reflectance and transmittance for polarized and natural light  

 The directional reflectance ( )012 0R⊥ θ  and transmittance ( )012 0T ⊥ θ  for perpendicularly-
polarized incident light are given respectively by the ratio /r iE E⊥ ⊥  deduced from 
Eq. (3.48) 

 ( ) ( )
( ) ( )
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⎡ ⎤θ θ⎣ ⎦θ = θ +
− θ θ

 (3.51) 

and by the ratio /t iE E⊥ ⊥  deduced from Eq. (3.50)  

 ( )
( ) ( )

( ) ( )
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θ θ
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− θ θ
 (3.52) 

Since the parallel and the perpendicular polarization components follow the same path 
within the interfaced layer, directional reflectance ( )012 0R θ  and transmittance ( )012 0T θ  are 
expressed as ( )012 0R⊥ θ  and ( )012 0T ⊥ θ  with the adequate Fresnel coefficients 
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 (3.53) 

and 
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θ θ
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− θ θ
 (3.54) 

For natural incident light, the expressions obtained for the perpendicular and the parallel 
polarization components are averaged 

 ( ) ( ) ( )  012 0 012 0 012 0

1
2

R R R⊥⎡ ⎤θ = θ + θ⎢ ⎥⎣ ⎦      and     ( ) ( ) ( )  012 0 012 0 012 0

1
2

T T T⊥⎡ ⎤θ = θ + θ⎢ ⎥⎣ ⎦  (3.55) 
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 Let us now consider that the directional light comes from the lower medium with an 
incidence angle θ2. The description of the multiple reflections occurring within the bonded 
layer is the same as when light comes from the upper medium. We obtain the same re-
flectance and transmittance expressions as above with exchanged subscripts 0 and 2. The 
reflectance ( )210 2R θ  and the transmittance ( )210 2T θ  of the interfaced layer are 

 ( ) ( ) ( )  210 2 210 2 210 2

1
2

R R R⊥⎡ ⎤θ = θ + θ⎢ ⎥⎣ ⎦    and   ( ) ( ) ( )  210 2 210 2 210 2

1
2

T T T⊥⎡ ⎤θ = θ + θ⎢ ⎥⎣ ⎦  (3.56) 

with 
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θ θ
θ =

− θ θ
(3.57)  

where the symbol * represents either ⊥ or .  

Remark: Let us consider the reciprocity of the directional transmittance of the interfaced 
layer. According to relation (3.43), we can take Fresnel coefficients ( )10 1T ∗ θ  and ( )21 2T ∗ θ  in 
place of ( )01 0T ∗ θ  and ( )12 1T ∗ θ . Thus, the expression (3.57) for ( )012 0T ∗ θ  and the expression 
for ( )012 0T ∗ θ  become identical, for the two polarization components and thereby for natural 
light 

 ( ) ( )210 2 012 0T Tθ = θ  (3.58) 

Summary 

 The directional reflectance and transmittance are fundamental functions for the trans-
parent bifaces since they permit to derive the other types of reflectance and transmittance 
(diffuse and Lambertian). In the case of a flat interface, they are given by Fresnel formu-
lae, and in the case of the transparent layers they are derived from Beer’s law. In the case 
of transparent multifaces, resulting from the superposition of transparent layers and flat 
interfaces, the directional reflectance and transmittance depend on the polarization of the 
incident light, due to the Fresnel formulae. Their diffuse and Lambertian reflectances and 
transmittances must be derived from the directional reflectance and transmittance (“prin-
ciple of directionality”). 

 As an example of transparent multiface with two flat interfaces, we have developed the 
directional reflectance and transmittance of transparent layers surrounded by media of 
different refractive indices. The same reasoning line could be followed for transparent 
multifaces comprising more than two interfaces. One would consider a directional polar-
ized incident light, express the contribution of the irradiance components exiting into the 
upper and the lower surrounding media, and average them to obtain the total reflected 
and transmitted irradiances [SHH06].  

 For the sake of simplicity, we propose in Chapter 5 a new formalism and a mathemati-
cal method thanks to which the directional reflectance and transmittance of multifaces 
can be obtained much more easily. 
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Chapter 4.  

Optical properties of scattering and Lambertian bifaces 

Scattering and Lambertian bifaces scatter light. Directional light is reflected and 
transmitted into all directions. Using the formalism introduced in Chapter 2, we char-
acterize scattering bifaces by their fundamental transfer matrix, whose elements can 
be derived from BRDFs and BTDFs, themselves obtainable from an appropriate opti-
cal model. We draw up a survey of classical scattering models for two main types of 
scattering bifaces: rough interfaces (Sect. 4.1) and scattering layers (Sect. 4.2). 
Strongly scattering layers, which correspond to Lambertian bifaces, are presented 
separately (Sect. 4.3). They are characterized by an invariant transfer matrix, inde-
pendently of the geometry of illumination. We show how their invariant upper and 
lower reflectances and transmittances can be obtained using the Kubelka-Munk 
model. We introduce a new way of solving the Kubelka-Munk differential equation 
system using the Laplace transform. We obtain general solutions, convertible into re-
flectance and transmittance expressions as the boundary conditions are specified. 
When the layer has no border, its reflectance and transmittance are called “intrinsic”. 
More general expressions are also developed considering the presence of a biface at 
each of its boundaries. 

4.1 Rough interfaces 

 Rough interfaces are scattering bifaces. They reflect and transmit directional incident 
light into an enlarged set of directions. Their topography may be represented by a ran-
dom function h depending on the coordinates x and y of the horizontal plane (Fig. 4.1). 
Function h is determined by a probability distribution, generally parameterized by a 
characteristic vertical length, the root-mean-square (r.m.s.) height σ, and by a character-
istic horizontal length, the correlation length τ [Sto95]. Another parameter is also com-
monly used: the r.m.s. slope m, corresponding to the ratio σ/τ [TS67]. 

σ

τ
x

h(x,y) Local slope Local normal vector

 

Fig. 4.1: Profile of the elevation function h of a rough interface. The random pat-
tern has a r.m.s. height σ and a correlation length τ. The r.m.s. slope m of the in-
terface is the ratio σ/τ.  
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Most models assume that the local slope within rough interfaces follows a Gaussian dis-
tribution [BS63, Sto95]. In order to ease the application of optical laws, local slopes are 
converted into local normal vectors [Ger03, HH05], denoted by the differential solid angle 

sinh h h hd d dω = θ θ φ  (Fig. 5.2). For an isotropic Gaussian distribution of slopes, the prob-
ability distribution function D of the normal vector orientations is 

 ( )
( )

2 2tan /2

2 32 cos

h m

h
h

e
D d

m

− θ

ω =
π θ

 (3.59) 

Function D given by Eq. (3.59) is known as the Beckmann function [Sto95, CT82, 
NIK91]. It depends only on the polar angle θh due to the assumption of roughness azi-
muthal isotropy. 
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Fig 5.2: 2D representation of a rough interface. The directional incident light (di-
rection denoted by the differential solid angle dωi) hits a small protion of interface 
having the normal vector dωh. It is reflected and transmitted into directions dωr 
and dωt respectively.  

4.1.1 Directional and Lambertian reflectances of rough interfaces 

 In our compositional model, rough interfaces are characterized by their fundamental 
transfer matrix, whose elements are the upper and lower directional reflectances (resp. Ru 
and Rv) and transmittances (resp. Tu and Tv)  

 
( ) ( )

( ) ( )

u u

v v

T R

R T

⎡ ⎤θ θ
⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

 (3.60)  

 In a recent work [HH05], we have studied the influence of the surface roughness in the 
reflectance of printed papers. For this purpose, we have considered a rough paper-air in-
terface illuminated on its upper side by directional incident light (incident angle ψ) and 
on its lower side by Lambertian light, coming from the paper substrate. For such illumi-
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nation geometries, using the notations introduced in Sect. 2.3 [see Eq. (2.2)], the rough 
interface has the particular transfer matrix 

 

( ) ( ) ( )

( ) ( )

( ) ( )
dir

u u u u

i iv v
L

T R T R

r tR T

ψ →

←

⎡ ⎤θ θ ⎡ ⎤ψ ψ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (3.61)  

where ri is a Lambertian reflectance, expressed according to Eq. (1.29) 

 ( )
/2

0
sin2i vr R d

π

θ=
= θ θ θ∫  (3.62)  

Parameter ri represents the fraction of Lambertian light issued from the paper that is 
internally reflected by the rough interface. It is central in color prediction models since it 
determines how much light is subject to multiple reflections between the paper and the 
interface (see Sects. 6.3.1 and 7.1.1 or [HH04]). It can be deduced from reflectance meas-
urements or computed using a model.  

 We considered a rough air-print interface having a relative refractive index of 1.53. Its 
slope was assumed to follow a Gaussian distribution function. By modeling the reflection 
of light on that interface at the print side, we concluded that ri increases with the r.m.s. 
slope m but in a very small proportion compared to the reflectance r10 [Eq. (3.27)] of a 
flat interface (Table 4.1). This explains why the Williams-Clapper model (see Sect. 6.3.2) 
and the Clapper-Yule model (see Sect. 8.3.2), initially restricted to supports having a flat 
surface (e.g. coated or calendered paper sheets), are also accurate for mate supports 
[HECC05].  

Table 4.1: Evolution with roughness of the Lambertian reflectance ri of a rough interface, with 

n = 1.53 (variation to the reflectance of a flat interface in percent) 

r.m.s slope m 0 0.05 0.1 0.2 

arctan(m) 0° 2.9° 5.7° 11.3° 

ri r10 = 0.614 0.614 (0.1 %) 0.615 (0.2 %) 0.618 (0.6 %) 

 

 Directional reflectances and transmittances of rough interfaces can be deduced from 
their BRDF and their BTDF using Eq. (1.21). BRDFs and BTDFs may be determined 
experimentally [EM00, EM01, Sto95] or computed thanks to an optical model.  

4.1.2 BRDF and BTDF models 

 Two main approaches enable the study of reflection and transmission by rough inter-
faces [NIK91]:  

− Physical optics, based directly on the electromagnetic wave theory and Maxwell’s 
equations [BW99, p. 1]. Models relying on physical optics shall be used when the wave-
length of light is large or comparable to the characteristic lengths of the roughness pat-
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terns, specified by the r.m.s. height σ and the correlation length τ [Dur03]. In such case, 
the diffraction of the incident waves by the corrugations of the interface is dominant. It is 
assumed that the interface does not have any discontinuity or sharp arc compared to the 
wavelength of incident light. It may therefore be represented locally by its tangent plane, 
on which light is reflected according to Snell’s law and diffracted because of the small size 
of the plane. This tangent plane approximation is the basis of the Beckmann’s model 
[BS63], also known as Kirchhoff’s approximation [Ogi91]. 

− Geometrical optics, on the other hand, explains the behavior of light when its wave-
length is small compared to the roughness characteristic lengths. Diffraction are assumed 
to be negligible. Slope distribution models, such as the well-known models of Torrance and 
Sparrow [TS67] and of Cook and Torrance [CT82] consider the rough interface as a set of 
randomly inclined microfacets reflecting and transmitting light like flat interfaces.  

 According to slope distributions models [TS67, CT82, NIK91], the BRDF fR of a rough 
interface is  
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When the medium of transmission is non-metallic, the BTDF is [Sta01]  
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In Eqs. (3.63) and (3.64), differential solid angles sini i i id d dω = θ θ φ , sinr r r rd d dω = θ θ φ  and 
sint t t td d dω = θ θ φ  denote respectively the directions of incidence, of reflection and of 

transmission (Fig. 4.2); angle θh represents the inclination of the interface’s local normal 
vector; it is related to the angles of incidence and reflection by  

 ( ) ( )( )  arccos cos cos / 2 1 cos cos sin sin cosh i r i r r i r i
⎡ ⎤θ = θ + θ + θ θ + θ θ φ − φ⎢ ⎥⎣ ⎦

; (3.65) 

angle i′θ  denotes the local angle of incidence of light and is related to the angles of inci-
dence and reflection by  

 ( )( ) 

1
arccos cos cos sin sin cos

2i r i r i r i′θ = θ θ − θ θ φ − φ ; (3.66) 

function D is the probability distribution function of the local normal vector, given by 
Eq. (3.59); function G is a shadowing function that is presented below; R01 is the Fresnel 
reflection coefficient of the interface (see Sect. 3.2.1); ( )i′Γ θ  expresses the spreading of the 
transmitted solid angle due to the refraction by the interface 
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Shadowing: a rough interface may comprise shadow areas, which increase with the rough-
ness and the incidence angle of light. Interface elements belonging to shadow areas do not 
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contribute to the reflection nor the transmission. This phenomenon is called shadowing. 
Likewise, reflected and transmitted light may be partially blocked by neighboring corru-
gations. This phenomenon, sometimes called masking [TS67], is equivalent to shadowing 
but depends on the angle of observation instead of the angle of incidence (Fig. 4.3). 

Incident light Reflected light

Rough interface

Shadowing Masking  

Fig. 4.3: Some areas (bold line) within the rough interface are not illuminated due 
to shadowing. Some other areas are not observed due to masking. 

The fraction of facets that really contributes to the reflection of light from direction idω  
to direction rdω  is given by function ( ),i rG θ θ , product of two similar functions g, one for 
shadowing, and the other one for masking  

 ( ) ( ) ( ) ,i r i rG g gθ θ = θ θ  (3.68) 

Using a statistical model, Smith computed the following shadowing function g [Smi67] 
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 (3.69) 

where i′θ  is the local angle of incidence given by Eq. (3.66) and where function Λm, pa-
rameterized by the surface’s r.m.s. slope m, is defined as 
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Note that both functions g in Eq. (3.68) use the same angle i′θ  since, according to Snell’s 
laws, the local angle of incidence is equal to the local angle of reflection (see Fig. 5.2). 

 Function g is comprised between 0 (facets completely shadowed or masked) and 1 (fac-
ets completely illuminated). At small and medium incidence angles, the illuminated frac-
tion of the facet’s area is close to 1. The shadowing effect is thus small enough to be ne-
glected. However, ignoring the shadowing at high incidence angles may yield an overesti-
mation of the reflected and transmitted irradiances, and a subsequent violation of the 
energy conservation principle. According to Bruce [Bru04] and Caron [CLA02], shadowing 
should be taken into account when the incidence angle is higher than a limit angle shadθ  
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depending on the r.m.s. slope m of the rough interface  

 ( )arctan 2
2shad m
π

θ = −  (3.70) 

The same considerations apply for masking. 

4.2 Scattering layers 

 The optical properties of a medium are generally characterized by its refractive index. 
If the latter is constant, a light ray crosses the medium along a straight line without any 
deviation. However, when light encounters small fluctuations of refractive index within 
the medium, a portion of the incident light is scattered. In the atmosphere, scattering 
yields the white color of clouds (Mie scattering [Mie08]), the blue color of the sky [ZB03] 
and the redness of sunsets (Rayleigh scattering [Ray99]). Scattering also occurs in liquids. 
Milk, for example, is composed of a suspension of almost transparent fat droplets which 
scatter light and give to milk its white and opaque aspect. In the case of oceans, scatter-
ing is coupled to absorption, which produces the characteristic bluish color. Light is also 
scattered in solid heterogeneous media, such as painting [Sim02], paper, cotton, human 
tissues [Pra88], etc.  

 Different types of scattering are encountered according to the composition, shape, size 
and concentration of the heterogeneities, often considered as particles immerged into a 
binder. The polarization and the wavelength of the incident light may have a strong in-
fluence on scattering. We present here some commonly used parameters and models rela-
tive to scattering, mainly borrowed from the works of Durant [Dur03] and of Simonot 
[Sim02]. We show in particular the distinction between scattering layers and Lambertian 
layers, the latter being especially studied in Sect. 4.3. 

4.2.1 Scattering parameters 

 A radiance traversing a path of length x into a scattering and absorbing medium un-
dergoes an exponential attenuation T described by the Beer-Lambert law  

 extK xT e−=  (3.71) 

where Kext is the extinction coefficient (in m–1). The inverse of the extinction coefficient is 
the extinction free-mean-path length lext, characterizing the distance along which a radi-
ance is attenuated by a factor 1/e 

 1/ext extl K=  (3.72) 

The extinction coefficient may be decomposed into a component Ksca relative to scattering 
and a component Kabs relative to absorption  

 ext sca absK K K= +  (3.73) 

Free-mean-path lengths are also defined for scattering lsca and for absorption labs 

 1/sca scal K=    and   1/abs absl K=  (3.74) 
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The scattering and absorbing medium is said to be homogenous when it has at every 
point the same coefficients Ksca and Kabs. Note that Beer’s law presented in Sect. 2.3.1 
corresponds to the special case where Ksca = 0. 

α
u

u'

P(u,u')

 

Fig. 4.4: Phase function of a scattering medium. 

As an effect of scattering, the path of light is modified. The change of direction is speci-
fied by a phase function, P(u,u′), giving the density of probability for light to be scattered 
from an initial direction u to a direction u′ (Fig. 4.4). P(u,u′) being a probability, it is 
always positive and is expected to satisfy the condition of normalization 

 ( ) 

1
, 1

4
P d

Σ
′ ′ω =

π∫ u u  (3.75) 

where dω′ is the differential solid angle associated to the outgoing direction u′ and Σ is 
the entire sphere. When scattering is isotropic, one has P(u,u′) = 1 for every pair of di-
rections (u,u′). Otherwise, anisotropic scattering may be characterized by a parameter g 
defined as the average cosine of the scattering angle  

 ( ) ( )  

1
, cos ,

4
g P d

Σ
′ ′ ′= ω

π∫ u u u u  (3.76) 

The incident light is mainly scattered backwards when g is close to –1 or forwards when g 
is close to 1. For isotropic scatterings, g = 0. Parameter g is used for defining the trans-
port free-mean-path length ltrans, corresponding to the distance from which one may con-
sider that light has completely lost the memory of its original direction of incidence 
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sca
trans

l
l

g
=

−
 (3.77) 

The optical thickness τ of a scattering or/and absorbing layer having a thickness h and an 
extinction coefficient Kext is defined as  

 extK hτ =  (3.78) 

When τ  1, a directional incident light is almost completely attenuated. When τ is 
small, the layer is translucid, i.e. we can distinguish an object located beneath the layer. 
After a certain number of scattering events, light propagates in an isotropic manner, i.e. 
it becomes Lambertian. 
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4.2.2 Types of scattering 

 The notion of optical thickness defined above allows estimating the number of scatter-
ing events that a light ray undergoes across a given layer of the considered medium. In 
the particular case of a weakly absorbing medium (Kabs  Ksca), the optical thickness de-
scribes the strength of scattering. We may distinguish four scattering modes, according to 
the value of the optical thickness of the layer:  

− ballistic scattering:  τ  1 (h  lsca), in which light is almost not scattered, 

− single scattering:  τ ≈ 1 (h ≈ lsca) in which light is scattered once in the medium 
(Rayleigh scattering [Ray99], Mie scattering [Mie08]),  

− multiple scattering:  τ > 1 (h > lsca), in which light is scattered various times [Kor94], 

− diffusion:  τ  1 (h  lsca) where scattering events occur so many times that the re-
sulting scattering is isotropic. According to Eq. (3.77), since parameter g defined by 
Eq. (3.76) is equal to 0, the transport length is given by the scattering length. The inci-
dent light has therefore completely lost the memory of its incident direction. 

 For low concentrations of particles, it is assumed that they do not interact one with 
each other. Scattering is said to be independent. Describing the scattering by one particle 
is sufficient to determine the scattering by the whole medium. For high concentrations of 
particles, scattering becomes dependent. In the case of independence, geometrical optics 
may be used when the size of the particles are large compared to the wavelength of the 
incident light. However, when the particles are small compared to the wavelength, light is 
diffracted. In this case, scattering may be modeled by the Rayleigh scattering theory 
[Ray71, Ray99, Des91]. The Mie scattering theory describes the diffraction of light by 
spherical particles of complex refractive index in a dielectric medium (real refractive in-
dex) [Mie08]. Note that, excepted for exceptional phenomena such as the Raman effect, 
scattering does not modify the wavelength of the incident light. 

 Coming back to the classification of bifaces introduced in Sect. 2.3, we will consider 
that a layer is transparent when h  lsca, Lambertian when h  lsca. Otherwise, the layer 
is considered to be a scattering biface.  

4.2.3 The radiative transfer equation 

 In many applications, a simple phenomenological approach, based on the notion of 
directed light ray and conservation of energy, provides a realistic description of the scat-
tering phenomenon. Considering a sufficiently large portion of the heterogeneous medium, 
the scattering process is described by a simple equation: the radiative transfer equation 
[Cha60]. A priori, it is valid only when the scattering free-mean-path length lsca is large 
compared to the wavelength of the incident light and to the dimension of the heterogenei-
ties responsible of the scattering, but specific studies have shown that its domain of valid-
ity can be enlarged to other cases [Dur03, Car03].  

 The radiative transfer equation expresses the conservation of the radiant flux in a 
given element of volume and a given direction. This energy balance shall be performed 
everywhere in the medium and in every direction. Let us consider a small cylinder of sec-
tion dS and of length dl oriented according to the incident direction u. Radiance L(u) 
decreases along this direction due to absorption and scattering 
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( ) ( )abs sca
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K K L
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= − +

u
u  (3.79) 

At the same time, the cylinder receives radiances L(u′) from all directions u′ and scatters 
them partially towards direction u, which increases radiance L(u). The portion of radi-
ance L(u′) that contributes to radiance L(u) is ( ) ( ),scaK P L d

π
ω′ ′ ′u u u

4
, where ( ),P ′u u  is the 

phase function of the considered cylindrical element of volume. By summing up the con-
tributions of all directions u′ and adding the resulting global contribution to Eq. (3.79), 
one obtains the radiative transfer equation 
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This equation has no general solution. An exact or approximated solution must be 
searched for every particular scattering medium. Various solutions have been developed. 
Let us mention the three principal ones [Sim02]:  

− The N-fluxes method, which allows converting the integrodifferential equation (3.80) 
into a differential equation system thanks to an angular discretization. Solutions are ob-
tained for azimuthally isotropic media, the discretization being performed only according 
to the zenithal angle [MR71]; the simplest particular case is the two-flux Kubelka-Munk 
model [KM31, Kub48]. Four-flux models have also been developed [MLG84, MG86]. 

− The discrete ordinate method [SCWJ88], which is an exact but computationally expan-
sive method. The assumption of azimuthal isotropy is not necessary. Discretization ac-
cording to the azimuthal angle is avoided thanks to a Fourier series development for the 
scattered fluxes and a spherical harmonic decomposition of the phase function. 

− The auxiliary function method  [EE02], which avoids angular discretization. An auxil-
iary function is introduced into the radiative transfer equation and decomposed into 
spherical harmonics. The radiative transfer equation is thus converted into an integral 
equation system, which can be solved numerically.     

4.3 Lambertian layers 

  The free-mean-path length lsca of a strongly scattering layer is very small compared to 
the layer thickness (Sect. 4.2.2). Incident light looses the memory of its initial angular 
distribution as soon as it penetrates the layer. We can therefore assume that any illumi-
nation geometry leads to a same reflectance and a same transmittance, called intrinsic. 
Since light is scattered a large number of times within the layer, it is Lambertian at every 
point of the layer, especially at the layer’s bounding planes. We can also assume that 
light exiting the layer is unpolarized. Strongly scattering layers satisfy the conditions for 
being a Lambertian biface (Sect. 2.2) and are thus said to be Lambertian layers. 

 The reflection and transmission by Lambertian layers can be modeled by the Kubelka-
Munk two flux model [KM31, Kub48, Kub54], with a satisfying accuracy if the layer is 
weakly absorbing [Kli71, VN97]. An intent of alternative model relying on Markov chains 
has been proposed for paper by Simon and Trachsler [ST03]. In the present section, we 
will present only the Kubelka-Munk model, and propose a new method for solving its 
famous differential equation system. 
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4.3.1 Kubelka-Munk two-flux model 

 The scattering proposed by Kubelka and Munk [KM31] was initially introduced for 
predicting the reflectance of paints, but it has been also used in a wide range of domains 
where uniform and infinitely large layers of a scattering medium are encountered. It cor-
responds to a special case of the radiative transfer theory where the phase function is re-
duced to a pair of opposite directions or, more precisely, of opposite sets of directions 
covering respectively the upper and the lower hemispheres [Kub54]. Thus, it is said to be 
a “two-fluxes scattering model”. The model can be equivalently expressed in terms of 
irradiances instead of fluxes, which corresponds to considering the fluxes relatively to a 
unit area.   

4.3.2 Differential equation system 

 The interest of the Kubelka-Munk model lies in the simple differential equation system 
expressing the scattering and absorption phenomena within the layer. The differential 
equations involve the upward and the downward oriented irradiances, functions of the 
depth in the layer. Another interest of this model is the fact that the solutions of the dif-
ferential equation system have an analytical expression.  

  The layer, having a thickness h, is made of a homogenous absorbing and scattering 
medium having an absorption coefficient K and a scattering coefficient S, both ones being 
functions of the wavelength. In the layer, a Lambertian irradiance ir propagates upwards 
and a Lambertian irradiance it propagates downwards. Both ir and it are functions of the 
depth x at which they are located in the layer. Depth 0 corresponds to the layer’s bound-
ary that receives the incident irradiance I0. Depth h corresponds to its other boundary 
(Fig. 4.5). 

 it(h)

I0

ir(x)

ir(0)

it(0)

ir(x+dx)

it(x+dx)

it(x)dx
x

h

0

 

Fig. 4.5: Upward and downward irradiances crossing a sublayer of thickness dx at 
a depth x in the scattering layer. 

