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Abstract— Today’s spectral reflection prediction models 

are able to predict the reflection spectra of printed color 
images with an accuracy as high as the reproduction 
variability allows. However, to calibrate such models, 
special uniform calibration patches need to be printed. 
These calibration patches use space and have to be 
removed from the final product. The present contribution 
shows how to deduce the ink spreading behavior of the 
color halftones from spectral reflectances acquired within 
printed color images. Image tiles of a color as uniform as 
possible are selected within the printed images. The ink 
spreading behavior is fitted by relying on the spectral 
reflectances of the selected image tiles. A relevance metric 
specifies the impact of each ink spreading curve on the 
selected image tiles. These relevance metrics are used to 
constrain the corresponding ink spreading curves. 
Experiments performed on an inkjet printer demonstrate 
that the new constraint-based calibration of the spectral 
reflection prediction model performs well when predicting 
color halftones significantly different from the selected 
image tiles. For some prints, the proposed image based 
model calibration is more accurate than a classical 
calibration. 
 

Index Terms—Color prints, color reproduction, dot gain, 
halftones, ink spreading, prediction model calibration, 
spectral reflection prediction 

I. INTRODUCTION 

HE goal of a color reproduction device is to be able to 
reproduce input colors as accurately as possible. To 

achieve faithful color reproduction, devices must be both 
calibrated and characterized [1]. Device calibration ensures 
that the device has a known characteristic color response. 
Device characterization relates this characteristic color 
response to a device independent representation. Both device 
calibration and characterization can benefit from the use of a 
model predicting the reflectance of color halftones as a 
function of their nominal surface coverages, i.e. of the control 
values specifying the amount of inks to be printed. For device 
calibration, spectral reflection prediction models are helpful in 
studying the influence of given factors on the range of 
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printable colors: the inks, the type of paper, the illumination 
conditions, and the halftones. A spectral reflection prediction 
model is also useful for the characterization of a printing 
device since it predicts the device-independent color values 
resulting from a set of nominal ink surface coverages. It 
therefore enables the creation of ICC profiles for color 
management [2] as well as new color separation strategies, for 
example when printing with custom inks [3]. 

The present contribution focuses on the calibration of a 
model predicting the reflection spectra of color halftones 
printed on a specific printer. The considered spectral 
reflection prediction model used is the Yule-Nielsen spectral 
Neugebauer model extended to account for ink spreading 
[4][5]. Classical model calibration is performed by measuring 
the reflection spectra of specially printed calibration patches 
and by deducing the ink spreading functions mapping nominal 
ink surface coverages to effective ink surface coverages. 
These special calibration patches comprise all solid colorants 
(paper, solid inks and solid ink superpositions) and single ink 
halftones superposed with all combinations of solid ink 
superpositions. However, these specially conceived 
calibration patches take valuable space on the printed product 
and must be removed. For example, on offset presses, the 
special calibration patches are placed in the margins of the 
printed pages and are cut off before assembling the final print 
product.  

By deducing the ink spreading curves from chosen image 
tiles located within printed color images, we eliminate the 
need of printing special halftone calibration patches. 
However, some image tiles may not be relevant for 
determining certain ink spreading curves. To prevent the 
calibration procedure from setting these ink spreading curves 
to artificially large values, we impose additional constraints on 
the calibration procedure which rely on a relevance metric. 
We compare the predictions of the new model calibrations to 
the predictions of the classical calibrations. Thanks to the new 
calibration, the model predicts not only image tiles similar to 
the calibration tiles, but also uniform patches spanning the 
entire printing gamut. Moreover, the new predictions are in 
some cases more accurate than classical predictions, 
suggesting that the patches used for classical calibrations may 
not be the most relevant patches for model calibration. 

Note that all the experiments have been performed on an 
inkjet printer, i.e. a device that provides a stable reproduction 
of colors across the entire page as well as from page to page. 
These assumptions are not valid for all reproduction devices. 
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For example, in offset printing, the printable area is divided 
into several inking zones perpendicular to the printing 
direction. The ink flow is specific to each zone and depends 
on the amount of ink used within that zone. Ink spreading may 
therefore vary from zone to zone. The study of zone-
dependent reproduction systems is out of the scope of the 
present paper. 

The remainder of this paper is organized as follows. 
Section II introduces the Yule-Nielsen modified Spectral 
Neugebauer model (YNSN). Section III details the ink 
spreading model as well as the characterization of the ink 
spreading curves. The extended Yule-Nielsen modified 
Spectral Neugebauer model (IS-YNSN), which incorporates 
the ink spreading model, is introduced in Section IV. 
Section V details the problems related to calibrating the ink 
spreading model using reflectance spectra acquired from 
printed color image tiles. A new model calibration method is 
proposed which relies on a metric evaluating the relevance of 
each ink spreading curve for a given set of color image tiles. 
In Section VI, we describe the selection of image tiles of a 
color as uniform as possible for the calibration of the ink 
spreading model and for the tests of the prediction accuracy. 
The experimental setup is described in Section VII. The 
experiments and the resulting calibrated ink spreading curves 
are described in Section VIII. We discuss the prediction 
accuracy of the different calibration approaches in Section IX. 
The conclusions are drawn in Section X.  

