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ABSTRACT   

The Yule-Nielsen modified spectral Neugebauer model (YNSN) enables predicting 

reflectance spectra from ink surface coverages of halftones. In order to provide an improved 

prediction accuracy, this model is enhanced with an ink spreading model accounting for ink 

spreading in all superposition conditions (IS-YNSN). As any other spectral reflection 

prediction model, the IS-YNSN model is conceived to predict the reflection spectra of color-

constant patches. Instead of color-constant patches, we investigate if tiles located within color 

images can be accurately predicted and how they can be used to facilitate the calibration of 

the ink spreading model. In the present contribution, we detail an algorithm to automatically 

select image tiles as uniform as possible from color images by relying on their CMY or 

CMYK pixel values. The tile selection algorithm incorporates additional constraints relying 

on surface coverages of the inks. We demonstrate that an ink spreading model calibrated with 

as few as 5 to 10 optimally chosen image tiles allows the corresponding YNSN model to 

provide accurate spectral predictions.1 

                                                 

1 This is an extended version of a paper previously published at the SPIE/IS&T 2011 Electronic Imaging 

conference: T. Bugnon, R.D.Hersch,  “Optimized Selection of Image Tiles for Ink Spreading Calibration,” Color 

Imaging XVI: Processing, Hardcopy, and Applications, Proc. SPIE, Vol. 7866, paper 786612, pp. 1-16, 2011. 
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1. INTRODUCTION  

In color reproduction, the Yule-Nielsen modified spectral Neugebauer model (YNSN) is one 

of the most widely used models because of its simplicity and its relatively good accuracy1-4. 

In order to improve its accuracy, this model has been enhanced with an ink spreading model 

accounting for physical dot gain (IS-YNSN5-7). As any spectral reflection prediction model, 

the IS-YNSN model is designed to predict the reflection spectra of color-constant patches. 

Instead of color-constant patches, we investigate if tiles located within color images can be 

accurately predicted and how they can be used to facilitate the calibration of the IS-YNSN 

model. Facilitating the calibration of such models is important because a calibration should be 

performed each time the paper, the inks or the printing configuration is modified. Providing 

the means to perform this calibration in a more flexible manner by removing constraints such 

as printing specific color-constant patches leads to systems that can calibrate themselves 

automatically and are less expensive to operate. For example, in order to print with high color 

fidelity, one may not have to recalibrate an offset press or desktop printer each time a new 

type of paper is used. 

Image tiles are formed by small square regions (5mm x 5 mm) of a color as uniform as 

possible. They are extracted from a color image and used to perform the model calibration, as 

mentioned in previous publications of the authors. These publications describe an algorithm to 

automatically select image tiles8 and use them to calibrate the ink spreading model8-9. 

However, the existing tile selection algorithm has a number of limitations. The first limitation 

is that it is based on the CIELAB color space and therefore requires the conversion of the 

images into CIELAB. The conversion is time-consuming, depends on a color profile and 

cannot distinguish between two tiles of the same CIELAB color, but printed using different 

amounts of cyan, magenta, yellow, and black inks. The second limitation is that it is not 

possible to select tiles according to a given goal in an optimal manner. For example, if the 

image tiles are used to calibrate a cyan dot gain curve, we would like to choose halftone tiles 

with a predominance of cyan. 

In the present contribution, we first present an algorithm to automatically select image tiles 

from color images based uniquely on the CMY or CMYK pixel values of these color images 



 

 

 

 

3/32 

 

and show that the reflectances of these image tiles can be accurately predicted by the 

IS-YNSN model if they are uniform enough. This selection algorithm incorporates additional 

constraints expressing the impact of a halftone on a given ink spreading curve. By relying on 

6 different color images from which we separately extract the calibration tiles, we show the 

calibration performances of both a standard and an optimized calibration tile selection 

method. 

This paper is organized as follows. The Yule-Nielsen modified Spectral Neugebauer model 

(YNSN) and the ink spreading enhanced YNSN model (IS-YNSN) are described in Sections 2 

and 3, respectively. Section 4 shows how to calibrate the IS-YNSN model from image tiles. In 

Section 5, a non-uniformity metric based on the CMYK color values of the image pixels is 

detailed as well as an algorithm to automatically select image tiles based on this non-

uniformity metric. Section 6 presents an optimized version of the selection algorithm 

maximizing the sum of the ink spreading weights, i.e. the overall impact of the halftones on 

the ink spreading curves. The experimental setup is presented in Section 7. Section 8 shows 

that uniform tiles can be accurately predicted with a classical calibration. In Section 9, we 

investigate the impact of the tile selection method and of the number of calibration tiles on the 

ink spreading calibration. A conclusion is drawn in Section 10. 

2. THE YULE-NIELSEN MODIFIED SPECTRAL NEUGEBAUER 

MODEL (YNSN) 

One of the first color prediction models is the Neugebauer model10. In its original form, it 

predicts the RGB values of a color halftone patch. Yule and Nielsen modified this model to 

account for optical dot gain1, Yule and Colt applied it for CIE-XYZ tri-stimulus values11, and 

Viggiano extended it to the spectral domain2. This model, now known as the Yule-Nielsen 

modified Spectral Neugebauer model (YNSN), predicts the reflection spectra of color-

constant patches whose ink coverages are given. The equation used to perform a prediction is 

the following: 

 ( )1/( )( ) λλ = ∑
nn

i i
i

a RR  (1) 

where R(λ) is the predicted reflection spectrum, Ri(λ) the reflection spectra of the colorants 

(or Neugebauer primaries), ai the relative area coverages of the colorants, and n the Yule-

Nielsen factor. 
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The spectra of the colorants must be measured and the scalar n factor needs to be calibrated5. 

The relative area coverages of the colorants are computed from the relative ink surface 

coverages using the Demichel equations. For four inks, the Demichel equations are the 

following: 
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where c, m, y and k are the ink surface coverages. 

