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toning speed is affected by the huge amount of data which needs to be processed before sending 
the page map to a high resolution printer. The task of the proposed dithering coprocessor architec­
ture is to increase the speed of the imaging process. 

A rather analogous architecture to the prototype presented here was developed by Adobe. Their 
coprocessor operates in the PostScript language environment and acts as a display-list rendering 
coprocessor [4]. It converts a stream of drawing commands into an array of bits at a given resolu­
tion. Aside from other image rendering tasks such as shape filling, it also speeds up halftoning. 
The architecture presented here is restricted to halftoning and is not bound to the PostScript page 
description language environment. It directly produces a bitmapped image from a grayscale image 
and a given dither tile. 

2: The dither threshold array and the dithering algorithm 

In order to emulate halftones in a bitmapped image, the screen cells are arranged in patterns which 
are repeated periodically to cover the dither plane. Dithering rules [5] govern the visual appear­
ance of the halftoned image. The human eye and brain integrate the tiny features of each pattern 
into an average grayscale tone or color. 
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Figure '1 - The intensity level of the pixel in 
the original image is below the threshold and 
the corresponding output bitmap pixel is 
turned to be black. 
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Figure 2 - The vectors outside the bor­
der of the dither tile point to threshold 
locations inside the dither threshold 
array (for example v6 points to cell 5 and 
v6 points to cell15). 

The halftoning process which is presented here is based on a regular grid and is known as ordered 
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dithering. In the case of ordered dithering, the screen dot grows within a tile of limited size. A 
dither threshold array is associated to this tile. Each cell within the tile is assigned a threshold 
value: the intensity at which it will be turned on. 

The halftoning process consists in scanning the output bitmap with a chosen dither threshold 
array and, for each output pixel, finding its corresponding locations both in the dither array and in 
the grayscale input image, comparing the two values, and writing the appropriate bitmapped pixel 
to the output image (Figure 1). 

At runtime, the threshold values are taken from a dither threshold array. This array is divided 
into rows and columns which are scanned in the same way as the binary output plane. When mov­
ing from one pixel to its neighbour pixel in the output bitmap, we either move to the next threshold 
value on the right, or we jump from a position which is outside the tile to the appropriate position 
inside the dither tile. For this purpose displacement vectors are added to locations of the dither 
array positioned at the border of the tile. These vectors point to the position containing the next 
threshold value inside the dither array when moving out of the tile (Figure 2). The data structure 
for holding a screen tile forces the halftoning algorithm to cycle in the same tile during the halfton­
ing process. 

Let us recall that Holladay [ 6] proposed a rectangular representation for parallelogram shaped 
dither tiles. We have used a description for the dither threshold array which offers an economical 
solution for storing large dither tiles while providing an effective way of generating the output bit­
map. It can be shown that Holladay's representation is equivalent to the description given here. 

A grayscale pixel in the source image plane can be imagined as covering one or more bitmapped 
pixels of the binary output plane. Mapping the grayscale pixels to the corresponding binary pixels 
consists in finding the real number coordinates of the boundaries between grayscale pixels in the 
destination bitmap. All binary pixels whose pixel centers lie within the boundaries of a source 
pixel will be dithered with reference to this source pixel. 
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Figure 3 - Example of the incremental method for mapping destination pixels 
to source pixels: d = 19, s = 11. 
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An incremental method is used for determining the grayscale pixel boundaries in the destination 
bitmap which is based on a Bresenham-like algorithm [7]. Finding the boundaries of gray pixels in 
the destination bitmap can be thought of as the more familiar problem of tracing a line in a raster 
display where the X axis represents the binary pixel locations in the destination image and the Y 
axis the grayscale pixel locations in the source image. The ideal mapping between binary pixels 
and grayscale pixels is represented by a straight line segment. When tracing a line on a discrete 
raster device, the computed grayscale pixel boundaries ate either below, above or exactly on the 
drawn line. As we move from one destination pixel to the next one, we need to check if the next 
destination pixel corresponds to the current gray pixel or to the next gray pixel in the source image. 
In that case we have to read its intensity value, before comparing it with the current threshold 
value. 