II. THE YULE-NIELSEN MODIFIED SPECTRAL NEUGEBAUER 
MODEL (YNSN) 

One of the first color prediction models is the Neugebauer 
model [6]. In its original form, it predicts the CIE-XYZ tri-
stimulus values of a color halftone patch as the sum of the tri-
stimulus values of their individual colorants weighted by their 
fractional area coverages ai. By considering the reflection 
spectra Ri of colorants instead of their respective tri-stimulus 
values, one obtains the spectral Neugebauer equations [7]. 
They predict the reflection spectrum of a printed color 
halftone patch as a function of the reflection spectra of its 
individual colorants (also called Neugebauer primaries): 

 ( ) ( )*i i
i

R a Rλ λ= ∑  (1) 

With k inks, there are 2k colorants: white, the k single ink 
colorants and all the different superpositions of solid inks. For 
example, the red colorant is the superposition of the magenta 

and yellow inks. When the ink layers are printed 
independently one from another, the fractional area coverages 
of the individual colorants are calculated from the surface 
coverages of the inks by the Demichel equations [2]. These 
equations are shown in Fig. 1 for the case of 2 inks, but can be 
extended to accommodate three or four inks (see Appendix B 
for the extension to 4 inks). 

Since the Neugebauer model neither takes explicitly into 
account the lateral propagation of light within the paper bulk 
nor the internal reflections (Fresnel reflections) at the paper-
air interface, its predictions are not accurate [8]. Yule and 
Nielsen [9] modeled the non-linear relationship between the 
reflectances of paper, single ink halftones, and the 
corresponding solid ink prints by a power function whose 
exponent n can be optimized according to the reflectances of a 
limited set of halftone patches. Viggiano [7] applied the Yule-
Nielsen relationship to the spectral Neugebauer equations, 
yielding the Yule-Nielsen modified Spectral Neugebauer 
model (YNSN): 

 ( ) ( )1/*
n

n
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i

R a Rλ λ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (2) 

Knowing the reflection spectra of the colorants Ri and the 
Yule-Nielsen n factor, it is possible to find the ink surface 
coverages that minimize a difference metric such as the sum 
of square differences between a given measured reflection 
spectrum and the reflection spectrum predicted by the YNSN 
model. Such fitted ink surface coverages are referred to as 
effective ink surface coverages and are usually larger than the 
intended nominal ink surface coverages. They yield a physical 
dot gain which is defined as the difference between the 
effective and corresponding nominal ink surface coverages. 

Physical dot gain depends on the printing process, the inks, 
the paper, and also on the ink superposition condition, i.e. the 
specific superposition of an ink halftone and solid inks. Most 
previous approaches rely on 1-D mappings which describe the 
effective surface coverage of a given ink as a non-linear 
function of the nominal coverage of this ink only. The 
resulting 1D mappings form the tone reproduction curves  
[1][10]. 

The YNSN model has been used by many researchers for 
the characterization of printing systems [7]-[16]. It therefore 
plays a significant role in building color management systems. 

III. THE INK SPREADING MODEL 
In contrast to most ink spreading models proposed in the 

literature, we use an ink spreading model that takes all 
possible ink superposition conditions into consideration. The 
amount of dot gain of an ink depends on whether the ink 
halftone is printed alone on paper or in superposition with one 
or more other inks [4][17]. 

The proposed ink spreading model relies on ink spreading 
curves. An ink spreading curve maps the nominal surface 
coverages of ink halftones into their effective surface 
coverages, i.e. to the surfaces that the ink halftones effectively Fig. 1.  Demichel equations giving the surface coverages of the four colorants

created by the superposition of 2 inks of surface coverages c and m. 
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cover after being printed. There is one ink spreading curve for 
each ink halftone in each superposition condition. For 
example, a cyan halftone may be printed alone, c; superposed 
with solid magenta, c/m; with solid yellow, c/y; with solid 
black, c/k; with solid magenta and solid yellow, c/my; with 
solid magenta and solid black, c/mk; with solid yellow and 
solid black, c/yk; and with solid magenta, yellow and black, 
c/myk. There are 8 different ink spreading curves for each ink, 
yielding a total of 32 ink spreading curves. However, since 
any halftone superposed with solid black yields a reflection 
spectrum very close to the reflection spectrum of solid black, 
ink spreading curves where one ink halftone is superposed 
with solid black are discarded [5]. Table I lists all the 
considered ink spreading curves. 