When calibrated, the YNSN model can be seen as a function taking the ink surface coverages 

of a halftone as input and yielding its reflection spectrum. It is possible to deduce ink 

coverages from a given spectrum by minimizing a difference metric between predicted and 

measured reflection spectra as follows: 

 ( )2arg min ( , ) ( )
λ

λ λ⎡ ⎤
= −⎢ ⎥⎣ ⎦

∑opt
covs

covs predSpectrum covs R  (3) 

where covs = {c, m, y, k} are the ink coverages, R(λ) the measured spectrum, and 

predSpectrum the YNSN model predicting function combining Eqs. (1) and (2). 

Due to physical dot gain, ink coverages deduced using Eq. (3) are usually larger than the 

corresponding nominal ink coverages. As a consequence, spectral predictions made with 

nominal ink coverages are not accurate. In order to make accurate predictions, the YNSN 

model should be augmented with an ink spreading model6. 

3. THE INK SPREADING MODEL (IS-YNSN) 

When a reproduction device reproduces a color with given nominal ink coverages by 

depositing inks on paper, the inks spread out on the paper, resulting in effective coverages 

usually larger than the requested nominal ink coverages. This phenomenon is known as 

physical dot gain or ink spreading. The amount of dot gain of an ink depends on whether the 

ink halftone is printed alone on paper or in superposition with one or more other inks6. The 
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goal of the ink spreading model is therefore to deduce effective ink coverages from nominal 

ink coverages. The effective surface coverages are then used as input to the YNSN model. 

3.1 Ink spreading curves 

The ink spreading model relies on ink spreading curves (Fig. 1a). An ink spreading curve 

maps the nominal surface coverages of an ink halftone into its effective surface coverages, i.e. 

to the surface that the ink halftone effectively covers once printed. We can approximate an ink 

spreading curve by a parabola characterized by its mid-point v as follows9: 

 
/ / /

2
/ /

( , ) (4 2)(1 )

(2 4 ) (4 1)

= + − −

= − + −
i jk i i jk i i jk i i

i i jk i i jk

f u v u v u u

u v u v
 (4) 

where ui is the nominal surface coverage of ink i, fi/jk is the ink spreading curve of ink i 

superposed with solid inks j and k, and vi/jk is the effective surface coverage at 50% nominal 

surface coverage, also called mid-point of the ink spreading curve. Equation (4) represents a 

parabola passing through the three points (0,0), (0.5, vi/jk), and (1,1), as shown in Fig. 1a. 

There is one ink spreading curve for each ink halftone in each superposition condition. For 

example, a cyan halftone may be printed alone, c; superposed with solid magenta, c/m; with 

solid yellow, c/y; with solid black, c/k; with solid magenta and solid yellow, c/my; with solid 

magenta and solid black, c/mk; with solid yellow and solid black, c/yk; and with solid 

magenta, yellow and black, c/myk. There are 8 different ink spreading curves for each ink, 

 
Fig. 1. (a) Example of an ink spreading curve characterized by its mid-point v. (b) Corresponding dot 

gain curve defined as the difference between effective and nominal surface coverages, with the fitted 

dot gains of three calibration patches (circles), the linearly interpolated dot gain curve (dashed line),

and the corresponding least-squares approximated parabolic dot gain curve (solid line). 
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yielding a total of 32 ink spreading curves. However, since any halftone superposed with solid 

black yields a reflection spectrum very close to the reflection spectrum of solid black, ink 

spreading curves where one ink halftone is superposed with solid black are discarded7. Table I 

lists the 20 ink spreading curves considered. 

Fig. 1b shows the dot gain curve corresponding to the ink spreading curve of Fig. 1a, where 

dot gain is defined as the difference between effective and nominal coverages. Each ink 

spreading curve is calibrated using three calibration patches at 0.25, 0.5 and 0.75 nominal 

surface coverages. The nominal coverage of the ink halftone determines the position on the x-

axis of the ink spreading curve. The corresponding effective surface coverage is fitted using 

Eq. (3) and determines the position on the y-axis. The parabola is then fitted by minimizing 

the least-squares difference between the fitted and predicted dot gains. An ink spreading curve 

can be entirely characterized by the halftone at 50% nominal surface coverage, but as shown 

in Fig. 1b, we prefer 3 calibration patches per ink spreading curve. 

In order to avoid the ambiguity between chromatic black and pure black12, the spectral 

measurements span both the visible wavelength range (380-730 nm) and the near infrared 

(NIR) wavelength range (730-850 nm). In many printing systems, the NIR wavelength range 

helps to distinguish between black ink and chromatic black obtained by superpositions of 

solid cyan, magenta and yellow inks. 

3.2 Ink Spreading Equations 

In order to obtain the effective surface coverages of the ink dots forming a color halftone, we 

weight the contributions of the different ink spreading curves as follows. The effective 

coverage of halftone ink i superposed with inks j and k is the weighted average of the ink 

spreading functions fi, fi/j, fi/k, and fi/jk. The weights are computed according to the surface 

Table I.  List of the considered ink spreading curve indicia. 

Cyan Magenta Yellow Black 

c m y k k/y 

c/m m/c y/c k/c k/cy 

c/y m/y y/m k/m k/my 

c/my m/cy y/cm k/cm k/cmy
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coverages of the underlying colorants (Neugebauer primaries) formed by inks j and k. For 

CMYK, the ink spreading equations are: 
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In Eqs. (5), e.g. when calculating the effective surface coverage c’ of the cyan ink, (1-m’)(1-

y’), m’(1-y’), (1-m’) y’, and m’y’ express, respectively, the surface coverage of colorants 

white, magenta, yellow, and red superposed with the cyan halftone layer. Since a cyan, 

magenta, or yellow halftone over solid black is assumed to yield black, the superposition 

conditions corresponding to an ink halftone over solid black have been discarded. We have 

therefore 4 superposition conditions for the cyan, magenta and yellow ink halftones and 8 

superposition conditions for the black ink halftone. 

We solve Eqs. (5) iteratively, starting by assigning the nominal ink halftone coverages (c, m, 

y, k) to the effective ink halftone coverages (c’, m’, y’, k’). Four to five iterations ensure 

sufficient convergence to determine the effective ink halftone surface coverages7. 

