
Proc. IEEE Intern. Conf. on Application Specific Array Processors,
(Eds. Capello et. al.), IEEE Computer Society Press, 1995, 76-84

fabienne

Session 2: Architectures I 77

toning speed is affected by the huge amount of data which needs to be processed before sending
the page map to a high resolution printer. The task of the proposed dithering coprocessor architec­
ture is to increase the speed of the imaging process.

A rather analogous architecture to the prototype presented here was developed by Adobe. Their
coprocessor operates in the PostScript language environment and acts as a display-list rendering
coprocessor [4]. It converts a stream of drawing commands into an array of bits at a given resolu­
tion. Aside from other image rendering tasks such as shape filling, it also speeds up halftoning.
The architecture presented here is restricted to halftoning and is not bound to the PostScript page
description language environment. It directly produces a bitmapped image from a grayscale image
and a given dither tile.

2: The dither threshold array and the dithering algorithm

In order to emulate halftones in a bitmapped image, the screen cells are arranged in patterns which
are repeated periodically to cover the dither plane. Dithering rules [5] govern the visual appear­
ance of the halftoned image. The human eye and brain integrate the tiny features of each pattern
into an average grayscale tone or color.

Original image • Dither pattern

0 one bitmapped pixel in
the destination image

........ •••••• .j?~<S>-&~0

Binary output plane

Intensity level= 6
Threshold= 8

Figure '1 - The intensity level of the pixel in
the original image is below the threshold and
the corresponding output bitmap pixel is
turned to be black.

v; 15 18 v2

10 9 5 13 -v3

1 12 1 3 7 1'116

1~18 8 4 2 11 -Vs

V1o 14 6 10 g... -vs
Vg 17 16 Vy

V8

Dither threshold array with
displacement vectors

Example: v6 = (-1, -3)

J
v4

J

Figure 2 - The vectors outside the bor­
der of the dither tile point to threshold
locations inside the dither threshold
array (for example v6 points to cell 5 and
v6 points to cell15).

The halftoning process which is presented here is based on a regular grid and is known as ordered

78 International Conference on Application-Specific Array Processors

dithering. In the case of ordered dithering, the screen dot grows within a tile of limited size. A
dither threshold array is associated to this tile. Each cell within the tile is assigned a threshold
value: the intensity at which it will be turned on.

The halftoning process consists in scanning the output bitmap with a chosen dither threshold
array and, for each output pixel, finding its corresponding locations both in the dither array and in
the grayscale input image, comparing the two values, and writing the appropriate bitmapped pixel
to the output image (Figure 1).

At runtime, the threshold values are taken from a dither threshold array. This array is divided
into rows and columns which are scanned in the same way as the binary output plane. When mov­
ing from one pixel to its neighbour pixel in the output bitmap, we either move to the next threshold
value on the right, or we jump from a position which is outside the tile to the appropriate position
inside the dither tile. For this purpose displacement vectors are added to locations of the dither
array positioned at the border of the tile. These vectors point to the position containing the next
threshold value inside the dither array when moving out of the tile (Figure 2). The data structure
for holding a screen tile forces the halftoning algorithm to cycle in the same tile during the halfton­
ing process.

Let us recall that Holladay [6] proposed a rectangular representation for parallelogram shaped
dither tiles. We have used a description for the dither threshold array which offers an economical
solution for storing large dither tiles while providing an effective way of generating the output bit­
map. It can be shown that Holladay's representation is equivalent to the description given here.

A grayscale pixel in the source image plane can be imagined as covering one or more bitmapped
pixels of the binary output plane. Mapping the grayscale pixels to the corresponding binary pixels
consists in finding the real number coordinates of the boundaries between grayscale pixels in the
destination bitmap. All binary pixels whose pixel centers lie within the boundaries of a source
pixel will be dithered with reference to this source pixel.

Source 0
pixels

Destintion 0
pixels

EN -4

Destination bitmap showing boundaries
between gray pixel zones

one gray pixel
mapped to four

''"'~ ,.,,, w ~~~~ g,~~~

II I'll i IIIIJ- E~~:~~~~1~:
1 2 3 4 5 6 7 8 9 10 11

1 1 2 3 3 4 4 5 6 6 7

7 -1 10 2 -6 5 -3 8 0 -8 3

12 ...

7 ...

-5 ...

Figure 3 - Example of the incremental method for mapping destination pixels
to source pixels: d = 19, s = 11.