Table I.  List of the considered ink spreading curve indicia. 
Cyan Magenta Yellow Black 

c m y k k/y 
c/m m/c y/c k/c k/cy 
c/y m/y y/m k/m k/my 

c/my m/cy y/cm k/cm k/cmy 

In previous works of the present authors [4][5][17][18], 
each ink spreading curve is calibrated using one or more so-
called calibration patches, e.g. a halftone at 50% nominal 
surface coverage. Each halftone calibration patch determines 
the effective surface coverage obtained when asking the 
printer to print the halftone at its nominal surface coverage. It 
determines one point of the ink spreading curve. Such 
effective surface coverages are fitted by minimizing a 
difference metric such as the sum of square differences 
between the measured and predicted spectral reflectance 
components of the corresponding calibration patches. The ink 
spreading curves are then linearly interpolated between the 
calibrated effective surface coverages. In order to avoid the 
ambiguity between chromatic black and pure black [18], the 
spectral measurements span both the visible wavelength range 
(380-730 nm) and the near infrared (NIR) wavelength range 
(730-850 nm). The NIR wavelength range enables 
distinguishing the light absorbing pigment-based black ink 
from the superposition of CMY inks, which are dye-based and 
do not absorb light in the NIR wavelength range. 

In the present contribution, rather than using linear 
interpolation, we use the following analytical description for 
the ink spreading curves: 

 
/ / /

2
/ /

( , ) (4 2)(1 )

(2 4 ) (4 1)
i jk i i jk i i jk i i

i i jk i i jk

f u v u v u u

u v u v

= + − −

= − + −
 (3) 

where ui is the nominal surface coverage of ink i, fi/jk is the ink 
spreading curve of ink i superposed with solid inks j and k, 
and vi/jk is the effective surface coverage at 50% nominal 
surface coverage, also called mid-point of the ink spreading 
curve. Equation (3) represents a parabola that passes through 
the three points: (0,0), (0.5, vi/jk), and (1,1). An ink spreading 
curve is therefore completely specified by the halftone at 50% 
nominal surface coverage. Moreover, it is a monotonically 
increasing function if vi/jk ∈ [0.25 0.75]. 

In order to obtain the effective surface coverages of the ink 
dots forming a color halftone, we weight the contributions of 
the different ink spreading curves as follows. The effective 
coverage of ink dot i superposed with solid inks j and k is the 
weighted average of the ink spreading functions fi, fi/j, fi/k, and 
fi/jk. The weights are computed according to the surface 
coverages of the underlying colorants formed by inks j and k. 
In (4) for example, (1-m’)(1-y’), m’(1-y’), (1-m’) y’, and m’y’ 
express, respectively, the surface coverage of colorants white, 
magenta, yellow, and red superposed with the cyan halftone 
layer. Since a cyan, magenta, or yellow halftone over solid 
black is assumed to yield black, the superposition conditions 
corresponding to an ink halftone over solid black have been 
discarded. We have therefore 4 superposition conditions for 
the cyan, magenta and yellow ink halftones and 8 
superposition conditions for the black ink halftone. 

We solve (4) iteratively, starting by assigning the nominal 
ink halftone coverages (c, m, y, k) to the effective ink halftone 
coverages (c’, m’, y’, k’) [5]. Four to five iterations ensure 
sufficient convergence to determine the effective ink halftone 
surface coverages.  
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IV. THE INK SPREADING ENHANCED YULE-NIELSEN 
MODIFIED SPECTRAL NEUGEBAUER MODEL (IS-YNSN) 

The spectral reflection prediction model used in the present 
contribution is the Yule-Nielsen modified Spectral 
Neugebauer model enhanced with the ink spreading model 
(IS-YNSN) presented in Section III [4].  

Spectral predictions using the IS-YNSN model are 
performed according to Fig. 2. For given nominal ink surface 
coverages c, m, y, k, we obtain effective surface coverages c’, 
m’, y’, k’ by weighting the ink spreading curves fc(c) to 
fk/cmy(k) according to the surface coverages of the colorants 
contributing to that color halftone [Equations (4)]. With the 
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Demichel equations (Appendix B), we then compute the 
corresponding effective surface coverages of the colorants 
forming that color halftone. With these effective colorant 
coverages, the YNSN model calculates the predicted 
reflection spectrum. 

V. CALIBRATION OF THE INK SPREADING MODEL USING 
REFLECTION SPECTRA ACQUIRED WITHIN PRINTED COLOR 

IMAGES 
The goal of the present contribution is to calibrate the ink 

spreading curves used by the IS-YNSN spectral prediction 
model, i.e. to set the mid-points of the 20 ink spreading curves 
for CMYK prints using a set of reflection spectra acquired 
from tiles located within printed color images, further referred 
to as image tiles, instead of the reflection spectra of specific 
uniform calibration patches. The set of image tiles used for 
calibration is further referred to as the image calibration set, 
or image calibration tiles. The reflection spectra of specially 
conceived uniform calibration patches composed of one ink 
halftone superposed with paper or superposed with other solid 
inks is further referred to as the classical calibration set, or 
classical calibration patches. The reflection spectra of the 
solid colorants (Neugebauer primaries) and the Yule-Nielsen 
n factor are assumed to be known for the target printing 
process. 