4. CALIBRATION OF THE INK SPREADING CURVES USING IMAGE 

TILES 

As explained in Section 3.1, an ink spreading curve is fitted using calibration patches with 

predetermined nominal coverages. Such calibration patches cannot be found in the content of 

a traditional printing job. Instead of adding calibration patches in the margins of the page, we 

calibrate the ink spreading curves using measurements of image tiles selected within the 

printed content. 

A method developed to perform such a calibration was proposed by the current authors9. 

However, since this method relies on solving a least-squares problem, it requires a relatively 
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large number of image calibration tiles to yield stable results and does not work with a limited 

number of calibration tiles. When too little information about ink spreading is available in the 

image calibration set, the least-squares problem becomes ill-posed and the noise contained in 

the measurements of the image calibration tiles significantly impacts the resulting calibrated 

model. 

We therefore propose a variation based on a gradient-descent algorithm. The new method is 

slower, but employs a starting point for the optimization corresponding to the IS-YNSN 

model with all ink spreading curves set to 0.5 at 50% nominal surface coverage (no physical 

dot gain). If the image calibration set contains very little information about the ink spreading 

of an ink halftone, i.e. the calibration set contains few or no image tiles with the 

corresponding colorants, the optimization does not significantly deviate from the starting 

point. This starting point is also always valid according to the constraints imposed on the mid-

points of the ink spreading curves detailed in Eq. (7), i.e. the largest possible constraint forces 

a mid-point to be set to 0.5. 

4.1 Gradient-descent based calibration of the ink spreading model 

The aim of the calibration procedure is to find the best values for the mid-points of the ink 

spreading curves. We group all the mid-points into a single vector v  and use as objective 

function the sum of square differences between the predicted and measured reflection spectra 

of all the image calibration tiles for given ink spreading curve mid-points v : 

 2( ) [ ( , , ) ( , )]
λ

λ λ= −∑∑ p
p

f v predSpectrum covs v measSpectrum p  (6) 

where λ  is the wavelength, p an image calibration tile, covsp its nominal ink surface 

coverages, and v  a vector whose elements are the mid-points of the ink spreading curves. The 

function measSpectrum returns the measured spectrum of image calibration tile p and the 

function predSpectrum uses the IS-YNSN model to predict the spectrum of the image 

calibration tile p. 

The calibration procedure using Eq. (6) can be summarized as follows: 

 / /

/ /

0.5 0.25
arg min[ ( )] such that
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≤ + ⋅⎧

= ⎨ ≥ − ⋅⎩

i jk i jk
opt
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where optv  is the vector containing the calibrated mid-points, i.e. the mid-points of the ink 

spreading curves minimizing the sum of square differences between the measured and 

predicted spectra, and wi/jk is the weight, comprised between 0 and 1, used to constrain vi/jk. 

To each ink spreading curve fi/jk of ink i superposed with solid inks j and k, we associate a 

weight wi/jk that prevents the minimization algorithm from setting the mid-points vi/jk at an 

artificially large value when that ink spreading curve does not significantly influence any 

image tile. Without such constraints, the minimization algorithm tends to induce large 

variations of the values of the ink spreading curves in order to influence the difference metric. 

The consequence is that the ink spreading curves are set to artificially large values that do not 

reflect the actual dot gain. Such calibrations may be able to accurately predict image tiles 

similar to the calibration set, but fail to correctly predict image tiles of other colors9. 

4.2 Imposing constraints on the ink spreading mid-points 

The ink spreading weights wi/jk are computed from the nominal ink coverages of the image 

tiles as follows. Given a tile p of the image calibration set, let ui,p be the nominal coverage and 

ui,p’(vi, vi/j, vi/k, vi/jk) be the effective coverage of ink i within tile p computed using the ink 

spreading model. The weight associated to ink spreading curve fi/jk of halftone ink i 

superposed with solid inks j and k is defined as the following gradient: 

 ,
/ ,

/

'∂
=

∂
i p

i jk p
i jk

u
w

v
 (8) 

Since ink spreading curve fi/jk is fully determined by its mid-point vi/jk, the gradient wi/jk,p 

in Eq. (8) expresses the influence of ink spreading curve fi/jk on the resulting effective surface 

coverage ui,p’ of ink i within tile p. 

Since a calibration set is composed of several image tiles, we define the weight associated to 

ink spreading curve fi/jk for the entire image calibration set as the maximum of the weights 

across all the considered calibration tiles: 

 ,
/ / ,

/

'
max[ ] max

∂
= =

∂
i p

i jk i jk pp p
i jk

u
w w

v
 (9) 

We take the maximum of the derivatives among all the tiles because the tiles with a high 

weight have the largest influence on the metric minimized by the ink spreading curve mid-
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point fitting algorithm, i.e. when there is at least one high weight tile and low weight tiles, the 

ink spreading curve mid-point is mainly fitted by the high weight tile. 

5. SELECTING IMAGE TILES BASED ON THE CMYK COLOR 

SPACE ONLY 

In order to calibrate the ink spreading model with image tiles extracted from the color images 

to be printed, we must first select such tiles. Our main assumption, verified in Section 8, is 

that the best image tiles are the most uniform tiles. The non-uniformity value of a tile located 

within a small sub-domain of the considered image is computed using its c, m, y, and k pixel 

values as follows: 

 ( )2 2 2 2 / 4( ) ( ) ( ) ( )ν σ σ σ σ= + + +c m y k  (10) 

where υ is the non-uniformity value; c, m, y, and k are the cyan, magenta, yellow, and black 

pixel values of the considered image tile ranging from 0 to 1; and the σ function is the 

standard deviation. If the values of the pixels of a given image tile are close to the average 

pixel value, the standard deviations are low and υ is low, i.e. the tile is considered uniform. 

However, if many pixels have values distant from the average, the standard deviations are 

large and υ is large, i.e. the tile is considered non-uniform. 

