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N-Ink Printer Characterization with Barycentric 
Subdivision  

 
Abstract—Printing with a large number of inks, also called 

N-ink printing, is a challenging task. The challenges 
comprise spectral modelling of the printer, color separation, 
halftoning, and limitations of the amount of inks. 
Juxtaposed halftoning, a perfectly dot-off-dot halftoning 
method, has proven to be useful to address some of these 
challenges. However, for juxtaposed halftones, prediction of 
colors as a function of ink area-coverages has not yet been 
fully investigated. The goal of this paper is to introduce a 
spectral prediction model for N-ink juxtaposed-halftone 
prints. As the area-coverage domain of juxtaposed inks 
forms a simplex, we propose a cellular subdivision of the 
area-coverage domain using barycentric subdivision of 
simplexes. The barycentric subdivision provides 
algorithmically straightforward means to design and 
implement an N-ink color prediction model. Within the 
subdomain cells, the Yule-Nielsen spectral Neugebauer 
model is used for the spectral prediction. Our proposed 
model is highly accurate for prints with a large number of 
inks while requiring a relatively low number of calibration 
samples.  

Index Terms— Printer characterization, multi-channel 
printing, cellular Yule-Nielsen, color prediction model, 
spectral modeling, interpolation, simplex, barycentric 
subdivision, point location problem, multi-material 3D 
print   

INTRODUCTION  

ULTI-CHANNEL printing or N-ink printing refers 
to printing processes with more than 4 inks [1-5]. 
There are various motivations for N-ink printing. 

The main purpose is to expand the color gamut of CMYK 
prints. Spectral reproduction is another objective, which 
aims at obtaining an accurate color reproduction under 
more than one viewing condition [6]. Synthesizing 
smooth images with low graininess also requires adding 
new inks, such as light cyan and light magenta, to the 
palette of the printer. Additional inks can also be used as 
spot colors. Spot colors are very popular in the packaging 
industry. Recently, an N-ink process for printing with 
metallic inks has been proposed [7].  

N-ink printing faces several challenges. The first 
challenge is the color characterization of an N-ink printer. 
Printer characterization establishes a relationship between 
area-coverages of inks and the resulting printed color. For 
a set of printer control-values, forward characterization 
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determines the reflectance spectrum. There are mainly 
two approaches for printer characterization. The first one 
is a black-box approach relying on color measurements of 
printed samples and on interpolation to create 
relationships between colors and amounts of inks [8]. The 
second approach relies on spectral prediction models that 
account for the interaction of light, paper and ink 
halftones [9]. The parameters of the spectral prediction 
models are usually derived from the calibration set, a set 
of measured color samples. The challenge in calibration 
of an N-ink printer resides in the number of required 
measurements. When increasing the number of inks, the 
size of the calibration set grows rapidly, usually at an 
exponential rate.  

Another obstacle to N-ink printing is the total area-
coverage limit. In a printing setup, depending on the 
substrate, the inks and the printing technology, only a 
limited amount of ink can be deposited on a selected 
region. With an N-ink printer, we cannot superpose a 
large number of inks at their full area-coverages. 
Exceeding the total ink-limit can result in deteriorated 
image quality, ink blotting or mechanical malfunction of 
the printer.  

Halftoning complexity also increases with the number 
of inks. Because of moiré artifacts, classic clustered-dot 
methods allow at most 4 ink-halftone layers to be laid out 
on top of each other. Recent efforts try to design moiré-
free clustered-dot N-ink screens [10, 11]. Although error 
diffusion halftoning can avoid moiré, it is not suitable for 
printing systems that require clustered dots.  

Recently, Babaei and Hersch proposed a juxtaposed 
halftoning method that places different inks1 next to each 
other without overlap [12]. Discrete-line juxtaposed 
halftoning is a look-up table based halftoning method. 
Each screen element is a parallelogram composed of 
discrete line segments placed side by side (see Figure 7). 
Each discrete line segment has a rational thickness 
offering subpixel precision. Discrete-line halftoning is 
very efficient as any color screen can be synthesized 
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Neugebauer primaries are then placed side by side within a screen 
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instantly by relying on a library of only black and white 
screen elements. Therefore, as many colorants as desired 
can be juxtaposed within a single screen-element.   

The main purpose of juxtaposed halftoning method is 
to enable printing with inks that cannot be superposed. 
Metallic inks, fluorescent inks and pearlescent inks are 
examples of such non-standard inks. Discrete-line 
juxtaposed halftoning is also appropriate for printing with 
more than three, not necessarily opaque inks (N-ink 
printing). It lifts the constraint on the number of inks per 
single halftone screen and allows each ink to take a freely 
chosen area-coverage. In addition, since the ink halftones 
are laid out side-by-side, it inherently avoids the total ink 
limit, and moiré due to superposition of ink-halftones. 