The problem with image tiles is that not all superpositions 
of inks and halftones are necessarily present. For example, if 
an image does not contain any cyan, it is not possible to 
calibrate the ink spreading curves of the cyan ink. When the 
contribution of an ink to a given image calibration tile is 
weak, the minimization algorithm tends to induce large 
variations of the values of the corresponding ink spreading 
curves in order to influence the difference metric. The 
consequence is that the ink spreading curves are set to 
artificially large values that do not reflect the actual dot gain. 
Such calibrations may be able to accurately predict image tiles 
similar to the calibration set, but fail to correctly predict image 
tiles of other colors [19]. 

To avoid this problem, we introduce weights, one for each 
ink spreading curve. A weight evaluates whether its ink 
spreading curve is relevant for predicting the image tiles of the 
calibration set or not. If modifying a given ink spreading 
curve changes significantly some of the predicted reflection 
spectra, its associated weight should be close to 1. If on the 
contrary the predicted spectra do not significantly change, the 
weight should be close to 0. The weights are used to define 
upper and lower bounds for the mid-points of the ink 
spreading curves. As seen in Section III, the mid-points must 
be in the interval [0.25 0.75] in order to obtain monotonically 
increasing ink spreading curves. We modify the definition of 
the bounds for a given ink spreading curve as follows: 
 / / /0.5 0.25 0.5 0.25i jk i jk i jkw v w− ⋅ ≤ ≤ + ⋅  (5) 

where wi/jk represents the weight of ink halftone i superposed 
with solid inks j and k. When the weight is equal to 1, the 
interval for the mid-point is not reduced. When the weight is 
equal to 0, i.e. when modifying the ink spreading curve does 
not modify the predicted spectra, the interval is reduced to a 
single mid-point, i.e. 0.5. When an ink spreading curve 
contributes only slightly to the calibration set, its weight is 
low and the interval for its mid-point is reduced. This prevents 
the fitting procedure from inducing large mid-point variations 
when minimizing the metric expressing the distance between 
predicted and measured reflection spectra. 

Given a tile p of the image calibration set, let ui,p be the 
nominal coverage and ui,p’(vi, vi/j, vi/k, vi/jk) be the effective 
coverage of ink i within tile p. The weight associated to ink 
spreading curve fi/jk of halftone ink i superposed with solid 
inks j and k is defined as the following gradient: 

 ,
/ ,

/

'i p
i jk p

i jk

u
w

v
∂

=
∂

 (6) 

Since ink spreading curve fi/jk is fully determined by its mid-
point vi/jk, the gradient in (6) expresses the influence of ink 
spreading curve fi/jk on the resulting effective surface coverage 
ui,p’ of ink i within tile p. 

 
Fig. 2.  The ink spreading enhanced Yule-Nielsen modified Spectral Neugebauer model with nominal ink surface coverages c, m, y, and k; ink spreading
curves fi/jk of ink i superposed with solid inks j and k; effective ink surface coverages c′, m′, y′, and k′; and effective colorant surface coverages aw to acmyk. 
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Since a calibration set is composed of several tiles, we 
define the weight associated to ink spreading curve fi/jk for the 
full image calibration set as the maximum of the weights of all 
the tiles: 

 ,
/ / ,

/

'
max[ ] max i p

i jk i jk pp p
i jk

u
w w

v
∂

= =
∂

 (7) 

We take the maximum of the derivatives among all the tiles 
because the tiles with a high weight have the largest influence 
on the metric minimized by the ink spreading curve mid-point 
fitting algorithm, i.e. when there is at least one high weight 
tile and low weight tiles, the ink spreading curve mid-point is 
mainly fitted by the high weight tile. 

Let us show that the weights defined according to (7) are 
comprised between 0 and 1. We calculate the derivative of an 
ink spreading curve with respect to its mid-point using (3): 

 /
/

/ /

[ (4 2)(1 ) ] 4(1 )i jk
i i jk i i i i

i jk i jk

f
u v u u u u

v v
∂ ∂

= + − − = −
∂ ∂

 (8) 

Equation (8) depends neither on the superposition condition 
nor on the mid-point value, but only on the nominal surface 
coverage of the considered ink. Since ui is a nominal surface 
coverage comprised between 0 and 1, the derivative reaches a 
maximum of 1 when ui = 0.5 and a minimum of 0 when ui = 0 
or ui = 1.  