Session 2: Architectures I 79

An incremental method is used for determining the grayscale pixel boundaries in the destination
bitmap which is based on a Bresenham-like algorithm [7]. Finding the boundaries of gray pixels in
the destination bitmap can be thought of as the more familiar problem of tracing a line in a raster
display where the X axis represents the binary pixel locations in the destination image and the Y
axis the grayscale pixel locations in the source image. The ideal mapping between binary pixels
and grayscale pixels is represented by a straight line segment. When tracing a line on a discrete
raster device, the computed grayscale pixel boundaries ate either below, above or exactly on the
drawn line. As we move from one destination pixel to the next one, we need to check if the next
destination pixel corresponds to the current gray pixel or to the next gray pixel in the source image.
In that case we have to read its intensity value, before comparing it with the current threshold
value.

Supposing that the scaling factor (DestinationlmageSize/SourcelmageSize) is rational and can
be reduced to an irreducible fraction d/s, let us define r = d-s. The iterative algorithm for comput­
ing the error term EN is the following:

EN+ I= EN+ s, if EN< 0,
EN+ I= EN- r, if EN~ 0.

Initially Eo is equal to -r/2. When moving from one destination pixel to the next one, EN is either
incremented by s or decremented by rand the sign of EN is checked. If EN is strictly negative (EN<

0), the same gray pixel is used. On the other hand, if EN becomes positive or equal to zero, the next
gray pixel's value in the source image is fetched from memory.

3: Hardware superscalar screening

Software-based screening typically requires that five to ten instructions be executed for each ren­
dered device pixel. Even with carefully hand-optimized assembly code, the best that can be
achieved with software-based solutions is five CPU instructions per rendered device pixel [8]. On
RISC platforms, due to the smaller instruction set, the number of CPU instructions may rise to
more than ten instructions per pixel. Our aim is to decrease the number of cycles which are
required to produce one bitmapped output pixel.

FOR EACH scanline in the destination image DO
- initialize the pipeline
- make a copy of the start of scanline pointer (CopyThresholdArrayPtr)

FOR EACH COUPLE OF binary pixels in the current scan line DO

- read the information at the current position (ThresholdArrayPtr) in the threshold array
- if the information corresponds to a displacement vector, move to the position pointed at
by the vector

-retrieve the GRAY LEVELS of the two corresponding pixels in the input image
-compare these two GRAY LEVELS with the two THRESHOLD VALUES
- generate the two appropriate output bits
-write the output to the binary output image

END FOR

- update ThresholdArrayPtr to the position just below CopyThresholdArrayPtr

END FOR

Figure 4 - Pipelined tasks performed by the hardware architecture.

80 International Conference on Application-Specific Array Processors

The basic coprocessor architecture performs two comparisons in parallel and simultaneously gen­
erates two bitmapped output pixels.

Reading a pair of threshold values and reading tbe grayscale pixels from a source scanline
buffer can be done simultaneously (Figure 4). Once these values are known, they are compared,
and the appropriate output pixels are generated.

! tO t1 t2 I t3
I

t4 I t5 l I I

l Read Comp Write

Read Comp Write

Read Read Comp I Write

Read I Comp

Figure 5 - Pipelined accesses to memo!)' and comparisons.

I

I
I

The third read cycle in the
pipeline is delayed be­
cause a displacement vec­
tor was read.

In the worst case, tbe time taken by one iteration of the inner loop in tbe algorithm is two complete
cycles: one cycle for reading the data from memory, comparing two gray levels with two thresh­
olds and writing the output bits. One additional cycle may be required to read the threshold values
if the value which has just been read corresponds to a displacement vector. By extending the mech­
anism described here, we could carry out multiple comparisons, such as four or eight comparisons
simultaneously.

4: The operating environment

To synchronize the coprocessor with the
host microprocessor and with the output
device (the imaging engine), incoming
and outgoing data is buffered in FIFOs
(Figure 6).

The coprocessor works in parallel
witb a host microprocessor from which
it receives the grayscale input image and
a description of the dither matrix.

The current architecture requires an
external dual-port memory of 2048 32-

r
I
I
I
I

Dither
threshold

array

bit words for storing parts of the input Figure 6 • General architecture.
image waiting to be processed. An exter-
nal 8-bit wide FIFO is necessary for buffering the output data. The halftoning coprocessor inter­
acts with the output device by signals indicating when tbe output buffer is half-full.