The aim of the selection algorithm is to select the most uniform tiles. However, in some 

images, many uniform tiles are composed of similar amounts of inks. To prevent having two 

tiles too close to each other, we use the Euclidian distance (norm) in the CMYK color space 

to determine when a candidate tile is too close to currently selected tiles. The CMYK norm 

indicates the proximity between two CMYK values. Two tiles can indeed have the same 

color, but be composed of radically different amounts of inks. As we are interested in 

selecting tiles representing as many different reproduction situations as possible, the CMYK 

norm is an appropriate metric to discriminate between uniform tiles. 

The first step of the algorithm consists in scanning each image horizontally and vertically in 2 

mm steps. Successive 5 mm large square tiles form the candidate tiles from which the tiles are 

selected. Each tile is associated with a non-uniformity value according to Eq. (10). Assuming 

c, m, y, and k values between 0 and 1, tiles with a non-uniformity value above 0.1 are 

discarded. 
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Given a CMY image, the selection algorithm creates a set of 20 tiles composed of the most 

uniform tiles, i.e. those with the smallest υ values, with the additional condition that each tile 

has no other tile within a CMY norm of 0.5 and no more than one other tile within a CMY 

norm of 1.5. Given a CMYK image, the selection algorithm creates a set of the 30 most 

uniform tiles so that each tile has no other tile within a CMYK norm of 0.3 and no more than 

one other tile within a CMYK norm of 0.9. Such image tile sets are further referred to as 

standard image calibration tile sets. Within a standard image calibration tile set, the tiles are 

ordered according to their non-uniformity value. 

Each image tile has its associated nominal ink coverages. The nominal ink coverages of an 

image tile are computed as the average of the CMY or CMYK values of the pixels located 

within a radius of 1.5 mm from the center of the tile. 

6. ADDING CONSTRAINTS TO THE TILE SELECTION ALGORITHM 

The standard selection algorithm proposed in Section 5 selects the most uniform image tiles 

under the constraint that these tiles are not too close to each other in the CMYK color space. 

However, the best set of image tiles to calibrate the ink spreading model according to the 

procedure detailed in Section 4 are the tiles maximizing the weights wi/jk associated to the ink 

spreading curves in Eq. (9). Since the standard selection algorithm does not take this aspect 

into account, we propose an optimized selection algorithm which also maximizes these 

weights. This algorithm selects uniform enough image tiles maximizing the weights wi/jk. 

Such a selection includes tiles highly relevant for the calibration of the ink spreading curves 

as well as the most uniform tiles. 

Since there are 12 or 20 ink spreading weights wi/jk in the CMY or CMYK case, respectively, 

the strategy of the optimized algorithm is to maximize the sum of these weights by selecting 

the image tiles yielding the highest sum. However, the image tiles must still be uniform 

enough to be pertinent. In order to provide a flexible threshold ensuring a high enough 

uniformity, we use the following function inspired by the Weibull probability distribution13: 

 ( / )4( ) −= x lz x e  (11) 

Function z(x) is shown in Fig. 2 and is used to adjust the weights wi/jk as follows: 

 / , / , ( )υ=i jk p i jk p pw w z  (12) 
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where w i/jk,p is the uniformity-adjusted weight of tile p, wi/jk,p is the weight of tile p computed 

in Eq. (8), and υp is the non-uniformity value of tile p computed in Eq. (10). If the given tile is 

uniform, i.e. its non-uniformity value υp is low, the adjustment function is close to unity and 

the weight is not modified. If the tile is non-uniform, its non-uniformity value is high and the 

adjustment function is close to 0. In that case, the tile is discarded. There is a sharp transition 

in which the less uniform the tile, the more the criterion function is decreased, creating a 

“smooth threshold”. 

The function z(x) can be tailored to accommodate the available image tiles. The l value 

positions the transition zone and the exponent, set to 4 in Eq. (11), can be increased or 

decreased to shrink or enlarge the transition zone. If the exponent is set to infinity, the 

distribution becomes a step function and acts as a real threshold, discarding tiles with non-

uniformity values higher than l. 

Given ink spreading curve fi/jk and candidate image tile p, uniformity-adjusted weight w i/jk,p 

indicates if tile p is suitable to calibrate ink spreading curve fi/jk. By taking for each ink 

spreading curve the image tile with the maximum uniformity-adjusted weight w i/jk,p, we 

create an image calibration set containing the most suitable tiles to calibrate all the ink 

spreading curves. This set is further referred to as the adjusted calibration tile set. Since a 

given tile can be the most suitable tile for more than one ink spreading curve, the adjusted 

calibration set contains at most as many calibration tiles as ink spreading curves. This simple 

selection algorithm creates therefore calibration sets with a fixed number of tiles. 

If we want to create calibration sets containing fewer image tiles, we cannot select for each 

ink spreading curve its most suitable image calibration tile. A second criterion must be used to 

 
 Fig. 2. Adjustment function z(x) inspired by the Weibull distribution. 
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perform the selection. This second criterion is the sum s of the ink spreading weights wi/jk 

computed using all the combination of i, j, and k listed in Table I as follows: 

 / / ,
, , , ,

max[ ]= =∑ ∑i jk i jk ppi j k i j k
s w w  (13) 

where the weights wi/jk are computed according to Eq. (9). Since ink spreading weight wi/jk 

indicates the amount of information the entire calibration set provides about ink spreading 

curve fi/jk, the sum s of all ink spreading weights indicates the amount of information available 

to calibrate all the ink spreading curves. In order to maximize s while selecting only suitable 

image tiles, we first create for each ink spreading curve a list of the candidate image tiles 

ordered from the most suitable tile to the least suitable tile. The ordering criterion is given by 

w i/jk,p according to Eq. (12). The heads of the lists therefore correspond to the most suitable 

tiles. The calibration set is then created by selecting one tile after another, each time selecting 

the tile among the heads of the lists that yields the maximum sum s of the ink spreading 

weights across all selected tiles. That tile is then removed from the lists. Note that as in 

Section 5, for an image tile to be selected, its non-uniformity must be below 0.1 and it must 

not be too close to the already selected tiles according to the CMYK norm. When no more tile 

increases the sum s of the weights, we revert to the standard algorithm and complete the set 

with the most uniform tiles that satisfy the CMYK norm constraint (Section 5). Image tile sets 

selected using this algorithm are further referred to as optimized image calibration tile sets. 