Let us now calculate the derivative of the effective surface 
coverages with respect to the mid-point of a given ink 
spreading curve. This derivative is 0 for all effective 
coverages except for the effective coverage affected by the 
chosen ink spreading curve. Let us for example consider the 
cyan ink. The effective coverage of cyan c’ is influenced by 
four ink spreading curves: fc, fc/m, fc/y, and fc/my. With (4) and 
(8), the derivatives of the cyan effective coverage with respect 
to vc, vc/m, vc/y, and vc/my are: 

 ( )' (1 ')(1 ') (1 ')(1 ') 4 (1 )c

c c

f cc m y m y c c
v v

∂∂
= − − = − − ⋅ −

∂ ∂
 (9) 
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( )' ' ' ' ' 4 (1 )c my
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v v

∂∂
= = ⋅ −

∂ ∂
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These derivatives represent the weights wc, wc/m, wc/y, and 
wc/my for tile p given by its nominal surface coverages c, m, y, 
k. The nominal coverages are known from prepress image data 
and the effective coverages are obtained with the YNSN 
model, i.e. the effective coverages are found by minimizing 
the sum of square differences between the measured reflection 
spectra components of the considered image tile and the ones 
predicted by the YNSN model [18]. Eqs. (9)-(12) are therefore 
fully determined. Moreover, all the variables are either 
nominal or effective surface coverages which are comprised 

between 0 and 1. As shown above, 4c(1-c) is also comprised 
between 0 and 1. Equations (9)-(12) are therefore also 
comprised between 0 and 1. This demonstrates that the 
weights defined in (7) are indeed comprised between 0 and 1. 

It is also interesting to observe the nominal surface 
coverages when a weight reaches its maximum, i.e. when it is 
equal to 1. If we consider the weight ∂c’/∂vc associated with 
the ink spreading curve fc(c) of cyan halftones printed on 
paper, expressed by (9), it reaches its maximum when m’ = y’ 
= 0 and when c = 0.5. As m’ = 0 implies m = 0, a patch 
maximizes the weight of the cyan fc(c) ink spreading curve 
only when its nominal surface coverages are c = 0.5, m = 0 
and y = 0. These correspond to the nominal surface coverages 
of the patch used to calibrate the cyan ink spreading curve in 
the classical calibration set. In the case of cyan superposed 
with solid magenta, computed by (10), the maximal weight is 
obtained with c = 0.5, m = 1 and y = 0. Similar statements are 
valid for the other two superposition conditions. Therefore, 
the classical calibration set maximizes the weights of all the 
ink spreading curves. Hence, when using the classical 
calibration set, the calibration of the ink spreading model is 
not constrained, i.e. the weights are always 1. 

Let us now present the complete calibration procedure. We 
propose a least-squares approach to calibrate the ink spreading 
curves given the reflection spectra of an image calibration set. 
First, the effective surface coverages (c’, m’, y’, k’) of each 
image calibration tile are fitted by using the YNSN model (see 
paragraph following (12)). Then, the weights associated to the 
ink spreading curves are computed using (7), with examples 
of the weights of a single tile given in (9) to (12). Each weight 
wi/jk defines the bounds for its associated ink spreading curve 
mid-point vi/jk. Finally, the mid-points of the ink spreading 
curves are determined using a constrained least-squares 
procedure where the constraints are the bounds of the different 
mid-points. The constrained least-squares equations are 
derived from (4). There is one least-squares equation per 
effective ink surface coverage. For example, let us take the 
equation computing the cyan effective surface coverage. 
Substituting (3) in (4) yields: 
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Let ( )( ) ( ) ( )1 ' 1 ' ' 1 ' 1 ' ' ' 'm y m y m y m yξ = − − − −⎡ ⎤⎣ ⎦ . 

Equation (13) is rewritten in matrix form: 
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/

/

2(1 )
2(1 )

' 4(1 )
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c
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c y

c my
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 (14) 

Since the sum of all terms of ξ is one, (14) becomes: 

 / / /' 2(1 ) 4(1 ) c c m c y c my

T
c c c c c c v v v vξ ⎡ ⎤+ − − = − ⎣ ⎦  (15) 

Equation (15) has the form bp = Apx where Ap is the row 
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vector 4(1-c)cξ and x the vector with the unknown ink 
spreading mid-point values. Knowing both nominal and 
effective surface coverages, each tile of the calibration set 
forms one line of matrix A and one element of vector b. 
Considering all the calibration tiles, we obtain the following 
constrained least-squares problem: 

/ /
min

/ /

0.5 0.25
arg min( ) such that

0.5 0.25
i jk i jk

x i jk i jk

v w
x b Ax v w

≤ + ⋅⎧⎪= − ⎨ ≥ − ⋅⎪⎩
 (16) 

where xmin is the vector containing the calibrated mid-points of 
the ink spreading curves. Such problems are readily solved 
using existing algorithms [20][21], possibly implemented by 
computer programs such as Matlab. Note that it is also 
possible to perform the above calibration procedure using a 
calibration set composed of a mixture of classical calibration 
patches and image tiles, or even composed of classical 
calibration patches only. 