Let us consider at a given depth x a sublayer of infinitesimal thickness dx. The sublayer 
receives the downward irradiance it (x) on the one side and the upward irradiance ir(x+dx) 
on the other side. In the sublayer, a fraction S dx of both irradiances ir(x) and it(x) is 
backscattered, leading to a mutual exchange of irradiance. A fraction K dx is absorbed. 
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 While crossing the sublayer, the upward irradiance ( )ri x dx+  loses both the absorbed 
irradiance K ir(x)dx and the backscattered irradiance S ir(x)dx. It gains the backscattered 
irradiance S it(x)dx. The irradiance it(x) leaving the sublayer is therefore 

 ( ) ( ) ( ) ( ) ( )     r r r ti x i x dx K S i x dx Si x dx= + − + +  (3.81) 

The downward irradiance it(x) loses the absorbed irradiance K it(x)dx and the backscat-
tered irradiance S it(x)dx. It gains the backscattered irradiance S ir(x)dx. The irradiance 

( )ti x dx+  leaving the sublayer is  

 ( ) ( ) ( ) ( ) ( )     t t t ri x dx i x K S i x dx Si x dx+ = − + +  (3.82) 

According to the definition of the derivative, when 0dx →  

 
( ) ( )i x dx i xd

i
dx dx

+ −
=  (3.83)  

By rearranging Eqs. (3.81) and (3.82), we obtain the Kubelka-Munk differential equation 
system  
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d
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i x Si x K S i x
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⎧⎪⎪ = + −⎪⎪⎪⎨⎪⎪ = − +⎪⎪⎪⎩

 (3.84) 

4.3.3 Solutions for the differential equation system  

 There exists a very simple method for solving the differential equation system (3.84), 
that we have not found anywhere in the literature. Thanks to the Laplace transform 
[HS98], we can convert the differential equation system into a linear equation system 
much more easy to solved.  

 The Laplace transform associates to a causal function f (x) the function F(p) such that 

 ( ) ( ) 

0

ptF p f t e dt
∞

−= ∫  (3.85)  

It is linear, i.e. it transforms ( ) ( )  af x bg x+  into ( ) ( )  aF p bG p+ . The derivative of a func-
tion f is transformed into pF(p) – f (0), where the constant f (0) is the value of f at x = 0. 
Calling Ir(p) and It(p) the respective transforms of ir(x) and it(x), the differential equation 
system (3.84) is transformed into the following linear equation system, depending on the 
two unknown functions Ir(p) and It(p) 
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 (3.86) 

This system has the two following solutions 
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and    

 ( )
( )( ) ( )   

2 2 2

0 0t r
t

i p aS Si
I p

p b S

− +
=

−
 (3.88) 

with 

 ( )/a K S S= +    and   2 1b a= −  (3.89) 

Since ( )2 2 2/p p b S−  and ( )2 2 2/bS p b S−  are the respective Laplace transforms of 
( )  cosh bSx  and ( )  sinh bSx , one concludes1 that Ir(p) is the Laplace transform of  

 ( ) ( ) ( ) ( ) ( )( ) ( )               

1
0 cosh 0 0 sinhr r r ti x i bSx ai i bSx

b
= + −    (3.90) 

and It(p) is the Laplace transform of 

 ( ) ( ) ( ) ( ) ( )( ) ( )            

1
0 cosh 0 0 sinht t r ti x i bSx i ai bSx

b
= + −  (3.91) 

Expressions (3.90) and (3.91) are the general solutions of the Kubelka-Munk differential 
equation system [HH06].  

4.3.4 Intrinsic reflectance and transmittance of a Lambertian layer 

 Let us now derive from general solutions (3.90) and (3.91) the intrinsic reflectance and 
transmittance of a scattering layer considered without interface nor any type of biface at 
its boundaries. An incident irradiance I0 illuminates the upper side of the scattering layer. 
The intrinsic reflectance of the scattering layer is the fraction of the incident irradiance I0 
that exits the layer at the upper side, i.e. the ratio ir(0)/I0. The intrinsic transmittance is 
the fraction of the incident irradiance I0 exiting at the lower side, i.e. the ratio it(h)/I0. 
Let us therefore express ir(0) and it(h). 

 At x = 0, the downward irradiance it (0) is the incident irradiance 

 it(0) = I0 (3.92) 

At x = h, the upward irradiance ir (h) is zero, since the scattering layer is not illuminated  
from below 

 ir(h) = 0 (3.93) 

 

By setting x = h and inserting relations (3.92) and (3.93) into Eq. (3.90), one obtains 

 ( )
( )

( ) ( )
 

      

0

sinh
0

cosh sinhr

bSh
i I

b bSh a bSh
=

+
 (3.94) 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 When a function has a Laplace transform, this latter is unique. The converse is also true. The 
Laplace transform is bijective from the set of functions admitting a Laplace transform to the set of 
Laplace transforms.  
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Likewise, one takes x = h and replaces, in Eq. (3.91), it(0) and ir(0) by their respective 
expressions (3.92) and (3.94). One derives from Eq. (3.89) the relation 2 2 1b a= − . Fi-
nally, using the classical relation of hyperbolic trigonometry ( ) ( )2 2cosh sinh 1bSh bSh− = , 
one obtains 

   ( )
( ) ( )    

0 cosh sinht

b
i h I

b bSh a bSh
=

+
 (3.95) 

The ratio ir(0)/I0 gives the intrinsic reflectance ρ of the scattering layer 
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r bShi
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 (3.96) 

and the ratio ir(h)/I0 gives its intrinsic transmittance τ  

 
( )

( ) ( )    0 cosh sinh
ti h b
I b bSh a bSh

τ = =
+

 (3.97) 

As expected, these expressions of intrinsic reflectance and transmittance are identical to 
those derived by classical solving methods [Kub48].  

4.3.5 Lambertian layer bordered by bifaces 

 Let us now consider that the layer is bounded at x = 0 by a biface whose upper face 
has a reflectance su and a transmittance pu and whose lower face has a reflectance ru and a 
transmittance xu. At x = h, the Lambertian layer is bordered by another biface having a 
reflectance rv and a transmittance xv (Fig. 4.6).  
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it(x)
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Fig. 4.6: Reflections and transmissions occurring at the boundaries of the Lamber-
tian layer. 
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This biface receives on its upper face an irradiance I0 coming from the light source. A 
fraction su of I0 is directly reflected and a fraction pu crosses the biface. On its lower face, 
it receives the upward irradiance ir(0) from the Lambertian layer. A fraction ru is inter-
nally reflected and a fraction xu emerges across the biface. Hence, at x = 0, the downward 
irradiance it(0) is 

 ( ) ( )00 0t u u ri p I r i= +  (3.98) 

At x = h, the lower biface receives the downward irradiance it(h) and reflects it in a pro-
portion rv. There is no light coming from below. Hence, the upward irradiance ir(h) is  

  ( ) ( )r v ti h r i h=  (3.99) 

Let us insert the boundary equation (3.98) into the general solution (3.90) of ir(x) for 
x = h, and use the boundary equation (3.99) 

 ( ) ( ) ( ) ( ) ( )[ ] ( )              

  

0

1 1
0 cosh 0 0 sinht r r u u r

v v

i h i bSh ai p I r i bSh
r br

⎡ ⎤= + − +⎣ ⎦  (3.100) 

We also insert the boundary equation (3.98) into the solution (3.91) of it(x) for x = h 

 ( ) ( )[ ] ( ) ( ) ( )[ ]( ) ( )            0 0

1
0 cosh 0 0 sinht u u r r u u ri h p I r i bSh i a p I r i bSh

b
= + + − +  (3.101) 

Eqs. (3.100) and (3.101) form a linear equation system depending on the two unknown 
variables ir(0) and it(h), i.e. on the two irradiances exiting the print. The solutions of this 
equation system are  
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( ) ( ) ( )

( ) ( ) ( ) ( )
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 (3.102) 

and 
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( ) ( ) ( ) ( )   

0 sinh 1 cosht u
u v u v u v

b
i h p I

a r r ar r bSh b r r bSh
=

− − + + −
 (3.103) 

A fraction xu of irradiance ir(0) emerges across the upper biface. It forms, conjointly with 
the irradiance suI0 reflected by the upper biface, a total irradiance Ir  

  ( )0 0r u u rI s I x i= +  (3.104) 

The ratio Ir/I0 corresponds to the global reflectance Rb of the bordered Lambertian layer  
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 (3.105) 

Likewise, a fraction xv of irradiance it(h) emerges across the lower biface, forming an 
emerging irradiance ( )t v tI x i h= . The ratio It/I0 is the global transmittance Tb of the bor-
dered Lambertian layer 
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( ) ( ) ( ) ( )         sinh 1 coshb u v

u v u v u v

b
T p x

a r r ar r bSh b r r bSh
=

− − + + −
 (3.106) 

Remark: In the particular case where there is no bordering biface on the upper side, we 
have su = 0, pu = 1, ru = 0 and xu = 1. By inserting these values into Eqs. (3.105) and 
(3.106), we obtain the global reflectance and transmittance of the layer bordered only at 
the lower side  
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 (3.107) 

and 

 
( ) ( ) ( )      sinh coshkm

v

b
T

a r bSh b bSh
=

− +
 (3.108) 

These expressions are those presented by Kubelka for the case of a scattering layer 
bounded at the lower side by a reflecting background of reflectance rv [Kub 31, Kub48].  

 Let us now consider that, in addition to the background at the lower side, the Lamber-
tian layer has an interface at the upper side. We can directly use Eqs. (3.105) and 
(3.106), where the upper biface represents the interface. However, Eqs. (3.105) and 
(3.106) are traditionally obtained indirectly via the so-called “Saunderson correction” 
[Sau42]. Saunderson’s model considers the multiple reflections and transmissions of light 
between the interface and the Lambertian layer with the background, whose reflectance 
Rkm and transmittance Tkm are given by (3.107) and (3.108). We will have the opportunity 
to present this model as a particular case of our compositional model (Sect. 6.3.1). 

Summary 

 We have presented the two types of bifaces by which light is scattered: the scattering 
bifaces, among which the rough interfaces and scattering layers, and the Lambertian bi-
faces. We have presented basic elements of the classical literature that may be used to 
compute their reflectance and their transmittance.  

 A homogenous layer where light is intensely scattering is considered as being a Lam-
bertian biface. Its reflectance and transmittance, called “intrinsic”, may be modeled using 
the Kubelka-Munk model. We have presented a solving method for the Kubelka-Munk 
differential equation system using the Laplace transform. First, general solutions are ob-
tained giving the upward and the downward irradiances propagating within the layers as 
functions of the depth. Then, considering eventual reflections and transmissions taking 
place at the boundaries of the layer, we can write boundary equations and obtain the 
global reflectance and transmittance of the Lambertian layer.  

 More advanced models [Yan04a-c] may also be used when the scattering and absorp-
tion coefficients are functions of depth within the layer. Such models are outside the scope 
of the present study. However, according to our formalism, it is possible to consider non-
symmetric layers, with different intrinsic reflectances and transmittances. 
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Chapter 5.  

Multiple reflection-transmission of light in multifaces  

This chapter is dedicated to the optical properties of multifaces. We first develop a 
step-by-step description of the transfer of light between the contained faces. The 
global reflectance and transmittance of the multiface are expressed by infinite sums 
(Sect. 5.1). Then, we present a special type of multiface, called “regular”, in which 
light is transferred according to a single reflectance and a single transmittance per 
face (Sect. 5.2). The infinite sums can be reduced to closed-form expressions. The su-
perposition of bifaces is algebraically represented by an operation on their transfer 
matrices, called “composition”. The composition of two, resp. three bifaces are char-
acterized by a “quadriface formula”, resp. a “hexaface formula”. These two composi-
tional formulae are developed using Markov chains. They can be further composed it-
eratively (Sect. 5.3). Lastly, we complete our new formalism with the notion of “bi-
face splitting”, where a biface is represented by an equivalent quadriface (Sect. 5.4). 

5.1 Light multiple reflection-transmission between bifaces 

 Previous chapters were dedicated to the characterization of bifaces. Here, we consider 
the superposition of various bifaces. We describe the transfers of light, i.e. the reflections 
and transmissions, between their faces. The transfer ratios are given by the reflectance 
and the transmittance of each face. These reflectances and transmittances may have been 
previously obtained experimentally or calculated using one of the optical models pre-
sented in Chapters 3 and 4. However, in order to develop a model applicable to any type 
of multiface, we keep the face reflectances and transmittances unspecified and consider 
them as variables.  

5.1.1 Multiple reflection-transmission process 

 Every irradiance hitting a face in a multiface is split into a reflected irradiance compo-
nent and a transmitted irradiance component. Each component is a certain fraction of the 
incident irradiance, having its own angular distribution. The components are themselves 
split into a reflected and a transmitted components, which will be again split etc. The 
splitting process, called multiple reflection-transmission process, is developed in various 
steps.  

 The split of the source light corresponds to the first step. In the second step, both the 
reflected and transmitted components are again split, yielding four irradiance compo-
nents. These ones are at their turn split in the third step. The multiple reflection-
transmission process continues indefinitely and creates an infinity of irradiance compo-
nents. Each irradiance component is characterized by a different combination of succes-
sive reflections or/and transmissions and is considered as a path. The paths terminate 
when their respective irradiance component exits the multiface, thus contributing to the 
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total reflected irradiance or the total transmitted irradiance. 

 It will be handy to consider steps as time units. Thus, the numbers of reflections 
or/and transmissions undergone by the corresponding irradiance components, are consid-
ered as durations. We are in presence of a discrete time process.  

 We may represent the different paths in the form of a binary tree, whose branches 
represent the paths followed by the irradiances components. The branches end when the 
corresponding irradiance components exit the multiface. In the binary tree, arcs represent 
a face reflection or a face transmission and are weighted by the corresponding reflectance 
or transmittance. Every arc is terminated by a node whose two outgoing arcs represent 
the split into a reflected and a transmitted components. Since the angular distribution of 
light may vary in time, all arc weights should be considered different even for reflections 
and transmission taking place at a same face. Fig 5.1 shows the binary tree for a hexaface 
(three bifaces superposed), where the arcs representing reflections are curved in such a 
way that every arc of the three is contiguous to its associated face. 

RE0

TE0

��������������

�����������������

E0

upper
biface

central
biface

lower
biface

 

Fig. 5.1: Binary tree representing the multiple reflection-transmission process in a 
hexaface. Arcs represent face-to-face light transfers, i.e. reflections (curved arcs) 
or transmissions (vertical arcs), during which light is angularly redistributed. At 
nodes, light is split into a reflected and a transmitted component. The angular 
distribution of light is specific to each path. Arc weights, not specified here, are 
reflectances or transmittances, possibly all different.  

Remark: Some bifaces are allowed to have a null reflectance or a null transmittance. This 
may yield degenerated cases of multiple reflection-transmission, i.e. possibly no multiple 
reflection-transmission at all. 
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5.1.2 Example of the quadriface 

 Let us consider the case of two superposed bifaces, forming a “quadriface”. The nature 
of the bifaces is kept unspecified1. We just consider the BRDFs/BTDFs of their two faces, 
named in Fig. 5.2, from which are derived their directional reflectance/transmittance us-
ing Eq. (1.21). Directional reflectance Su(θ) is derived from BRDF 

us
f , directional trans-

mittance Pu(θ) is derived from BTDF 
upf , etc. Thus, the upper and the lower bifaces have 

the respective fundamental transfer matrices 

 
( ) ( )

( ) ( )

u u

u u

P S

R X

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

   and   
( ) ( )

( ) ( )

v v

v v

X R

S P

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

 (5.1) 

fpu
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frv
fxv

fpv
fsv

Upper biface

Lower biface

 

Fig. 5.2: BRDFs and BTDFs of the upper and lower bifaces in a quadriface. 

Let us start describing the multiple reflection-transmission process. An incident irradiance 
E0, angularly distributed according to a radiance function L0(dω0), comes from the upper 
side and illuminates the upper face of the upper biface (Fig. 5.3). At time k = 1, E0 is 
split into a reflected portion su(1)E0 and a transmitted portion pu(1)E0. Fraction su(1) is a 
diffuse reflectance deriving from the directional reflectance Su(θ) according to Eq. (1.23). 
Likewise, pu(1) is a diffuse transmittance deriving from the directional transmittance Pu(θ) 
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∫
 (5.2) 

The reflected irradiance Er0
 = su(1)E0 contributes to the total reflected irradiance Er. The 

transmitted irradiance E1
 = su(1)E0 has an angular distribution represented by a radiance 

function L1, expressed as in Eq. (1.24) 

 ( ) ( ) ( )  

0
1 1 0 1 0 0 0 0, cos

upd
L d f d d L d d

ω ∈Ω
ω = ω ω ω θ ω∫  (5.3) 

where 
upf  is the BTDF of the upper face of the upper biface.  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 Readers who would like to have in mind examples of quadriface may think about, for instance, a 
nonabsorbing transparent glass slice having rough interfaces. 
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Fig. 5.3: Binary tree representing the multiple reflection-transmission process oc-
curring within a quadriface. 

At time k = 2, irradiance E1 reaches the lower biface where it is split into a reflected por-
tion rv(2)E1 and a transmitted portion xv(2)E1. Again, rv(2) is a diffuse reflectance and 
xv(2) a diffuse transmittance, expressed as in Eq. (1.23) with the radiance function L1 
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 (5.4) 

The transmitted irradiance ( ) ( ) ( ) 0 1 02 1 2t v u vE x E p x E= =  exits the quadriface and contrib-
utes to the total transmitted irradiance Et. The reflected irradiance ( ) ( ) 2 01 2u vE p r E=  has 
an angular distribution represented by a radiance function L2  

 ( ) ( ) ( )  

1
2 2 1 2 1 1 1 1, cos

vrd
L d f d d L d d

ω ∈Ω
ω = ω ω ω θ ω∫  (5.5) 

where 
vr

f  is the BRDF of the upper face of the lower biface. 

 At time k = 3, irradiance E2 comes back to the upper biface, where it is again split 
into a reflected fraction ru(3) and a transmitted fraction xu(3), again expressed as in 
Eq. (1.23) with the radiance function L2 
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 (5.6) 

The transmitted irradiance ( ) ( ) ( ) ( )    3 2 03 1 2 3r u u v uE x E p r x E= =  contributes to the total 
transmitted irradiance Et. The reflected irradiance ( ) ( ) ( )   3 01 2 3u v uE p r r E=  has an angular 
distribution represented by a radiance function L3  
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 ( ) ( ) ( )  
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3 3 2 3 2 2 2 2, cos

urd
L d f d d L d d

ω ∈Ω
ω = ω ω ω θ ω∫  (5.7) 

We may pursue this description indefinitely. The first irradiance components exiting the 
quadriface are  
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We could express in the same manner all the irradiance components Er,q and Et,q. Their 
sum would give respectively the total reflected irradiance Er and the total transmitted 
irradiance Et 
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r r q
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E E
∞

=
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E E
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=

= ∑  (5.8) 

By dividing Eqs. (5.8) by the incident irradiance E0, one obtains the global reflectance R 
and the global transmittance T of the quadriface, which are also expressed as infinite 
sums 
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∞

=

= ∑  (5.9) 

where the terms rq = Er,q/E0 and tq = Et,q/E0 are products of face reflectances and trans-
mittances, themselves depending upon time parameter k.  

5.1.3 Time-dependent and time-independent processes 

 Let us examine the time-dependence of the face reflectances and transmittances. These 
ones are expressed as functions of BRDFs and radiances functions. Since the optical prop-
erties of the faces are invariant, the BRDFs are also invariant. The only possible factor of 
the time-dependence is the angular distribution of light. It is evident, if we expand Eqs. 
(5.3), (5.5) and (5.7), that the radiance functions Lk are a priori different to each other 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

 

   

0

0

1

0

1

2

1 0 0 0 0 0

2 0 1 1 0 0 0 0 1 1

3 0 1 1 2 2 0 0 0 0 1 1 2 2

 , cos

 , , cos cos

 , , , cos cos cos

u

u v

u v u

p
d

d p r
d

d
p r r

d
d

L d f d d L d d

L d f d d f d d L d d d

L d f d d f d d f d d L d d d d

ω ∈Ω

ω ∈Ω
ω ∈Ω

ω ∈Ω
ω ∈Ω
ω ∈Ω

ω = ω ω ω θ ω

ω = ω ω ω ω ω θ ω θ ω

ω = ω ω ω ω ω ω ω θ ω θ ω θ ω

∫

∫∫

∫∫∫

 (5.10) 

Hence, the reflectance and transmittance of the lower and upper bifaces are also functions 
of the time parameter k. We have a time-dependent process. The multiface is said to be 
irregular. The infinite sums of Eqs. (5.9) expressing the global reflectance R and the 
global transmittance T of the multiface are irreducible. We can assume that from a cer-
tain time, which should be determined thanks to a study specific to the considered mate-
rials, the terms become very small and can be neglected. Thus, the infinite sums would be 
reduced to the summation of a few relevant terms. Otherwise, we can use models of sur-
face or/and volume scattering as those presented by Durant [Dur03] or Caron [Car03].  
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   However, there exist some multifaces such that light has always the same angular dis-
tribution when it illuminates a same face. The radiance functions relative to a given face 
are proportional to each other. In the example of the quadriface above, radiance functions  
L1, L3, L5,… illuminating the lower biface and radiance functions L2, L4, L6,… illuminating 
the upper biface are such that, for all dω,  

L1(dω) = kL3(dω) = k′L5(dω) = … 

L2(dω) = k′′L4(dω) = k′′′L6(dω) = … 

where k, k′, k′′ and k′′′ are constants. The reflectance and transmittance of the faces are 
constant over the multiple reflection-transmission process, i.e.,  

rv(2) = rv(4) = rv(6) = … 

ru(3) = ru(5) = ru(7) = … 

The process is said to be time-independent and the multiface is said to be regular. In this 
case, the infinite sums of Eqs. (5.9) become geometrical series, with closed-form formulae 
for R and T [HH06]. We can obtain these expressions by factorizing the above infinite 
sums. Such a method is realizable for quadrifaces, but becomes impracticable as the num-
ber of bifaces increases. We will rather use a method relying on Markov chains whose 
complexity is almost identical for any dimension of multiface. 

5.2 Regular multifaces 

 The present section aims at characterizing regular multifaces, and first at determining 
which type of multiface is amenable to be regular.  

5.2.1 Conditions of regularity 

 Faces whose reflectance and transmittance are time-independent are called “regular 
faces”. Thus, a multiface is regular when all its faces are regular. The following cases 
must be considered:  

− External faces: They receive light only once, from a light source, at time origin. They 
are therefore independent of time and thus regular whatever the illumination geometry.  

− Lambertian faces: They are regular without any restriction, since their reflectance and 
transmittance are independent of the incidence angular distribution (see Sect. 4.3). Fur-
thermore, reflected and transmitted irradiances are uniformly distributed over the hemi-
sphere, i.e. Lambertian.  

− Scattering faces: They are irregular when their bordering face is scattering or trans-
parent biface (of nonzero reflectance), because of a time-dependent multiple reflections 
process (light becomes more and more diffuse each time it hits the scattering face). How-
ever, when their bordering face is Lambertian, they are invariably illuminated by a Lam-
bertian irradiance and are therefore regular.     

− Transparent faces: For the same reasons as above, transparent faces are regular when 
they are bordered by Lambertian faces and irregular when they are bordered by scatter-
ing faces.  

− Successive transparent faces: A directional incident light follows only the regular di-
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rections. The angle of incidence on each face is constant. The multiface is therefore regu-
lar for directional incident light. For diffuse or Lambertian illuminations, the respective 
contribution of all the incident rays should computed separately and summed up after-
wards (principle of directionality, see Sect. 3.3.3).  

 In summary, the multiface is regular when it does not contain any scattering biface, or 
when every contained scattering bifaces is directly bordered by a Lambertian biface.  

5.2.2 Representations of regular multifaces 

 From now, only regular multifaces are considered. Each face is associated with its re-
flectance and its transmittance involved in the multiple reflection-transmission process. 
Likewise, to each biface is associated a single transfer matrix, containing the reflectance 
and transmittance of its two faces. Let us take the example of a hexaface (three bifaces) 
having respectively the transfer matrices 
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Fig. 5.4: Representation (a) by an infinite dimensional graph, (b) by a finite di-
mensional Markov graph, of the multiple reflection-transmission process occurring 
in a regular hexaface illuminated at the upper side. 

Thanks to the time-independence of the process, the binary tree of Fig. 5.1 can be consid-
erably simplified. Since every irradiance component incident on a face is reflected and 
transmitted in a same proportion, we may proceed to some groupments of arcs and nodes. 
For instance, each group of parallel arcs drawn in Fig. 5.1 may be represented by a single 
arc. Each clusters of nodes is consequently replaced by a single node. In the resulting 
graph, shown in Fig. 5.4a, nodes are both the converging point and the starting point of 
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arcs. They represent both the collecting and the splitting of irradiance components. In 
such a graphical representation, the development of the multiple reflection-transmission 
process in time is preserved, but the graph is infinite dimensional.  

 An even more compact representation is possible, although the visual representation of 
time is lost. All the arcs relative to a same reflection or transmission are grouped into a 
single arc. A finite graph is obtained, with only one reflection arc and one transmission 
arc per face (Fig. 5.4b). Since the values of arc weights are all percentages, such a graph 
is analogous to the graphical representation of a Markov chain.  

 The analogy between multiple reflection-transmission processes and Markov chains is 
highly profitable for our compositional model. We will take benefit of the well established 
mathematical methods embodied into the so-called Markov theory for establishing the 
formulae for multiface global reflectances and transmittances. The Markov matrix formal-
ism has inspired us the idea of endowing also our compositional theory with a matrix-like 
formalism. Pursuing this idea, we now introduce a well-defined “product” of transfer ma-
trices, called composition (notation ○), permitting to visualize under an algebraic form 
the superposition of bifaces in regular multifaces. Hence, the synthetic view of the light 
transfer process provided by the Markov graph is doubled by an algebraic equation that 
we call composition equation. 