This paper introduces a new spectral prediction model 
for the N-ink color characterization of a printer. Our focus 
is on the characterization of N juxtaposed-ink prints. The 
area-coverages domain of N juxtaposed colorants form an 
(N – 1)-dimensional simplex. Inspired by the cellular 
Yule-Nielsen spectral Neugebauer model for 
conventional prints, we develop a cellular subdivision of 
the ink area-coverage domain relying on the barycentric 
subdivision of the simplexes. Our key insight is that the 
barycentric subdivision provides an algorithmically 
straightforward means to devise and implement an N-ink 
spectral printer model. For N juxtaposed inks, with 2N – 1 
calibration samples, our proposed model offers an 
accuracy superior to the accuracy of the nominal Yule-
Nielsen spectral Neugebauer model.  

FORWARD CHARACTERIZATION OF N-INK 
PRINTERS  

A. Yule-Nielsen spectral Neugebauer model and its 
variants  

Various spectral printer models have been developed in 
recent decades. Most of them are based on the well-
known Neugebauer model [13]. The Neugebauer model 
predicts the CIEXYZ-color of a given halftone by convex 
interpolation of the CIEXYZ colors of all participating 
colorants. Assuming that halftone screen dots of different 
ink layers are laid out independently one from another, 
which is an acceptable assumption for classic halftoning 
methods [14, 15], printing N superposed ink-layers yields 
2N possible colorants whose area coverages can be 
computed by Demichel equations [9, 15, 16]. In the case 
of a classic CMY print, the halftone is composed of the 8 
colorants, also known as the Neugebauer primaries: 
white, cyan, magenta, yellow, blue, green, red and black. 
In order to calculate the area-coverages of the colorants as 
a function of the amount of inks, we use the Demichel 
equations.  

There have been important improvements of the 
Neugebauer model. Yule and Nielsen [17] introduced a 

nonlinear relationship between the predicted color of a 
single-ink halftone and the colors of the ink and the 
paper. The nonlinear relationship is a power function and 
accounts for the optical dot-gain. The exponent n of the 
power function is usually fitted using a set of measured 
halftone patches. Viggiano [18] extended the Yule-
Nielsen equation in order to predict the spectral 
reflectance R(λ) of a halftone, yielding the well-known 
Yule-Nielsen modified Spectral Neugebauer (YNSN) 
model:  
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where Ri(λ) expresses the spectral reflectance of colorant 
i, ai expresses its area coverage, the exponent n is the 
Yule-Nielsen n-value and λ stands for the wavelength of 
light.  

The prediction accuracy of the YNSN model depends 
on how accurately we estimate the effective area-
coverages ai of the contributing colorants. The effective 
area coverage is the area coverage of a colorant after 
accounting for the dot gain. We can use the nominal area-
coverages, thereby obtaining the nominal YNSN model. 
Depending on the printer’s precision, the nominal model 
can produce significant prediction errors. To compensate 
for the dot gain, ink-spreading models calculate effective 
area-coverages of inks. In its simplest form, an ink-
spreading model relies on a curve that maps nominal to 
effective area-coverages for each single ink. These curves 
are obtained by linear interpolation between fitted area-
coverages of halftones printed on paper. Such a model is 
known as independent ink-spreading model. Hersch and 
Crété [19] developed a general ink-spreading model that 
accounts for different superposition conditions, called the 
superposition-dependent ink-spreading model [9].  

The cellular YNSN model has been proposed in order 
to increase the accuracy of the YNSN model [20, 21]. 
The cellular model divides the ink area-coverage domain 
into several subdomains. The YNSN model is then 
applied inside each subdomain. The new primaries for the 
cellular YNSN model are the reflectances of subdomain 
vertices. As each subdomain spans a smaller subset of the 
color space, the model provides more accurate 
predictions.  

Figure 1 illustrates the cellular YNSN model for three 
inks. Subdomains are created by dividing the CMY area-
coverage unit-cube into 8 subcubes, formed by 
combinations of 0%, 50% and 100% area-coverages of 
the cyan, magenta and yellow inks. With such a 
subdivision, the number of primary reflectances increases 
from 8 to 27.  
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(a)                       (b)  

Figure 1. (a) The subdivision of the unit cube that represents the area-coverages of cyan, magenta and yellow inks. (b) The area-coverages 
of the vertices of one of the 8 subcube cells.  

We take the following steps in order to predict the 
reflectance of a halftone with a given ink area-coverage. 
First, the circumscribing subcube to the considered 
halftone is determined according to the halftone’s 
nominal area coverage. Then, the ink area-coverages 
normalized with respect to the subcube vertices are 
calculated. Applying the Demichel equations on the 
normalized ink area-coverages, the normalized area-
coverages of the 8 cellular primaries are then found. 
Along with the 8 subcube vertex reflectances these 
normalized area-coverages are used in the YNSN 
equation (Equation 1) to obtain the reflectance of the 
halftone.  