VI. SELECTION OF IMAGE CALIBRATION AND TEST TILES 
Before verifying the accuracy of the proposed calibration 

on image tiles, we need to select tiles as uniform as possible 
from the available images, well distributed across the color 
space. For each image, we form two sets of tiles. The first set 
contains calibration tiles and the second set test tiles. 

The first step consists in scanning each image horizontally 
and vertically in 2 mm steps. Successive 5 mm large square 
tiles form the candidate tiles from which calibration and test 
tiles are selected. Each tile is associated a uniformity value. 
We define the uniformity of a given color area as the RMS of 
the standard deviation of the CIELAB pixel values located 
within the considered image tile: 

 ( )2 2 2 / 3( *) ( *) ( *)s L a bσ σ σ= + +  (17) 

The calibration set associated with a given image contains 
approximately 50 of the most uniform tiles, i.e. those with the 
smallest s value, with the additional condition that each tile 
has no other tile within ΔEab < 2 and no more than one other 
tile within ΔEab < 6. The test set associated with that image 
contains the most uniform 30 tiles that are not part of the 
calibration set, and with the additional condition that each tile 
has no other tile within ΔEab < 6. 

We use the same images and the same image tile selections 
presented in our previous contribution [19], where the ink 
spreading curves were fitted without considering their 
relevance for a given image calibration set, i.e. without 
introducing constraints on the ink spreading curve mid-points. 

VII. SETUP OF THE EXPERIMENTS 
The experiments are performed on a Canon Pixma Pro 9500 

printer, with color images printed on Canon MP-101 matte 
paper with classical clustered dot halftoning, at a resolution of 
600 dpi and a screen frequency of 100 lpi. The black ink is 
pigment based and absorbs in the near infrared wavelength 
range (cartridge PGI-9MBK). Reflectance spectra are 
measured with a Datacolor MF-45 spectrophotometer 

(geometry: 45od:0o, i.e. 45° directed incident light and capture 
at 0°) at 10 nm intervals between 380 nm and 850 nm.  

The reflectances of the printed colorants (Neugebauer 
primaries) have been measured. The Yule-Nielsen n factor is 
set to a suitable value according to the classical calibration, 
7.8 in the current case. Note that both the reflectances of the 
colorants and the Yule-Nielsen n factor can be tabulated for 
each combination of inks and paper. 

The “fruits” and “textile” images are printed using 3 inks 
only (CMY) and using 4 inks (CMYK). In each case, 4 
different sets of tiles are measured: the calibration and test sets 
of the “fruits” image, and the calibration and test sets of the 
“textile” image. 

VIII. CALIBRATION OF THE INK SPREADING CURVES WITH 
SPECTRA MEASURED ON THE SELECTED IMAGE TILES 

The algorithm presented in Section V aims at calibrating the 
ink spreading model, i.e. at setting the ink spreading curves as 
accurately as possible, without printing specially conceived 
halftone patches. According to Equation (4), there are 12 ink 
spreading curves to fit for the CMY prints, and 20 ink 
spreading curves for the CMYK prints. To each ink spreading 
curve fi/jk mapping nominal to effective surface coverages in a 
given superposition condition we associate a dot gain curve 
gi/jk with the dot gain being defined as the effective surface 
coverage minus the nominal surface coverage: 
 / / / /( ) ( , ) (4 2)(1 )i jk i i jk i i jk i i jk i ig u f u v u v u u= − = − −  (18) 

In the same way, the bounds associated with dot gain curve 
gi/jk are defined as follows based on (5) and (18): 
 / / / /0.25 (0.5) 0.5 0.25i jk i jk i jk i jkw g v w⋅ ≤ = − ≤ ⋅  (19) 

In both CMY and CMYK cases, we consider five different 
calibrations. The first case, where all the ink spreading curves 
are arbitrarily set to 10% dot gain, is referred to as the no 
calibration case. The second calibration is called the minimal 
classical calibration and is calibrated using a single uniform 
patch per ink spreading curve. This single patch yields the 
effective surface coverage at 50% nominal surface coverage 
and is referred to as the 50% patch. For example, the 50% 
patch of the fc/m ink spreading curve is 50% cyan superposed 
with solid magenta. Therefore, the minimal classical 
calibration requires 12 calibration patches for CMY prints, 
and 20 calibration patches for CMYK prints. The third 
calibration, referred to as the extended classical calibration, 
includes the 25%, 50% and 75% uniform patches for the 
calibration of each ink spreading curve. Such a calibration 
requires 36 patches for CMY prints and 60 patches for CMYK 
prints. The fourth and fifth calibrations use the “fruits” image 
calibration set and the “textile” image calibration set, 
respectively. These last two calibrations are also referred to as 
the image calibrations. 