5: The proposed hardware architecture

Before starting the halftoning process the host microprocessor stores the threshold array descrip­
tion in an external static memory. An 8-bit wide control register interfaces the coprocessor with the
program running on the host microprocessor. The output image size (ImDstW, ImDstH) and a few
other constants are sent to the coprocessor at initialization time. The source scanline buffer is a
dual-port memory. This dual-port memory allows the host microprocessor to fill it with image data

Session 2: Architectures I 81

without interrupting the work of the coprocessor.
At runtime, the coprocessor generates two binary output pixels in parallel by comparing a cou­

ple (GrayH, GrayL) of gray pixels from the source image with the current threshold values
(ThresholdH, ThresholdL)· A Threshold Buffer holds the next two threshold values fetched from
the static RAM. If the fetched data corresponds to a displacement vector, the threshold values of
the pointed location in the threshold array are retrieved. The boolean results of the two compari­
sons are loaded into shift registers. Once the shift registers are full, the result is written to a register
before being sent to the output buffer (Figure 7).

Since the coprocessor may not work at the same speed as the host microprocessor or the imag­
ing engine, handshake signals (lnputBufferRequest, OutputBufferFull) from the input and output
buffers result in correct synchronization between the coprocessor and the external devices. Two
interruption requests (IRQ_A, IRQ_B) from the sequencer to the host microprocessor and to the
output device are part of the synchronization primitives. IRQ_A asks the host microprocessor to

From host
microprocessor

IRQ_A -..-+-----1
IRQ_B---+------l
CLOCK---4----~~

8
llmDstwl

From host
microprocessor 16 llmDstH I

ASIC

8

Input image from
host

microprocessor

2 OutputBufferFull

OutputBufferHaltFull L---...----1

Figure 7 - The proposed hardware architecture. Output image

17

82 International Conference on Application-Specific Array Processors

put new data into the input buffer. IRQ_B tells the output
device that data can be read from the output buffer.

The main operations (reading the source image pixels, read­
ing the threshold values, comparing, writing the output bits)
are pipelined and are executed in parallel.

A sequencer coordinates the flow of the main operations
with the rest of the computations. It computes the boundaries
of the gray pixels in the destination image, addresses the
source scanline buffer and the threshold array and sends inter­
rupt signals to the host microprocessor and to the output
device.

grayscale pixels from
Source Scanline Buffer

8

The halftoning process involves three pipelined tasks: read­
ing the grayscale pixels from the input buffer, reading the
threshold values from the threshold array static RAM, com- Figure 8 - The datapath fol-
paring and writing the appropriate output bits. lowed by the grayscale pixels.

In order to guarantee that two bitmapped pixels are generated during the same cycle and to
avoid a delayed cycle, the comparators are fed by a two level pipeline which buffers the upcoming
grayscale values required for the next iteration (Figure 8). The pipeline stores the grayscale pixels
before assigning them to the comparators.

6: A scalable architecture

Let us examine how the present architecture can be extended in order to carry out four or more
simultaneous comparisons. Before comparison, the data from the input buffer must propagate
through a pipelining and multiplexing logic, whose purpose is to map the grayscale pixels to their
respective boundaries in the binary output image.

1917151311 9 7 5 3 1 grayscale lN1 IH1 Iff 1 1513119 7 5 3 2 o input image
964713119753,

grayscale pixels · "'-current - -
scan line

One input image pixel is mapped to 5x5
pixels in the output bitmap image.

IH1-IH1-ffi1
IH1-ITY -IH1
Path followed by the grayscale pixels of the current
scanline before reaching the comparators.

Figure 9- Combinational logic controls the datapath before comparison.

Session 2: Architectures I 83

The coprocessor buffers the upcoming grayscale pixels in a two-level pipeline. During the first
stage of the pipeline, data is read from memory while, during the second stage of the pipeline, the
registers are loaded with the data for the next set of comparisons. Figure 9 gives an example of the
path taken by the grayscale pixels through the pipelining and multiplexing logic before compari­
son. An architecture with four comparators will only run at optimal speed if the average number of
output pixels corresponding to one grayscale pixel is superior or equal to 4x4 binary pixels.

If one considers that one grayscale input pixel corresponds to 4x4 binary output pixels, the input
buffer must be fast enough to feed the entry stage of the pipeline with one grayscale pixel per
cycle. Assuming that one source image pixel covers 4x4 binary pixels, to simultaneously generate
eight binary pixels using eight comparators, the input buffer either must work at twice the output
buffer rate or must provide a larger bus (16-bit wide).

Let us model the performance of such a scalable architecture. Table 1 compares different archi­
tectures, each clocked at 20 MHz.

Best-case number of Average performance
Comparators cycles per binary generated output pixels

pixel per second

2 0.5 26 million

4 0.25 52 million

8 0.125 104 million

Table 1

The number of comparators which can efficiently work in parallel is limited by the throughputs of
both the input stream and the output rate of the coprocessor.