Another important spectral prediction model is the two-
by-two dot-centering model [22, 23]. Instead of 
estimating the effective area-coverage of different 
colorants in the halftone, it takes into account all possible 
two-by-two pixel configurations within a given halftone. 
The model then uses the YNSN equation, with the 
primaries expressing the reflectances of each two-by-two 
pattern and the weights expressing the relative frequency 
of each corresponding pattern. For transparent inks, the 
predictive two-by-two model [24] estimates the whole 
calibration set using a measured subset of the two-by-two 
calibration samples. This method achieves almost the 
same accuracy as the original two-by-two model by 
requiring only 10% of two-by-two calibration samples.  

B. N-ink printer models  
An N-ink spectral prediction model predicts the spectra 

of halftones made of maximum N inks. When the number 
of inks grows, the size of the calibration set for the 
characterization of the printer also grows, usually at an 
exponential rate. This is the main challenge for N-ink 
spectral printer modelling. A possible solution for the N-
ink printer characterization is the subgamut 
characterization [5]. Subgamut characterization 
categorizes the inks into several groups each one with a 
small number of inks. Each group (subgamuts) is 
separately characterized. This leads to less calibration 
patches compared with a full-blown N-ink printer model. 
However, there is not a unique way for selecting the ink 
groups.   

For example, consider an 8-ink printer. An 8-ink model 
predicts the halftones formed by any number of different 
inks. Subgamut characterization, instead, might form 4-

ink subgamuts and calibrate a 4-ink prediction model for 
each subgamut. Although we usually choose a subset of 
the 70 possible 4-ink groups to decrease the size of the 
calibration set, it is not clear how to select the groups. 
The 4-ink subgamut characterization is also not able to 
predict halftones formed by groups of 5 or more inks. 
Because of the spectral redundancy of conventional inks, 
groups of more than 4 inks don’t usually contribute to the 
spectral variability. Nevertheless, combinations of a large 
number of inks might improve other print attributes or 
become necessary for printing with unconventional 
materials.  

There have been a few efforts for characterizing an N-
ink printer. Taplin and Berns [1] establish a six-ink color 
prediction model based on the independent ink-spreading 
YNSN model. They limit the total area-coverage of 
halftones to 300%. In another work, Chen et al. [2] use 
the cellular YNSN model for a six-ink printer. For each 
single ink, they find the two best cellular primary 
locations between 0% 100% area-coverage. They also 
estimate the cellular primaries that are not printable due 
to the total ink-limit. Bastani et al. [3] also proposed an 8-
ink cellular YNSN model. By limiting the total area-
coverage, they reduce the number of required calibration 
samples. These models are all limited to classic 
halftoning methods where the different ink layers are 
partially superposed. 

C. Spectral prediction of juxtaposed halftones  
The application of the nominal YNSN model for the 

spectral prediction of N juxtaposed colorants is 
straightforward. N spectrally measured colorants are 
sufficient for the calibration step. There is no established 
ink-spreading model for juxtaposed halftoning that could 
compute the physical dot-gain of the individual colorants 
and the extent of their possible overlap. Existing ink-
spreading models rely on the statistically-independent 
superposition of ink layers. They are therefore not 
applicable to juxtaposed halftones. 

The two-by-two dot-centering spectral prediction 
model [22] enables capturing the reflectance of slightly 
overlapping colorants and is therefore appropriate for 
predicting the color of juxtaposed halftones. Babaei and 
Hersch [23] used the two-by-two dot-centering model and 
its predictive counterpart for the prediction of discrete-
line juxtaposed halftones. These models offer high 
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prediction accuracies and outperform the nominal YNSN 
model. However, the backward characterization of the 
two-by-two models is a very difficult problem [7].  

The cellular YNSN is a popular spectral prediction 
model for conventional halftones. In this paper, we 
propose to extend the cellular YNSN model for N-
colorant juxtaposed halftones. The sum of area-coverage 
of inks in a juxtaposed halftone is equal to 1. This implies 
that the cellular model for juxtaposed halftones must be 
implemented in simplexes instead of easy-to-manipulate 
cubes as in the case of conventional halftones. The 
readers might find it useful to consult Appendix A where 
we develop the necessary mathematical background for 
the next section.  

CELLULAR PREDICTION MODEL FOR 
JUXTAPOSED HALFTONES  

Similar to the cellular YNSN model for standard prints, 
the domain of area-coverages of juxtaposed inks can be 
divided into smaller subdomains. In a printing setup that 
allows the superposition of inks, each ink’s area-coverage 
can take a value in the interval [0, 1]. In a juxtaposed 
print, the sum of all area-coverages should be equal to 1. 
From a geometric viewpoint, when ink superposition is 
allowed the area-coverage domain for N inks corresponds 
to an N-cube, i.e. a cube in N dimensions. When the inks 
are juxtaposed, the area-coverages of N inks correspond 
to an (N – 1)-dimensional standard simplex. Figure 2 
shows this interpretation for N = 2 and N = 3. For a two-
ink print with ink superposition, the domain of area 
coverage is the unit square, i.e. a 2-cube (Figure 2a). The 
area-coverages of two juxtaposed inks (e.g. a colored ink 
and paper) vary along a line segment, i.e. a 1-simplex 
(Figure 2b). For three superposed inks, their area 
coverages can take the values bounded by the unit cube 
(Figure 2c). In juxtaposition, e.g. two colored inks and 
the white paper, the area-coverage of three inks spans a 
triangle, i.e. a 2-simplex (Figure 2d).  