Fig. 3 compares no calibration, minimal classical 
calibration and extended classical calibration. The cyan and 
magenta dot gain curves are similar for the minimal and 
extended classical calibrations. However, the yellow and 
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black dot gain curves show significant variations. This 
indicates that the 50% patches are enough to characterize the 
cyan and magenta dot gain curves, but not the yellow and 
black dot gain curves. 

Fig. 4 compares the extended classical, the fruits and the 
textile calibrations in the CMYK case. The figure shows that 
half the dot gain curves of both image calibrations agree well 
with the extended classical calibration. There are also a few 
cases where the dot gain curves of the image calibrations 
reach their respective bounds computed using (19), especially 
the black ink spreading curves. However, this occurs only 
when the bounds are tight. When the bounds are loose, the 
fitted ink spreading curves are located close to the extended 
classical calibration and away from the bounds. This is the 
expected behavior and confirms that the bounds of a given ink 
spreading curve are loose only when the calibration set 
contains at least one tile highly relevant for that ink spreading 
curve. 

The effect of the constraints can be seen in Fig. 5. When the 
constraints are not used, five black and one yellow dot gain 
curves are set outside the defined bounds, with three of them 
even reaching the original bound of ±25%. These dot gain 
curves are also the ones with the strictest bounds, meaning 
that the calibration set does not contain tiles that are relevant 
enough to calibrate these dot gain curves. The unconstrained 
calibration procedure sets the ink spreading curves to extreme 
values in order to have a small gain of accuracy. This gain 
improves only the accuracy of the image calibration set. When 
predicting another set of tiles, all gains are lost and the 
predictions are poor. 

IX. PREDICTION ACCURACY 
The calibrations performed in Section VIII are tested by 

comparing the difference between predicted and measured 
reflectances for different test sets. In the CMY case, we 
predict the CMY test sets of the “fruits” and “textile” images 
and a set composed of 125 CMY uniform patches whose 
nominal surface coverages are all the CMY combinations at 
0%, 25%, 50%, 75%, or 100%. In the CMYK case, we predict 
the CMYK test sets of the “fruits” and “textile” images, a set 
composed of 625 CMYK patches whose nominal surface 
coverages are all the CMYK combinations at 0%, 25%, 50%, 
75%, or 100%, and a fourth set, further referred to as the 125 
UCR set, composed of 125 CMYK patches corresponding to 
the 125 CMY set, but with nominal surface coverages 
obtained by converting the original CMY coverages to CMYK 
using a standard under color removal algorithm. 

The reflection spectrum of each image tile or uniform patch 
of the selected sets is predicted and then compared to the 
corresponding measured reflection spectrum using the ΔE94 
metric [22]. For each measurement set, we compute the 
following statistics: average, 95 percentile and maximum ΔE94 
between measured and predicted spectra. The results are 
shown in the tables located in Appendix A. Table II shows the 
results for the CMY tests and Table III shows the results for 
the CMYK tests. In Figs. 6a-6c, the prediction accuracy is 
defined as the inverse of the average ΔE94. 

Fig. 3.  CMYK dot gain curves of the minimal classical calibration, extended 
classical calibration and no calibration.

Fig. 4.  CMYK dot gain curves of the fruits, textile and extended classical 
calibrations. The upper bounds of the fruits (FB) and textile (TB) dot gain 
curves are indicated as horizontal lines or with the values {FB, TB} 
respectively.
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Fig. 6a shows the accuracy of “no calibration”, minimal 
classical calibration and extended classical calibration for one 
CMY and two CMYK test sets. As expected the “no 
calibration” case yields the worst results and the extended 
classical calibration yields significantly better results than the 
minimal classical calibration, especially for the CMYK test 
sets, outlining the fact that, for the considered PixmaPro 9500 
ink jet printer, the 25% and 75% surface coverage patches are 
important for classical calibrations.  

Figs. 6b-6c show the accuracy difference between the 
extended classical, fruits, and textile calibrations, as well as 
the fruits calibrations without constraints. These calibrations 
are compared on the CMY fruits, CMY textile, and 125 CMY 
test sets in Fig. 6b and on the CMYK fruits, CMYK textile, 
625 CMYK, and 125 UCR test sets in Fig. 6c. In Fig. 6b, the 
results are as expected: The fruits calibrations have the best 
accuracy on the fruits test set, the textile calibration on the 
textile test set, and the extended classical calibration on the 
125 CMY test. Moreover, the constrained fruits calibration 
has a significantly higher prediction accuracy on the 125 
CMY test set than the unconstrained fruits calibration. 

In Fig. 6c, the extended classical and images calibrations, 
both with and without constraints, accurately predict both the 
CMYK textile and fruits test sets. The textile calibration is 
particularly accurate on the textile test set. The fact that the 
fruits calibration does not display such an accuracy on the 
fruits test set is due to the fact that the fruits test set is more 
different from the fruits calibration set (average distance 
between each test tile and its nearest calibration tile is 
ΔE94 = 2.94) than the textile test set from the textile calibration 
set (average distance ΔE94 = 1.60). The constraints are 
extremely important when predicting both the 625 CMYK set 
and the 125 UCR set. Removing the constraints leads to a 
sharp drop of accuracy. This indicates that the constraints 
considerably improve the accuracy of a calibration when 
predicting the reflection spectra of a set of patches or tiles 
significantly different from the calibration tiles. 