 
Fig. 3. Sum of the 20 CMYK ink spreading curve weights for the six test images according to the

number of selected tiles using either the standard (dashed line) or optimized (solid lines) tile selection

algorithm. The crosses indicate the sum of the ink spreading weights of the adjusted calibration tile

sets. 
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Fig. 3 shows the difference in the sum of the 20 CMYK ink spreading weights between the 

standard and optimized image tile sets. For all 6 test images shown in Figure B1 in 

Appendix B and described in Section 7, the sum of the weights is larger using the optimized 

selection algorithm than using the standard selection algorithm for any number of selected 

tiles. Moreover, when the optimized image calibration tile sets are composed of the same 

number of tiles as the adjusted calibration tile sets, the sum of the weights of the optimized 

sets are always equal to or slightly higher than their corresponding adjusted calibration tile 

set. 

7. SETUP OF THE EXPERIMENTS 

In order to verify the accuracy of the spectral reflection predictions performed by the 

IS-YNSN model, the image tiles need to be measured. The size and shapes of the image tiles 

must be adapted according to the measurement geometry and aperture of the measurement 

device. For the Datacolor MF45IR spectrophotometer, the tiles are conceived as disks with a 

diameter of 3 mm. Since this device illuminates the sample using a directed source (45°d:0° 

geometry), we measure each sample four different times, each time rotating it by 90° and 

taking the average. This reduces errors due to the positioning of the device and irregularities 

of the illumination geometry. The non-uniformity value of a given tile is computed on an area 

slightly larger than the actual tile, i.e. a 5 mm disk instead of a 3 mm disk. Ensuring that the 

area surrounding the actual tile is also uniform further reduces positioning errors. 

In order to analyze how the different selection algorithms perform, we use the 6 different 

sRGB images shown in Figure B1 in Appendix B. The first image comes from a digital 

camera and the other five from different sources providing standard test images14-16. The sizes 

of the images have not been modified, but they have been resampled to 600 dpi. Moreover, 

they have been converted to two different color spaces: CMY and CMYK. Both conversions 

have been performed using Photoshop and the U.S Web coated (SWOP) v2 CMYK profile. 

The conversion to CMYK has been performed with medium GCR (gray component 

replacement). 

To verify the impact of the uniformity of the image tiles on the accuracy of the IS-YNSN 

model when predicting these tiles, we print eight sets of 50 image tiles further referred to as 

the uniformity test sets and shown in Figure B4 in Appendix B. Each set contains tiles 

randomly selected among the candidate tiles of the 6 images having a non-uniformity value υ 
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in a given range. Each set is referred to by the range of non-uniformity values of the tiles it 

contains, e.g. the 0.12-0.16 group contains 50 tiles with non-uniformity values between 0.12 

and 0.16. Note that these 8 sets were only created for the CMYK images. 

The image calibration tiles selected using the algorithms detailed in Section 5 (standard image 

calibration tile sets) and Section 6 (optimized image calibration tile sets) are shown in 

Figure B2 for the CMY images and in Figure B3 for the CMYK images (Appendix B). They 

are printed on a Canon PixmaPro 9500 inkjet printer at 600 dpi and 150 lpi using classical 

rotated halftone screens. For CMY, the halftone screen angles are 75°, 15°, and 45°, 

respectively. For CMYK, the halftone screen angles are 75°, 15°, 0° and 45°, respectively. 

To compare the prediction accuracy of calibrations performed using different methods, we use 

two test sets composed of color-constant patches. The first test set, further referred to as the 

125 CMY set, is composed of 125 color-constant patches with all possible combinations of 

cyan, magenta, and yellow at 0%, 25%, 50%, 75%, and 100%. The second set, further 

referred to as the 125 UCR set, is composed of 125 CMYK color-constant patches with 

nominal surface coverages obtained by converting the 125 CMY set to CMYK using the 

standard under color removal algorithm described above. 

8. PREDICTION ACCURACY OF THE CLASSICAL CALIBRATION 

RELYING ON COLOR-CONSTANT PATCHES 

All spectral predictions are performed using the IS-YNSN model calibrated using the classical 

color-constant calibration patches, i.e. the 16 solid colorants (Neugebauer primaries) and 

20 3 60⋅ =  color-constant patches composed of one halftone ink at 25%, 50%, or 75% 

superposed with zero, one, or more solid inks. In both the CMY and CMYK cases, the 

calibration yielded the same optimal Yule-Nielsen n factor of 10. The first part of Tables II, 

IV, and V shows the reference prediction accuracy of the IS-YNSN model, i.e. the accuracy 

when predicting the color-constant patches of the 125 CMY set (Table IV) or the 125 UCR 

set (Tables II and V). 

Table II shows the accuracy when predicting the uniformity test sets. We can see that the 

average ΔE94 prediction error, derived from the measured and predicted reflectances of the 

different sets, consistently increases when the non-uniformity values of the image tiles 

increase. This correlation also holds for the 95 percentile and maximum ΔE94.  
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Table IV. Prediction accuracy of the 

classically calibrated IS-YNSN model when 

predicting the 125 CMY set and the different 

CMY image calibration tile sets. The statistics 

show the average, 95 percentile, and 

maximum ΔE94. 

 

Table II.  Prediction accuracy of the 

classically calibrated IS-YNSN model 

when predicting the uniform patches of the 

125 UCR set and sets of tiles grouped 

according to their non-uniformity values. 

The statistics show the average, 95 

percentile, and maximum ΔE94. 

 

Table III.  Average accuracy of predicting sets of 

tiles grouped according to their non-uniformity 

values using effective coverages predicted with 

the classically calibrated ink spreading model 

(Predicted column) and accuracy obtained by 

direct fitting of individual tile surface coverages 

according to Eq. (3) (Deduced column). ΔCovs 

indicates the average CMYK norm between 

predicted and deduced effective coverages. 