 Consider a multiface with global transfer matrix G, resulting from the superposition of 
a biface having the transfer matrix F1 on the upper side and a biface having the transfer 
matrix F2 on the lower side. The corresponding composition equation is written as 

 G = F1 ○ F2 (5.12)  

For example, the composition equation corresponding to the hexaface of Fig. 5.4 is 

     
U U u u v v

u u v vV V

T R p s x r

r x s pR T

τ ρ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥′ ′⎢ ⎥ ⎢ ⎥ρ τ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
○ ○  (5.13)  

Note that the position of transfer matrices with respect to symbol ○ has an importance. 
The composition operation is not commutative. The definition of ○ will be given in 
Sect. 5.3.1 by the expressions for TU, RU, TV and RV as functions of the face reflectances 
and transmittances. Let us now present the Markov chains that will permit the efficient 
computation of these expressions.  

5.2.3 Analogy between regular multifaces and Markov chains 

 A Markov chain is a convenient representation of the behavior of a physical system 
which describes the different states the system may occupy and indicates how the system 
moves from one state to another in time [Ste94]. Our conception of time has already been 
described in Sect. 5.1.1. In the context of multiple reflection-transmission processes, the 
system is the multiface. The different states occupied by the system are the incidence of 
light on the different faces. A path, i.e. a succession of reflections and transmissions, is 
represented by a succession of state-to-state transitions within the chain. Reflectances and 
transmittances become probabilities of transition. Table 5.1 completes the correspondence 
between multiple reflection-transmission processes and Markov chains.  
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Table 5.1: Correspondence between concepts underlying multiple reflection-transmission processes and 

Markov chains. 

Multiface 

Light reaching a face or a detector 

Reflection / transmission 

Reflectance / transmittance 

Time-dependent process 

Time-independent process 

External faces 

Structured stochastic system 

State 

Transition 

Transition probability  

Time-dependent stochastic process 

Homogenous Markov chain 

Ephemeral or absorbing states 

 A survey of basic definitions and results of Markov theory is proposed in Appendix B.  
Let us recall here that a stochastic process can be represented by a Markov chain only 
when every state-to-state transition has a time-independent probability to occur. There-
fore, the Markov theory can be used only with regular multifaces.  

Lower biface

SourceDetector

1 7 2

Upper biface

Source Detector

3 4

5 2

1 16

 

Fig. 5.5: Markov graph for a regular quadriface. 

 Consider a multiface having N faces, two light sources (one in each surrounding me-
dium) and two detectors (idem). The N faces and the two detectors, each one able to 
receive light, are the N + 2 states of our system. They are labeled with a number between 
1 and N + 2 according to the following convention1 (see Fig. 5.5):  

− Numbers 1 and 2 are associated to the states corresponding to the external faces, 
which receive light from the light sources (most external faces). Since they receive light 
only once at the time origin, they are ephemeral states;  

− Numbers N + 1 and N + 2 are associated to the detectors. A loop connecting these 
states to themselves modelizes the fact that light captured by the detectors does no longer 
interfere with the bifaces. States 5 and 6 are absorbing states. We are therefore in pres-
ence of absorbing Markov chains (see Appendix B.4); 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 All distributions of state labels are equivalent. We are therefore free to choose the more conven-
ient one according to computational considerations. 
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− Odd numbers (resp. even numbers) are attributed to the states receiving the light 
propagating downwards (res. upwards). Odd numbers increase and even numbers decrease 
as the states are closer to the lower side.  

 Let be mij the probability of transition from state i to state j. Matrix ( )ijm=M  is 
called the single-step transition probability matrix of the Markov chain. We note ( )k

ijm  the 
probability that a transition takes place from state i to state j in k steps. Probabilities 

( )k
ijm  are placed in a k-step transition probability matrix M(k). The k-step and single-step 

matrices are linked by the simple relation (see Eqs. (B.7) to (B.9) in Appendix B.2) 

 ( )k k=M M  (5.14)  

We are interested in the global reflectances and transmittances of the multiface. They 
correspond to the probability that the incident irradiance transits from a source to a de-
tector, whatever the number of steps. Let 1, 1Nm∞

+ , 1, 2Nm∞
+ , 2, 1Nm∞

+  and 2, 2Nm∞
+  be the transi-

tion probabilities corresponding to the four possible source-detector combinations. They 
are elements of the “infinite-step” transition probability matrix ( )ijm∞

∞ =M  defined as 

 lim k

k
∞ →∞

=M M   (5.15) 

The relationship between matrix ∞M  and the global transfer matrix of a multiface will be 
appear clearly with the simple example of a quadriface below.   

5.3 Compositional model for regular multifaces 

 We just saw that the global transfer matrix of a regular multiface is a part of the infi-
nite-step transition probability matrix associated with a Markov chain. Let us consider 
generic multifaces: a quadriface (two superposed bifaces), a hexaface (three superposed 
bifaces) and a N-dimensional multiface. For each case, by establishing the Markov chain 
and its associated single step probability matrix, and then by computing the infinite step 
transition probability matrix, we will obtain the global transfer matrix of the considered 
multiface. The obtained expressions, called “compositional formulae” will correspond to 
the definition of operation ○.  

5.3.1 The quadriface formula 

 Let us consider the regular quadriface represented by the 6-states Markov chain in 
Fig. 5.6 and by the following composition equation 

 
U U u u v v

u u v vV V

T R p s x r

r x s pR T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
 ○  (5.16)  

The single-step transition probability matrix M of the chain is obtained by placing the 
nonzero probabilities mij indicated in Fig. 5.6. For example, the probability pu of transi-
tion from state 1 to state 3 is placed in row 1, column 3. Once all the elements featured in 
the graph are placed, M is filled with zeros  
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Fig. 5.6: Graph representing the multiple reflection-transmission process in a 
regular quadriface. 
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 (5.17) 

The location of light in time may be observed using a probability vector. We will use bold 
characters for the two last elements, which represent the amounts of light having reached 
the lower and the upper detectors respectively. Let us first consider that the incident light 
comes from the upper light source. At time origin, all light is in state 1, i.e. is incident on 
the upper face of the upper biface (see Fig. 5.6). The probability vector is 

 [ ]0 1, 0, 0, 0, , =e 0 0  (5.18) 

At time 1, the location of light within the quadriface is given by the product 0 ⋅e M  

 [ ]1 0 0, 0, , 0, , up= ⋅ =e e M 0 us   

A fraction su (external reflectance of the upper biface) of the incident light has already 
reached the upper detector. At time 2, the product  1 ⋅e M  shows that a fraction puxv has 
reached the lower detector 

 [ ]2
2 1 0 0, 0, 0, , , u vp r= ⋅ = ⋅ =e e M e M u v up x s   

At time 3, the probability vector is 

 [ ]3
3 2 0 0, 0, , 0, , u u vp r r= ⋅ = ⋅ = +e e M e M u v u u v up x s p r x   

Matrices M2 and M3 are respectively the two-step and the three-step transition probabil-
ity matrices. One retrieves, with this short description, the general property (5.14) satis-
fied by transition probability matrices.  

 Pursuing the products of the probability vector by matrix M, one would observe that 
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the proportion of light reaching the detectors increases and that the proportion of light 
remaining in other states decreases. At the “end” of the process, there is no remaining 
light within the multiface. The probability 15m∞  for the incident light to be captured by 
the lower detector corresponds to the upper global transmittance. Likewise, the proability 

15m∞  to be captured by the upper detector corresponds to its upper global reflectance  

 [ ]0 15 160, 0, 0, 0, , ∞ ∞
∞ ∞= ⋅ =e e M m m  (5.19) 

Let us now consider that light comes from the lower source. At time origin, the probabil-
ity vector e0 is 

 [ ]0 0, 1, 0, 0, , =e 0 0  (5.20) 

By multiplying this vector by matrix M an infinite number of times, or by multiplying it 
by ∞M , which is equivalent, we would obtain a probability vector indicating once again 
that there is no remaining light within the multiface 

 [ ]0 25 260, 0, 0, 0, , ∞ ∞
∞ ∞= ⋅ =e e M m m  (5.21) 

In (5.21), 25m∞  and 26m∞  correspond respectively to the lower global reflectance and 
transmittance of the quadriface. In Appendix B, we show that the chains representing 
multiple reflection-transmission processes are such that matrix M∞ is of the form  
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M  (5.22) 

where the upper-right block corresponds to the global transfer matrix of the multiface 
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⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.23) 

The computation of the upper-right block for the case of the quadriface is developed in 
Appendix C.1. The resulting expression for the global transfer matrix is  
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⎡ ⎤+⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ − −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ +⎣ ⎦ ⎢ ⎥− −⎣ ⎦

 ○  (5.24) 

Eq. (5.24) will be referred to as the quadriface formula. It corresponds to the definition of 
the composition symbol ○ as a (noncommutative) operation between transfer matrices. It 
is the most fundamental equation of the compositional model. 
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5.3.2 The hexaface formula 

 Let us now consider a regular hexaface, resulting from the superposition of three bi-
faces, called upper, central and lower. It is represented by the 8 states graph of Fig. 5.7 
and by the composition equation 

     
UV UU u u v v

u u v vVV VU

T R p s x r

r x s pR T

τ ρ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥′ ′⎢ ⎥ ⎢ ⎥ρ τ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
○ ○  (5.25) 
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Fig. 5.7: Representation by a Markov graph of the multiple reflection-
transmission occurring with three superposed bifaces. 

Like for the quadriface, the global transfer matrix of the hexaface is the upper-right block 
of the infinite-step transition probability matrix M∞ defined by Eq. (5.15) with the fol-
lowing single-step transition probability matrix M  

 =M
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 (5.26) 

M presents a cross structure that was already noticeable in (5.17).  

 The computation of the upper-right block of M∞ is developed in Appendix C.2. It 
yields the following equation, which will be referred to as the hexaface formula 
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 (5.27) 

with ( )( )1 1u v u vD r r r r′ ′= − ρ − ρ − ττ . 

5.3.3 Associativity of the composition of bifaces 

 The hexaface formula can also be obtained using twice the quadriface formula. First, 
two adjacent bifaces are selected within the hexaface and merged into a single biface, 
whose global transfer matrix is expressed using the quadriface formula. Then, the quadri-
face formula is applied again to this resulting biface and the third biface, leading to the 
global transfer matrix of the hexaface. We may compose first the left and the central 
transfer matrices 
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 ○  ○   ○  (5.28) 

or compose first the central and the right transfer matrices  
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○ ○ ○  (5.29) 

and check that in both cases the final transfer matrix is identical to Eq. (5.27). This 
shows the associativity of operation ○. For transfer matrices F1, F2 and F3, one has 

 ( ) ( )1 2 3 1 2 3 1 2 3= =F F F F F F F F F ○  ○  ○  ○  ○  ○  (5.30) 

5.3.4 Composition formula for more than two bifaces 

 We now consider a regular multiface composed of k bifaces. The corresponding Markov 
chain has 2k+2 states (Fig. 5.8), numbered according to the labeling convention presented 
in Sect. 5.2.3. The single-step matrix M has the cross structure that has already been 
pointed out (the empty spaces should be considered as filled with zeros) 
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Fig. 5.8: Markov graph representing the multiple reflection-transmission process 
within k superposed bifaces. 

Let Gj and Fj+1 be respectively the transfer matrices of j successive bifaces and of a 
(j+1)th biface. At iteration j, the composition of Gj and Fj+1 is  

 ( )
1

1

1

  

        1, 2, ..., 1

  

j j

j

j j

or j k

+

+

+

= = −

G F

G
F G

○

○
  (5.32) 

according to whether the (j+1)th biface is at the upper or resp. at the lower side of the j 
first bifaces. Denoting by Rj, Tj, jR′  and jT ′  the components of Gj, the composition with 
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the (j+1)th biface at the lower side, given by the quadriface formula (5.32), gives the fol-
lowing iterative formula, called the composition formula  
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 ○  (5.33) 

5.4 Biface splitting 

 In compositional models, it is sometimes judicious to dissociate the different compo-
nents of the transfer matrix characterizing a biface. Imagine two layers separated by an 
interface. We would like to compose the interface’s upper face with the upper layer, and 
to compose its lower face with the lower layer. Since composition can be performed only 
with transfer matrices, we propose to characterize the interface with two transfer matri-
ces. The interface becomes a quadriface having the same global transfer matrix as the 
original biface. We call this procedure “biface splitting”.   

 Graphically, the split is performed like in Fig. 5.9. The upper (resp. lower) reflection 
arc is placed at the upper side of the upper biface (resp. the lower side of the upper bi-
face). The other reflections arcs have a zero reflectance. The left (resp. right) transmission 
arc is placed at the left (resp. right) of the quadriface; we may choose to place it on the 
upper or the lower biface, the other left arc (resp. right arc) having the transmittance 1. 
Fig. 5.9 features two of the four split possibilities.  
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Fig. 5.9: Two possible splits of a biface. 

We may write the following composition equations for the splits illustrated in Fig. 5.9, 
and check, thanks to the quadriface formula (5.24), the equality between the transfer ma-
trix of the original biface and the global transfer matrices of the quadrifaces issued from 
the split operations 
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 ○  ○  (5.34) 
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Summary 

 In this chapter, we have described the multiple reflection-transmission process occur-
ring in multifaces, first in the general case where the multiface global reflectance and 
transmittance are expressed as infinite sums, and then in the special case of regular multi-
faces whose global reflectance and transmittance have analytical expressions. The criteria 
of regularity have been clearly stated: the multiface is regular when it does not contain 
any scattering biface, or when every contained scattering biface is directly bordered by 
Lambertian bifaces. In regular multifaces, each face has a constant reflectance and a con-
stant transmittance. This allows representing the multiple reflection-transmission process 
by a Markov chain. Bifaces also have a constant transfer matrix. Thus, the superposition 
of bifaces can now be characterized by a “composition” of their respective transfer matrix, 
i.e. by a well-defined associative and noncommutative product. We have presented, 
thanks to mathematical tools embodied in the Markov theory, a closed-form defining ex-
pression for the composition of two and three transfer matrices, characterizing the super-
position of two and three bifaces respectively. These defining expressions are called the 
“quadriface formula” and the “hexaface formula”. For more superposed bifaces, the 
quadriface or/and the hexaface formulae can be applied iteratively.  

 The compositional formulae rely only on the assumption that the multiface is regular, 
i.e. that each face has a single reflectance and a single transmittance involved in the mul-
tiple reflection-transmission process. In the next chapter, we show how these face reflec-
tances and transmittances can be determined, given a particular combination of super-
posed bifaces, and a given measuring geometry. This will allow a revisitation of some clas-
sical models, as well as the development of new models in Chapters 7 and 8. 

 Note that the introduction of Markov chains was not strictly necessary. We could have 
derived the quadriface formula using a step-by-step description, and compose this formula 
with itself for obtaining the hexaface formula and the compositional formula. However, we 
have intentionally used the Markov theory for the elegance and the efficiency of its ma-
trix formalism. Markov graphs are excellent representations of multiple reflection-
transmission process within multilayers. Another reason for introducing Markov chains is 
the idea of a possible extension to multilayers having an unknown structure, i.e. an un-
known number of layers and interfaces. By combining our compositional model with the 
theory of hidden Markov chains, we may obtain a new noninvasive method for studying 
multilayer specimens. 
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Chapter 6.  

Reflectance and transmittance models 

The present chapter concerns the application of the composition formulae established 
in Chapter 5 to specified multifaces. We first present how, for a given multiface, the 
reflectance and the transmittance of each of its face shall be determined. The nature 
of the faces (transparent, scattering, Lambertian), their neighborhood and the meas-
uring geometry will be taken into account (Sect. 6.1). Then, classical compositional 
models and some of their extensions will be presented as examples where our formal-
ism may be applied. Their expressions for reflectance, respectively transmittance, are 
derived by the simple application of the compositional formulae. We first treat multi-
faces composed uniquely of transparent bifaces and of Lambertian multifaces 
(Sect. 6.2). Then, we consider the superposition of transparent bifaces on a Lamber-
tian background with three examples, including the well-known Williams-Clapper 
model (Sect. 6.3).  

6.1 Elaboration of a reflectance and transmittance model 

 We have shown in Chapter 5 that the multiple reflection-transmission process of light 
occurring in a regular multiface can be described with a single reflectance and a single 
transmittance per face. Thus, a particular transfer matrix is associated to each biface, and 
the multiface is characterized by the composition of the particular transfer matrices of its 
composing bifaces. The quadriface and the hexaface formulae can be applied to convert 
the composition of biface transfer matrices into a global transfer matrix. However, we 
have not yet explained the reflectance and transmittance that should be associated with 
each face. This is the purpose of the following sections.  

 Two main factors should be taken into account in the specification of the face reflec-
tances and transmittances: 1- the nature of the face (transparent, scattering, Lamber-
tian), 2- their neighborhood, which determines the type of their respective illumination 
(transparent, scattering, Lambertian neighboring faces respectively provide a directional, 
diffuse, Lambertian illumination). A special treatment is necessary for external bifaces 
due to the influence of th 

e selected measuring geometry.  

 Prior to the specification of the face reflectances and transmittances, let us draw up a 
brief inventory of the possible combinations of bifaces forming regular multifaces. 

6.1.1 Types of regular bifaces 

 Regular bifaces may be split into three main categories:  

− Transparent multifaces, made uniquely of transparent bifaces. All the face reflectances 
and transmittances are, directly or indirectly via Snell’s laws, functions of the incidence 
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angle of the directional source light (principle of directionality, see Sect. 3.3.3). 

− Wholly-Lambertian multifaces, composed uniquely of Lambertian bifaces1. The faces 
reflectances and transmittances are invariant, excepted for the external biface whose ex-
ternal reflectance and exit transmittance (i.e. the terms corresponding to the transfer of 
light towards the capturing device) depend on the geometry of observation;  

− Mixed multifaces, in which Lambertian bifaces are superposed with scattering or/and 
transparent bifaces. Recall that scattering bifaces cannot be bordered by scattering nor 
reflecting transparent bifaces: the regularity would not be satisfied (Sect. 5.2.1). 

6.1.2 Faces reflectances and transmittances in mixed multifaces 

 In mixed multifaces, the bifaces may be transparent, scattering or/and Lambertian. 
Lambertian bifaces are characterized by their invariant transfer matrix FL. Non-
Lambertian bifaces, i.e. transparent and scattering bifaces, are characterized by their fun-
damental transfer matrix Fθ. In the present section, matrices FL and Fθ are noted respec-
tively 
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 The specification of the face reflectances and transmittances is performed in a different 
way for central bifaces and for external bifaces, the latter being affected by the measuring 
geometry (Fig 6.1).  

 

External biface

Central bifaces
ρ

ρ'

r

s xp

τ τ'

Terms depending on the 
illumination geometry

Terms depending on the
observation geometry

Upper source
(ephemeral state)

Upper detector
(absorbing state)

 

Fig. 6.1: Dependence of external biface reflectances and transmittances on the il-
lumination and observation geometries.  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 Wholly-Lambertian multifaces are special cases of Lambertian multifaces, according to the defini-
tion of Lambertian multiface given in Section 2.4. 
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 When a Lambertian biface is at a central position within the multiface, its particular 
transfer matrix is the matrix FL given by Eq. (6.1). A central biface that is non-
Lambertian is bordered by Lambertian bifaces, and therefore receives Lambertian illumi-
nations on its both sides. According to the notations introduced in Sect. 2.3, its funda-
mental transfer matrix Fθ, given in Eq. (6.1), becomes the particular transfer matrix  

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

    

    

/2 /2

0 0
/2 /2

0 0

sin2 sin2

sin2 sin2

L

L

T d R dT R

R T R d T d

π π→

θ= θ=
π π

←
θ= θ=

⎡ ⎤⎡ ⎤ θ θ θ θ θ θθ θ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥′ ′θ θ⎢ ⎥ ⎢ ⎥′ ′θ θ θ θ θ θ⎣ ⎦ ⎢ ⎥⎣ ⎦

∫ ∫

∫ ∫
 (6.2) 

 Let us now study the external bifaces1. We will consider here the upper external biface, 
the lower external biface being characterized equivalently with reversed notations. As 
stated in Sect. 2.4, every external biface is represented by a particular transfer matrix of 
the form 

 
p s

r x
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.3) 

where p is the penetration transmittance, s the external reflectance, r the internal reflec-
tance and x the exit transmittance.  

 These four terms are determined according to the nature of the biface and the measur-
ing geometry. Table 6.1 (see next page) draws up the inventory of particular transfer ma-
trices considering the different types of biface (transparent, scattering, Lambertian), of 
light source (directional or Lambertian light source) and of capturing device (integrating 
sphere, radiance detector). The complete statement of these particular transfer matrices is 
presented in Appendix D. 

6.1.3 Standard procedure for the development of a model 

 All the elements are now available for expressing the global reflectance and transmit-
tance of any regular multiface:  

1. Verify whether the superposed bifaces form a regular multiface, i.e. check that there is 
no succession of scattering bifaces or whether the contained scattering bifaces are di-
rectly bordered by Lambertian bifaces (Sect. 5.2.1). 

2. Group consecutive transparent bifaces if any. Their fundamental transfer matrix can 
be obtained using the compositional formulae.  

3. Determine the particular transfer matrix of each central biface according to its illumi-
nation, and of each external biface according to the measuring geometry, by referring 
to Table 6.1. 

4. Write the composition equation with these particular transfer matrices. Apply the 
appropriate compositional formula(e) and derive the global transfer matrix of the mul-
tiface.  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 An external biface may be a single interface (see Sect. 6.3.1), the superposition of flat interfaces 
and transparent layers (see Sect. 6.3.2 and 6.3.3), a rough interface as in matte opaque paints, a 
Lambertian layer, as in uncombed woolen or cotton fabrics, etc. 
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Table 6.1: Transfer matrix of the upper external biface specified according to the type of biface, 

the type of light source and the type of capturing device.   

Integrating sphere Radiance detector 

Lambertian external biface 

(a) 
any

L L L L

L L L L
sph any

p s p s

r x r x

→

← ←

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (b) 
( )

/

/

any
L L L L

L L L Lrad any

p s p s

r x r x

→

′ψ ← ←

⎡ ⎤ξ π⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ξ π⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Scattering external biface 

Directional light source 

(c) 

( ) ( ) ( )

( ) ( )

( ) ( )dir

sph L

P SP S

R X R X

ψ →

← ←

⎡ ⎤ψ ψ⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥θ θ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦∫ ∫
 (d)

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

,dir
R

Trad L

P fP S

R X R f

ψ →

′ψ ← ←

⎡ ⎤′ψ ξ ψ ψ⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥θ θ ′ξ ψ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦∫ ∫∫
 

Lambertian light source 

(e) 
( ) ( )

( ) ( )

L

sph L

P SP S

R X R X

→

← ←

⎡ ⎤⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫
∫ ∫

 (f) 
( )

( ) ( )

( ) ( )

( )

( )

L
R

Trad L

P fP S

R X R f

→

′ψ ← ←

⎡ ⎤′⎡ ⎤ ξ ψθ θ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ ′⎢ ⎥ ξ ψ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫∫
∫ ∫∫

 

Transparent external biface 

Directional light source 

(g) 

( ) ( ) ( )

( ) ( )

( ) ( )dir

sph L

P SP S

R X R X

ψ →

← ←

⎡ ⎤ψ ψ⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥θ θ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦∫ ∫
 (h) 

( )

( ) ( ) ( )

( ) ( )

( )

( )
( ) 

1
2

1 0

0

/

dir

rad L

P
P S

X
R X R

n n

ψ →

′ψ ← ←

⎡ ⎤ψ⎢ ⎥⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ = ′ξ ψ⎢ ⎥⎢ ⎥θ θ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥π⎣ ⎦
∫

 

Lambertian light source 

(i) 
( ) ( )

( ) ( )

L

sph L

P SP S

R X R X

→

← ←

⎡ ⎤⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫
∫ ∫

 (j) 
( )

( ) ( )

( ) ( )

( )
( )

( ) 

1
2

1 0

/

/

L

rad L

P S
P S

XR X R
n n

→

′ψ ← ←

⎡ ⎤′ξ ψ π⎢ ⎥⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ = ⎢ ⎥′ξ ψ⎢ ⎥ ⎢ ⎥θ θ⎢ ⎥⎣ ⎦ ⎢ ⎥π⎢ ⎥⎣ ⎦

∫

∫
 

Legend: The left matrices are invariant or fundamental transfer matrices [see Eq. (6.1)], with specifi-
cation of the upper illumination (left superscript), the lower illumination (right subscript), and the
capturing device (left subscript). Symbol L stands for “Lambertian”, dir(ψ) for “directional with 
incident angle ψ”, rad(ψ′′) for “radiance detector with observation angle ψ′′” and sph for “integrating 
sphere”. Notation g∫  stands for ( )/2

0 sin2g dπ
θ=∫ θ θ θ , and notation ( )g∫∫ ψ  for ( )    

2 /2
0 0 , ; sin cosg d dπ π

φ= θ=∫ ∫ θ φ ψ θ θ θ φ . 
The term ξ is the apparatus constant characteristic to the radiance detectors (see Eq. A.12).   
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6.2 Classical models for transparent and wholly-Lambertian multifaces 

6.2.1 Transparent multifaces 

 When transparent bifaces are consecutive, they form a transparent multiface. The 
transparent multiface is characterized by its fundamental transfer matrix, whose elements 
are directional reflectances and transmittances. In a first step, the compositional formulae 
are used to compute the fundamental transfer matrix of the multiface, first for each po-
larization component, then for natural light (Sect. 3.1.4). Afterwards, the measuring ge-
ometry can be considered in the same manner as for any other transparent biface.  

 For the purpose of illustration, let us consider again the example of a transparent layer 
bounded on its both sides by flat interfaces presented in Sect. 3.4. The upper interface, 
the transparent layer and the lower interfaces have respectively the fundamental transfer 
matrices [see Eqs. (3.25) and (3.39)] 

 
( ) ( )

( ) ( )

01 01

10 10

T R

R T

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

,   

 

 

1/cos

1/cos

0

0

t

t

θ

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

   and   
( ) ( )

( ) ( )

12 12

21 21

T R

R T

⎡ ⎤θ θ⎢ ⎥
⎢ ⎥θ θ⎢ ⎥⎣ ⎦

 (6.4) 

where t is the normal transmittance of the transparent layer, and where Rxy(θ) and Txy(θ) 
are Fresnel coefficients defined for an interface relative refractive index nx/ny (light comes 
from the medium of refractive index nx with an incident angle θ).    

