Back to the main page of LSP/EPFL Peripheral Systems Laboratory (EPFL-DI/LSP)

Master projects


Some of the projects can be carried out in collaboration with industry or with another university (grants available). On request, additional projects of collaboration with industry can be made available.

Please consult the responsible assistant or/and Prof. R.D. Hersch before registering at your section as well as at our secretary (Mrs Maria Anitua).


* COLOR REPRODUCTION & IMAGING
* Printing high dynamic range images
* Microcomputer LED based sensing system
* Modelisation of color halftone prints with an ideal setup
* Model-based color separation for custom inks (possible industry collaboration)
* Analysis of optical and physical dot gain by microscopic imaging methods

* DOCUMENT SECURITY
*Nouvelles méthodes de protection contre la contrefaçon (collaboration avec industrie)


* COLOR REPRODUCTION & IMAGING


For more information on EPFL's basic spectral prediction model, consult the paper Spectral prediction and dot surface estimation models for halftone prints .

* Printing high dynamic range images

The different substrates and technologies available at the Peripheral Systems Lab may possibly allow to reproduce middle to high dynamic range images. The project aims at modelizing the interaction of light, and different printed substrates and to determine the dynamic range obtainable by layers of prints. The project can be carried out in collaboration with a company printing high quality images for the watch industry.
Responsables:
Roger D. Hersch, tél. 34357 (RD.Hersch@epfl.)

* Microcomputer LED based sensing system

In order to be able to print correct colors, future printers will incorporate non-expensive color measuring devices. LEDs have the capability of both emitting light and sensing light within a given range of wavelengths. Create a LED based measurement system, by interfacing one or several LEDs to a microcomputer. Conceive an appropriate setup for calibrating this measurement system. The microcomputer, the LEDS and an optical bench comprising various light sources and a spectrophotometer are available.
Responsables:
Romain Rossier, tél. 36681 (r.rossier@epfl.ch)
Roger D. Hersch, tél. 34357 (RD.Hersch@epfl.)

* Modelisation of color halftone prints with an ideal setup

The Clapper-Yule and Yule-Nielsen models enable the modelization of the interaction of light with the halftone inks and the substrate. Consider creating separate layers composed of a diffusing plastic sheet and an inked transparency and verify the models by measuring separatly the characteristics of the substrate, of the transparency and of the ink layer. Consider the case of the transparency placed on the substrate without or with an air layer in between.
Responsables:
Vahid Babaei, tél. 36681 (vahid.babaei@epfl.ch)
Roger D. Hersch, tél. 34357 (RD.Hersch@epfl.)

* Model-based color separation for custom inks (possible industry collaboration)

The Peripheral Systems Lab of EPFL has developed a model for predicting the color of printed patches. Enhance that model to compute the color separation for custom inks, by introducing additional constraints. Experiences can be carried out on a 9 color ink-jet printer, as well as on commercial offset proofing machines (http://www.images3.ch/).
Responsables:
Romain Rossier, tél. 36681 (r.rossier@epfl.ch)
Roger D. Hersch, tél. 34357 (RD.Hersch@epfl.)

* Monte-Carlo simulation of the interaction between light, substrate and inks (collaboration with Université de St-Etienne)

Various phenomena influence the reflection spectrum of a color halftone patch printed on a given substrate (e.g. paper). These phenomena comprise the surface (Fresnel) reflection at the interface between the air and the paper, light scattering and reflection within the substrate (i.e. the paper bulk), and the internal (Fresnel) reflections at the interface between the paper and the air. We would like to deduce the reflectance of halftone prints (BRDF) according to the observation angle by performing a Monte-Carlo simulation, i.e. by launching many light rays across a parametrisable model of the print.
Responsables:
Roger D. Hersch, tél. 34357 (RD.Hersch@epfl.)

* Analysis of optical and physical dot gain by microscopic imaging methods

The spectral prediction models developed at our laboratory (ink-spreading enhanced Yule-Nielsen modified spectral Neugebauer) allow predicting the physical and optical dot gain present in halftone prints. Verify if the same values can be obtained by macroscopic and microscopic imaging techniques. Available aquisition devices are a 2400 dpi scanner, a Proscope imaging microscope and an olympus microscope connected to a camera.
Responsables:
Roger D. Hersch, tél. 34357 (RD.Hersch@epfl.)

* DOCUMENT SECURITY


*Nouvelles méthodes de protection contre la contrefaçon (collaboration avec industrie)

Nous développons de nouvelles méthodes pour sécuriser des documents de valeur (cartes de crédit, chèques, billets de banque, etc..). Des projets peuvent être proposés dans les domaines suivants: rendu d'images par microstructures couleur cachées, nouveaux effets de moiré, effets stéréo. Certains projects comprennent de la programmation Java pour smartphones Android. Veuillez contacter directement le professeur R.D. Hersch.
Responsables:
Roger D. Hersch, tél. 34357 (RD.Hersch@epfl.)


<basile.schaeli@epfl(add: .ch)>