We must consider two questions when designing a 
cellular prediction model for juxtaposed inks. The first 
question is how to choose the location of new cellular 
primaries in the area-coverage simplex. The second 
question is how to select the subdomains within which 
the YNSN model interpolates between cellular primaries. 
Concerning the first question, there are two main 
considerations. First, we are interested in the minimum 
number of cellular primaries. Second, the new primaries 
in the cellular YNSN model must account for the effects 
that are not captured by the nominal YNSN model. 
Because of the dot gain, the borders of neighboring 
colorants in a juxtaposed halftone are not perfectly 
separated and produce effects that cannot be represented 
with single colorants. Therefore, each ink-combination 
needs to be represented by a new primary. For a set of 
inks, the new cellular primaries must represent all 
possible ink-juxtapositions. As the domain of area-
coverages of any set of juxtaposed inks forms a simplex, 
we can set the barycenter of the original simplex and the 
barycenter of each of its faces as cellular primaries.  

 
Figure 2. The domain of area-coverages in superposition prints 
(left) and in juxtaposed prints (right). The top row corresponds 
to a 2-ink print and the bottom row to a 3-ink print.  

For example, consider a three-colorant juxtaposed print 
formed by three colorants, e.g. white paper, cyan and 
magenta (Figure 3). One cellular primary included in all 
subdivisions is the barycenter of the three vertices (p

012
). 

We also consider the barycenters of all two and one-ink 
faces of the simplex as other cellular primaries. This 
results in 1 three-colorant barycenter plus 3 two-colorant 
barycenters which together with the 3 colorant-vertices 
(barycenters of 0-faces) yield 7 cellular primaries. 
Similarly, for an N-ink juxtaposed system that forms an 
(N – 1)-simplex, using the binominal theorem, we can 
verify that this approach requires  

2
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the ink-vertices.  

 
Figure 3. Locations of the cellular primaries in a 3-ink 
juxtaposed print. For 3 inks, we need 7 cellular primaries. In 
parentheses, we give an example with colorants cyan, magenta 
and white.  

Having selected the cellular primaries, the second 
question was how to choose the subdomains within which 
the YNSN model interpolates between cellular primaries. 
Given a test point, the answer is straightforward for the 
cellular YNSN model for standard prints: we choose the 
smallest subcube that includes the test halftone (see 
Figure 1). In cellular simplexes, however there is not a 
unique way of choosing a subdomain. In a simple 
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experiment with only 3 inks, Figure 4 shows a point that 
represents a halftone of cyan (37%), magenta (22%) and 
red (41%) inks. As can be seen, a point inside a cellular 
subdivided triangle can be interpolated within different 
subdomains. The reproduction accuracy depends on the 
interpolation region. To compare, we estimate the 
reflectance of this point by linearly interpolating within 
different regions, each one defined by different cellular 
primaries. The RMS error between the predictions and 
the measured reflectance is shown in Figure 4. 

 
Figure 4. A single point can be interpolated within regions 
defined by different cellular primaries. The RMS prediction 
error is given for the printer described in Section IV.  

The cellular subdivisions according to Figure 4 (c), (d) 
and (e) give the largest interpolation errors. They all use 
cells that have large areas compared to the cells in (a) and 
(b). Moreover, Figure 4 (c) uses 4 primaries and Figure 4 
(e) does not use the three-ink barycenter primary.   

One reasonable option is to find the smallest 
subdomain that circumscribes the test point, similar to 
Figure 4 (b). However, this point-location problem is 
known to be very computationally expensive in high 
dimensions [25]. As it must compute the colors of 
millions of halftones, a forward prediction model should 
be fast. We are therefore interested in a subdivision that: 
i) assigns a subdomain to any test point of any dimension 
quickly and without ambiguity, ii) ensures that 
subdomains have small areas, and iii) includes the 
barycenter of N ink-vertices (unlike Figure 4 (e)).  

The first barycentric subdivision of a standard simplex 
(Appendix A) provides us with such desired properties. 
For three juxtaposed inks, Figure 4 (a) corresponds to this 
subdivision. As stated in the Appendix, the barycentric 
subdivision divides a q-simplex (i.e. a simplex with q + 1 
vertices) into a family of (q + 1)! q-subsimplexes (see 
Figures 10 and 11). Let us review the algorithm for 
finding the subsimplex circumscribing a given point 
within a subdivided simplex. This algorithm is a direct 
result of Corollary 1 in Appendix A. We carry out the 
following steps:  

(i) Input are t
0
, t

1
, … t

q
, the barycentric coordinates of 

point x relative to the simplex vertices p
0
, p

1
, …, pq. 