 Inside the multiface, directional incident light remains directional. According to Snell’s 
third law, we have   

    0 0 1 1 2 2sin sin sinn n nθ = θ = θ  (6.5) 

where θ0, θ1 and θ2 denote the orientation angle of light in the upper surrounding medium, 
the transparent layer and the lower surrounding medium respectively. Let us insert these 
particular directions in the fundamental transfer matrices above and deduce the particu-
lar transfer matrices 

 

( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

0

1

01 01 01 0 01 0

10 10 10 1 10 1

dir

dir

T R T R

R T R T

θ →

← θ

⎡ ⎤ ⎡ ⎤θ θ θ θ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, (6.6) 

 

( )

( )

  

  

1
1

1

1

1/cos 1/cos

1/cos 1/cos

0 0

0 0

dir

dir

t t

t t

θ → θ θ

θ θ

← θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (6.7) 

and 

   

( ) ( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

1

2

12 12 12 1 12 1

21 21 21 2 21 2

dir

dir

T R T R

R T R T

θ →

← θ

⎡ ⎤ ⎡ ⎤θ θ θ θ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (6.8) 

Using Eqs. (3.23) and (3.24), we can write ( ) ( )* *
01 0 10 1R Rθ = θ , ( ) ( )* *

01 0 10 1T Tθ = θ , 
( ) ( )* *

21 2 12 1R Rθ = θ  and ( ) ( )* *
21 2 12 1T Tθ = θ . This permits to express the three transfer matrices 

as functions of angle θ1 only. Since, Fresnel’s coefficients depend on the polarization of the 
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incident light, the composition equation is written for each polarization component 

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

 

 

1

1

1/cos
012 0 012 0 10 1 10 1 12 1 12 1

1/cos
210 2 210 2 10 1 10 1 12 1 12 1

0
    

0

T R T R t T R

R T R T R Tt

∗ ∗ ∗ ∗ θ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗θ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤θ θ θ θ θ θ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥θ θ θ θ θ θ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
○ ○  (6.9)  

where symbol * represents symbol ⊥ (perpendicular polarization) or symbol || (parallel 
polarization). Thanks to the hexaface formula (5.27), Eq. (6.9) becomes 

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )
( ) ( )

  

  

 

 

1 1

1 1

1

1

21/cos 2/cos
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10 12/cos 2/cos
012 0 012 0 10 1 12 1 10 1 12 1

2 2/cos
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1 1

1

T T t T R t
R

T R R R t R R t

R T T R t T T t
R

R R t
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∗ ∗ ∗ ∗ θ ∗ ∗ θ

∗ ∗ ∗ ∗ θ ∗ ∗
∗

∗ ∗ θ

θ θ θ θ
θ +⎡ ⎤θ θ − θ θ − θ θ⎢ ⎥ =⎢ ⎥θ θ θ θ θ θ⎢ ⎥⎣ ⎦ θ +

− θ θ ( ) ( )

 

 

1

1

1/cos

2/cos
10 1 12 11 R R t

θ

∗ ∗ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− θ θ⎣ ⎦

 (6.10) 

By averaging the contributions of the two polarization components, one obtains the fun-
damental matrix for natural light 

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )
  

012 0 012 0 012 0 012 0 012 0 012 0

210 2 210 2 210 2 210 2 210 2 210 2

1 1
2 2

T R T R T R

R T R T R T

⊥ ⊥

⊥ ⊥

⎡ ⎤⎡ ⎤⎡ ⎤θ θ θ θ θ θ⎢ ⎥⎢ ⎥⎢ ⎥ = + ⎢ ⎥⎢ ⎥⎢ ⎥θ θ θ θ ⎢ ⎥θ θ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (6.11) 

Eq. (6.10) contains the same expressions for ( )*
012 0R θ , ( )*

012 0T θ , ( )*
210 2R θ  and ( )*

210 2T θ  as 
those given by Eqs. (3.55) and (3.56). Hence, the expansive step-by-step computation 
developed in Sect. 3.4 has been replaced by the straightforward application of a composi-
tional formula.  

6.2.2 Wholly-Lambertian multifaces (Kubelka’s model) 

 In 1954, Kubelka published a reflectance and transmittance model for nonhomogenous 
intensely scattering layers, whose scattering and absorption coefficients are functions of 
the depth within the layers [Kub54]. The model presented for two and more superposed 
layers relies on a description of light multiple reflection-transmission. All the layers are 
assumed to be intensely scattering and to have a same refractive index, also identical to 
those of the surrounding media. Therefore, there is no Fresnel reflections nor transmis-
sions at the boundaries of the layers. We identify the layers as being Lambertian bifaces. 
The form a multiface without interfaces called a wholly-Lambertian multiface.  

 Let us first consider two superposed layers. Their upper reflectance, called resp. R1 and 
R2, are different from their lower reflectance, called resp. RI and RII. Their upper and 
lower transmittances are equal, i.e. T1 = TI and T2 = TII. The resulting multiface, which 
is a Lambertian quadriface, is obviously regular (Sect. 5.2.1). Its global transfer matrix 
satisfies the following composition equation 

 
1,2 1,2 1 1 2 2

2,1 2,1

  
I I II II

T R T R T R

R T R T R T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

○  (6.12)  

Kubelka obtained the global reflectances and transmittances of superposed layers as geo-
metrical series which he successfully simplified as simple expressions. The same expres-
sions can be obtained directly by applying the quadriface formula (5.24) 
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 (6.13)  

By inserting equalities T1 = TI and T2 = TII, Eq. (6.13) becomes 
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⎢ ⎥ ⎢ ⎥⎣ ⎦ +⎢ ⎥− −⎢ ⎥⎣ ⎦

 

The remarkable fact that T1,2 = T2,1 is presented by Kubelka as the principle of “nonpo-
larity of transmittance” for intensely scattering layers.  

 For the superposition of three or more layers having the same refractive index, 
Kubelka proposes an iterative formulation that can be obtained in an equivalent way us-
ing our compositional formula (5.33). 

6.3 Transparent bifaces superposed to a Lambertian background  

 As a first example of mixed multiface, we consider a Lambertian background bordered 
on its upper side by a transparent biface or a groupment of transparent bifaces. Such a 
multiface is regular since it does not contain any scattering biface. The background is 
considered only as reflector. We will therefore develop reflectance-only models. The light 
source and the capturing device are located in the upper surrounding medium (e.g. air).  

 Three types of transparent bifaces are studied: a flat interface (Sect. 6.3.1), a transpar-
ent layer with a flat interface at the air side (Sect. 6.3.2) and a transparent layer with a 
flat interface with air and flat interface with the background (Sect. 6.3.3).  

6.3.1 Background with an interface with air (Saunderson’s model) 

 The interface between the background (subscript 1, refractive index n) and air (sub-
script 0, refractive index assumed to be 1) is characterized by its fundamental transfer 
matrix composed of Fresnel coefficients [Eq. (3.25)]. It receives from the background a 
Lambertian illumination. On its upper side, directional light incomes at angle ψ; a radi-
ance detector is placed at angle ψ′. According to formula (h) of Table 6.1, the flat inter-
face has the particular transfer matrix  

 

( )

( ) ( ) ( )

( ) ( )

( )

( )

01
01 01

10 10 10 10 12

0
 

dir

rad L

TT R

R T r T
n

ψ →

′ψ ← ←

⎡ ⎤ψ⎡ ⎤θ θ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ξ⎢ ⎥ ⎢ ⎥θ θ ′ψ⎢ ⎥ ⎢ ⎥⎣ ⎦ π⎣ ⎦

 (6.14)  

where r10 is the Lambertian internal reflectance of the interface [Eq. (3.29)], and 1′ψ  is 
related to the direction of the detector by Snell’s third law 

 ( )1 arcsin sin /n′ ′ψ = ψ  (6.15) 
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Fig. 6.2: Multiple reflection-transmission process occurring within a quadriface 
composed of a flat interface and a Lambertian background. 

The background is completely characterized by its intrinsic reflectance ρB (Fig. 6.2), 
which occupies the upper right position in its transfer matrix. All other elements should 
be considered as “unspecified” (represented subsequently by a point). Likewise, the global 
transfer matrix of the multiface contains only the upper global reflectance Rrad(ψ′). The 
multiface is represented by the composition equation 

 ( )
( )

( )

01

10 10 12

0
  

Brad
TR

r T
n

′ψ

⎡ ⎤ψ ⋅ ρ⎡ ⎤⋅ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ξ⎢ ⎥ ⋅ ⋅⎢ ⎥⋅ ⋅ ⎢ ⎥′ψ ⎣ ⎦⎣ ⎦ ⎢ ⎥π⎣ ⎦

○  (6.16)  

The quadriface formula (5.24) and the equality ( ) ( )10 1 01T T′ ′ψ = ψ  [Eq. (3.24)] yield  

 ( )
( ) ( ) 01 01

2
101

B

rad
B

T T
R

n r′ψ

′ψ ψ ρξ
= ⋅

π − ρ
 (6.17)  

By dividing this global reflectance Rrad(ψ′) by the reflectance Rref = ξ/π of a perfect white 
diffuser [see Appendix A, Eq. (A.14)], one obtains a reflectance factor ( )

ˆ
radR ′ψ  independent 

of the apparatus constant ξ 

 ( )
( ) ( ) 01 01

2
10

1ˆ
1

B

rad
B

T T
R

n r′ψ

′ψ ψ ρ
= ⋅

− ρ
 (6.18)  

The same expression as (6.18) has been derived in [HH04] from a step-by-step description 
of the multiple reflection-transmission process.  

 Let us now consider an integrating sphere as capturing device. According to formula 
(g) of Table 6.1, the interface has the particular transfer matrix  

 

( ) ( ) ( )

( ) ( )

( ) ( )01 01 01 01

10 1010 10

 

dir

sph L

T R T R

r tR T

ψ →

← ←

⎡ ⎤θ θ ⎡ ⎤ψ ψ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥θ θ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (6.19)  

where t10 is the lower Lambertian transmittance of the interface [Eq. (3.30)]. The compo-
sition equation becomes 
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BsphR T R

r t

⋅ ρ⎡ ⎤⎡ ⎤⋅ ψ ψ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⋅ ⋅⎢ ⎥⋅ ⋅ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
○  (6.20)  

The quadriface formula (5.24) is again applied, yielding  

 ( ) ( ) 01 01 10
101
B

sph
B

R R T t
r

ρ
= ψ + ψ

− ρ
 (6.21) 

 Expression (6.21) is known as the “Saunderson correction” for the Kubelka-Munk 
model. It is used when ρB is computed from the Kubelka-Munk differential equation  sys-
tem (Sect. 4.3.2) without taking into account the optical effects of the interface [HH04]. 
The original paper of Saunderson [Sau42] presents expression (6.21) in the following form 

 ( )( )  
1

1 2
2

1 1
2 1
k R

R k k
k R

′ = + − −
−

 (6.22) 

Saunderson’s notations R′, R, k1 and k2 respectively correspond to our notations Rsph, ρB, 
( )01R ψ  and r10. Transmittances ( )01T ψ  and t10 are represented by 1 – k1 and 1 – k2, which 

is justified by Eqs. (3.22) and (3.31) respectively. Furthermore, Saunderson specifies that 
his integrating sphere has a hole discarding about a half of the external reflection. This 
explains why the external reflectance is k1/2 instead of k1. 

Remark: Let us consider a background having a rough interface. Although the external 
biface is scattering, it is bordered by a Lambertian biface (the background). The quadri-
face is therefore regular. A prior modelization of the interface’s upper and lower BRDFs 
and BTDFs would permit to determine its fundamental transfer matrix. Equivalent ex-
pressions to (6.18) or (6.21) would be obtained for the reflectance factor of the multiface. 
However, with a non-Lambertian background, the quadriface would be irregular whatever 
the type of interface. Unless a specific study shows the contrary, the Saunderson cannot 
be applied with a non-Lambertian background.  

6.3.2 Background coated by a transparent layer (Williams-Clapper model) 

 In 1953, Williams and Clapper proposed a prediction model for reflectance of photo-
graphs [WC53]. The considered specimens are composed of a Lambertian support coated 
with a transparent coloring layer having the same refractive index (n = 1.53) and forming 
a flat interface with air. The model is based on the 45°/0° measuring geometry (Sect. 
1.3.1). Shore and Spoonhower have extended the Williams-Clapper model to any bidirec-
tional geometry, as well as to geometries including an integrating sphere [SS01]. We pro-
pose to derive Shore and Spoonhower’s general expressions using our formalism.  

 The Lambertian background has a reflectance ρB and transparent layer a normal 
transmittance t. The background and the transparent layer are assumed to have the same 
refractive index n (no interface between them). There is however a flat interface between 
the layer (medium 1) and the air (medium 0). The light source is directional (incident 
angle ψ) and the reflected light is captured by a radiance detector (observation angle 
ψ′ ≠ ψ). The specimen may be represented by a hexaface composed of the interface, the 
transparent layer and the Lambertian background (Fig. 6.3). 
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Fig. 6.3: Multiple reflection-transmission process occurring within a hexaface 
composed of a flat interface, a transparent layer and a Lambertian background. 

The flat interface and the transparent layer have the fundamental transfer matrices (3.25) 
and (3.39) respectively. They are grouped into a single biface, which is subsequently ex-
ternal and transparent. The fundamental transfer matrix of this external transparent bi-
face is determined using the quadriface formula 

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

  

   

1 1

1 1 1

1/cos 1/cos
01 01 01 01

1/cos 2/cos 1/cos
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0
  

0

T R t T t R

R T t R t T t

θ θ

θ θ θ

⎡ ⎤ ⎡ ⎤⎡ ⎤θ θ θ θ⎢ ⎥ ⎢ ⎥⎢ ⎥ =⎢ ⎥ ⎢ ⎥⎢ ⎥θ θ ⎢ ⎥ ⎢ ⎥θ θ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
○  (6.23) 

where θ and θ1 = arcsin(sinθ/n), related by Snell’s law, represent the angles in the air and 
in the layer respectively.  

 Let us now determine the particular transfer matrix of the transparent external biface. 
It receives from the background a Lambertian illumination. At the upper side, the meas-
uring geometry is bidirectional. Formula (h) of Table 6.1 gives 
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 (6.24) 

with ( )1 arcsin sin /nψ = ψ , ( )1 arcsin sin /n′ ′ψ = ψ , ( ) ( )10 1 01T T′ ′ψ = ψ , and  

 ( ) ( )  

  

/2
2/cos

10 10
0

sin2r t R t d
π

θ

θ=
= θ θ θ∫  (6.25) 

The background is then composed with the external transparent biface 
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○  (6.26)  
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Its global reflectance Rrad(ψ′) is obtained thanks to the quadriface formula (5.24)  

 ( )
( ) ( )

( )

1 11/cos 1/cos
01 01

2
101

B

rad
B

T T t
R

n r t

′ψ + ψ

′ψ

′ψ ψ ρξ
= ⋅

π − ρ
 (6.27)  

The corresponding reflectance factor ( ) ( )
ˆ / refrad radR R R′ ′ψ ψ= , defined in reference to a perfect 

white diffuser (reflectance Rref =  ξ/π, see Eq. A.14) is 

 ( )
( ) ( )

( )

  

  
1 11/cos 1/cos

01 01

2
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1ˆ
1
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rad
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T T t
R

n r t
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′ψ

′ψ ψ ρ
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− ρ
 (6.28)  

Expression (6.28) is identical to that presented by Shore and Spoonhower [SS01], also 
derived independently by Elias & al. [EM01, Eq. (8)]. A step-by-step description of the 
multiple reflection-transmission process [HH04] also leads to the same expression.  

 Williams and Clapper considered only the special values n = 1.53, ψ = 45° and 
ψ′ = 0°. By arranging the terms of Eq. (6.28), we retrieve their original expression 
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⎢ ⎥= − θ θ θ θ⎢ ⎥ρ⎣ ⎦

∫  (6.29)  

Shore and Spoonhower have also developed a model for a directional source and an inte-
grating sphere. The corresponding global reflectance is expressed as 
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B
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ψψ ρ
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− ρ
 (6.30) 

A similar expression is presented in [HH04], but since the external reflection is assumed to 
be eliminated from the measurement, the term R10(ψ) corresponding to the specular re-
flection at the air-layer interface is omitted.  

 Let us retrieve expression (6.30) with our compositional formalism. The particular 
transfer matrix of the transparent external biface is derived from Formula (g) of Table 
6.1  
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 (6.31) 

where r10(t) is given by Eq. (6.25) and  
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π

θ

θ=
= θ θ θ∫ , (6.32) 

Expression (6.30) is then obtained by applying the quadriface formula to the composition 
equation 
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○  (6.33)  
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Remark: Let us again consider that the interface is rough. Since the transparent layer has 
a zero reflectance, there is no multiple reflection between the rough interface and the 
transparent layer. The transparent layer grouped with the rough interface form a scatter-
ing biface, bordered at the bottom side by the Lambertian background. The resulting 
multiface is regular (Sect. 5.2.1). However, the multiface would be irregular if the trans-
parent layer was replaced by a scattering layer having a nonzero reflectance, or if the 
background was scattering only instead of being Lambertian. 

6.3.3 Background and transparent layer having different refractive indices  

 In order to cope with an eventual difference of refractive index between the layer and 
the background (resp. n1 and n2), it is necessary to introduce into the model an interface 
between them. The background-layer interface, assumed here to be flat, causes multiple 
reflections with the background at the lower side, and with the layer-air interface at the 
upper side (Fig. 6.5). This configuration has been presented very recently by Simonot & 
al as an extension of the Williams-Clapper model [SHH06]. The development of this 
model is based on a step-by-step description of the multiple reflection-transmission proc-
ess of light.  

ρB Background

Transparent layert1/cosθ t1/cosθ
0

0

Flat interfaceT01(θ)
R01(θ)

R10(θ)
T10(θ)

R12(θ)
Flat interfaceT12(θ)

R21(θ)
T21(θ)

Light
source

Capturing
device

T
ra

n
sp

ar
en

t 
ex

te
rn

al
 b

if
ac

e

 

Fig. 6.5: Multiple reflection-transmission process occurring within a multiface 
composed of a transparent layer bounded by two interfaces and a Lambertian 
background. 

 Here, the external biface is composed of the air-layer interface, the transparent layer 
and the layer-background interface. The fundamental transfer matrix of such a transpar-
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ent multiface has already been developed in Sect. 6.2.1 and is given by Eq. (6.11). Ex-
cepted this new fundamental transfer matrix, we have the same configuration as for the 
interface alone and for the transparent layer bounded by one interface.  

 For a bidirectional measuring geometry (incidence angle ψ and observation angle 
ψ′ ≠ ψ), the particular transfer matrix of the transparent external biface is (Table 6.1, 
formula h) 
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( ) ( )
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 (6.34) 

with 

 ( ) ( )  

/2

210 210
0

sin2r t R d
π

θ=
= θ θ θ∫ , (6.35) 

( )210 2T ′ψ  may be replaced by ( )012T ′ψ  [Eq. (3.58)]. The composition equation is  

 ( )
( )

( )
( )

012

012
210 2

0

  
Brad

T
R

T
r t

n

′ψ

⎡ ⎤ψ ⋅ ρ⎢ ⎥⎡ ⎤⋅ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ′ψ⎢ ⎥⎢ ⎥ ⋅ ⋅⎢ ⎥⋅ ⋅ ⎣ ⎦ξ⎢ ⎥⎣ ⎦
⎢ ⎥π⎣ ⎦

○  (6.36)  

The quadriface formula then gives the following expression for the reflectance of the back-
ground coated with the transparent layer of different refractive index 
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The corresponding reflectance factor ( ) ( )
ˆ / refrad radR R R′ ′ψ ψ= , defined in reference to a perfect 

white diffuser (reflectance Rref =  ξ/π), is 
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For an integrating sphere geometry, the transfer matrix of the transparent external biface 
is given by formula (g) of Table 6.1 
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where ( )210r t  is given by Eq. (6.35) and  

 ( ) ( )  

/2

210 210
0
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π

θ=
= θ θ θ∫ . (6.40)  

The reflectance of the coated background observed with an integrating sphere is  
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ψ ρ
= ψ +
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 (6.41)  



86 Chapter 6 

 

Note that in [SHH06], the external reflection component ( )012R ψ  is omitted, being as-
sumed to be discarded from the measurement.  

 The model of Simonot & al. is not restricted to a single transparent layer. The Lam-
bertian background may be superposed with several transparent layers of different refrac-
tive indices, separated by flat interfaces. The grouping of the layers and interfaces is per-
formed iteratively, with a formula equivalent to the compositional formula (5.33). Once 
the new fundamental transfer matrix is obtained, the same development as above may be 
followed. 

Remark: The multiface becomes irregular if either one of the interfaces is rough, or the 
transparent layer is replaced by a scattering layer, or the background is weakly scattering 
instead of being Lambertian.  

Summary 

 We have established how, given a multiface and a measuring geometry, the reflectance 
and the transmittance of each face can be determined. The elaboration of reflectance and 
transmittance models have been illustrated with classical models, i.e. the Kubelka’s model 
and the Williams-Clapper model. The recent extensions of the Williams-Clapper model 
for the integrating sphere geometry (Shore and Spoonhower [SHO00]), and a non neglect-
ible background-coating interface (Simonot, Hébert and Hersch [SHH06]) have also been 
retrieved. 

 We have not considered yet multifaces with alternations of transparent and Lamber-
tian bifaces. We have neither found in the specialized literature any compositional model 
considering such multifaces. This is probably due to the fact that the description of a 
multiple reflection-transmission process in three or more superposed bifaces of different 
nature is hardly realizable with a step-by-step method. With the compositional model, we 
are now capable of considering mixed multifaces, such as superposed paper sheets (Chap-
ter 7) and prints (Chapter 8). The superposition of glossy paper sheets, for example, 
yields a multiface comprising seven bifaces: two paper layers (Lambertian), four flat inter-
faces (transparent) and the air layer between the paper sheets (obviously also transpar-
ent).   
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Chapter 7.  

Compositional models for paper  

The present chapter aims at characterizing high quality paper sheets. The paper 
layer, assumed to be Lambertian, is characterized by its “intrinsic” reflectance and 
transmittance. It is bounded at both its sides by interfaces, assumed to be flat, char-
acterized by Fresnel coefficients. A straightforward application of the compositional 
model gives global reflectances and transmittances of the paper sheet for a selected 
measuring geometry. Biface splittings enable dissociating the geometry-dependent 
terms from the other ones. We thus define a sheet “internal reflectance and transmit-
tance” remaining invariant whatever the measuring geometry (Sect. 7.1). The rela-
tionship between our compositional model and the Kubelka-Munk model is analyzed. 
A method for deducing the intrinsic parameters of paper from measurements is also 
proposed. In Sect. 7.2, an advanced model considers the superposition of two sheets 
with full optical contact or without contact. We use this double sheet model for de-
ducing from measurements the intrinsic parameters of paper independently of the 
measuring geometry (Sect. 7.3).  

7.1 Single paper sheet model 

 Papers depend on the nature of the fibers (natural or synthetic) forming the paper 
bulk, the chemical treatment, the addition of optical brighteners for improving the paper 
whiteness and the surface coating. Paper sheets are generally characterized by reflec-
tances, brightness, opacity, gloss, and Kubelka-Munk coefficients [BLMC01, Nis98].  

 Here, paper sheets are characterized by the intrinsic reflectance and transmittance of 
the paper substrate layer, considered without interfaces. This requires modeling the mul-
tiple reflections occurring at the internal side of the paper-air interfaces. Because of the 
angular dependence of the Fresnel coefficients, the measuring geometries must be taken 
into account. However, they may be not exactly known, e.g. when the illuminating light 
source is not collimated or not Lambertian as expected in our model. The observation 
geometry of measuring devices may also be uncertain. We therefore intent to develop a 
model independent of the measuring geometry.  

 The model presented here concerns high quality paper sheets, whose paper layer is 
made of a homogenous and nonfluorescent scattering layer assimilated to a Lambertian 
biface. White opaque plastic sheets are also concerned provided that the pigmented plas-
tic scatters light sufficiently for being considered as a Lambertian layer. The surfaces of 
the sheet are assumed to be flat, hence forming two flat paper-air interfaces.  

 At the upper side of the sheet, a directional light incomes at angle ψ, and a radiance 
detector captures light at angle ′ψ  (we note ξ′ its apparatus constant, defined in Appen-
dix A.2). At the bottom side are placed a Lambertian light source and a radiance detector 
(apparatus constant ξ′′, observation angle ′′ψ ). For such a measuring geometry, the 
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global transfer matrix of the paper sheet is termed  

 
1 1

1 1

U U

V V

T R

R T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (7.1) 

We propose to determine the elements of this global transfer matrix according to our 
compositional model.  

7.1.1 Global reflectance and transmittance of a paper sheet 

 The paper sheet is represented by a hexaface, whose bifaces are respectively the upper 
air-paper interface, the paper layer, and the lower air-paper interface (Fig. 7.1). Such a 
hexaface is regular since it does not comprise any scattering biface (Sect. 5.2.1). 
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Fig. 7.1: Hexaface representing a paper sheet.   

The Lambertian paper layer is characterized by its invariant transfer matrix (Sect. 6.1.2), 
containing its upper intrinsic reflectance ρ, its lower intrinsic reflectance ρ′ (generally dif-
ferent from ρ) and its intrinsic transmittance τ (identical at the upper and the lower 
sides)  

 
τ ρ⎡ ⎤

⎢ ⎥
⎢ ⎥′ρ τ⎢ ⎥⎣ ⎦

  (7.2) 

The interfaces are characterized by their fundamental transfer matrix [Eq. (3.25)] whose 
elements are Fresnel reflection and transmission coefficients parameterized by the refrac-
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tive index n of the paper. Since they are external bifaces, their particular transfer matrix 
depends on the measuring geometry.  