 

Table V. Prediction accuracy of the classically 

calibrated IS-YNSN model when predicting 

the 125 UCR set, and the different CMYK 

image calibration tile sets. The statistics show 

the average, 95 percentile, and maximum 

ΔE94. 
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An additional experiment shows that the surface coverages deduced from non-uniform tiles 

cannot be used to calibrate the ink spreading curves. With the classically calibrated IS-YNSN 

model, we can either predict the effective coverages of a tile using the ink spreading model or 

deduce these effective coverages by directly fitting them with the YNSN model using Eq. (3). 

Table III shows that the effective coverages predicted by the classically calibrated ink 

spreading model do not correspond to the deduced effective surface coverages, i.e. the 

difference between predicted and deduced coverages increases when the non-uniformity of 

the tiles increases. 

When calibrating the ink spreading curves using image tiles, the deduced effective ink surface 

coverages of the calibration tiles are implicitly computed in Eq. (6), i.e. the calibration 

algorithm tries to set the ink spreading curves so that the predicted and deduced effective 

coverages agree. However, when non-uniform image tiles are used, the calibration algorithm 

sets the ink spreading curves to incorrect values to force the agreement between predicted and 

deduced coverages and therefore reduces the prediction accuracy. This demonstrates the 

importance of using image tiles as uniform as possible. 

The second part of Tables IV and V show the prediction accuracy of the classically calibrated 

IS-YNSN model when predicting the CMY and CMYK image calibration tile sets, 

respectively. The IS-YNSN model is also able to accurately predict image tiles, i.e. the 

average ΔE94 is either below or close to 2 and the 95 percentile is either below or close to 3, 

which confirms our choice of limiting the non-uniformity of the selected image tiles to 0.1. 

Note that there is no difference in the prediction accuracy of the standard and optimized 

image tile sets since they are all composed of tiles whose non-uniformity is below 0.1. 

9. ACCURACY OF THE IS-YNSN IMAGE CALIBRATIONS 

In the previous section, we have demonstrated that image tiles can be accurately predicted by 

an IS-YNSN model calibrated using the classical color-constant calibration patches. We now 

compare predictions performed on models calibrated according to the different methods. The 

first method is the classical calibration detailed in Section 8. The other methods are based on 

the optimized and standard image calibration tile sets selected from one of the six test images. 

For each optimized or standard image calibration tile set, we perform a series of ink spreading 

curve calibrations using the algorithm detailed in Section 4. The first calibration of the series 

is performed using only the first image tile of the set. The second calibration is performed 
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using the first two image tiles of the set, and so on. The last calibration is therefore performed 

using all the image tiles of the set. In the CMY case, there are 20 tiles per calibration set, an 

optimized and a standard calibration set for each image, and 6 separate images on which 

calibrations are performed. In the CMYK case, there are 30 tiles per calibration set, an 

optimized and a standard calibration set for each image, and 6 separate images on which 

calibrations are performed. The classical calibration and all the image tile based calibrations 

are compared against the reference YNSN model, i.e. the Yule-Nielsen model without ink 

spreading curves. The comparison is performed by predicting the color-constant patches of 

the 125 CMY set, respectively the 125 UCR set. The lower the average ΔE94, the higher the 

accuracy. 

Figs. 4 and 5 show the prediction results for the CMY and CMYK images, respectively. We 

show the average ΔE94 difference between predictions and measurements. We also show the 

corresponding 95 percentiles in Appendix A. The ΔE94 prediction differences in term of 95 

percentiles behave similarly to the average ΔE94 difference. The larger variations are due to 

the fact that we minimize the average spectral difference in Eq. (6) and not the 95 percentile. 

In both cases, the IS-YNSN model with calibrated ink spreading curves is much more 

 

Fig. 4. Accuracy of different calibrated IS-YNSN models when predicting the uniform patches of the

125 CMY set. The following calibrations for six different CMY images are shown: no ink spreading 

(upper dotted lines), classical ink spreading calibration (lower dotted line), ink spreading calibrations

using standard image tile sets (dashed line), and ink spreading calibrations using optimized image tile

sets (solid line). 
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accurate than the reference model without calibrated ink spreading curves as shown by the 

gap between the two dotted lines. This difference outlines the importance of accounting for 

superposition dependent physical dot gain. Moreover, all the different image calibrations have 

a better accuracy than the reference model, indicating that even a single image tile provides 

useful information about physical dot gain to the calibration procedure. 

A deeper analysis of the standard image calibrations reveals that adding more image tiles to 

the calibration set improves the prediction accuracy. A given additional image tile may 

slightly degrade the prediction accuracy, but additional tiles will cancel the degradation. 

Degradations may happen when the new added tile is too similar to previous tiles. For 

example, the 3rd tile of the CMY Flower standard calibration set is a red tile similar to the 2nd 

tile of the set (Figure B2, Appendix B). The 9th tile of the CMYK Parrots standard set is the 

3rd dark brown tile of the set (Figure B3, Appendix B). In such cases, the calibration 

procedure yields a model specialized in predicting tiles occurring repeatedly in the calibration 

set and fails to accurately predict rarely occurring tiles. Adding calibration tiles outside the 

specialized area quickly improves the prediction accuracy. For example, the first 15 tiles of 

the CMYK Flower standard set are red or dark brown, except the 9th and 13th tiles that are 

green (Figure B3, Appendix B). When the 1st and 2nd green tiles are added in the set, we 

observe a sharp decrease of the prediction error to 2.5 and 1.9, respectively. With enough 

image tiles in the calibration set, the prediction accuracy stabilizes close to the prediction 

 
Fig. 5. Accuracy of different calibrated IS-YNSN models when predicting the CMYK uniform patches

of the 125 UCR set. The following calibrations for six different CMYK images are shown: no ink

spreading (upper dotted lines), classical ink spreading calibration (lower dotted line), ink spreading

calibrations using standard image tile sets (dashed line), and ink spreading calibrations using

optimized image tile sets (solid line). 
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accuracy of the classical calibration. It is however difficult to predict how many tiles are 

required to stabilize the standard image calibration. For the CMYK Boat race image, less than 

5 tiles are required. Conversely, for the CMY Flower image or the CMYK Sailboat image, 

more than 20 image tiles are necessary. 