Hence, x = t
0
 p

0
 + t

1
 p

1
 + … + t

q
 p

q
. In our color 

prediction framework, t
0
, t

1
, … t

q
 are the nominal area 

coverages of the halftone x. Also, p
0
, p

1
, … p

q
 

correspond to the area coverages of the q + 1 fulltone 
colorants.  

(ii) Order the barycentric coordinates, such that ti0 ≥ ti1 ≥ 
… ≥ tiq

.  

(iii) The cellular primaries are:  

pi0
, barycenter  of the 0-face of pi0

,  
pi0i1

, barycenter  of the 1-face of pi0
 pi1

,  
… 
pi0i1 … iq

, barycenter  of the q-face of the 
simplex, i.e. the barycenter of the initial simplex 
pi0

 pi1
 … piq

. 

Using this algorithm, given the barycentric coordinates 
relative to the vertices of the original simplex, the 
circumscribing subsimplex is found quickly. 
Computationally, it is as fast as sorting the vector of area-
coverages of the test halftone. Consider for example 
Figure 5 that is a more detailed instance of Figure 4 (a). 
Recall that the test point shown at position x is a halftone 
of cyan (37%), magenta (22%) and red (41%) inks. From 
Corollary 1 (i) of the Appendix, we know that the 2-
simplex cmr can be divided into 3! 2-subsimplexes, each 
characterized by a double inequality. The inequality tr ≥ tc 
≥ tm characterizes the highlighted subsimplex that 
encompasses the halftone x, where tr = 0.41, tc = 0.37 and 
tm = 0.22 are the barycentric coordinates of point x with 
respect to the cmr simplex, i.e. x = trr + tcc + tmm. With 
the algorithm described above, we find the cellular 
primary vertices of the circumscribing subsimplex to x, 
i.e. r (pi0

), cr (pi0i1
) and cmr (pi0i1i2

) in the present 
example.  

 
Figure 5. A single point x with barycentric coordinates t

r ≥ t
c
 ≥ 

t
m

 has to be interpolated within the corresponding highlighted 
subsimplex defined by cellular primaries r, cr and cmr.  

The area-coverage of a juxtaposed halftone represents 
its barycentric coordinates relative to the vertices of the 
original simplex built by the contributing inks. In order to 
predict the reflectance of a juxtaposed halftone using the 
cellular YNSN model, we must calculate its new 
barycentric coordinates relative to its circumscribing 
subsimplex. These new barycentric coordinates are then 
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used as weights in the Yule-Nielsen equation (areas ai in 
Equation 1).  

Finding the barycentric coordinates inside arbitrary 
shapes even in 2D can be ambiguous [26]. Thanks to the 
barycentric subdivision, after the subdivision, every point 
is inside a (sub)-simplex. Calculating the barycentric 
coordinates of a point inside a simplex is straightforward. 
We can construct barycentric coordinates in any 
dimensions using fractions of hypervolumes. In order to 
compute the barycentric coordinate of a given point p 
relative to a certain vertex x, we can compute the ratio of 
the hypervolume of the simplex opposite to x, and the 
hypervolume of the whole circumscribing simplex [27]. 
The simplex opposite to x is defined by the point p and 
all circumscribing simplex points but x.  

A test point inside an N-simplex forms an N-simplex 
with any set of (N – 1) vertices of that simplex. The 
barycentric coordinates are therefore the ratios of the 
unsigned hypervolumes of two N-simplexes. The 
unsigned volume of a simplex of any dimension is [28]  

1 0 2 0 0
1

det[ , , , ]
!

V qq
= - - -p p p p p p  (3) 

where p
0
, p

1
, … , pq are q-vectors, that yield a square 

matrix for determinant calculation. Figure 6 shows a 2D 
example where a juxtaposed 3-ink halftone is represented 
with area-coverage vector t (c, m, y). The barycentric 
coordinates relative to c, m and y vertices, i.e. c, m and y, 
are equal to the areas of the sub-triangles opposite to c, m 
and y, i.e. mty, cty and ctm, respectively, normalized by 
the area of the simplex cmy.  

 
Figure 6. The area-coverage of the halftone represented with the 
vector t (c, m, y) is equal to the relative area of the three 
opposite-side sub-triangles.  

RESULTS  

In this section, we predict the reflectances of printed 
samples made of juxtaposed ink-halftones using the 
nominal YNSN and the cellular simplex models. The 
juxtaposed halftoning method enables us to directly set 
the amount of any number of input inks. The assigned 
ink-amounts are halftoned with the discrete-line 
juxtaposed halftoning algorithm (see Figure 7). The 
screen is a 1D superscreen [7, 29] with two subscreens of 
rational periods T1 = 46/7 and T2 = 45/7 resulting in 92 
intensity levels with a line slope of 4/7. We use the Canon 
Pixma Pro9500 inkjet printer at 600 dpi with a maximal 
drop-size and the Canon MP-101 paper for all 
experiments. The corresponding solid cyan, magenta and 

yellow densities are 1.05, 0.80 and 1.11, respectively 
according to the DIN 16536-2 density standard.  