Supposing that the scaling factor (DestinationlmageSize/SourcelmageSize) is rational and can 
be reduced to an irreducible fraction d/s, let us define r = d-s. The iterative algorithm for comput­
ing the error term EN is the following: 

EN+ I= EN+ s, if EN< 0, 
EN+ I= EN- r, if EN~ 0. 

Initially Eo is equal to -r/2. When moving from one destination pixel to the next one, EN is either 
incremented by s or decremented by rand the sign of EN is checked. If EN is strictly negative (EN< 

0), the same gray pixel is used. On the other hand, if EN becomes positive or equal to zero, the next 
gray pixel's value in the source image is fetched from memory. 

3: Hardware superscalar screening 

Software-based screening typically requires that five to ten instructions be executed for each ren­
dered device pixel. Even with carefully hand-optimized assembly code, the best that can be 
achieved with software-based solutions is five CPU instructions per rendered device pixel [8]. On 
RISC platforms, due to the smaller instruction set, the number of CPU instructions may rise to 
more than ten instructions per pixel. Our aim is to decrease the number of cycles which are 
required to produce one bitmapped output pixel. 

FOR EACH scanline in the destination image DO 
- initialize the pipeline 
- make a copy of the start of scanline pointer (CopyThresholdArrayPtr) 

FOR EACH COUPLE OF binary pixels in the current scan line DO 

- read the information at the current position (ThresholdArrayPtr) in the threshold array 
- if the information corresponds to a displacement vector, move to the position pointed at 
by the vector 

-retrieve the GRAY LEVELS of the two corresponding pixels in the input image 
-compare these two GRAY LEVELS with the two THRESHOLD VALUES 
- generate the two appropriate output bits 
-write the output to the binary output image 

END FOR 

- update ThresholdArrayPtr to the position just below CopyThresholdArrayPtr 

END FOR 

Figure 4 - Pipelined tasks performed by the hardware architecture. 
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The basic coprocessor architecture performs two comparisons in parallel and simultaneously gen­
erates two bitmapped output pixels. 

Reading a pair of threshold values and reading tbe grayscale pixels from a source scanline 
buffer can be done simultaneously (Figure 4). Once these values are known, they are compared, 
and the appropriate output pixels are generated. 
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Figure 5 - Pipelined accesses to memo!)' and comparisons. 
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The third read cycle in the 
pipeline is delayed be­
cause a displacement vec­
tor was read. 

In the worst case, tbe time taken by one iteration of the inner loop in tbe algorithm is two complete 
cycles: one cycle for reading the data from memory, comparing two gray levels with two thresh­
olds and writing the output bits. One additional cycle may be required to read the threshold values 
if the value which has just been read corresponds to a displacement vector. By extending the mech­
anism described here, we could carry out multiple comparisons, such as four or eight comparisons 
simultaneously. 

4: The operating environment 

To synchronize the coprocessor with the 
host microprocessor and with the output 
device (the imaging engine), incoming 
and outgoing data is buffered in FIFOs 
(Figure 6). 

The coprocessor works in parallel 
witb a host microprocessor from which 
it receives the grayscale input image and 
a description of the dither matrix. 

The current architecture requires an 
external dual-port memory of 2048 32-
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bit words for storing parts of the input Figure 6 • General architecture. 
image waiting to be processed. An exter-
nal 8-bit wide FIFO is necessary for buffering the output data. The halftoning coprocessor inter­
acts with the output device by signals indicating when tbe output buffer is half-full. 