In contrast, optimized image calibration tile sets offer a high prediction accuracy even with 

sets composed of as few as 5 to 10 image tiles. Their accuracy is therefore always higher or, 

when both calibrations are stable, equal to the accuracy of standard image calibrations. When 

there is a large difference in the sum of the weights between the standard and optimized 

image calibration sets (Fig. 3, Flower image), there is also a large difference in the prediction 

accuracy when the model is calibrated with a limited number of tiles (Figs. 4 and 5). When 

the difference in the sum is small (Fig. 3, Sea or Boat race images), the difference in 

prediction accuracy is also small, i.e. the two curves in Figs. 4 and 5 remain close. Optimized 

image tile sets therefore ensure that the model achieves good prediction accuracy with the 

fewest possible number of tiles. Moreover, the number of necessary tiles is lower than the 

minimum required by a classical calibration. An optimized image tile based calibration 

requires 5 to 10 image tiles in both CMY and CMYK cases, whereas a classical calibration 

requires 12 and 20 patches in the CMY and CMYK cases, respectively. 

The Parrot image is particularly interesting. It is a colorful image containing many uniform 

image tiles. Because the standard selection algorithm selects tiles based on uniformity only 

and although the tiles are selected not too close to each other, the first selected tiles of the 

standard set are all different shades of green (Figures B2 and B3, Appendix B). Yellow and 

red tiles appear only later in the set and no blue tile is selected. Since many selected tiles have 

similar shades, the sum of the weights only slowly increases each time a tile is added. This 

contrasts with the optimized calibration set whose first selected tiles are well distributed in the 

color space because the selection algorithm selects tiles maximizing the ink spreading 

weights. The sum of the weights therefore quickly increases (Fig. 3). As a consequence, the 

prediction accuracy achieved by the standard algorithm only slowly improves compared to the 

accuracy achieved by the optimized algorithm (Figs. 4 and 5). In images with less color 

diversity or less uniform tiles, e.g. the Sailboat image, the standard algorithm still requires 

more tiles, but is eventually able to achieve the same accuracy as the optimized algorithm 

since the number of candidate tiles not too close to each other is reduced and the selected tiles 
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are forced to be well distributed. In some cases such as the Sea or Boat race images, both 

algorithms have the same performances. 

10.  COMPARISON OF INK SPREADING CURVES BETWEEN 

CLASSICAL, STANDARD AND OPTIMIZED CALIBRATIONS 

Optimized calibrations achieve high accuracy with only a limited number of image calibration 

tiles, an accuracy similar to the classical calibration used as a reference, whereas standard 

calibrations may require many more image calibration tiles. In this section, we compare the 

ink spreading curves calibrated by the classical, standard and optimized calibrations. 

Fig. 6 shows the mid-points of the 4 cyan and 4 magenta ink spreading curves of the Flower 

image when calibrated using 10 image calibration tiles. The white bars correspond to the 

standard mid-points, i.e. the mid-points obtained using standard image calibration tiles. The 

hatched bars correspond to optimized mid-points, i.e. the mid-points obtained using optimized 

image calibration tiles. The black bars in-between correspond to the mid-points of the 

classical calibration and are used as reference mid-points. 

       

Fig. 6. Mid-points of the four cyan (left) and four magenta (right) ink spreading curves of the Flower

image for the classical calibration (black bars), the ink spreading calibration using a standard tile set

containing 10 image tiles (white bars), and the ink spreading calibration using an optimized tile set

containing 10 image tiles (hatched bars). 
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The difference between c and m mid-points of the standard and reference ink spreading curve 

calibrations is large, whereas the difference between the corresponding optimized and 

reference mid-points is small. This can be explained by looking at the actual image tiles used 

for the calibrations (Figure B3, Appendix B). In the first ten tiles of the standard calibration 

set of the Flower image, there are no pure cyan or magenta tiles, whereas we have tiles 5 and 

7 in the optimized calibration set. In the c/y and m/y cases, both the standard and optimized 

mid-points are well calibrated because there are both red and green tiles in the respective 

calibration sets. There is however no dark or blue tile in either calibration sets, therefore the 

c/m, c/my and m/cy mid-points are not well calibrated. In general, thanks to the diversity of 

the optimized calibration tiles, the optimized mid-points are close to the reference mid-points. 

Moreover, the fact that they are always closer to the reference mid-points compared with the 

standard mid-points shows the benefit of the optimized tile selection strategy. 

As mentioned in Section 9, when more calibration tiles are added, the accuracy of the 

standard calibrations improves and becomes comparable with the accuracy of the optimized 

calibrations. This is also true for the difference between the reference and standard mid-points 

and the difference between the reference and optimized mid-points. 

As shown in Fig. 7 for the Flower image, the difference between the reference and optimized 

mid-points quickly decreases and then remains stable. However, the difference between the 

reference and standard mid-points remains large when using a small number of calibration 

tiles and slowly decreases to achieve a similar average difference for 17 tiles or more. In this 

regard, Fig. 7 is very similar to Fig. 5 and this similarity is valid for the other 5 test images as 

well. There is therefore a strong correlation between the prediction accuracy and the 

       

Fig. 7. Average mid-point surface coverage difference between the 20 reference mid-points

of the classical calibration and either the 20 standard (dashed line) or optimized (solid line)

mid-points. The differences are shown as a function of the number of tiles in the respective

image tile sets. The image tiles are extracted from the Flower image. 
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difference between calibrated and reference mid-points. Fig. 7 also shows that the same 

prediction accuracy can be obtained with differently calibrated ink spreading curves. There is 

indeed an average difference of 0.04 remaining between the reference and either the 

optimized or the standard mid-points for 20 image calibration tiles or more. 