 

 
Figure 7. Discrete-line juxtaposed halftoning: a simple example 
of a screen comprising four colorants with different area-
coverages: cyan 25%, magenta 20%, yellow 25% and white 
30%. Two instances of the parallelogram screen-element are 
shown with a solid line. Here the vertical period T is 4 and the 
line slope is 2/5.  

Although the inks are transparent, we don’t allow them 
to overlap. Hence, each ink is a separate colorant. We use 
7 out of the 10 available ink-cartridges for the printer, 
namely cyan, magenta, yellow, black, red, green and gray 
which along with the white paper form an 8-colorant 
juxtaposed system. We measure the spectral reflectances 
with a Datacolor MF45 spectrophotometer having a 
0°:45° measuring geometry. The reflectance spectra 
comprise discrete wavelengths from 380 to 730 nm in 10 
nm intervals. Therefore, each halftone reflectance is 
represented by a 36-vector. 

According to Equation 5, the calibration set of the 
cellular YNSN model is composed of 28 – 1 (= 255) 

halftone reflectances among which 
8

8
1

=
æ ö÷ç ÷ç ÷ç ÷÷çè ø

 calibration 

samples are the inks at their full area-coverages, 
8

2
28

æ ö÷ç ÷ç =÷ç ÷÷çè ø
 calibration samples are all different 2-ink 

halftones where both inks have equal area-coverages, 
8

3
56

æ ö÷ç ÷ç =÷ç ÷÷çè ø
 calibration samples are all different 3-ink 

halftones with equal area-coverages and so forth. For the 
nominal YNSN model calibration, 8 colorants at their full 
area-coverage are printed and measured.  

We design a test set comprising a number of halftones 
to be measured and compared with the predicted spectra 
resulting from both the nominal and cellular simplex 
YNSN models. We include all possible ink-combinations 
in the test set. We include one test-halftone with random 
area-coverage for each combination instance. For 
example, as there are 28 different two-ink combinations, 
we include 28 two-ink test halftones with the area-
coverages of the two inks selected on a random basis. 
This approach yields a test set of 247 samples, i.e. 255 
samples, one per ink combinations, minus the 8 single 
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colorants. We verified that these 247 samples are well 
distributed in the color space.  

As explained earlier, given the area coverage of a test 
halftone, we first find the primaries that circumscribe that 
halftone according to the algorithm described in the 
previous section. This is performed by sorting the area-
coverage vector of the test halftone. We then calculate the 
barycentric coordinates of the test halftone relative to 
these primaries and use them in Equation 1 to predict the 
reflectance. For example, suppose we have a 7-ink test 
halftone with area coverage vector a (c, m, y, r, g, w, k), 
assuming c ≥ m ≥ y ≥ r ≥ g ≥ w ≥ k.  We know that this 
point is inside one of 7! (= 5040) 6-subsimplexes 
resulting from the barycentric subdivision. The vertices of 
the circumscribing 6-subsimplex are the barycenters of: c, 
cm, cmy, cmyr, cmyrg, cmyrgw and cmyrgwk 

simplexes, i.e. they are formed by halftones with equal 
amounts of these ink-combinations. These vertices form 
the cellular primaries that are used for predicting the 
reflectance spectrum and therefore the color of the 
considered test halftone.  

Table I shows the prediction accuracy of the nominal 
YNSN, cellular simplex YNSN, the two-by-two dot 
centering and the predictive two-by-two model using  100 
effectively measured calibration samples. Note that the n-
values shown in Table I are optimized to give the 
minimum average ΔE94 color-difference between the 
measured test-halftones and their predicted counterparts. 
We allowed the n-value to vary between -10 to 10 with 
0.1 increments. Values greater than 10 or less than -10 do 
not change the results significantly [30].  

 

Table I. Prediction accuracy of the nominal and cellular simplex YNSN models for 247 test juxtaposed-halftones printed with a Canon 
Pixma Pro9500 at 600 dpi, using cyan, magenta, yellow, red, green, gray inks and the white paper.  

YNSN model # calib. 
set 

  ΔE94   
n-value mean  median  quant .95 max  

Nominal  8 2.35 2.06 5.04 7.10 -10 

Cellular 255 1.34 1.22 3.15 4.33 -2.5 

Two-by-two* 1072 1.24 0.91 3.20 6.91 1.6 

Predictive two-by-two* 100 1.41 1.31 3.70 7.10 1.5 

* In these experiments the setup is slightly different and instead of the gray ink we used the blue ink.  