5: The proposed hardware architecture 

Before starting the halftoning process the host microprocessor stores the threshold array descrip­
tion in an external static memory. An 8-bit wide control register interfaces the coprocessor with the 
program running on the host microprocessor. The output image size (ImDstW, ImDstH) and a few 
other constants are sent to the coprocessor at initialization time. The source scanline buffer is a 
dual-port memory. This dual-port memory allows the host microprocessor to fill it with image data 
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without interrupting the work of the coprocessor. 
At runtime, the coprocessor generates two binary output pixels in parallel by comparing a cou­

ple (GrayH, GrayL) of gray pixels from the source image with the current threshold values 
(ThresholdH, ThresholdL)· A Threshold Buffer holds the next two threshold values fetched from 
the static RAM. If the fetched data corresponds to a displacement vector, the threshold values of 
the pointed location in the threshold array are retrieved. The boolean results of the two compari­
sons are loaded into shift registers. Once the shift registers are full, the result is written to a register 
before being sent to the output buffer (Figure 7). 

Since the coprocessor may not work at the same speed as the host microprocessor or the imag­
ing engine, handshake signals (lnputBufferRequest, OutputBufferFull) from the input and output 
buffers result in correct synchronization between the coprocessor and the external devices. Two 
interruption requests (IRQ_A, IRQ_B) from the sequencer to the host microprocessor and to the 
output device are part of the synchronization primitives. IRQ_A asks the host microprocessor to 
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Figure 7 - The proposed hardware architecture. Output image 
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put new data into the input buffer. IRQ_B tells the output 
device that data can be read from the output buffer. 

The main operations (reading the source image pixels, read­
ing the threshold values, comparing, writing the output bits) 
are pipelined and are executed in parallel. 

A sequencer coordinates the flow of the main operations 
with the rest of the computations. It computes the boundaries 
of the gray pixels in the destination image, addresses the 
source scanline buffer and the threshold array and sends inter­
rupt signals to the host microprocessor and to the output 
device. 

grayscale pixels from 
Source Scanline Buffer 

8 

The halftoning process involves three pipelined tasks: read­
ing the grayscale pixels from the input buffer, reading the 
threshold values from the threshold array static RAM, com- Figure 8 - The datapath fol-
paring and writing the appropriate output bits. lowed by the grayscale pixels. 

In order to guarantee that two bitmapped pixels are generated during the same cycle and to 
avoid a delayed cycle, the comparators are fed by a two level pipeline which buffers the upcoming 
grayscale values required for the next iteration (Figure 8). The pipeline stores the grayscale pixels 
before assigning them to the comparators. 

6: A scalable architecture 

Let us examine how the present architecture can be extended in order to carry out four or more 
simultaneous comparisons. Before comparison, the data from the input buffer must propagate 
through a pipelining and multiplexing logic, whose purpose is to map the grayscale pixels to their 
respective boundaries in the binary output image. 

1917151311 9 7 5 3 1 grayscale lN1 IH1 Iff 1 1513119 7 5 3 2 o input image 
964713119753, 

grayscale pixels · "'-current - -
scan line 

One input image pixel is mapped to 5x5 
pixels in the output bitmap image. 

IH1-IH1-ffi1 
IH1-ITY -IH1 
Path followed by the grayscale pixels of the current 
scanline before reaching the comparators. 

Figure 9- Combinational logic controls the datapath before comparison. 
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The coprocessor buffers the upcoming grayscale pixels in a two-level pipeline. During the first 
stage of the pipeline, data is read from memory while, during the second stage of the pipeline, the 
registers are loaded with the data for the next set of comparisons. Figure 9 gives an example of the 
path taken by the grayscale pixels through the pipelining and multiplexing logic before compari­
son. An architecture with four comparators will only run at optimal speed if the average number of 
output pixels corresponding to one grayscale pixel is superior or equal to 4x4 binary pixels. 

If one considers that one grayscale input pixel corresponds to 4x4 binary output pixels, the input 
buffer must be fast enough to feed the entry stage of the pipeline with one grayscale pixel per 
cycle. Assuming that one source image pixel covers 4x4 binary pixels, to simultaneously generate 
eight binary pixels using eight comparators, the input buffer either must work at twice the output 
buffer rate or must provide a larger bus (16-bit wide). 