11.  CONCLUSION 

Spectral reflection prediction models are able to accurately predict the reflection spectrum of 

any color-constant color patch provided that the ink spreading curves are correctly calibrated. 

Such calibrations usually require printing specific color-constant calibration patches in 

addition to the printed content, patches that must be cut out from the final document. 

To facilitate the calibration of the ink spreading curves, we propose a method based on tiles 

extracted from color images. The detailed selection algorithm automatically selects tiles in an 

image based on the CMYK pixel values of that image. Moreover, it ensures that the selected 

image tiles are uniform and not too close to each other in the CMYK domain. We then 

propose an optimized tile selection algorithm that selects the image tiles maximizing the ink 

spreading weights, i.e., the tiles having the largest impact on the calibration of the ink 

spreading curves. 

The performed experiments show that an image tile can be accurately predicted only if its 

non-uniformity is low. Image tiles selected by the optimized selection algorithm considerably 

improve the sum of the ink spreading weights compared to the tiles selected by the standard 

selection algorithm. Since large ink spreading weights indicate a strong influence of the tiles 

on the ink spreading curves, the ink spreading calibration is improved. An optimized image 

calibration set composed of 5 to 10 well-chosen image tiles is indeed sufficient to reliably 

calibrate the ink spreading curves whereas it is not possible to provide an upper bound of 

image tiles for the standard image calibration set. Finally, the number of required calibration 

image tiles is lower than the number of color-constant patches required for a classical 

calibration. 

The correlation between the sum of the ink spreading weights and the stabilization of the 

image calibration accuracy has only been superficially explored in this paper. Further 

exploiting this correlation may lead to an improved control over the calibration procedure. 

Future work should also consider the use of non-uniform image tiles for the calibration 

procedure. 
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APPENDIX A: 95 PERCENTILE ACCURACY 

 
Fig. A1. The 95 percentile accuracy of differently calibrated IS-YNSN models when predicting the 

uniform patches of the 125 CMY set. The following calibrations for six different CMY images are 

shown: no ink spreading (upper dotted lines), classical ink spreading calibration (lower dotted line), 

ink spreading calibrations using standard image tile sets (dashed line), and ink spreading calibrations 

using optimized image tile sets (solid line). 

 
Fig. A2. The 95 percentile accuracy of differently calibrated IS-YNSN models when predicting the 

CMYK uniform patches of the 125 UCR set. The following calibrations for six different CMYK 

images are shown: no ink spreading (upper dotted lines), classical ink spreading calibration (lower 

dotted line), ink spreading calibrations using standard image tile sets (dashed line), and ink spreading 

calibrations using optimized image tile sets (solid line). 
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APPENDIX B: TEST IMAGES AND IMAGE TILE SETS 

 

Fig. B1. Test images (scale 1:5). 
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Fig. B2. CMY standard and optimized image calibration tile sets. 
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Fig. B3. CMYK standard and optimized image calibration tile sets. 
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Fig. B4. CMYK standard and optimized image calibration tile sets. 
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dot gains of three calibration patches (circles), the linearly interpolated dot gain curve (dashed line), 

and the corresponding least-squares approximated parabolic dot gain curve (solid line). 

Fig. 2. Adjustment function z(x) inspired by the Weibull distribution. 

Fig. 3. Sum of the 20 CMYK ink spreading curve weights for the six test images according to the 

number of selected tiles using either the standard (dashed line) or optimized (solid lines) tile selection 

algorithm. The crosses indicate the sum of the ink spreading weights of the adjusted calibration tile 

sets. 

Fig. 4. Accuracy of different calibrated IS-YNSN models when predicting the uniform patches of the 

125 CMY set. The following calibrations for six different CMY images are shown: no ink spreading 

(upper dotted lines), classical ink spreading calibration (lower dotted line), ink spreading calibrations 

using standard image tile sets (dashed line), and ink spreading calibrations using optimized image tile 

sets (solid line). 

Fig. 5. Accuracy of different calibrated IS-YNSN models when predicting the CMYK uniform patches 

of the 125 UCR set. The following calibrations for six different CMYK images are shown: no ink 

spreading (upper dotted lines), classical ink spreading calibration (lower dotted line), ink spreading 

calibrations using standard image tile sets (dashed line), and ink spreading calibrations using 

optimized image tile sets (solid line). 

Fig. 6. Mid-points of the four cyan (left) and four magenta (right) ink spreading curves of the Flower 

image for the classical calibration (black bars), the ink spreading calibration using a standard tile set 

containing 10 image tiles (white bars), and the ink spreading calibration using an optimized tile set 

containing 10 image tiles (hatched bars). 

Fig. 7. Average mid-point surface coverage difference between the 20 reference mid-points of the 

classical calibration and either the 20 standard (dashed line) or optimized (solid line) mid-points. The 

differences are shown as a function of the number of tiles in the respective image tile sets. The image 

tiles are extracted from the Flower image. 

Fig. A1. The 95 percentile accuracy of differently calibrated IS-YNSN models when predicting the 

uniform patches of the 125 CMY set. The following calibrations for six different CMY images are 

shown: no ink spreading (upper dotted lines), classical ink spreading calibration (lower dotted line), 
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ink spreading calibrations using standard image tile sets (dashed line), and ink spreading calibrations 

using optimized image tile sets (solid line). 

Fig. A2. The 95 percentile accuracy of differently calibrated IS-YNSN models when predicting the 

CMYK uniform patches of the 125 UCR set. The following calibrations for six different CMYK 

images are shown: no ink spreading (upper dotted lines), classical ink spreading calibration (lower 

dotted line), ink spreading calibrations using standard image tile sets (dashed line), and ink spreading 

calibrations using optimized image tile sets (solid line). 

Fig. B1. Test images (scale 1:5). 

Fig. B2. CMY standard and optimized image calibration tile sets. 

Fig. B3. CMYK standard and optimized image calibration tile sets. 

Fig. B4. CMYK standard and optimized image calibration tile sets. 
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