As it can be seen from Table I, the cellular YNSN 
model with barycentric subdivision offers 
significantly more accurate predictions than the 
YNSN model with nominal area coverages. The 
nominal YNSN model prediction is already quite 
accurate. This indicates that the printer is successful 
in placing halftone dots with effective area-coverages 
close to nominal area-coverages. The N-ink cellular 
YNSN model offers a prediction accuracy close to 
the accuracy obtained by the original two-by-two 
model with four times less calibration patches and an  

 
Figure 8. The ΔE94 color prediction error for a number of 3-ink 
halftones predicted with the cellular simplex YNSN. The test 
halftones are shown with filled circles color-coded according to 
the prediction accuracy error. The location of the measured 
calibration samples is also shown with black shapes: The 
fulltone inks are shown with squares, the two-ink cellular 
primaries are shown with triangles and the 3-ink cellular 

primary is shown with the nabla symbol. The choice of inks is 
arbitrary.  

accuracy slightly higher than the predictive two-by-two 
model, but with 2.5 times the number of calibration 
patches. In Figure 8, we show the color prediction 
accuracy of the cellular simplex model for a number of 3-
ink juxtaposed halftones depending on their locations in a 
2D subdivided simplex.  

CONCLUSIONS  

In this work, we have presented a new spectral 
prediction model for N-ink prints made of juxtaposed 
halftones. It borrows the concept of the cellular 
subdivision of the ink area-coverage domain which has 
already been successfully used to predict the color of 
classic prints. As the domain of the ink area-coverage of 
juxtaposed halftones forms a simplex, the main challenge 
resides in determining the location of cellular primary 
reflectances as well as appropriately subdividing the 
simplex into subdomains such that the barycentric 
weights of the primary reflectances can be 
unambiguously calculated. We have shown that the first 
barycentric subdivision of simplexes efficiently samples 
the ink space and offers computationally efficient 
solutions to find the proper subdomain for each test 
halftone. The number of calibration samples raises 
exponentially with the number of inks, but with a modest 
base of 2. The experiments have shown that the proposed 
model can predict all combinations of 8-ink prints with a 
colorimetric accuracy superior to the nominal YNSN 
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model, very close to the prediction accuracy offered by 
the two-by-two dot-centering model.  

In the future, we can explore other subdivision 
strategies. A further subdivision of an already subdivided 
simplex might increase the prediction accuracy. We can 
also consider an adaptive subdivision strategy where 
subsimplexes with lower prediction accuracy are further 
subdivided.  

We expect that the barycentric subdivision of the ink 
space will be advantageous for printing with 
unconventional inks, such as metallic or iridescent inks. It 
can also be useful in predicting other appearance 
attributes, such as spatially varying BRDFs [31]. Given 
the fact that any material mixture, e.g. multi-material 3D 
prints, can be represented with simplexes, we believe this 
method can find applications beyond color or appearance 
reproduction.   

APPENDIX A: MATHEMATICAL BACKGROUND  

In this section, we review the necessary mathematical 
background for building the spectral prediction model for 
N juxtaposed inks. More detailed explanations can be 
found in almost every standard textbook on Algebraic 
Topology, see for example [32, 33].  

Definition 1. The points p
0
, p

1
, …, pq in Rk forming an 

ordered set are geometrically independent (or affine 
independent) if p

1
 – p

0
, p

2
 – p

0
, …, pq – p

0
 is a linearly 

independent subset of Rk.  
Definition 2. Let p

0
, p

1
, …, pq be geometrically 

independent points of Rk. The convex set spanned by 
these points is a q-simplex (σq) in Rk and the points p

0
, p

1
, 

… , pq are called the vertices of the simplex.  
The parameter q is referred to as the dimension of the 

simplex.  
A simplex is called a standard simplex if its vertices are 

the points 

0

1

(1, 0, 0, , 0)

(0,1,0, , 0)

(0,0,0, ,1).q

=

=

=

p

p

p









    (4) 

The face of a simplex is a simplex whose vertices are a 
subset of the vertices of the original simplex. If the 
simplex τ is a face of simplex σ but not equal to σ, we call 
τ a proper face of σ and denote it by τ < σ. Vertices of the 
simplex are its 0-faces, its edges are its 1-faces. The (q – 
1)-faces of a q-simplex are called the facets of the 
simplex.  

 

Figure 9. The 0, 1 and 2-dimensional simplexes correspond to a 
point, a line segment and a triangle, respectively.  

Figure 9 shows examples for the first three simplexes. 
A 0-simplex and a 1-simplex in Euclidean space Rk are 
simply a point and a line-segment in that space, 
respectively. A 2-simplex and a 3-simplex are a triangle 
and a tetrahedron in Rk where k is at least 2 and 3, 
respectively. 

Definition 3. For any point x in a q-simplex, there 
exists a unique (q + 1)-tuple of real numbers (t

0
, t

1
, … , 

tq) called the barycentric coordinates of x relative to the 
simplex vertices p

0
, p

1
, … , pq where  

 
0

0

0 1

for 0,1, ..., and 1

:

 

.
j j j

j

q

j

q

j

t t

j q t

=

=

= ≤ ≤

= =

 
 
 
 
 
  

∑

∑

x p

 
(5) 

Definition 4. The barycenter of a q-simplex σ with 
vertices p

0
, p

1
, … , pq, denoted by bσ, is defined as  

0 1
1

(
1

).qb
q

σ = + + +
+

p p p    (6) 

Definition 5. The first barycentric subdivision of a q-
simplex σq is a family of q-simplexes defined inductively 
for q ≥ 0:  

(i) the barycentric subdivision of a 0-simplex is a 0-
simplex.  