Let us model the performance of such a scalable architecture. Table 1 compares different archi­
tectures, each clocked at 20 MHz. 

Best-case number of Average performance 
Comparators cycles per binary generated output pixels 

pixel per second 

2 0.5 26 million 

4 0.25 52 million 

8 0.125 104 million 

Table 1 

The number of comparators which can efficiently work in parallel is limited by the throughputs of 
both the input stream and the output rate of the coprocessor. 

Designing an architecture with eight comparators can be imagined if the target resolution is high 
(1200-2400 dpi) and the input resolution is low (150-300 dpi). The rule is to map 2x2 source pixels 
to one output clustered-dot screen element. When preparing an image scanned at 150 dpi for an 
output resolution of 600 dpi or more, where each screen element contains at least 8x8 pixels, it is 
worthwhile using an architecture with four comparators. 

7: Current results and performance 

The first prototype of a coprocessor has been designed to demonstrate the feasibility of such an 
architecture. It contains two comparators, working in parallel and has been implemented in a 
FPGA (Field Programmable Gate Array) from Xilinx. The circuit which was used is a XC3190 
offering 320 CLBs (Combinational Logic Blocks), equivalent to 4000 gates. 150 pins were used to 
interface the circuit to the external memories as well as to the host microprocessor. 

We have produced a slightly simpler, less efficient circuit than the fully pipelined architecture 
described here, but we give the results for the fully pipelined architecture, clocked at 20 MHz and 
extensively simulated with the schematics simulator provided by View logic. 

The best-case performance is two bitmapped pixels every 50 ns (one clock cycle). When the 
read cycle is lengthened (a vector is read instead of a couple of threshold values), the overall time 
for generating two output pixels becomes 100 ns (2 clock cycles). Thus, the average performance 
of the coprocessor reaches 26 million bitrnapped pixels per second. Table 2 shows the execution 
times taken to halftone an A4 page at different output resolutions. An optimized but purely sequen­
tial software implementation of the halftoning algorithm was programmed in C. 
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Output image Two comparator SUN Sparc-2 software 
resolution based coprocessor implementation 

300 dpi 0.25 s 4.9s 

600 dpi 1.0 s 19.7 s 

800 dpi 1.8 s 35 s 

1200 dpi 4.0 s 1 mn 19 s 

Table 2 

With a standard cell-based VLSI technology, the coprocessor could include input and output buff­
ers. Such a scalable architecture could be remarkably cheap and would run much faster than cur­
rent software-based solutions running on powerful RISC processors. It would be suitable for a 
printer optimized for printing color images at high speed. Such printers form an integral part of 
modern digital color copiers. 

8: Conclusion 

Exact-angle superscreen dithering requires large dither tiles. Since storing precomputed screen 
elements for each intensity level would require too much memory, dithering must be executed on 
the fly at halftoning time. For this purpose, a dithering coprocessor is presented which generates 
halftoned images at high speed. 

The proposed hardware architecture is built on a pipelined and scalable design. To maximize 
processing speed, the proposed coprocessor uses separate FIFO memory input and output buffers, 
and provides a complete pipeline for performing one comparison per comparator per cycle. 

When clocked at 20 MHz the coprocessor is able to halftone images at a rate of 26 million 
binary output pixels per second and outperforms a standard SUN Sparc-2 software implementation 
by a factor of 20. 

An analysis of the design methodology reveals that making multiple comparisons in parallel 
decreases the time required for halftoning in a linear way. Based on an implementation with two 
comparators, a model of an architecture providing four or more comparators has been developed. 
The practical limits of such an architecture have been evaluated: the number of comparators able 
to work efficiently in parallel is limited by the ratio between input and output image sizes. We 
show that a four comparator architecture is well suited for exact-angle screening at high resolution. 
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