Designing an architecture with eight comparators can be imagined if the target resolution is high
(1200-2400 dpi) and the input resolution is low (150-300 dpi). The rule is to map 2x2 source pixels
to one output clustered-dot screen element. When preparing an image scanned at 150 dpi for an
output resolution of 600 dpi or more, where each screen element contains at least 8x8 pixels, it is
worthwhile using an architecture with four comparators.

7: Current results and performance

The first prototype of a coprocessor has been designed to demonstrate the feasibility of such an
architecture. It contains two comparators, working in parallel and has been implemented in a
FPGA (Field Programmable Gate Array) from Xilinx. The circuit which was used is a XC3190
offering 320 CLBs (Combinational Logic Blocks), equivalent to 4000 gates. 150 pins were used to
interface the circuit to the external memories as well as to the host microprocessor.

We have produced a slightly simpler, less efficient circuit than the fully pipelined architecture
described here, but we give the results for the fully pipelined architecture, clocked at 20 MHz and
extensively simulated with the schematics simulator provided by View logic.

The best-case performance is two bitmapped pixels every 50 ns (one clock cycle). When the
read cycle is lengthened (a vector is read instead of a couple of threshold values), the overall time
for generating two output pixels becomes 100 ns (2 clock cycles). Thus, the average performance
of the coprocessor reaches 26 million bitrnapped pixels per second. Table 2 shows the execution
times taken to halftone an A4 page at different output resolutions. An optimized but purely sequen­
tial software implementation of the halftoning algorithm was programmed in C.

84 International Conference on Application-Specific Array Processors

Output image Two comparator SUN Sparc-2 software
resolution based coprocessor implementation

300 dpi 0.25 s 4.9s

600 dpi 1.0 s 19.7 s

800 dpi 1.8 s 35 s

1200 dpi 4.0 s 1 mn 19 s

Table 2

With a standard cell-based VLSI technology, the coprocessor could include input and output buff­
ers. Such a scalable architecture could be remarkably cheap and would run much faster than cur­
rent software-based solutions running on powerful RISC processors. It would be suitable for a
printer optimized for printing color images at high speed. Such printers form an integral part of
modern digital color copiers.

8: Conclusion

Exact-angle superscreen dithering requires large dither tiles. Since storing precomputed screen
elements for each intensity level would require too much memory, dithering must be executed on
the fly at halftoning time. For this purpose, a dithering coprocessor is presented which generates
halftoned images at high speed.

The proposed hardware architecture is built on a pipelined and scalable design. To maximize
processing speed, the proposed coprocessor uses separate FIFO memory input and output buffers,
and provides a complete pipeline for performing one comparison per comparator per cycle.

When clocked at 20 MHz the coprocessor is able to halftone images at a rate of 26 million
binary output pixels per second and outperforms a standard SUN Sparc-2 software implementation
by a factor of 20.

An analysis of the design methodology reveals that making multiple comparisons in parallel
decreases the time required for halftoning in a linear way. Based on an implementation with two
comparators, a model of an architecture providing four or more comparators has been developed.
The practical limits of such an architecture have been evaluated: the number of comparators able
to work efficiently in parallel is limited by the ratio between input and output image sizes. We
show that a four comparator architecture is well suited for exact-angle screening at high resolution.

9: References

1. J. Foley, A. van Dam, S. Feiner, J. Hughes, Computer Graphics: Principles and Practice,
Addison-Wesley, Reading, Massachusets (1990).

2. M. Morgan, R.-D. Hersch, V. Ostromoukhov, Acceleration of Halftoning,
SID Digest of Technical Papers, vol. 24, 151-154, (1993).

3. Peter Fink, PostScript Screening: Adobe Accurate Screens, Adobe Press, Mountain View (1992).
4. Adobe "Pixe!Burst" chip speeds RlPs, The Seybold Report on Desktop Publishing, 7(2), 39-42 (1992).
5. Robert Ulichney, Digital Halftoning, MIT Press, Cambridge, Massachusets (1987).
6. Thomas M. Holladay, An Optimum Algorithm for Halftone Generation for Displays and Hard Copies,

SID Digest of Technical papers, vol. 21, 185-192 (1980).
7. Jerry R. VanAken, Carrell R. Killebrew, Better bitrnapped lines, BYTE, vol. 3, 249-253 (1988).
8. Pixe!Burst coprocessor (comments), The Seybold Report on Desktop Publishing, 7(5), 36-38 (1993).