 Let us first consider the upper interface. It is illuminated on its upper side by the di-
rectional light source (incident angle ψ) and on its lower side by the Lambertian light 
coming from the paper layer. It is observed at the upper side by a radiance detector (ob-
servation angle ψ′). With formula (h) of Table 6.1, and using relation ( ) ( )10 1 01T T′ ′ψ = ψ , 
the upper interface has the particular transfer matrix 
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 (7.3) 

The lower interface is illuminated by Lambertian irradiances on both its faces. Its lower 
face is observed by a radiance detector at angle ψ′′. Its particular transfer matrix is given 
by Formula (j) of Table 6.1, with reversed notations since we are in presence of a lower 
external biface  
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 (7.4) 

The composition equation representing the paper sheet is 
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○ ○  (7.5) 

The hexaface formula (5.27) applied to the composition equation (7.5) gives the expres-
sion for the global transfer matrix of the paper sheet 
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 (7.6) 

with ( )( ) 2
10 10 101 1D r r r′ ′ ′= − ρ − ρ − ττ .  

 In the case of a symmetric paper sheet, both faces of the paper layer have the same 
intrinsic reflectance (ρ = ρ′). The global transfer matrix of the sheet becomes 
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 (7.7) 

with ( ) ( )2 2
10 101D r r′ = − ρ − τ . 
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7.1.2 Internal reflectance and transmittance of a paper sheet 

 Eq. (7.6) shows clearly that the sheet global transfer matrix depend on the measuring 
geometry. However, this dependence is only due to the external reflectance, the penetra-
tion transmittance and the exit transmittance of the interfaces. In order to dissociate the 
geometry-dependent terms from the other terms, we propose to split the bifaces represent-
ing the interfaces (see Sect. 5.4). Their transfer matrix, given by Eqs. (7.3) and (7.4), are 
thus represented by a composition of two transfer matrices, a first one containing the 
external reflectance, the penetration transmittance and the exit transmittance (geometry-
dependent terms), the second one containing the internal reflectance which is geometry-
independent. The upper biface is split as 
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and the lower biface is split as 
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Fig. 7.2: Representation of a paper sheet with split interfaces. The paper layer 
and its bordering interfaces form a geometry-independent biface, called “bounded 
paper layer”. 
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The composition equation of the paper sheet, originally given by Eq. (7.5), becomes 
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As indicated in Fig. 7.2, the three central bifaces are regrouped into a single biface, called 
the “bounded paper layer”. The composition of the three central transfer matrices in 
Eq. (7.10), calculated according to the hexaface formula (5.27), gives the internal transfer 
matrix of the paper sheet 
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where ( )( ) ( )2
10 10 101 1D r r r′ ′= − ρ − ρ − τ .  

 Reflectances R1 and 1R′  are called the internal reflectances of the paper sheet and 
transmittances T1 and 1T ′  are called the internal transmittances. They take into account 
the internal reflections at the paper-air interfaces, but not the surface reflection, the pene-
tration nor the exit. Eq. (7.11) puts into evidence the fact that internal transmittances T1 
and 1T ′  are equal, even though the paper sheet is not symmetric. Light therefore crosses 
the bounded paper layer with the same attenuation independently on the sense of cross-
ing. This property1 may be given the name of “principle of nonpolarity of internal trans-
mittance”, in reference to the “principle of nonpolarity of transmittance” formulated by 
Kubelka for Lambertian multifaces having all the same refractive index (Sect. 6.2.2).  

 The relationship between the global and the internal transfer matrices follows directly 
Eq. (7.10) 
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Eq. (7.12) characterizes the dissociation in our single sheet model of the geometry-
dependent and the geometry-independent terms. It tells us, in particular, that the global 
transmittances TU1 and TV1 are different only due to the light penetration and exit across 
the interfaces.  

 In the case of a symmetric paper sheet (ρ = ρ′), both internal reflectances are also 
equal, i.e. R1 = 1R′ . Eq. (7.11) becomes 
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 (7.13) 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 The non-polarity of the bounded paper layer is also valid when the interfaces have different pro-
perties (relative refractive index, roughness, etc.)   
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7.1.3 Relation with the Kubelka-Munk model 

 We have characterized with expression (7.6) the optical properties of a paper sheet as 
functions of the intrinsic reflectances ρ and ρ′ and transmittance τ of the paper layer. 
However, the characterization of paper is traditionally expressed with the parameters of 
the Kubelka-Munk model [KM31], i.e. with a scattering coefficient S, an absorption coeffi-
cient K, and the layer thickness h [BLMC01]. Let us establish the connection between the 
two models [HH06].  

 First note that the Kubelka-Munk model can be used only if the paper layer has the 
same coefficients at every point. We must therefore consider in our single sheet model 
that the paper layer has identical faces, i.e. ρ = ρ′.  

 We can choose among two methods for obtaining the global reflectance and transmit-
tance of the sheet as functions of the Kubelka-Munk parameters. In the first method, 
which may be called the “direct method”, the reflections and the transmissions by the 
interfaces are taken into account as boundary conditions while solving the Kubelka-Munk 
differential equation system. This corresponds exactly to the configuration of a Lamber-
tian layer bounded by two bifaces, presented in Sect. 4.3.5. Here, the two bifaces are the 
flat interfaces. The global reflectance and transmittance of the sheet have the same ex-
pressions as Rb and Tb [Eqs. (3.105) and (3.106)], with the specific elements 
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 (7.14) 

The second method, which may be called the “two steps method”, consists in solving the 
Kubelka-Munk system for the Lambertian layer alone without considering the interfaces, 
which yields expressions (3.96) and (3.97) for its intrinsic reflectance ρ and transmittance 
τ, and then in using the compositional model (Eqs. (7.5) and (7.6)) for taking into ac-
count the reflections and the transmissions at the interfaces. One may verify that both 
methods are equivalent. The second method may be considered as an extended Saunder-
son correction for two bounding interfaces.  

7.1.4 Deducing intrinsic parameters of paper from measurements 

 We would like to determine the intrinsic parameters ρ and ρ′ and τ of a nonsymmetric 
paper sheet. We use a bidirectional spectrophotometer (typically build on the 45°/0° ge-
ometry) either in reflectance mode (light source on) or in transmittance mode (light 
source off). The spectrophotometer is placed upon the paper sheet, and a diffusing light 
table, placed below, is used as light source in transmittance mode. The measuring geome-
try is thus similar to the measuring geometry considered in Sect. 7.1.2, except that there 
is no detector at the lower side.  

 The spectrophotometer is first used in reflectance mode. We measure the reflectance 
Rref of a perfect white diffuser, given by Eq. (A.14) 

 /refR ′= ξ π  (7.15) 
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Then, we measure the upper global reflectance RU1 of the sheet as weel as the upper 
global reflectance 1UR  of the same sheet positioned upside-down. According to Eq. (7.6), 
our model expresses reflectance RU1 as 
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Reflectance 1UR  is similarly expressed, the intrinsic reflectances ρ and ρ’ being replaced by 
each other 
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 (7.17)  

The spectrophotometer is then used in transmittance mode. A first transmittance Tref is 
measured without the sheet, considering air as the reference transmitter. In a similar 
manner as the perfect white diffuser, the light table emits a Lambertian irradiance, yield-
ing a transmittance of air 

 /refT ′= ξ π  (7.18) 

The lower transmittance TV1 of the sheet is given by Eq. (7.6)  

 ( )  1 01 012VT t T
n D

′ξ τ′= ψ
′π
 (7.19)  

In order to have expressions independent of the apparatus constant ξ′, we rather consider 
the reflectance factors 1 1Û U refR R R=  and 1 1Û U refR R R=  and the transmittance factor 

1 1
ˆ /V V refT T T= . We obtain the three following equations 
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and   
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 (7.22) 

Knowing the refractive index of the paper, the Fresnel coefficients and their integrations 
over the hemisphere (r10 and t01, see Sect. 3.2.2) can be computed. The three equations 
(7.20), (7.21) and (7.22) thus allow to deduce wavelength by wavelength the intrinsic 
parameters ρ, ρ′ and τ.  

 The principal drawback of this method is the fact that it depends on the measuring 
geometry, due to the presence of the terms T01(ψ), T01(ψ′) and t01. Although these terms 
are easily computable thanks to Fresnel formulae [Eqs. (3.20), (3.22) and (3.28)], we are 
not always certain that the conditions of illumination respect our assumptions. We would 
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like to have three equations completely independent of the measuring geometry. The dou-
ble sheet model that we present now makes it possible. 

7.2 The double sheet model  

 As shown in Sect. 7.1.2, a single paper sheet may be characterized by an internal 
transfer matrix whose internal reflectances and transmittances R1, 1R′  and T1 are inde-
pendent of the measuring geometry. The geometry-dependent terms, i.e. the surface re-
flectances s, the penetration transmittances p and the exit transmittances x of the inter-
faces, are placed in separate transfer matrices. For the selected measuring geometry, the 
relation between the global and the internal transfer matrices is  
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Let us now superpose two identical paper sheets, the lower sheet being positioned upside-
down. Thus, the resulting double sheet is symmetric. Selecting the same measuring ge-
ometry as for a single sheet, we have an equivalent relation between the global transfer 
matrix of the double sheet and its internal transfer matrix  
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In Eq. (7.24), the upper and lower internal reflectances (R2) are identical due to the sym-
metry of the double sheet.  

 It may be observed from Eqs. (7.23) and (7.24) that the ratio of global transmittances 
TV2/TV1 is equal to the ratio of internal transmittances T2/T1  
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= =  (7.25) 

Since both internal transmittances T1 and T2 are geometry-independent, the ratio TV2/TV1 
is also geometry-independent. 

 In the case of the reflectance, the ratio of measured reflectances RU2/RU1 (likewise the 
ratio 2 1/U UR R ) is geometry-independent only when the surface reflection is discarded from 
the measure (su = 0), which is the case when a 45°/0° geometry is used  
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 (7.26)  

 Let us develop expressions for R2 and T2 as functions of the paper intrinsic parameters 
ρ, ρ′ and τ. This will then allow deducing these parameters from the geometry independ-
ent equations (7.25) and (7.26).   
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7.2.1 Model for a full contact between the sheets 

 When the two identical sheets are in full optical contact, there is not interface between 
the paper layers, which thus form a double layer of paper. The external interfaces are 
split in the same manner as for a single sheet (Sect. 7.1.2). We may therefore represent 
the double sheet by the composition equation 
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The internal transfer matrix of the double sheet results from the composition of the four 
central transfer matrices. The quadriface formula (5.24) is first applied to the two transfer 
matrices of the paper layers 
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Then, the hexaface formula (5.27) is applied to Eq. (7.28). As a result, the internal reflec-
tance R2 and transmittance T2 of the double sheet are 
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with 
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 (7.30) 

The assumption of full optical contact between paper sheets is an ideal condition that is 
rarely realizable in practice, because bubbles or thin layers of air may have a nonneglect-
ible effect. Instead, we separate the two sheets and thus create a planar air layer between 
them.  

7.2.2 Model without contact between the sheets 

 The two paper sheets are now separated by a layer of air. The lower sheet is still iden-
tical to the upper sheet but positioned upside-down. The resulting multiface is composed 
of seven bifaces: four interfaces, two paper layers and the air layer. As previously, all the 
flat interfaces are split. The internal reflections at the paper side of the interfaces are con-
sidered together with the paper layers. We thus obtain two bounded paper layers (see 
Fig. 7.3) identical to those characterized in Sect. 7.1.2. Therefore, we reuse the internal 
reflectances R1 and 1R′  and the internal transmittance T1 given by the single sheet inter-
nal transfer matrix (7.11). Because the two sheets are reversed, the upper and the lower 
bounded paper layers have slightly different transfer matrices, i.e. respectively 
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 (7.31) 
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Fig. 7.3: Representation of two paper sheets superposed without contact. The air 
layer between the paper sheets and its bordering interfaces form a transparent 
multiface: the “bounded air layer”.  



Compositional models for paper 97 

 

The air layer has a zero reflectance and a unit transmittance. Its transfer matrix is 

   
1 0

0 1

⎡ ⎤
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⎢ ⎥
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 (7.32) 

We call “bounded air layer” the air layer considered with its bordering interfaces, ex-
cluded the paper-side reflections which are already embodied into the bounded paper lay-
ers. The fundamental transfer matrix of the bounded air layer results from the following 
composition 
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Composition (7.33) should be computed first for the two polarization components and 
then, by averaging, for natural light. However, a numerical evaluation shows that for a 
standard refractive index of paper close to 1.5, the composition can be performed directly 
with the Fresnel coefficients for natural light. The hexaface formula (5.27) thus gives the 
following fundamental transfer matrix for the bounded air layer 
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Eq. (7.34) may be simplified using relations ( ) ( )0 101 10R Rθ θ= , ( ) ( )0 101 10T Tθ θ= . With  
relation ( ) ( )1 110 101T Rθ θ= −  [Eq. (3.22)], one has 

  ( ) ( )( ) ( )( ) ( )( ) ( )2
0 1 1 1 101 10 10 10 101 1 1 1R R R R Tθ θ θ θ θ− = + − = +   

The bounded air layer is symmetric. Both its faces receives a Lambertian illumination. 
They have therefore the same reflectance Ra and the same transmittance Ta  
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According to Eq. (6.2), one obtains 
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Remark: There is no absorption within the bounded air layer. The principle of conserva-
tion of energy should therefore be satisfied. The sum of reflectance Ra and transmittance 
Ta yields the fraction of Lambertian light coming from the paper layer that is not inter-
nally reflected by the paper-air interface, i.e. 101a aR T r+ = − . 

 Since their expression relies only on Fresnel coefficients, r10, Ra and Ta depend only on 
the refractive index n of the paper. Numerical values of these terms are proposed for re-
fractive indices comprised between 1.45 and 1.55 in Table 7.1. 

Table 7.1: Numerical values of r10, Ra and Ta as functions of the paper refractive index n 

n 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 

r10 

Ra 

Ta 

0.565 

0.028 

0.408 

0.571 

0.028 

0.401 

0.578 

0.028 

0.394 

0.584 

0.028 

0.388 

0.590 

0.028 

0.382 

0.596 

0.028 

0.375 

0.602 

0.028 

0.369 

0.608 

0.028 

0.363 

0.614 

0.028 

0.358 

0.620 

0.029 

0.352 

0.625 

0.029 

0.346 

 The multiface representing the double sheet is reduced to five bifaces (see Fig. 7.3): the 
upper bounded paper layer, the bounded air layer, the lower bounded paper layer, and 
the two geometry-dependent external bifaces. Composing the three “bounded layers” 
yields the internal transfer matrix of the double sheet 
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According to the hexaface formula (5.27), we obtain for the internal reflectance of the 
double sheet 
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and for its internal reflectance 
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When the superposed sheets are symmetric, their internal reflectances R1 and 1R′  are 
equal [see Eq. (7.13)]. Thus, the internal reflectance and transmittance of the double 
sheet become 
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and  
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7.3 Experimental results 

 The single and double sheet models are used in the context of a reflectance and trans-
mittance model for printed sheets (see Chapter 8). Two different printing supports are 
used: opaque white PVC pigmented with titanium dioxide, of refractive index 1.54, and 
high-quality paper, of refractive index assumed to be 1.5. Both types of sheets are sym-
metric (ρ = ρ′), nonfluorescent and have smooth surfaces. We want to deduce the intrin-
sic reflectance ρ(λ) and transmittance τ(λ) from the spectral measurements in reflectance 
mode and transmittance mode. First, a geometry-dependent equations are used for deduc-
ing ρ and τ. Then, in order to ascertain the modelization of the measuring geometry in 
transmittance mode, a geometry-independent equation provided by the noncontact double 
sheet model is used. 

 The reflectance spectrum RU1(λ) of a single sheet is measured with the portative 
GrategMacbethTM Eye-One spectrophotometer, based on the 45°/0° geometry (see 
Sect. 1.3.1). First, the spectrum of a reference white tile is measured. Then, the spectrum 
of the selected specimen is measured. The spectrophotometer gives directly the ratio of 
the specimen’s spectrum to the reference spectrum. It therefore gives a reflectance factor 
spectrum, noted ( )1ÛR λ .  

 ( )1ÛR λ , given by Eq. (7.21) with ρ = ρ′, ψ = 45°, and ψ′ = 0°, is a function of the pa-
per intrinsic reflectance ρ(λ) and transmittance τ(λ)  

 ( )
( ) ( ) ( )

( ) ( )
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In transmittance mode, we measure the flux Φ1(λ) transmitted through the printing sup-
port and the flux Φref(λ) coming from the light table. The ratio Φ(λ)/ Φref(λ) gives the 
transmittance factor ( )1ÛT λ , expressed by Eq. (7.21) with ρ(λ) = ρ′(λ) and ψ′ = 0° 
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 (7.44) 

The intrinsic reflectance ρ(λ) and transmittance τ(λ) are deduced numerically from Eqs. 
(7.43) and (7.44). Measured transmittance factors ( )1ÛR λ  and ( )1ÛT λ  are plotted in 
Fig. 7.4a for both the white PVC and the high quality paper. The deduced spectra of ρ(λ) 
and τ(λ) correspond to the solid curves plotted in Fig. 7.4c. 

 In order to check whether the light table used for transmittance measurements is 
Lambertian as expected, we use the geometry-independent equations provided by the 
noncontact double sheet model. We measure the flux Φ2(λ) of the two face-to-face super-
posed sheets. Measured fluxes Φ1(λ) (single sheet) and Φ2(λ) (double sheet) are plotted in 
Fig. 7.4b. The single sheet and the double sheet receives a same incident flux Φi(λ). The 
ratios Φ1(λ)/Φi(λ) and Φ2(λ)/Φi(λ) correspond respectively to the global transmittance of 
the single sheet, TV1(λ), and the global transmittance of the double sheet, TV2(λ). How-
ever, in the ratio TV2(λ)/TV1(λ), the incident flux Φi(λ) cancels 
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According to Eq. (7.25), the ratio of global transmittances TV2(λ)/TV1(λ) is equal to the 
ratio of internal transmittances T2(λ)/T1(λ). From Eq. (7.42), we have 
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where R1(λ) and T1(λ) are given by (7.13)  
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ρ(λ) and transmittance τ(λ) are again calculated, this time from the equation system 
formed by Eqs. (7.43) and (7.46). Eq. (7.43) is a geometry-dependent equation, where the 
45°/0° geometry used in reflectance model is modeled, but we consider that this geometry 
is certain. However, Eq. (7.46) is geometry independent. This avoid to model the uncer-
tain measuring geometry used in transmittance mode. The deduced spectra of ρ(λ) and 
τ(λ) are plotted with dashed lines in Fig 8.4(c). They are compared with the spectra ρ(λ) 
and τ(λ) previously deduced from Eqs. (7.43) and (7.44), plotted with solid lines. The 
small difference between the spectra obtained from the two methods for short and large 
wavelength is due to the low emission of the light table in these spectral ranges, which 
induces some noise in the measurements. The good matching of the curves in the reste of 
the spectrum confirms that the assumption of Lambertian illumination was satisfied. It is 
also a partial validation of our two superposed sheet model. 
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Fig. 7.4: (a) Reflectance factor and transmittance factor spectra measured on a single sheet; (b) 
measured flux spectra transmitted through (solid line:) the single and (dashed line:) the double 
sheets, expressed in arbitrary units; (c) intrinsic reflectance and transmittance spectra of the paper 
layer fitted from (solid line:) spectra plotted in a) and (dashed line:) spectra plotted in b). 
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Summary 

 We have applied the compositional model to the characterization of opaque and glossy 
paper sheets (Lambertian paper layer and flat interfaces with air). The representation of 
the paper sheet by a regular hexaface and the use of the hexaface formula enables ex-
pressing in a straightforward manner its global reflectance and transmittance for various 
measuring geometries. Furthermore, thanks to splits of the air-paper interfaces, we have 
dissociated the terms depending on the measuring geometry and the other terms. We thus 
have defined “internal” reflectances and transmittances, corresponding to the geometry-
independent part of the global reflectances and transmittances. The compositional model 
appears to be adequate for the characterization of paper, in particular for the obtention of 
its intrinsic reflectances and transmittance. These intrinsic parameters may also be a step 
in the derivation of the Kubelka-Munk scattering and absorption coefficients from spec-
tral measurements. 

 We have also presented two models for superposed sheets: a first model considers a full 
contact between two sheets, which is however difficult to realize in practice, and a second 
model without contact, which may be easily realized. Thanks to this second model, the 
terms depending on the measuring geometry can be completely discarded. This simplifies 
considerably the calibration of the measuring device, in particular for transmittance meas-
urements which are often performed with custom setups. This model could not have been 
derived from the Kubelka-Munk model [Kub48] nor from the Kubelka model for super-
posed Lambertian layer [Kub54] because of the central air layer. It therefore represents a 
real progress in the modelization of multilayer specimens.  

 The single sheet model may be extended to matte paper sheets, provided the rough 
paper-air interfaces be appropriately characterized. The rough interfaces, which are scat-
tering bifaces, are neighbored by a Lambertian biface. The hexaface therefore remains 
regular. However, two matte sheets superposed without contact form an irregular multi-
face, due to the adjacency of two scattering bifaces bounding the air layer. In the future, 
it would be interesting to study the influence of the surface roughness in the accuracy of 
the noncontact double sheet model.  
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Chapter 8.  

Compositional models for prints 

In this chapter, the compositional model is applied for the characterization of prints. 
A reflectance and transmittance model is developed for printing supports coated by a 
solid colorant layer, covering all the surface of the printing support. We show how the 
normal transmittance of the ink layers deduced from reflectance measurements can be 
ascertained by transmittance measurements (Sect. 8.1). Then, we present the speci-
ficities of halftone prints. We show that the compositional model can be applied only 
for high screen frequency halftone prints (Sect. 8.2). We extend the Williams-Clapper 
model for such halftone prints and present the classical Clapper-Yule model, which is 
a simplified version of our rigorous extension (Sect. 8.3). Finally a spectral prediction 
model is developed for recto-verso halftone prints with an experimental validation 
(Sect. 8.4) 

8.1 Ink transmittance 

 As a first step in the characterization of prints, we propose to develop models permit-
ting to deduce the normal transmittance of inks from reflectance and transmittance 
measurements. Consider a print composed of a symmetric paper sheet (i.e. having indis-
tinguishable recto and verso) on which is deposited a solid ink layer. The following as-
sumptions are made: the print has flat interfaces with air; there is no interface between 
ink and paper; the paper layer is Lambertian; and the ink layer is transparent. We desire 
to deduce the normal transmittance spectrum t(λ) of the solid ink layer from the measure 
of the print’s global reflectance or transmittance.  

 For the measure, we have at our disposal a directional light source and a radiance de-
tector at the upper side, and a Lambertian light table at the bottom side. Three different 
measurements are possible: 1) a reflectance measurement with the bidirectional geometry, 
2) a transmittance measurement with the ink positioned at the detector side (the light 
table illuminates the unprinted side), 3) a transmittance measurement with the ink posi-
tioned at the source side.  

8.1.1 Reflectance and transmittance of solid ink patches  

 Let us first consider that the ink is positioned at the detector side. We aim at express-
ing the print upper global reflectance Rup and transmittance Tup, corresponding respec-
tively to the measures 1) and 2) listed above. The measuring geometry is identical to that 
considered in Sect. 6.3.2 for the Williams-Clapper model. The difference here is that we 
also consider transmittance measurements and that the paper layer is characterized by its 
intrinsic reflectance ρ and its intrinsic transmittance τ, whereas it was only characterized 
by a reflectance ρΒ in Sect. 6.3.2. The corresponding graph is drawn in Fig. 8.1.  
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Fig. 8.1: Multiple reflection-transmission process occurring within a solid ink layer 
printed on the upper side of a symmetric paper sheet. 

At the upper side, the ink layer and its interface with air are grouped. We obtain the 
same external biface as in Sect. 6.3.2, which is illuminated and observed in the same con-
ditions (Lambertian illumination from the paper on the lower face, directional light source 
at angle ψ and radiance detector at angle ψ′ on the upper face). Therefore, the ink layer 
and its interface have the same transfer matrix as in Eq. (6.24) 
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with r10(t) given by Eq. (6.25). The transfer matrix of a symmetric paper layer has been 
presented in Sect. 7.1.4 
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  (8.2) 

At the lower side, the paper is bounded by a flat interface, whose fundamental transfer 
matrix is similar to Eq. (3.25), with reversed indices 10 et 01 since here medium 1 repre-
senting the paper is at the upper side. The interface receives Lambertian illuminations on 
both its faces. It has therefore the particular transfer matrix [see Eq. (6.2)] 
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For the selected measuring geometry, the global transfer matrix of the print, with the ink 
layer on the detector side, is given by the composition equation  
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which gives, using the hexaface formula (5.27), the global reflectance 

 ( ) ( )
( )

( )( ) ( )( )
   

  

1 1

2 2
101/cos 1/cos

01 012 2 2
10 10 10 101up

r
R T T t t

n r r t r r t
′ψ ψ

ρ − ρ − τξ ′= ψ ψ
π − ρ + + ρ − τ

 (8.5)  

and the global transmittance 
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 Let us now consider that the ink layer is below, i.e. in front of the light source, which 
corresponds to the measure 3) listed in the introduction of Sect. 8.1. A transmittance Tdn 
is measured with the same geometry as Tup. 