Surprisingly, the image calibrations with constraints have 
predictions as accurate as the extended classical calibration or 
even better predictions in the case of the 625 CMYK or 125 
UCR test sets. This indicates that calibrating the ink spreading 
model based on reflection spectra of image halftones is a valid 
approach. Whereas the classical calibration uses artificially 
crafted patches—there are at the macroscopic level few to no 
occurrences of superpositions of one halftone and solid inks in 
a conventional image—relying on tiles directly taken from 

 
Fig. 6.  Comparison of the accuracy of (a) “no calibration”, minimal classical calibration and extended classical calibration on the 625 CMYK, 125 UCR and 125 
CMY test sets (b) extended classical, constrained textile, constrained fruits, and unconstrained fruits calibrations on the CMY fruits and textile test tiles and on the 
125 CMY test set (c) extended classical, constrained textile, constrained fruits, and unconstrained fruits calibrations on the CMYK fruits and textile test tiles, and 
on the 625 CMYK and 125 UCR test sets. 

Fig. 5.  CMYK dot gain curves of the constrained fruits calibration, 
unconstrained fruits calibration, and extended classical calibration. The 
bounds of the constrained fruits calibration are given as {FB}. 
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real images can achieve higher accuracy because these image 
tiles better represent the normal operational conditions of the 
reproduction device.  

X. CONCLUSION 
When correctly calibrated, today’s spectral reflection 

prediction models are able to accurately predict the reflection 
spectra of printed color image tiles. However, the required 
calibration procedures remain difficult and cumbersome 
because they require printing specially conceived uniform 
calibration patches which use space and need to be removed 
from the final product.  

The present contribution aims at calibrating the ink 
spreading model using spectral data acquired within printed 
images. Image tiles as uniform as possible are selected within 
printed images and the ink spreading model is calibrated with 
the measurements of the selected calibration image tiles. 

Depending on the available calibration image tiles, certain 
ink spreading curves cannot be reliably calibrated because 
these ink spreading curves are not relevant in the prediction of 
the calibration tiles. We therefore establish a simple relevance 
metric which relies on the nominal surface coverages of the 
considered halftone and on the effective surface coverages of 
the superposed other inks. Relying on this metric, we create 
bounds for the mid-points of the fitted ink spreading curves. 
When the relevance is low, the effective surface coverages 
remain close to the nominal surface coverages. This metric 
reaches its maximum relevance at 50% halftone surface 
coverage on top of solid inks, which corresponds to the 
classical calibration patches. Therefore, the classical 
calibration is a subset of the proposed constrained image tile 
calibration approach. 

The performed experiments demonstrate that the new 
constraint-based calibration procedure is reliable when 
predicting patches significantly different from the calibration 
patches. Moreover, the predictions of patches similar to the 
calibration patches remain as accurate with the added 
constraints as without. Finally, the image calibration can be 
more accurate than a classical calibration when predicting test 
sets composed of uniform patches distributed over the entire 
printing gamut of the reproduction device, suggesting that the 
classical calibration patches, despite incorporating the highest 
relevant patches formed by halftones superposed with solid 
inks, are not necessarily the most adequate patches to calibrate 
the ink spreading model. 

Some redundancy remains between the Yule-Nielsen n 
factor and the ink spreading model. Characterizing how the 
ink spreading curves are modified when the n factor is 
modified may lead to the definition of additional constraints 
enabling one to further reduce the degrees of freedom of the 
ink spreading model and to simplify the calibration procedure. 
Further topics of interest comprise the selection of optimal 
calibration tiles from a given set of candidate color image tiles 
and the use of non-uniform image tiles for the calibration 
procedure. 

APPENDIX A 
Table II. Prediction accuracy for different CMY test sets. The statistics show 
the average, 95 percentile and maximum ΔE94. 

 
Table III. Prediction accuracy for different CMYK test sets. The statistics 
show the average, 95 percentile and maximum ΔE94.  
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APPENDIX B 
Demichel equations for 4 inks, where c, m, y, and k are the 

ink surface coverages of the cyan, magenta, yellow, and black 
inks, respectively; and aw, ai, aij, and aijk are the fractional area 
covered by paper, single ink i, the superposition of inks i and 
j, and the superposition of inks i, j and k, respectively. 

 

(1 ) (1 ) (1 ) (1 )
(1 ) (1 ) (1 )

(1 ) (1 ) (1 )
(1 ) (1 )

(1 ) (1 ) (1 )
(1 ) (1 )
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(1 )

(1 ) (1 ) (1 )
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