(ii) if φ
0, φ1, …, φq+1 are the facets of a (q + 1)-simplex 

σq+1 and if bσ is the barycenter of σq+1, then the 
barycentric subdivision of the σq+1 consists of all (q + 1)-
simplexes spanned by bσ and by q-simplexes resulting 
from the barycentric subdivision of φi (i = 0, 1, …, q + 1).  

Figure 10 shows an example of the barycentric 
subdivision. On the left, the barycentric subdivision of a 
1-simplex line-segment gives two smaller line-segments 
both with one vertex and the barycenter of the original 1-
simplex. On the right, we show the barycentric 
subdivision of a 2-simplex. Following Definition 5, the 2-
simplex has three 1-simplex facets, i.e. line segments 
p

0
p

1
, p

1
p

2
 and p

2
p

0
. The barycentric subdivision of this 

triangle consists of all possible triangles spanned by the 
simplex barycenter, i.e. p

012
 and the 1-simplexes resulting 

from the subdivision of all 1-simplex facets, i.e. p
0
p

01
, 

p
1
p

01
, p

1
p

12
, p

2
p

12
, p

2
p

02
 and p

0
p

02
. In Figure 11 we show 

the barycentric subdivision of a 3-simplex, i.e. a 
tetrahedron in 3-dimensional space.  
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Figure 10. The barycentric subdivision of a 1 and 2-simplex. 
Note that the barycenter of the original simplex (p

01
 and p

012
 for 

the line segment and the triangle, respectively) is included in all 
subdivided simplexes.  

 
Figure 11. The barycentric subdivision of a 3-simplex, p

0
p

1
p

2
p

3
. 

The barycenter of the 3-simplex, i.e. p
0123

 is marked with a disk. 
The 3-simplex has 4 facets: p

0
p

1
p

3
, p

0
p

2
p

3
, p

0
p

1
p

2 
and p

1
p

2
p

3
. 

The subdivision produces 24 3-subsimplexes, two of which are 
p

0
p

02
p

023
p

0123
 and p

0
p

03
p

023
p

0123
, for example.  

The following corollary from the definition of 
barycentric subdivision is of particular interest. It can be 
found in the form of an exercise, for example in [32, 
Exercise 6.6] or in [33, Section 2.1, Exercise 24].  

Corollary 1. (i) Each q-simplex resulting from the 
barycentric subdivision of a q-simplex σ is defined by q 
inequalities ti0 ≤ ti1 ≤ … ≤ tiq

 where ti0
, ti1

, …, tiq
 are the 

barycentric coordinates relative to σ and (i0, i1, ···, iq) is a 
permutation of (0, 1, ···, q).  

(ii) Moreover, every q-simplex of a barycentric 
subdivision has the vertices bσ0, bσ1, …, bσq

, where each σi 
is an i-face of σ and σ0 < σ1 < … < σq (recall τ < σ 
indicates that τ is a proper face of σ). The order of σi s in 
the inequality depends on the order of the barycentric 
coordinates (ti0

, ti1
, …, tiq).  

Proof. See [34] for an extensive proof.  
The first part of Corollary 1 determines the distinct 

subsimplexes after the barycentric subdivisions expressed 
as a function of their barycentric coordinates. It shows 
that the barycentric subdivision of a q-simplex gives 
exactly (q + 1)! q-simplexes. We can verify this in 
Figures 10 and 11 where the barycentric subdivision of a 
1, 2 or 3-simplex gives 2, 6 or 24 1-, 2- or 3-simplexes, 
respectively.  

The second part of Corollary 1 determines the 
circumscribing vertices of each subsimplex. Figure 12 
illustrates Corollary 1 for a 2-simplex. The 6 subdivided 
2-simplexes with barycentric subdivision are 
characterized with 6 double inequalities. We can list the 
vertices of each subdivided simplex easily with the help 
of part (ii) of the corollary. For example, the subdivided 
triangle characterized by inequality t

0 ≥ t
1 ≥ t

2
 has the 

vertices p
0
, p

01
 and p

012
. Note that, following Corollary 1 

part (ii), p
0
 is the barycenter of the 0-face p

0
 that is the 

vertex corresponding to the largest element in the 

barycentric coordinate (t
0
), p

01
 is the barycenter of the 1-

face p
0
p

1
 formed by the two vertices corresponding to the 

two larger elements of the barycentric coordinate (t
0 and 

t
1
) and p

012
 is the barycenter of the 2-face of simplex 

p
0
p

1
p

2
, which is the simplex p

0
p

1
p

2 itself.   

 
Figure 12. Characterization of each subdivided simplex using 
the inequalities of the barycentric coordinates.  
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