 At the upper side, the external biface is the paper-air interface alone. Its transfer ma-
trix is identical to Eq. (6.14) where the same geometry was considered. We directly re-
place ( )10 1T ′ψ  by ( )01T ′ψ  [Eq. (3.24)] 
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 (8.7)  

At the lower side, the flat interface with the ink layer form a grouped transparent biface 
whose faces receive Lambertian illuminations. Its particular transfer matrix is obtained 
using the quadriface formula and then using Eq. (6.2) 
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where ( )10r t  is given by Eq. (6.25), ( )10t t  by Eq. (6.32) and ( )01t t  by 
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The paper layer still has the transfer matrix (8.2). Hence, the global transmittance Tdn of 
the print results from the composition  

 
( )

( )

( ) ( )

( )
 

01
10 10

01 0110 012

0
    

dn

T t t r t

T r t tr T
n

⎡ ⎤ψ⋅ ⋅ ⎡ ⎤τ ρ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ξ ⎢ ⎥ρ τ⎢ ⎥⋅ ⎢ ⎥⎢ ⎥′ψ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎣ ⎦π⎣ ⎦

○ ○  (8.10)  



106 Chapter 8 

 

which is computed with the hexaface formula (5.27). The global transmittance of the 
print with the ink at the source side is  
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8.1.2 Deducing ink transmittances from measurements 

 Let us deduce numerically, wavelength by wavelength, the ink normal transmittance 
t(λ) from one of the three formulae (8.5), (8.6) and (8.11), considering that Rup(λ), Tup(λ) 
and Tdn(λ) have been measured. 

 Once again, in order to cancel the apparatus constant ξ (see Appendix A.2), we con-
vert reflectances into reflectance factors by dividing them by a reference reflectance. We 
do the same for transmittances. We choose as reference the unprinted paper sheet, whose 
reflectance RU1 and transmittance TV1 are given by (7.7). One obtains the reflectance fac-
tor 1

ˆ /up up UR R R= , the transmittance factor 1
ˆ /up up VT T T=  and the transmittance factor 

1
ˆ /dn dn VT T T= , expressed as 
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 (8.12)  

If the assumptions underlying this model are satisfied (i.e. the paper is Lambertian, the 
ink layer is transparent, the interfaces are flat), the ink normal transmittance spectra 
deduced from each of the three formulae (8.12) should be equal. This has been tested with 
cyan, magenta and yellow inks printed on white PVC sheets with an offset press 
(Fig. 8.2). 
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Fig. 8.2: Normal transmittance spectrum of solid cyan, magenta and yellow inks printed on white 
PVC, deduced from (dotted line:) the measure of global reflectance, (dashed line:) the measure of 
global transmittance with the ink at the detector side, and (solid line:) the measure of global 
transmittance with the ink at the source side. 
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For each ink, the ink transmittance spectra deduced from the three formula are identical, 
except for the short wavelengths where transmittance spectra are noisy, and for the large 
wavelengths for the cyan ink. A possible reason for this difference is the extremely low 
emission of the light table in these wavelength ranges which induces uncertainties in the 
measurements. The match for each ink in the remaining part of the spectrum is excellent. 
If we use the ink transmittance fitted from the transmittance measure with the ink layer 
on the source side or on the detector side, we obtain exactly the same prediction of print 
transmittance (CIELAB ΔE94 equal to 0). This shows the accuracy of the compositional 
model for the deduction of ink normal transmittance spectra.  

8.2 Halftone prints 

 In contrast with paints where many different nuances may be obtained from a single 
dye or pigment by varying its concentration in a binding medium, the inks used in print-
ing have a fixed concentration. Colors are formed by depositing on the paper surface ink 
dots (e.g. cyan, magenta, yellow, black) and color variations are obtained by varying the 
proportion of the paper surface covered by the dots of each primary ink. The resulting 
colors, perceived as homogenous by the eye due to its low-pass transfer function [OT86], 
are called “halftone colors” (Fig. 8.2).  

 

Fig. 8.2: Color generated by the superposition of dot screens of cyan, magenta, 
yellow and black primary inks with different screen periods.  

8.2.1 Ideal halftone print 

 We consider as ideal halftone print the superposition of the following elements without 
interpenetration:  

− a printing support, e.g. a paper sheet, composed of a Lambertian layer having flat 
surfaces (see Chapter 7); 

− a halftone inked layer, representing the superposed ink dot screens as a single trans-
parent layer, having the same refractive index as the printing support (no interface be-
tween the printing support and the inks); 

− a flat interface between the halftone ink layer and air.  

 The halftone inked layer together with its interface with air forms a single optical ele-
ment that is called the halftone inked interface. In the next sections, we consider such 
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ideal halftone prints. For experimental verifications, we have used printed patches whose 
characteristics were as close as possible to this ideal model.  

Paper layer

Halftone ink layer
Flat interface

 

Fig. 8.3: Representation of an ideal halftone print. 

8.2.2 Characterization of halftone inked layers 

 As shown in Fig 8.3, the primary ink dot screens overlap each other. The superposition 
of two solid inks yields a new colorant, e.g. the superposition of magenta and yellow inks 
yields the red colorant. Hence, the halftone inked layer is a juxtaposition of small colorant 
areas resulting from the superposition of the primary ink dot screens. When printing with 
cyan, magenta and yellow inks, we obtain the colorants white (no ink), cyan, magenta, 
yellow, red (magenta + yellow), green (cyan + yellow), blue (cyan + magenta), and black 
(cyan + magenta + yellow), which will be respectively denoted by the letters w, c, m, y, 
r, g, b and k. Each colorant i is characterized by its fractional surface coverage ai, and its 
normal transmittance spectrum ti(λ). Normal transmittances may be deduced from reflec-
tance or transmittance measurements according to the models presented in Sect. 8.1. 

 Considered individually, the primary inks cover respectively fractions c, m and y of the 
print surface. If the ink dots are placed so that there is no correlation between the pat-
terns of the primary ink dot screens, the respective surface coverage of the resulting col-
orants can be calculated by the Demichel equations [Dem24] 
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 (8.13)  

The nominal surface coverage of the primary inks is determined in advance by the color 
separation process [Yul67]. However, at print time, there are further interactions between 
the ink halftone and the paper and between the ink halftone and previously printed ink 
layers. A single ink halftone layer printed on paper generates an effective dot surface cov-
erage which is generally larger than the corresponding nominal dot surface coverage 
value. The enlargement of the printed ink dot is called dot gain. The dot gain is the dif-
ference between effective and nominal dot surface coverages. When an ink halftone is 
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printed on top of another ink, e.g. a solid ink (100% surface coverage), the dot gain of the 
ink halftone is different than when it is printed alone on paper. Dot gain therefore 
strongly depends on the superposition condition, i.e. on which other inks a given ink half-
tone is superposed. Note that the dot gain of an already printed ink halftone may be 
modified by a second ink printed on top of that ink halftone [HECC05]. 

 In analogy with the spectral Neugebauer reflectance model [Neu37, Vig90], the average 
normal transmittance t(λ) of the halftone inked layer is given by the sum of the transmit-
tances ti(λ) of the colorants weighted by their respective fractional surface coverage ai 

 ( ) ( )i i
i

t a tλ = λ∑  (8.14)  

Likewise, the fundamental transfer matrix of the halftone inked interface is the sum of the 
fundamental transfer matrices of the colorants, each one given by Eq. (6.23), weighted by 
their respective fractional surface coverage ai 
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8.2.3 Validity of the compositional model with halftone prints  

 In the case where the halftone inked layer is considered as a homogenous transparent 
layer, the halftone print would be represented by the configuration studied in Sect. 6.3.2. 
Its global reflectance could be modeled by the Williams-Clapper [WC53] model or one of 
its extensions [SS01, HH04]. The fundamental question is therefore whether we are al-
lowed using a compositional model with halftone inked layers, i.e. whether a halftone 
inked layer, or a halftone inked interface, can be considered as being a biface.  

 Bifaces have been defined in Chapter 2 as flat optical elements having homogenous 
optical properties. The notion of homogeneity must be considered at the scale of the mul-
tiple reflection-transmission phenomenon1. As an example, paper bulk is an extremely 
heterogeneous medium at the microscopic scale. Nevertheless, the paper layer behaves as 
a homogenous Lambertian reflector and transmitter when the light multiple reflection-
transmission with its bordering interfaces is considered. The problem with halftone prints 
is to determine whether light traverses different colorants in the multiple reflection-
transmission process. It is obvious that, because of the strong scattering within the paper 
layer, light undergoes a lateral shift between two internal reflections at the halftone inked 
interface. The typical distance of lateral propagation (which is a characteristic of the 
printing support), compared to the typical size of the colorant areas (which is directly 
linked to the halftone screen frequency, as shown by Fig. 8.4) is the key for determining 
whether the halftone ink interfaces is a biface or not.  

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
1 This question of “optical homogeneity” should be distinguished from the question of “visual ho-
mogeneity” which gives rise to a different domain of study principally centered around the charac-
terization of the human visual system [OT86]. A halftone print can always be perceived as a ho-
mogenously colored surface provided that it is observed at sufficiently long distance (see Fig. 8.2). 
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(a)

(b)

Multiple reflections with 
lateral shifts within the paper

Paper

ink dot

Paper

ink dots

 

Fig. 8.4: Spatial response of light rays interacting with a halftone print of (a) low 
screen frequency and (b) high screen frequency.  

The distance laterally traveled by the light is determined by the so-called Point Spread 
Function (PSF) of paper [ITM97, Rog98]. Three cases are generally considered 

− Low screen frequencies (short PSF): the colorant areas are large compared to the lat-
eral propagation of light within the printing support. Hence, an incident ray penetrating a 
given colorant stays in that colorant during all the process (Fig. 8.4a). The global reflec-
tance of the halftone print is the sum of the contribution of each colorant  

 i i
i

R a R= ∑  (8.16)  

where ai is the surface coverage of the colorant i and Ri corresponds to the global reflec-
tance of a print where the colorant i covers all the surface of the printing support (Fig 
2a).  

− High screen frequencies (large PSF): the colorant areas are very small compared to 
the lateral propagation of light within the printing support. Hence, the halftone inked 
layer may be considered as a homogenous layer having the transmittance given by 
Eq. (8.14). There is no correlation between the successive colorants through which light is 
multiply reflected and transmitted (Fig. 8.4b). The halftone inked layer can be repre-
sented by a biface. 

− Middle screen frequencies: The lateral light propagation distance inside the printing 
support is comparable to the screen period. The colorants in which light is successively 
reflected and transmitted are correlated. Light having penetrated an ink dot may exit 
from a close noninked region, giving thereby the illusion that the ink dot is larger than its 
real size. This effect is commonly called the “optical dot gain” phenomenon [Gus97].  

 Among the models proposed for modeling optical dot gain along the fifty past years, 
two models deserve to be mentioned. The first model, known as the Yule-Nielsen model 
[YN51, RH78, Vig90], relies on the following empirical equation 

  ( ) 

1/ bb
i i

i

R a R= ∑  (8.17)  
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where parameter b (1 2b ) must be fitted from measured data, and where ai and Ri 
have the same signification as in Eq. (8.16). Note that Eq. (8.16) corresponds to the par-
ticular case where b = 1. 

 The second model, recently published by Rogers [Rog00], proposes a rigorous mathe-
matical description of the location of light at each step of the compositional model. It 
models the lateral propagation of light by probability distribution functions.  

 The above considerations lead us to the conclusion that our compositional model 
should be applied only to high screen frequency halftone prints.  

8.3 Reflectance models for halftone prints 

8.3.1 Extended Williams-Clapper model for halftone prints 

 A Lambertian background, having a reflectance ρB, is superposed with a high screen 
frequency halftone inked layer composed of only two colorants: ink (surface coverage a, 
normal transmittance t), and no-ink (surface coverage 1−a, normal transmittance 1). Ac-
cording to Eq. (8.15), the halftone inked interface has the fundamental transfer matrix  
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with ( )1 arcsin sin /nθ = θ , n being the refractive index of the print.  

 Considering the halftone ink layer as any other transparent layer, we are exactly in the 
same configuration as in Sect. 6.3.2, except that the fundamental transfer matrix (6.23) 
shall be taken in place of (8.18). Let us consider the same bidirectional measuring geome-
try as in Sect. 6.3.2 (incidence angle ψ, observation angle ψ′). The halftone inked inter-
face has the following particular transfer matrix, derived from Eq. (6.24) 
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 (8.19) 

where ( ) ( )10 1 01T T′ ′ψ = ψ . The transfer matrix (8.19) of the halftone inked interface is 
composed with the transfer matrix of the background 
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The expression for the global reflectance Rrad(ψ′) obtained thanks to the quadriface for-
mula, divided by the reflectance ξ/π of a perfect white diffuser, gives the reflectance fac-
tor ( )

ˆ
radR ′ψ  for the halftone print 
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where r10(t) is given by Eq. (6.25).  

 When light is captured by an integrating sphere, the halftone inked interface has the 
following particular transfer matrix, where the matrix corresponding to the ink areas is 
given by Eq. (6.24) 
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 (8.21) 

By composing this transfer matrix with the one of the background, one obtains a global 
reflectance Rsph which is also the reflectance factor ŝphR  defined in reference to the perfect 
white diffuser (its reflectance is 1) 
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with t01 and t01(t) given respectively by Eqs. (3.28) and (8.9).  

 Eqs. (8.20) and (8.22) are the generalization of the Shore-Spoonhower model for the 
halftone print. We have not found yet any reference in the literature presenting such ex-
tension. Obviously, similar expressions may be developed for more than two colorants. 
The reflectance factor ( )

ˆ
radR ′ψ  corresponding to the bidirectional geometry may be ex-

pressed as 
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 (8.23)  

where ti and ai are respectively the normal transmittance and the fractional surface cover-
age of the colorant i, where ρB is the reflectance of the Lambertian background, and where 
r10(ti) is given by Eq. (6.25).  

8.3.2 Clapper-Yule model 

 The Clapper-Yule is a classical reflectance prediction model for high screen frequency 
halftone prints [CY53]. It expresses, for a directional incident light (incident angle ψ) and 
an integrating sphere, the reflectance of the halftone print as [HH04] 
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 It corresponds to an approximation of the extended Shore-Spoonhower model pre-
sented above. The obliqueness of light is taken into account at the print-air interface, but 
not in the halftone inked layer. All the exponents on the ink normal transmittance are 
ignored, yielding to the following approximations [HH04] 
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 In their original paper, Clapper and Yule assume that these approximations have a 
very small effect on the accuracy of the reflectance predictions. This has been verified 
experimentally [HECC05]. The ink transmittance parameter, in the Clapper-Yule model, 
does not correspond precisely to a normal transmittance but rather to an average at-
tenuation undergone by the diffuse light crossing the halftone ink layer.  

8.3.3 Deducing dot surface coverages of paper from measurements 

 Once the intrinsic reflectance and transmittance of the printing support have been 
deduced from the reflectance and the transmittance of the unprinted printing support (see 
Sect. 7.1.4) and each colorant normal transmittance has been deduced from the reflec-
tance and the transmittance of a print fully covered by the colorant, one can deduce the 
dot surface coverage from the measured reflectance and transmittance with single ink 
halftone patches.  

 For each ink, various patches are printed at different nominal coverages an. Their re-
flectance spectrum is measured with a spectrophotometer using, for example, a bidirec-
tional measuring geometry (incidence angle ψ and observation angle ψ′). The effective dot 
surface coverage a can be deduced from the global reflectance model, given by Eq. (8.20). 
Using a linear interpolation, one obtains an approximated correspondence between the 
nominal and the effective dot surface coverage (Fig. 8.3a).  
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Fig. 8.3: (a) Nominal to effective dot surface coverage curve and (b) dot gain 
curve of cyan halftone patches printed at 180 lines per inch on white PVC sheets. 

The dot gain, i.e. the difference na a−  of nominal and effective coverages, is a function of 
the nominal coverage, generally different for each primary ink. In Fig 8.3b, we observe a 
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negative dot gain, whereas dot gain is generally positive. Curves plotted in Fig. 8.3 have 
been obtained from patches printed with an offset press. The screen frequency, equal to 
180 lines per inch, was higher than usual screen frequencies (150 lpi). Dot gain may have 
been overcompensated during the production of the offset films [Hir91], and the offset 
plate may have been overexposed during the insolation process, which is also calibrated 
for a frequency of 150 lpi.   

8.3.4 Prediction of multi-ink halftone prints 

 When dot screens of various primary inks are superposed, the halftone inked layer 
comprises a certain number of colorants, having each one its normal transmittance ti and 
its dot surface coverage ai: no ink (also called “white” colorant), one primary ink (e.g. 
cyan, magenta, yellow), two superposed primary inks (e.g. red, green blue), three super-
posed primary inks (e.g. polychromatic black).  

 Consider a halftone patch printed with nominal dot surface coverages C, M and Y. 
What is the reflectance spectrum that would be measured from such a patch? The predic-
tion model relies on Eq. (8.20), expressing the reflectance factor ( )

ˆ
radR ′ψ  of the print for a 

bidirectional measuring geometry and a perfect white diffuser as reference. The following 
parameters should be determined:  

− The spectral intrinsic reflectance ρB of the printing support, which is deduced from the 
measured reflectance of the unprinted printing support;  

− The spectral normal transmittances ti of the different colorants, which are deduced 
from patches where each colorant is printed with a full surface coverage (see Sect. 8.1.2); 

− The scalar (i.e. non-spectral) dot surface coverage ai of the colorants. Effective dot 
surface coverages of the colorants can be computed according to the method proposed by 
Hersch & al. [HER95] since the surface coverage of primary inks depends whether they 
are printed alone or superposed with other ink(s), due to the ink spreading phenomenon 
[EH02]. 

8.4 Reflectance and transmittance model for recto-verso halftone prints 

Thanks to our general compositional model, one may easily develop a prediction model 
for transmittance of halftone prints, with a straightforward extension to recto-verso 
prints.  

 We consider here a symmetric printing support printed on both sides by two different 
halftones. The recto-verso print may be represented by a hexaface, whose external bifaces 
are the recto and the verso halftone inked interfaces, and whose central layer is the sub-
strate layer of the printing support, assumed to be Lambertian. Considering the print as 
ideal (Sect. 8.2.1), the hexaface is regular since it does not contains any scattering biface 
(Sect. 5.2.1).  

 Since the recto and the verso have been printed during different offset print passes, 
respective ink thicknesses and surface coverages are slightly different between the recto 
and the verso. We therefore calibrate separately the recto and the verso inked layers. The 
parameters of the halftone inked layer (normal transmittance and effective surface cover-
age of the colorants) are deduced from patches printed on the recto only (unprinted 
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verso), and those of the verso inked layer are deduced from patches printed on the verso 
only (unprinted recto).  

 We consider the same measuring geometry as for the characterization of paper 
(Sect. 7.1) and ink (Sect. 8.1), i.e. a directional incident light (incidence angle ψ) and a 
radiance detector (observation angle ψ′) at the upper side, and a Lambertian illumination 
at the bottom side. This geometry enables measuring the upper reflectance Rrad(ψ′) and the 
lower transmittance Trad(ψ′) of the print. 

8.4.1 Reflectance and transmittance model 

 The halftone inked interfaces are characterized by their fundamental transfer matrix, 
given by Eq. (8.15). Let us deduce their particular transfer matrix for the measuring ge-
ometry specified above. 

 The upper halftone inked interface receives directional light on its upper face and 
Lambertian light on its lower face. Its upper face is also observed by the radiance detec-
tor. According to formula (h) of Table 6.1, the transfer matrix of the upper inked inter-
face is  
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where ti and ai are respectively the normal transmittance and the surface coverage of col-
orants i printed on the recto.   

 The lower halftone inked interface is illuminated by Lambertian irradiances on its two 
sides. According to Eq. (6.2), it has the particular transfer matrix 
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where  it ′  and  ia ′  are respectively the normal transmittance and the surface coverage of 
the colorant printed on the verso, and where ( )10r t , ( )10t t  and ( )01t t  are given respectively 
by Eqs. (6.25), (6.32) and (8.9). By composing the upper inked interface, the symmetric 
paper layer and the verso inked interface,  
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and then by using the hexaface formula (5.27), we obtain the global reflectance of the 
recto-verso halftone print 
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116 Chapter 8 

 

and its global transmittance  
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The reflectance and transmittance model is calibrated by deducing from measurements 
the different parameters: the spectra of the intrinsic reflectance ρ(λ) and transmittance 
τ(λ) of the printing support (see Sect. 7.1.4), the spectra of normal transmittances of each 
colorant on the recto, ti(λ), and each colorant on the verso, ( )

it ′ λ , (see Sect. 8.1.2), and 
the effective surface coverages of the colorants on the recto and the verso, respectively ai 
and ia ′  (see Sect. 8.3.3). 

8.4.2 Experimental verification  

 We have tested the transmittance model [HH06] with recto-verso halftone patches 
printed at 180 lines per inch on white PVC, with cyan, magenta and yellow dot screens 
rotated by angles 75°, 15° and 0° respectively. The assumption of an ideal halftone print 
was almost satisfied thanks to the flatness of the PVC surfaces and the impossible pene-
tration of the inks in the printing support. The bottom Lambertian illumination was real-
ized with a diffusing light table. We used the same portative 45°/0° photospectrometer as 
described in Sect. 7.1.4.  

 During the time necessary to measure the transmittance of all the recto-verso patches, 
the irradiance emitted by the light table may vary. We therefore measured regularly the 
transmittance of the unprinted PVC sheet and divided all the patches transmittance 
spectra by the transmittance spectrum of the blank sheet. We obtained transmittance 
factor spectra. According to our model, the print transmittance factor ( )

ˆ
radT ′ψ  corresponds 

to the ratio of the print transmittance Trad(ψ′), given by Eq. (8.29), to the support trans-
mittance TV1 given by Eq. (8.29) with 0 1a =  (white colorant) and ( )0 0ia i= ≠  (other 
colorants) 
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with 

 ( )10u i ir a r t= ∑    and   ( ) 10v i ir a r t′ ′= ∑  

and with r10(t) given by Eq. (6.25).  

 The calibration procedure is presented in Sect. 8.3.1. Recall that the parameters of the 
recto and the verso halftones, i.e. the normal transmittance and surface coverage of the 
recto and verso colorants, have been deduced from respectively recto-only patches and 
verso-only patches. Transmittance predictions are then performed for the recto-verso 
patches featured in Table 8.1. The difference between the predicted and the measured 
spectra is expressed according to the CIELAB ΔE94 color difference formulae [Sha03]. 

 



Compositional models for prints 117 

 

Table 8.1: Difference (in CIELAB ΔE94) between predicted and measured transmittance spectra 

for offset inks printed on white PVC.  

 Ink on the verso 

 C M Y R G B K C50 average 

C 0.5 1.2 2.8 0.6 1.3 0.6 1.6 1.5 1.3 

M 2.2 1.2 0.9 0.9 1.3 0.9 1.6 0.9 1.2 

Y 1.0 0.7 0.5 0.8 0.9 0.3 1.6 1.3 0.9 

R 2.3 0.8 0.4 0.7 1.5 1.1 1.4 0.4 1.1 

G 0.5 0.5 2.6 0.7 0.8 0.4 3.3 2.3 1.4 

B 2.1 1.0 0.2 1.8 1.6 1.2 1.1 1.4 1.3 

K 2.0 1.6 0.4 1.5 0.7 1.5 1.4 1.7 1.4 

C25 0.6 2.3 0.7 2.0 2.3 0.7 1.7 0.7 1.4 

C50 0.5 2.0 1.6 1.9 2.0 1.1 2.5 0.8 1.6 

In
k 

on
 t

he
 r

ec
to

 

C75 0.2 2.0 1.7 1.6 1.5 0.7 1.5 0.5 1.2 

average 1.2 1.3 1.2 1.3 1.4 0.9 1.8 1.2 1.3 

Legend: C stands for cyan solid inked layer, M for solid magenta, Y for solid yellow, R for super-
posed magenta and yellow solid inks yielding the red colorant, G for solid yellow and cyan (green
colorant), B for solid cyan and magenta (blue colorant), K for the superposed cyan, magenta and
yellow solid inks (black colorant); C25, C50 and C75 stand for cyan halftones of respective nominal
surface coverages 0.25, 0.5 and 0.75. 

 

 The mean difference between the measured transmission spectra and the transmission 
spectra predicted according to the recto-verso model is ΔE94 = 1.3. Almost 90% of the 
predicted transmittance spectra have a ΔE94 prediction error of less than 2, which corre-
sponds to the normal offset printing accuracy. This experiment shows that the prediction 
accuracy that is achieved by the proposed model for transmittance spectra is excellent. It 
is similar to the prediction accuracy of reflection spectra that is achieved for recto only 
offset prints by the classical Clapper-Yule model [HECC05]. 

Summary 

 We have applied the compositional model to the characterization of prints. The ink 
transmittance can be deduced for each wavelength from the measurement of the global 
reflectance spectrum or the global transmittance spectrum of a patch printed with a solid 
ink layer. Both possibilities yields the same transmittance spectrum. The notion of biface 
and the Shore-Spoohower model have been extended to halftone inked layers with high 
screen frequency. We have shown that the classical Clapper-Yule model is an approxima-
tion of this model.  

 We have also developed a model for recto-verso multi-ink halftone print, experimen-
tally validated with solid colorant patches and cyan halftones. The difference between 
measured and predicted spectra, expressed in CIELAB ΔE94, is 1.3, which is less than 
the threshold of the human eye perception. In the future, in order to predict accurately 
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the reflectance and the transmittance multi-ink recto-verso halftone patches, the ink 
spreading phenomenon shall be taken into account according to the model proposed by 
Hersch & al. [HECC05].  
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Conclusion 

 We presented a general model of multilayer reflectance and transmittance relying on 
geometrical optics and using a hierarchical description of the interaction of light with the 
different layers and interfaces forming the multilayer specimens. In the most general case, 
a step by step description of the multiple reflection-transmission of light in the multilayer 
yields a reflectance and a transmittance expressed as infinite sums. However, when the 
multilayer does not contain any rough interface or any weakly scattering layer (i.e. no 
scattering biface), or when each of these interfaces or layers is directly bordered by a 
strongly scattering layer, the step-by-step description can be avoided. Instead, we have 
advocated the use of closed-form formulae, called “compositional formulae”, including the 
full multiple reflection-transmission process. We have introduced a special formalism al-
lowing to derive in a straightforward manner the particular reflectance and transmittance 
that should be associated with each face. The geometries of the light sources and the cap-
turing devices are included in this special formalism. Thanks to the notion of composition 
and the composition formulae, the establishment of multilayer reflectances and transmit-
tances of multilayer specimens is considerably simplified.  

 The soundness of our approach has been proven by its ability to retrieve Kubelka’s 
model, the Williams-Clapper model, the Saunderson correction, and the Clapper-Yule 
model. New models have also been developed that would have been very difficult to con-
ceive without our compositional formalism. The new noncontact double sheet model per-
mits to exclude the influence of the measuring geometry on the deduction of the paper 
intrinsic parameters. The prediction model for high screen frequency recto-verso halftone 
prints, verified experimentally, has an excellent accuracy.  

 In the future, we intent to check the relevance of the parameters deduced using the 
Clapper-Yule model, which is based on approximated equations (see Sect. 8.3.2). We also 
intent to verify to which extent, in low quality prints, interfaces can be considered as flat 
and inks can be considered as transparent without loss of the prediction accuracy. Thanks 
to the transmittance model, we now have enough equations for ascertaining parameters 
and exploring phenomena such as the light scattering inside the inks. In a further step, 
we may increase the number of measurement configurations, both in reflectance and 
transmittance mode, thanks to known filters. By composing the bifaces of the filters with 
the bifaces of the specimen, it will be possible to obtain new equations for parameter fit-
tings without having to introduce additional unknown parameters.  
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Appendix A.  

Complements of radiometry 

A.1 Relationship between reflectance and BRDF 

 The reflectance of a material is defined for an incident flux angularly distributed ac-
cording to a radiance function Li, for a given solid angle of incidence Γi, and for a given 
solid angle of observation Γr (see Sect. 1.2.2). The following detailed calculation estab-
lishes the relationship between reflectance and BRDF.  

 Let us first take one direction within the incidence solid angle Γi, denoted by the dif-
ferential solid angle  sini i i id d dω = θ θ φ . We consider a radiance ( )i iL dω  at the selected di-
rection idω . The incident element of irradiance ( )i idE dω , given by Eq. (1.7), is 

 ( ) ( )  cosi i i i i idE d L d dω = ω θ ω  (A.1) 

Let us also consider one direction within the observation solid angle Γr, denoted by the 
differential solid angle  sinr r r rd d dω = θ θ φ . The radiance reflected in this direction is the 
product of the incident element of irradiance dEi by the bidirectional reflectance distribu-
tion function fR [Eq. (1.14)] 

 ( ) ( ) ( ) ,r r R i r i iL d f d d dE dω = ω ω ω  (A.2) 

In order to obtain the reflectance 
i r

RΓ →Γ , we must take into account all the directions of 
incidence within Γi and all the directions of observation within Γr. On the one hand, the 
reflected radiance ( )r rL dω  corresponds to the reflected element of flux ( )2 ,r i rd d dΦ ω ω  con-
sidered with respect to the surface element ds and the infinitesimal solid angle rdω  

 ( )
( )

   

2 ,

cos
r i r

r r
r r

d d d
L d

ds d

Φ ω ω
ω =

θ ω
 (A.3) 

The combination of Eqs. (A.1), (A.2) and (A.3) yields 

 ( ) ( ) ( )     

2 , , cos cosr i r R i r i i i i r rd d d dsf d d L d d dΦ ω ω = ω ω ω θ ω θ ω  (A.4) 

The double sum of the reflected elements of flux ( )2 ,r i rd d dΦ ω ω  over the incidence solid 
angle Γi and over the observation solid angle Γi yields the total flux rdΦ  reflected within 
the cone Γr 

 ( ) ( )   , cos cos
i i

r r

dr R i r i i i i r r
d

d ds f d d L d d dω ∈Γ
ω ∈Γ

Φ = ω ω ω θ ω θ ω∫∫  (A.5) 

On the other hand, the total incident flux idΦ  is the sum over Γi of the directional ele-
ments of flux ( ) ( )2

i i i id d dE d dsΦ ω = ω  
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 ( )  cos
i i

i i i i i
d

d ds L d d
ω ∈Γ

Φ = ω θ ω∫  (A.6) 

The ratio /r id dΦ Φ , issued from Eqs. (A.6) and (A.5), corresponds to reflectance 
i r

RΓ →Γ   
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 (A.7) 

A.2 Reflectance and transmittance measured with a radiance detector 

 A radiance detector receives an element of flux d2Φd perpendicularly incident on its 
surface dsd through its solid angle dΩd, assumed to be small. In spectral prediction models, 
it is generally, convenient to consider the measured radiance Ld instead of the measured 
flux. The ratio of the measured radiance to the incident irradiance defines a pseudo-
reflectance or a pseudo-transmittance. We propose here to establish the relationship exist-
ing between these quantities and the exact reflectance and transmittance, defined as ratio 
of fluxes.  

 The measured radiance is 

 
2

d
d

d d

d
L

ds d
Φ

=
Ω

   (A.8) 

According to the radiance invariance principle (see Sect. 1.1.3), radiance Ld is equal to the 
radiance L emitted by the specimen in the direction of the detector. This radiance is de-
fined by the solid angle 2/dd ds xω =  subtended by the detector’s surface, where x is the 
distance between the detector and the specimen, and by the specimen’s element of area 

2/cosdds d x= Ω θ , where θ is the angle formed by radiance L with the specimen’s normal 
(Fig. A.1) 

dω

dΩd

N

dsd 

ds

Radiance detector

x

θ

 

Fig. A.1: Radiance invariance between the radiance detector and an elemental 
area on the specimen. 
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According to the transfer volume conservation principle (see Sect. 1.1.3), one has  

     cosd dds d dsdΩ = ω θ    (A.9) 

Elemental area ds receives an incident element of flux d2Φi. The incident irradiance is 

 2 /i iE d ds= Φ    (A.10) 

The relationship between the ratio Ld/Ei and the ratio d2Φd/d
2Φi may be deduced from 

Eqs. (A.8), (A.9) and (A.10)  

 
    

2

2 2

cos cosd d d d d d d

i i i i

d L ds d L dsd ds L
d E ds E ds x E

Φ Ω ω θ θ
= = = ⋅

Φ
   (A.11) 

Eq. (A.11) indicates that, for a fixed orientation θ of the detector, the ratio Ld/Ei is pro-
portional to the ratio d2Φd/d

2Φi, i.e. it is proportional to a reflectance, called Rrad. The 
coefficient of proportionality  

 2cos /dds xξ = θ    (A.12) 

is called the “apparatus constant” of the detector. It is a function of the angle of observa-
tion θ, the detector’s area dsd and the distance x between the detector and the specimen. 
The relationship between Rrad and the ratio Ld/Ei is therefore 

 d
rad

i

L
R

E
= ξ ⋅    (A.13) 

Let us now consider a perfect white diffuser. It is a Lambertian reflector of reflectance 
equal to 1. The ratio (Ld/Ei)ref is equal to 1/π, and the reflectance of this reference reflec-
tor is  

 /refR = ξ π  (A.14) 

By dividing the specimen’s reflectance by the reference reflectance, coefficient ξ cancels. 
The ratio /rad refR R  defines the reflectance factor r̂adR  of the specimen in reference to the 
perfect white diffuser  

 ˆ rad d
rad

ref i

R L
R

R E
π

= =    (A.15) 

A.3 Cosine correction in measures of BRDFs 

 A goniophotometer is composed of a directional light source and a radiance detector 
allowing measuring bidirectional reflectances for any direction of incidence and any direc-
tion of observation. We assume that the detector belongs to the incidence plane. 

 The directional light source emits a radiance Li in the direction perpendicular to its 
surface dss, within a solid angle dΩs (Fig. A.2). Radiance Li intercepts an area dAs on the 
specimen. Elemental areas dss and dAs are distant by a length x (length of the rotating 
arm of the goniophotometer). According to the radiance invariance principle, the radiance 
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received by dAs, through the solid angle dωi subtended by dss, is equal to Li 

 
 

2 2

cos
i i

i
s s s i i

d d
L

ds d dA d
Φ Φ

= =
Ω θ ω

   (A.16) 

with  2
s

i

ds
d

x
ω =        and       

2

cos
s

s
i

d x
dA

Ω
=

θ
   (A.17) 

The element of irradiance dEi(θi) illuminating dAs is  

 ( )    2cos cos s
i i i i i i i

ds
dE L d L

x
θ = θ ω = θ    (A.18) 

dωr

dΩd

dωi

dΩs

θi

N

dsd 

dss 

dAddAs

Radiance detector

Light source

x

x θr

 

Fig. A.2: The radiance emitted by the light source through its solid angle dΩs il-
luminates a portion dAs of the specimen. A portion dAd < dAs is observed by the 
detector through its solid angle dΩd. 

The radiance detector receives the reflected flux ( )2
d rd Φ θ  through its solid angle dΩd per-

pendicularly to its surface dsd. It measures the radiance Ld expressed by Eq. (A.8). The 
solid angle dΩd of the detector intercepts an area dAd on the specimen. The illuminated 
area dAs and the observed area dAd are different.  

 Let us first consider, as in Fig. C.1, that dAs > dAd. Since the incident light is direc-
tional, dAs and dAd both receive the same radiance Li and thereby the same element of 
irradiance dEi(θi), given by Eq. (A.18). According to the radiance invariance principle, the 
radiance Ld captured by the detector at angle θr is equal to the radiance ( )r rL θ  reflected 
by dAd towards the detector  

 ( )
( ) ( )
  

2 2

cos
d r

d r d r
r r

d r r d d

L L

d d
L

dA d ds d

Φ θ Φ θ
θ = =

θ ω Ω
   (A.19) 

Hence, the BRDF fR, defined as the ratio of the reflected radiance to the incident element 
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of irradiance ( )i idE θ  is   

 ( )
( )
( )

( )

 

2

2

,
cos

r r d r
R i r

si i
d d i i

L d
f dsdE ds d L

x

θ Φ θ
θ θ = =

θ Ω θ
   (A.20) 

Considering a fixed angle of incidence θi, the denominator  

2cos /d d i i sds d L ds xΩ θ  is a con-
stant. The BRDF is proportional to the flux captured by the radiance detector  

 ( ) ( )   

2,R i r d rf kdθ θ = Φ θ    (A.21) 

 Eq. (A.21) relies on the assumption that the observed area dAd is completely illumi-
nated, i.e. dAs > dAd. Let us now assume that, at a certain angle of observation, dAd be-
comes larger than dAs (Fig. A.3). 

dΩd
dΩs

N
dsd 

dss 

dω

dAd
dAs

Radiance
detector

Light source

θrθi

 

Fig. A.3: The area dAd observed by the detector is larger than the area dAi illu-
minated by the light source. The solid angle dω through which the detector re-
ceives light is lower than its own solid angle dΩd.   

The solid angle dω through which the detector receives light from the illuminated area on 
the specimen, i.e. from dAs given by Eq. (A.17), is 

 2

cos cos
cos

s r r
s

i

dA
d d

x
θ θ

ω = = Ω
θ

   (A.22) 

The radiance Ld captured by the detector thus becomes 

 
( ) ( )

 

2 2 cos

cos
d r d r i

d
d d s r

d d
L

ds d ds d

Φ θ Φ θ θ
= =

ω Ω θ
   (A.23) 

Ld is equal to the reflected radiance ( )r rL θ  according to the radiance invariance principle. 
The specimen’s BRDF is therefore 



126 Appendix A 

 

 ( )
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( )

( )
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2

2
,

cos /
r r d r

R i r
i i d s r i s

L d
f

dE ds d L ds x

θ Φ θ
θ θ = =

θ Ω θ
   (A.24) 

Like previously, the term 2/d s i sds d Lds xΩ  is a constant. However, there remains a term 
cosθr. The flux captured by the detector is proportional to the BRDF multiplied by the 
cosine of the observation angle 

 ( ) ( )  ′Φ θ = θ θ θ2 , cosd r R i r rd k f    (A.25) 

In practice, the light source is positioned at a fixed angle θi and the detector rotates 
around the specimen from observation angles 0 to π/2. As the observation angle θr in-
creases, the observed area also increases. If at θr = 0 the observation area is fully illumi-
nated by the incident light beam, there exists an angle θlim at which the illuminated and 
observed areas will be equal. At angles below θlim, the BRDF is given by Eq. (A.21), and 
at angles higher than θlim, the BRDF is given by Eq. (A.25). We may therefore introduce 
a correction function C permitting to convert the measured flux into the BRDF 

 ( ) ( ) ( ) 

2, ,R i r i r d rf C dθ θ = θ θ Φ θ    (A.26) 

with 

 ( )            

   

lim

lim lim

1 0for
,

forcos /cos /2

r

i r
r r

C
⎧ ≤ θ ≤ θ⎪⎪⎪θ θ = ⎨⎪ θ θ θ ≤ θ ≤ π⎪⎪⎩

 (A.27) 

Angle θlim can be determined experimentally. A Lambertian reflector, whose BRDF is con-
stant, is selected. The arm of the goniophotometer carrying the directional light source is 
placed at a selected angle. The other arm, carrying the radiance detector, moves in the 
incidence plane from the normal of the specimen (0 degree) to the horizontal direction (90 
degrees). The curve of the flux captured by the detector, expected to be a constant func-
tion, should rather have the shape featured in Fig. A.4. Angle θlim is the abscissa from 
which the curve decreases according to a cosine curve.  

ΦL(θ)

0° 90°    θθlim  

Fig. A.4: Curve  of the flux ( )Φ θd  measured by the gonio-photometer from a 
Lambertian reflector. 

Remark: the minimal observed area, obtained for the observation θr = 0, may yet be lar-
ger than the illuminated area. In this case, one has θlim = 0. The curve of the flux meas-
ured from a Lambertian reflector will have a perfect cosine shape.  

Φd(θ) 
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Appendix B.  

Markov chains 

 Multiple reflection-transmission of light occurring in a regular multiface may be repre-
sented by Markov chains. We propose to recall here basic elements of the general theory 
of Markov chains, mainly borrowed from [Ste94] and [MT73] (Sect. B.1, B.2 and B.3). We 
then focus on absorbing Markov chains on which relies the compositional model (Sect. 
B.4). 

B.1 Definition of a Markov chain 

 A Markov chain is a convenient representation of the behavior of a physical system 
which describes the different states that the system may occupy and indicates how the 
system moves from one state to another in time [Ste94].   

  Consider a system that may occupy a finite number of states. Random variables Y0, 
Y1, Y2,…, Yn give the respective state y0, y1, y2,…,yn in which the system is at discrete 
“times” 0, 1, 2,…, n. A sequence y0, y1, y2,…,yn of states corresponds to a certain realiza-
tion of a random walk. The probability m that this realization occurs is the conditional 
probability that the irradiance is observed in state yn at time n, given that it was previ-
ously observed in states y0, y1 … yn–1 respectively at times 0, 1,…,n–1 

 { }      0 0 1 1Prob ,...,n n n nm Y y Y y Y y− −= = = =  (B.1) 

This conditional probability m can also be interpreted as the probability of transition 
from state yn–1 to state yn, given that it has previously moved from state y0 to state y1, 
from state y1 to state y2, etc. When the transition probability 1n ny y− →  is independent of 
the previous transitions 0 1y y→ , 1 2y y→ , … 2 1n ny y− −→ , the stochastic process is said to 
be memoryless. This may be written as 

 { } { }        0 0 1 1 1 1Prob ,..., Probn n n n n n n nY y Y y Y y Y y Y y− − − −= = = = = =  (B.2) 

Equality (B.2) is the defining equation of a discrete-time Markov chain. When, further-
more, the transition probabilities 1n ny y− →  are independent of the time parameter n, the 
Markov chain is said to be a homogenous discrete-time Markov chain (HDMC). Hence, if 
the system is in a given state i, it evolves towards a given state j with a same probability 
whatever the time and whatever the previous states in which the system has been 
through. 

B.2 Probability transition matrices 

 Let us consider a homogenous discrete-time Markov chain and two of its states i and j. 
The probability of transition from state i to state j is a constant (independent of the time 
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parameter n), called single-step transition probability and noted mij  

 { }   1Probij n nm Y jY i−= = =  (B.3)  

Matrix { }ijm=M  is called the single-step transition probability matrix associated with 
the chain. M is a square matrix whose size corresponds to the number of states in the 
chain. Since elements mij are probabilities, they satisfy the inequality 

 0 1ijm  (B.4)  

The single-step transition probability matrix, which satisfies (B.4), is said to be a non-
negative matrix. Furthermore, the sum of its row elements is less than 1, i.e. for all i, 

 1ij
j

m∑  (B.5)  

We may generalize a single-step transition probability matrix to a k-step transition prob-
ability matrix M(k) whose elements ( )k

ijm  are probabilities for transitions from a state i to a 
state j in k steps 

 ( ) { }  Probk
ij n k nm X j X i+= = =  (B.6) 

These elements may be obtained from the single-step transition probabilities. It may be 
first seen that ( )1

ij ijm m= . The Markov property, expressed by Eq. (B.2), gives the follow-
ing recursive formula for the ( )k

ijm  

 ( ) ( ) ( )
 

all 

,  for 0 .k ppk
ij iq qj

q

m m m l n−= < <∑  (B.7) 

Relation (B.7) is called the Chapman-Kolmogorov equation for the Markov chain. In ma-
trix notation, the Chapman-Kolmogorov equations are written as  

 ( ) ( ) ( )k ppk −=M M M    

Note in particular that 

 ( ) ( ) ( )1 1k kk − −= =M M M MM  (B.8)  

Hence, the matrix on k-step transition probabilities is obtained by multiplying (k−1) 
times the single-step transition probability matrix by itself, i.e. 

 ( )k k=M M  (B.9)  

An “infinite-step” transition probability matrix M∞ can be as well defined by 

 lim k

k
∞ →∞

=M M   (B.10) 

Like the single-step, k-step and infinite-step transition probability matrices are nonnega-
tive matrices and are independent of the time parameter n. 



Appendix B 129 

 

B.3 Properties of nonnegative, stochastic and substochastic matrices 

 Transition probability matrices are basically square matrices, which may be character-
ized by their spectral radius, i.e. their largest eigenvalue modulus. Given a square matrix 
A having a spectrum composed of the eigenvalues ( )jλ A , its spectral radius ( )R A  is de-
fined as  

 ( ) ( )max j jR = λA A  (B.11) 

It can be shown that for any natural matrix norm   ⋅  

 ( )R A A  (B.12) 

It is true in particular for the matrix infinity-norm, defined as the maximum absolute row 
sum 

 ( )  

all 

max ij
i

j

a∞ = ∑A  (B.13) 

In the case of transition probability matrices, it follows property (B.5) that 

 ( ) 1R ∞A A  (B.14) 

Thus, all eigenvalues of a transition probability matrix have their modulus at most 1. 
This will be stated in the following paragraphs. 

B.3.1 Non-Negative matrices 

 Nonnegative matrices are matrices whose elements are also positive or zero. Transition 
probability matrices are therefore nonnegative [Eq. (B.4)].  

 A nonnegative matrix A is said to be decomposable if it can be brought by a symmet-
ric permutation of its rows and its columns to a triangular block matrix, i.e. if a permuta-
tion matrix P exists such that 

 T
⎛ ⎞⎟⎜ ⎟⎜ ⎟⋅ ⋅ = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

U W
P A P

0 V
 (B.15) 

where U and V are square nonzero matrices and W is, in general, rectangular.  

B.3.2 Stochastic and substochastic matrices  

 A nonnegative matrix A is said to be a stochastic matrix if it satisfies the following 
two conditions 

1. 
all 

1ijj
a =∑  for all i. 

2. At least one element in each column differs from zero.  

Condition (1) implies that a transition is guaranteed to occur from state i to at least one 
state in the next time (that may be state i again). Condition (2) specifies that since each 
column has at least one nonzero element, there are no ephemeral states, i.e., states that 
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could not possibly exist after the first time transition. This second condition is generally 
omitted, being considered as trivial.  

 Nonnegative matrix A is substochastic if, instead of satisfying condition (1) above, it 
satisfies 

 1ij
j

a∑   (B.16) 

Remark: In the context of multiple reflection-transmission processes, the physical inter-
pretation of a stochastic process is the fact that each face redistributes completely the 
light it receives by reflection and transmission, without absorption. If light is absorbed by 
a certain face, one obtains  

 1ij
j

a <∑   (B.17) 

for the row i corresponding to that face, responsible of the substochasticity of A.  

Property B.1:  The spectral radius of stochastic matrices is one.  

Proof: Let A be a nondecomposable stochastic matrix. Its spectral radius is  

 ( ) ( )  

all 

max ij
i

j

R a∞ = ∑A A  (B.18) 

Owing to the defining condition (1) of stochastic matrices, one has 1∞ =A  and there-
fore ( ) 1R A . Since the sum of the elements of each of its rows is equal to 1, one has 

 =Ae e  (B.19) 

with ( )1,1,...,1 T=e . It immediately follows that 1 is an eigenvalue of A and that 
( ) 1R =A . á 

Property B.2:  The spectral radius of substochastic matrices is strictly less than one.  

Proof: Let { }ija=A  be a nondecomposable substochastic matrix. Following the same 
reasoning line than for stochastic matrices, one may show that ( ) 1R A . Let us now 
show that 1 cannot be an eigenvalue of A. 
 A being substochastic, at least one of its rows has a sum strictly less than 1, i.e. a 
number i0 exists such that  

 
0

1i j
j

a <∑  (B.20) 

Should 1 be an eigenvalue of A, then a vector [ ]1 2, ,..., nx x x=X  would exist such that  

 =X XA  (B.21) 

i.e., for all j 

 j ij i
i

x a x= ∑  (B.22)  
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Let us perform the sum of the xj 

 ( ) ( ) 

0 0

0

j ij i ij i i j i
j j i i i j j

x a x a x a x
≠

= = +∑ ∑∑ ∑ ∑ ∑  (B.23)  

From inequality (B.20), one would obtain the following contradiction  

 j i
j i

x x<∑ ∑  á (B.24) 

Lemma B.1:  Let A be a substochastic matrix. It satisfies 

 lim k

k→∞
=A 0     (B.25)  

and 

  ( ) 1

0

k

k

∞
−

=

= −∑A I A  (B.26)  

where 0 and I are respectively the zero matrix and the identity matrix having the same 
size as A. Eq. (B.25) generalizes the well-known scalar geometric series formulate 

 
0

1
1

k

k

x
x

∞

=

=
−∑  (B.27)  

In order to give a precise meaning to (B.26), one must first make sure that the series 
k∑A  has a thorough meaning. 

 Let 1 21 ... n> λ λ λ  be the eigenvalues of A. If A is diagonalizable, there exists 
an invertible matrix Q such that  

 ( )  

1

1 1
1,..., n

n

diag− −

⎛ ⎞λ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⋅ ⋅ = ⋅ λ λ ⋅⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟λ⎜ ⎟⎝ ⎠

A Q Q Q Q  (B.28)  

Therefore, 

 ( ) 1
1 ,...,

k k k
ndiag −= ⋅ λ λ ⋅A Q Q  (B.29) 

Since every |λi| is strictly less than 1, entries k
iλ  of the diagonal matrix in Eq. (B.29) de-

creases towards zero as the exponent k increases, which gives Eq. (B.25). Furthermore, for 
all i, one can sum up 

 
0

1
1

k
i

k i

∞

=

λ =
− λ∑  (B.30) 

From Eqs. (B.29) and (B.30), one has 

 
( ) ( ) ( )

( )

2 2 1

0

1 1 1
1

... ...

,...,

N
k N

k

N N
ndiag

+

=

+ + −

− = + + + − ⋅ + + + = −

= − ⋅ λ λ ⋅

∑I A A I A A A I A A I A

I Q Q

 



132 Appendix B 

 

Since all the eigenvalues of A are strictly less than 1, one has 

 ( )1 1
1lim ,...,N N

n
N

diag + +

→∞
λ λ = 0  

and therefore 

 ( )
0

lim
N

k

N
k

→∞
=

− =∑I A A I  (B.31) 

which finally yields Eq. (B.26). We conclude that the radius of convergence of matrix 
series is given by ( ) 1R <A , where ( )R A  is the matrix spectral radius. 

B.4 Absorbing Markov chains  

 The ith state of a Markov chain is said to be absorbing if 1iim = . It follows immedi-
ately relation (B.5) that ( )0, ijm j i= ≠ . The set of conditions 1iim =  and 0,ijm =  
( )j i≠  is the mathematical statement expressing that once the system has reached state 
i, it never leaves anymore that state. A Markov chain is said to be absorbing if 

1. There is at least one absorbing state, 

2. There exists a transition (possibly in several steps but with a nonzero probability) 
from each nonabsorbing states to some absorbing state.  

In studying absorbing chains, it is convenient to adopt certain conventions regarding the 
labeling of the states. Let us agree that the states are numbered in such a way that ab-
sorbing states are placed at the last positions. Then, if the chain contains N absorbing 
states, the single-step transition probability matrix M has the form [Mey00, p. 700] 

 
N

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

A B
M

0 I
 (B.32) 

where A is a square matrix whose elements are the probabilities of transition from a non-
absorbing state to a nonabsorbing state, B is a rectangular matrix having N columns 
whose elements are probabilities of transition from a nonabsorbing state to an absorbing 
state, 0 is a rectangular block of zeros having N rows, and IN is the N×N identity matrix. 
Note that, according to the defining property 2 of absorbing chains, B is a nonzero matrix 
and A is consequently a substochastic matrix.  

 According to Eq. (B.9) and the block decomposition (B.32), one may write the 2-step 
transition probability matrix as 

 

2

2

N N N

⎛ ⎞⎛ ⎞ ⎛ ⎞ + ⎟⎟ ⎟ ⎜⎜ ⎜ ⎟⎟ ⎟ ⎜⎜ ⎜ ⎟⎟ ⎟= ⋅ = ⎜⎜ ⎜ ⎟⎟ ⎟ ⎜⎜ ⎜ ⎟⎟ ⎟ ⎜⎜ ⎜ ⎟⎟ ⎟ ⎟⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠

A B A B A AB B
M

0 I 0 I 0 I
 (B.33)  

The 3-step transition probability matrix may be written as  

  

2 3 2

3

NN N

⎛ ⎞ ⎛ ⎞⎛ ⎞+ + +⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟= ⋅ =⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠

A BA AB B A A B AB B
M

0 I0 I 0 I
 (B.34) 
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Pursuing iteratively the products of Mk by M, one would obtain the following k-step tran-
sition probability matrix 

 

1

0

k
k j

k j

N

−

=

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∑A A B
M

0 I

 (B.35) 

and thereby, according to its defining equation (B.10), the following infinite-step transi-
tion probability matrix  

 0

lim k j

k
j

N

∞

→∞
=

∞

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜⎝ ⎠

∑A A B
M

0 I
 (B.36) 

A being a substochastic matrix, it satisfies Eqs. (B.25) and (B.26). Thus, Eq. (B.36) be-
comes [Mey00, p. 701] 

 
( ) 1

N

−

∞

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

0 I A B
M

0 I
 (B.37) 

where I is the identity matrix having the size of A. 
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Appendix C.  

Compositional formulae 

 In Chapter 5, we stated that the global transfer matrix of a regular multiface is the 
upper-right block of the infinite transfer matrix M∞ associated to the Markov chain repre-
senting the multiface (see Eq. (5.22)). Since the Markov chain is absorbing (the states 
associated to the detectors are absorbing states, as seen in Sect. 5.2.3), we can directly 
use Eq. (B.37). Let us compute the transfer matrices of the quadriface and the hexaface 
presented in Sect. 5.3.1 and Sect. 5.3.2, yielding the quadriface and the hexaface formulae.   

C.1 Quadriface formula 

 In Sect. 5.3.1, we presented a quadriface whose global transfer matrix G is defined by 
the composition equation 

 
U U u u v v

u u v vV V

T R p s x r

r x s pR T

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
G  ○  (C.1)  

The corresponding Markov chain, represented in Fig. 5.6, has the single-step transition 
probability matrix [see Eq. (5.17)] 

 =M

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

u u

v v

v v

u u

p s
p s
r x

r x

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 (C.2) 

Let us decompose M like in Eq. (B.32). Matrices A and B are subsequently decomposed 
into 2×2 blocks 

 M =

0

0

0

0

0

0

up⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

=

0

0

0

0

0

0

up⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

u u

v v

v v

u u

p s

p s

r x

r x

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 (C.3) 

with the following meaning for the different blocks: P contains the penetration transmit-
tances of the upper and the lower bifaces, S their external reflectances, R their internal 
reflectances and X their exit transmittances. Let us note that either ru or rv is strictly less 
than 1. Otherwise, would ru = rv = 1, one would have xu = xv = 0 due to (B.16), which 
would mean that light cannot exit the multiface. Hence, block A is a substochastic matrix 

B A 

024 I 

0 

0 

0 0 I 

X R 

P S 
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(see Sect. B.3). 

 The global transfer matrix G is the upper-right 2×2 block of M∞. According to 
Eq. (B.37), G is the upper 2×2 block of (I4 –A)–1B 

 ( ) 1
4

−⎛ ⎞⎟⎜ ⎟ = −⎜ ⎟⎜ ⋅ ⎟⎟⎜⎝ ⎠

G
I A B  (C.4) 

where the point represents an unspecified 2×2 block. One can write, using (C.3), 

 ( )4

⎛ ⎞− ⎟⎜ ⎟⎜− = ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠−

I P
I A

0 I R
 (C.5) 

and, using a straightforward block computation, 

 
( )

1

1

( )−

−

⎛ ⎞⎛ ⎞ ⎛ ⎞− − ⎟⎜⎟ ⎟⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⋅ =⎜⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜− ⎟⎜ ⎜⎟ ⎟− ⎟⎜⎝ ⎠ ⎝ ⎠⎝ ⎠

I P I 0I P I R

0 I R 0 I0 I R
 (C.6) 

Therefore,  

 ( )
( )

( )

1

1
4 1

−

−

−

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟− = ⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠

I P I R
I A

0 I R
 (C.7) 

Then, using the decomposition of B as a function of blocks S and X, one has 

 ( )
( )

( )

( )

( )

1 1

1
4 1 1

− −

−

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞− + −⎟ ⎟⎜ ⎜⎟⎜⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟− = ⋅ =⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎟ ⎟⎜ ⎟− −⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠ ⎝ ⎠

SI P I R S P I R X
I A B

X0 I R I R X
 (C.8) 

( ) 1
4

−−I A B  is a 4×2 matrix whose upper 2×2 block corresponds to the global transfer 
matrix G, i.e. 

 ( ) 1−= + −G S P I R X  (C.9) 

Matrix I – R is expanded as 

 
1 0 0 1

00 1 1
v v

u u

r r

r r

⎛ ⎞ ⎛ − ⎞⎛ ⎞⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟⎜ ⎜⎜− = − =⎟ ⎟⎟⎜ ⎜⎜⎟ ⎟⎟ −⎜ ⎜⎜ ⎟⎟ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
I R  (C.10) 

Its determinant is 1 0u vr rΔ = − > , because 1u vr r < , and its inverse is  

 ( ) 1
11

1

v

u

r

r
−

⎛ ⎞⎟⎜ ⎟⎜− = ⎟⎜ ⎟⎜ ⎟Δ⎝ ⎠
I R  (C.11) 

By inserting (C.10) and (C.11) into (C.9), one finally obtains the quadriface formula 
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0 0 1 0 1 11

0 0 01
1 1

u v u u v
u

u u v v u v u v

v v u v uv v uu
v

u v u v

p x p x r
ss p r x r r r r

p x r p xs p xr s
r r r r

⎛ ⎞+ ⎟⎜ ⎟⎜⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎟− −⎜⎟⎟ ⎟ ⎟⎜⎜ ⎜ ⎜ ⎟⎜⎟⎟ ⎟ ⎟ ⎟⎜⎜ ⎜ ⎜= + ⋅ ⋅ =⎟⎟ ⎟ ⎟ ⎜ ⎟⎜⎜ ⎜ ⎜⎟⎟ ⎟ ⎟ ⎜ ⎟⎜⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎟Δ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜⎝ ⎠ + ⎟⎜ ⎟⎜ − −⎝ ⎠

G  (C.12) 

C.2 Hexaface formula 

 Let us now consider the hexaface defined in Sect. 5.3.2. The single-step transition 
probability matrix M of the corresponding chain is [see Eq. (5.26)] 

 =M

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

u u

v v

v v

u u

p s

p s

r x

r x

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟τ ρ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟′ ′ρ τ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (C.13) 

M is decomposed as in Eq. (B.32), with blocks A and B subsequently subdivided in 2×2 
blocks 

 

  

  

  

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜= =⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

0 P 0

A 0 0 C

0 R 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0

u

v

v

u

p
p

r
r

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ρ ⎟⎜ τ ⎟⎜ ⎟⎜ ⎟⎜ ′ρ ⎟′⎜ τ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

   and   

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜= =⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

S

B 0

X

0
0

0 0
0 0

0
0

u

v

v

u

s
s

x
x

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

 (C.14) 

Again, either ru or rv is strictly less than 1 and block A is a substochastic matrix. The 
global transfer matrix G of the hexaface is the upper-right 2×2 block of matrix M∞ given 
by Eq. (B.37). G is the upper 2×2 block of the 6×2 matrix (I6 – A)–1B.  

 ( ) 1
6

−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⋅ = −⎟⎜ ⎟⎜ ⎟⎟⎜ ⋅ ⎟⎜ ⎟⎝ ⎠

G
I A B  (C.15) 

Let us first calculate (I6 – A)–1. It follows from decomposition (C.14) that  

 6

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− = ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

I -P 0

I A 0 I -C

0 -R I

 (C.16) 

One can check by a straightforward direct multiplication that 
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 ( )

( ) ( )

( ) ( )

( ) ( )

1 1

1 1 1
6

1 1

− −

− − −

− −

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− = − −⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− − ⎟⎜⎝ ⎠

I P I CR PC I RC

I A 0 I CR C I RC

0 R I CR I RC

 (C.17) 

Using the block decomposition of B [Eq. (C.14)], we obtain 

 ( )

( )

( )

( )

1

1 1
6

1

−

− −

−

⎛ ⎞+ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− = −⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⎟⎜⎝ ⎠

S PC I RC X

I A B C I RC X

I RC X

 (C.18) 

(I6 – A)–1B is a 6×2 matrix, whose upper 2×2 block is the global transfer matrix G 

 ( ) 1−= + −G S PC I RC X  (C.19) 

Remark: There is a striking analogy between matrix equation (C.19) and scalar equation 
(5.24) expressing the reflectance of a quadriface 

 
1

v
U u u u

u v

r
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Let us expand Eq. (C.19). First, one has 
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whose determinant is 

  ( )( )1 1u v u vD r r r r′ ′= − ρ − ρ − ττ  (C.22) 

and whose inverse is 
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Thus, Eq. (C.19) becomes  
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and we obtain the hexaface formula, with D given by Eq. (C.22) 
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Appendix D.  

Characterization of the external bifaces 

An external biface is characterized by a penetration transmittance p, an external reflec-
tance s, an internal reflectance r and an exit transmittance x (see Sect. 2.4 and 6.1.2). 
The transfer matrices of the upper and the lower external bifaces are respectively 

 
p s

r x
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

   and   
x r

s p
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (D.1)  

The present appendix aims a characterizing the upper external transfer matrix. We shall 
take into account the nature of the external biface (transparent, scattering, Lambertian) 
and the measuring geometry (directional or Lambertian light source / integrating sphere 
or radiance detector). We distinguish Lambertian bifaces, characterized by their invariant 
transfer matrix FL, and non-Lambertian bifaces, characterized by their fundamental trans-
fer matrix Fθ. The elements of matrices FL and Fθ are respectively termed  

 
L L

L
L L

p s

r x
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

F    and   
( ) ( )

( ) ( )

P S

R Xθ

⎡ ⎤θ θ
⎢ ⎥= ⎢ ⎥θ θ⎢ ⎥⎣ ⎦

F  (D.2) 

Recall that, according to the criteria of regularity of the multifaces (Sect. 5.2.1), a non-
Lambertian external biface is necessarily bordered by a Lambertian biface. It therefore 
receives a Lambertian illumination from the central biface.  

 Let us present successively the terms r, p, x and s for the upper external biface (light 
source and detector at the upper side). For each term, we will first consider that the ex-
ternal biface is Lambertian and then that it is non-Lambertian. 

D.1 Internal reflectance r  

 The internal reflectance r is the fraction of light coming from the central biface that is 
reflected by the external biface. It depends neither on the geometry of illumination nor on 
the geometry of observation.  

D.1.1 Lambertian external biface 

 The reflectance of the Lambertian biface, rL, is invariant. Therefore, r = rL. 

D.1.2 Non-Lambertian external biface 

 When the external biface is non-Lambertian, it is characterized by its lower directional 
reflectance R(θ). It is illuminated by a Lambertian irradiance coming from the central 
biface. Therefore, the internal reflectance r of the external biface is a Lambertian reflec-
tance, derived from R(θ) according to Eq. (1.29) 
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 ( )   

/2

0
sin2r R d

π

θ=
= θ θ θ∫  (D.3) 

D.2 Penetration transmittance p  

 The penetration transmittance p is the fraction of light coming from the light source 
that is transmitted to the central bifaces across the external biface. 

D.2.1 Lambertian external biface 

 The Lambertian external biface has an invariant upper transmittance pL, independ-
ently of the conditions of illumination. Therefore, the penetration transmittance is p = pL. 

D.2.2 Non-Lambertian external biface 

 The penetration transmittance of a non-Lambertian external biface depends on the 
geometry of illumination. The biface has a directional upper transmittance P(θ). When 
the source is directional, of angle ψ, then  

 ( )p P= ψ , (D.4) 

When the source is Lambertian, the penetration transmittance is a Lambertian transmit-
tance, related to P(θ) according to Eq. (1.29) 

 ( )    

/2

0
sin2p P d

π

θ=
= θ θ θ∫ . (D.5) 

D.3 Exit transmittance x  

 The exit transmittance x is the fraction of light coming from the central biface that is 
captured by the optical device. It depends on the observation geometry: either the captur-
ing device is an integrating sphere and all the exiting light is observed, or the capturing 
device is a radiance detector and only the light exiting in direction of the detector is cap-
tured.  

D.3.1 Lambertian external biface 

 A Lambertian biface has a lower transmittance xL. This transmittance accounts for the 
flux transmitted over the whole hemisphere.  

Integrating sphere: The observation solid angle of the integrating sphere is the whole 
hemisphere, as in the definition of transmittance xL. Therefore, the exit transmittance is  
x = xL. 

Radiance detector: The observation solid angle is differential, and not hemispherical as in 
the definition of xL. Only a radiance Lt is captured. The transmitted irradiance Et exiting 
the Lambertian biface is Lambertian. Therefore radiance Lt is equal to Et/π independently 
of the observation direction (see Appendix A.2). The ratio Lt/Ei is proportional to the 
exit transmittance x, the proportionality factor being the apparatus constant ξ defined by 
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Eq. (A.12) 

    

/
/t t

L
i i

L E
x x

E E
π

= ξ = ξ = ξ π  (D.6) 

D.3.2 Non-Lambertian external biface 

 The non-Lambertian external biface is characterized by its directional lower transmit-
tance X(θ). It receives from the central biface a Lambertian illumination. 

Integrating sphere: The observation solid angle of the integrating sphere is the whole 
hemisphere, as in the definition of transmittance X(θ). Since the incident light is Lamber-
tian, the exit transmittance x is a Lambertian transmittance, related to X(θ) according to 
Eq. (1.29) 

  ( )   

/2

0
sin2x X d

π

θ=
= θ θ θ∫  (D.7) 

Radiance detector: The exit transmittance x is the ratio of the radiance ( )tL ′ψ  transmit-
ted in the direction of the detector (observation angle ψ′). We distinguish the case of a 
transparent and a scattering external biface.  

 Case of a transparent biface − Since the incident irradiance Ei is Lambertian, a radi-
ance Ei/π incomes on the transparent external biface from every direction. According to 
Eq. (3.6), the radiance Lt captured by the radiance detector is  

 ( ) ( )  

2
0

1
1

i
t

n E
L Xn

⎛ ⎞⎟⎜′ ′ψ = ψ⎟⎜ ⎟⎜⎝ ⎠ π
 (D.8) 

where n0 is the refractive index of the surrounding medium, n1 is the refractive index of 
the neighboring Lambertian biface, and 1′ψ  is related to ψ′ by Snell’s law: 

1 1 0sin sinn n′ ′ψ = ψ . The ratio ( )/t iL E′ψ  is proportional (factor ξ, see Appendix A.2) to 
the exit transmittance of the transparent external biface  

 
( )

 

 

 

 

2
0 1

1

n X
x n

′ψ⎛ ⎞⎟⎜= ξ ⎟⎜ ⎟⎜⎝ ⎠ π
 (D.9) 

 Case of a scattering biface − The radiance ( )d
tL ω ′ψ  transmitted towards the radiance 

detector is related to the incident elements of irradiance ( )idE dω  coming from the Lam-
bertian central biface by the BTDF fT [see Eq. (1.14)] 

 ( ) ( )( , )d
t T iL f d dE dω ′′ = ω ψ ωψ  

Since the incident irradiance Ei is Lambertian, a same radiance Ei/π illuminates the ex-
ternal biface from every direction. According to Eq. (1.7), the incident elements of irradi-
ance are 

  ( )    cosi
i

E
dE dd = θ ωω

π
 (D.10)  

where θ is the incidence angle. By summing up the contributions of all the incident ele-
ments of irradiance, one obtains the total transmitted radiance ( )tL ′ψ ,  
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The ratio ( )/t iL E′ψ  is proportional (factor ξ) to the exit transmittance x  

        

2 /2

0 0
( , )sin cosTx f d d

π π

φ= θ=
′= ξ θ ψ θ θ θ φ∫ ∫  (D.11) 

D.4 External reflectance s  

 The external reflectance is the fraction of light coming from the light source that is 
reflected by the external biface and captured by the optical device. The external reflec-
tance depends on the geometry of observation in the same manner as the exit transmit-
tance. It also depends on the geometry of illumination. 

D.4.1 Lambertian external biface 

 The reflectance of the Lambertian biface is independent of the geometry of illumina-
tion. With an integrating sphere, the observation solid angle is hemispherical, as in the 
definitions of the reflectance sL. Therefore, the external reflectance is s = sL. A radiance 
detector measured only a radiance in a particular direction. Since the light reflected by 
the external biface is Lambertian, a fraction 1/π propagates in every direction. Therefore, 

/Ls s= ξ π , where ξ is the apparatus constant of the radiance detector. 

D.4.2 Non-Lambertian external biface 

 Four different measuring geometries must be considered, corresponding to the different 
combinations of illumination geometry (directional or Lambertian) and observation ge-
ometry (integrating sphere or radiance detector).  

Directional illumination (incident angle ψ) / integrating sphere: the external reflectance 
s, i.e. the ratio of the flux reflected over the hemisphere to the incident directional flux, 
correspond precisely to the upper directional reflectance S(ψ) of the biface. 

Lambertian illumination / integrating sphere: s is given by the Lambertian reflectance of 
the biface, derived from its directional reflectance S(θ) according to Eq. (1.29) 

 ( )    

/2

0
sins S d

π

θ=
= θ 2θ θ∫  (D.12)  

Directional illumination (incident angle ψ)/ radiance detector (observation angle ψ′) 

 Case of a transparent biface − Light is reflected in the specular direction. Therefore, 
the radiance detector captures light only if it is in the specular direction, i.e. if ψ′ = ψ. 
The ratio of the reflected to incident fluxes is given by the directional reflectance S(ψ) of 
the biface 
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S
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 (D.13)  

Most of the time, angles ψ and ψ′ are different. This permit to discard the externally re-
flected light from the measurement.  

 Case of a scattering biface − The radiance Lr captured by the detector and the inci-
dent element of irradiance dEi are related by the BRDF fR [see Eq. (1.14)] 

 ( ) ( )( , )r R i i iL f d dE d′′ = ω ψ ωψ  

The reflectance s of the external biface is proportional to the ratio Lr/dEi [see Eq. (A.13)]. 
Therefore,  

  s = ξ fR(ψ,ψ′) 

Lambertian illumination / radiance detector (observation angle ψ′):   

 Case of transparent biface − The detector captures only the light that is incident in 
the corresponding regular direction. Only a fraction 1/π of the Lambertian incident ir-
radiance Ei is oriented in that direction (incidence angle ψ′). According to Eq. (3.7), the 
reflected radiance Lr, which is also the radiance captured by the detector, is  

 ( ) i
r

E
L S ′= ψ

π
 (D.14) 

 The reflectance s of the external biface is proportional to the ratio Lr/Ei. Therefore, 

 
( )S

s
′ψ

= ξ
π

 (D.15) 

 Case of a scattering biface − Eq. (D.11) corresponds to the partial transmission of 
Lambertian incident light by a scattering biface towards a radiance detector. Here, we 
consider the partial reflection of Lambertian incident light by a scattering biface towards 
a radiance detector. We have the same equation as in Eq. (D.11), where the lower BTDF 
fT is replaced by the upper BRDF fR 
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absorbing state, 63 
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Beer’s law, 32 

biface, 18 

central, 21 

external, 21 

Lambertian, 21, 47 

scattering, 21, 39 

splitting, 70 

transparent, 20, 25 

biface splitting, 70 

bounded paper layer, 91 

BRDF, 9 

BTDF, 9 
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central biface, 21 

Clapper-Yule model, 112 

composition, 62 

associativity, 68 

definition, 66 

equation, 62 

formula, 70 

cosine correction, 15 

D 

differential solid angle, 6 

dot gain, 108 

E 

element of irradiance, 6 

exit transmittance, 21 

external biface, 21 

external reflectance, 21 

F 

face, 18 

Lambertian, 19 

scattering, 19 

transparent, 19 

flux, 5 

Fresnel formulae, 28 

fundamental transfer matrix, 20 

G 

global 

reflectance, transmittance, 21 

transfer matrix, 21 

goniophotometer, 14 

H 

halftone, 107 

inked interface, 107 

inked layer, 107 

screen frequency, 110 

hexaface, 56, 67 

hexaface formula, 67, 137 

I 

integrating sphere, 13 

interface, 18 

flat, 28 

rough, 39 

internal 

reflectance, transmittance (biface), 21 

reflectance, transmittance (paper sheet), 91 

transfer matrix (paper sheet), 91 

intrinsic 

reflectance, transmittance, 50, 92 

irradiance, 6 

K 

Kubelka’s model, 78 
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Kubelka-Munk model, 92 

L 

Lambertian 

biface, 21, 47 

emitter, 8 

face, 19 

layer, 47 

layers, 47 

multiface, 22 

reflector, 9 

layer, 18 

Lambertian, 47 

scattering, 44 

transparent, 32 

M 

Markov 

chain, 62, 127 

graph, 61 

Markov chain 

absorbing, 132 

multiface, 18 

irregular, 59 

Lambertian, 22 

mixt, 74 

regular, 60 

scattering, 22 

transparent, 73, 77 

transparent, 22 

wholly-Lambertian, 74, 78 

multiple reflection-transmission process, 55 

N 

non-polarity of transmittance, 79 

normal transmittance, 32 

O 

optical thickness, 45 

P 

penetration transmittance, 21 

phase function, 45 

projected area, 7 

Q 

quadriface, 57, 64 

quadriface formula, 66, 135 

R 

radiance, 7 

radiance detector, 13 

radiance invariance principle, 7 

radiative transfer equation, 46 

reciprocity of transfer volume, 8 

reflectance, 9 

diffuse, 11 

external, 21 

global, 21 

internal (biface), 21 

internal (paper sheet), 91 

intrinsic, 51 

intrinsic (Lambertian layer), 92 

Lambertian, 11 

reflectance factor, 12 

reflection coefficient, 28 

refraction, 26 

regular directions, 25 

regular multiface, 60 

relative index of refraction, 28 

roughness, 39 

S 

scattering 

biface, 21, 39 

face, 19 

layer, 44 

multiface, 22 

surface, 39 

volume, 44 

shadowing, 42 

Shore-Spoonhower model, 83 

slope distribution model, 42 

Snell’s laws, 25 

solid angle, 6 

differential, 6 

of incidence, 10 

of observation, 10 

surface coverage 



 

 

effective, 108 

nominal, 108 

T 

time-dependent process, 59 

transfer matrix 

fundamental, 20 

global, 21 

internal, 91 

invariant (Lambertian bifaces), 21 

particular, 20 

transmission coefficient, 28 

transmittance, 9 

exit, 21 

global, 21 

intrinsic, 51 

intrinsic (Lambertian layer), 50, 92 

non-polarity principle, 79 

normal (transparent layer), 32 

penetration, 21 

transparent 

biface, 20 

face, 19 

multiface, 22 

transparent layer, 32 

W 

Williams-Clapper model, 83 

 



 

 



 

 

Frequently used formulae 

− The quadriface formula  

 
1 1

1 1

u v u u v
u

u u v v u v u v

u u v v v v u v u
v

u v u v

p x p x r
sp s x r r r r r

r x s p p x r p x
s

r r r r

⎡ ⎤+⎢ ⎥⎡ ⎤ ⎡ ⎤ − −⎢ ⎥⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ +⎢ ⎥− −⎣ ⎦

 ○  (5.23) 

− The hexaface formula  

( )

( )
    

v
u v u u uu u v v

u u v v
u

v v v v u

r
p x s p xp s x r D D

r x s p r
s p x p x

D D

⎡ ⎤′ ′ρ − ρρ − τττ⎢ ⎥+τ ρ⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥′ ′⎢ ⎥ ⎢ ⎥ρ τ ′ ′ ′ρ − ρρ − ττ ′τ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ +⎢ ⎥
⎣ ⎦

○ ○  (5.26) 

with ( )( )1 1 .u v u vD r r r r′ ′= − ρ − ρ − ττ  

− Properties satisfied by Fresnel reflection and transmission factors, when angles θ0 and 
θ1 are related by Snell’s laws, i.e. 0 0 1 1sin sinn nθ = θ  

 
( ) ( )

( ) ( )
1 110 10

1 110 10

1

1

R T

R T

θ θ+ =

θ θ+ =
 (3.21) 

 ( ) ( )0 101 10R Rθ θ=  (3.23) 

 ( ) ( )0 101 10T Tθ θ=  (3.24) 

− Lambertian reflectances and transmittances of a flat interface  

 ( )  

2

01 01
0

sin2r R d
π

θ=
= θ θ θ∫  (3.27) ( )  

2

01 01
0

sin2t T d
π

θ=
= θ θ θ∫  (3.28) 

 ( ) 

2

10 10
0

sin2r R d
π

θ=
= θ θ θ∫  (3.29) ( )  

2

10 10
0

sin2t T d
π

θ=
= θ θ θ∫  (3.30) 

− Lambertian reflectances and transmittances of a flat interface bordered by a transpar-
ent layer, having the refractive index n1 and a normal transmittance t  

 ( ) ( )  

  

/2
2/cos

10 10
0

sin2r t R t d
π

θ

θ=
= θ θ θ∫  (6.25) 

 ( ) ( )  

 

/2
1/cos

10 10
0

sin2t t T t d
π

θ

θ=
= θ θ θ∫  (6.32) 

 ( ) ( )   
1

0

/2
1/cos

01 01 0 0 0
0

sin2t t T t d
π

θ

θ =
= θ θ θ∫  (8.11) 
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