

SYNTHESIS OF PARAMETRISABLE FONTS BY
SHAPE COMPONENTS

THÉSIS N˚ 1905 (1998)

PRÉSENTÉE AU DÉPARTEMENT D’INFORMATIQUE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÉS SCIENCES TECHNIQUES

PAR

Changyuan HU

Master of Computer Science and Technology, Nanjing University, Nanjing, Chine
de nationalité chinoise

acceptée sur proposition du jury:

Prof. R. D. Hersch, directeur de thése

Prof. J.P. Buser, rapporteur

Dr. J. Gonczarowski, rapporteur

Dr. P. Karow, rapporteur

Lausanne, EPFL

1998

h, the
ique

earch

p me
ch. I
nd in
g the

ish of
oping

, for
Thanks

I wish to express my gratitude to my thesis advisor professor Roger D. Hersc
head of the Peripheral Systems Laboratory (LSP) of the EPFL, for the un
opportunity he offered me to do research work in his laboratory, for guiding my res
from the start to the end, and for providing me the best research environment.

Many thanks to all my colleagues in the LSP, who were always there to hel
with small and big problems from updating computer systems to translating Fren
thank in particular Dr. Patrick Emmel for helping me in understanding regulations a
setting up the typeset format of this thesis. I thank Oscar Figueiredo for translatin
abstract of this thesis to French. Isaac Amidror helped me to improve the Engl
some parts of this thesis. I thank him. I also want to thank Fulco Houkes for devel
the visual interface.

I wish to thank also professor André Gürtler, from Basel School of Design
correcting the shape of our synthesized characters.

* * *

And finally, many thanks to my parents and all my family.

, bars,
 a font.
es, it
ence,
rs of

hich
trisable
ponents
blies of
ents are
ponents
s. The
 of the

ased
endent
ction
ameters
 or to a
h vary
 high-
rying
 Latin

rs of
cation
ents,

ation
ptical
Abstract

Typographic characters implicitly incorporate structure elements such as stems
round parts, arches and serifs, which are repeated throughout the characters of
Although this structure information is important when typographers design typefac
is however not explicitly described in today’s outline font technology. As a consequ
coherently varying the style of an outline font has to be done by modifying contou
all characters in the font.

We propose in this thesis a new highly flexible font description method, w
explicitly describes characters as structure elements, i.e. as assemblies of parame
shape components. Structure elements are either predefined parametrisable com
such as stems or bars of parametrisable width, or can be described by assem
parametrisable shape components such as sweeps and half-loops. Terminal elem
either predefined parametrisable serif shape components or are described by com
such as sweeps and ellipse-like round parts and by boundary correcting path
component based character synthesis method is illustrated by the reconstruction
basic characters of a few traditional text typefaces.

Using this method, we have developed a prototype of our component b
parametrisable font synthesis system. Fonts are characterized by the font indep
structure of individual characters, by typeface category information (serif types, jun
types, squareness and obliqueness of round parts), by font-dependent global par
and by further font-dependent parameters, referring either to a group of characters
single character. By varying global parameters, derived fonts can be created whic
in width, weight, contrast and shape. Such derived fonts are useful for producing
quality condensed text, for varying the character weight and for optical scaling. Va
the typeface category information as well enables exploring parts of the traditional
character design space.

We show the high quality of our synthesized fonts by synthesizing characte
some existing typefaces (Times, Helvetica and Bodoni). To demonstrate the appli
potential of this method, we have successfully accomplished typographical experim
which are beyond the capability of traditional outline font technology, such as vari
of weight, condensation, height proportion, contrast and oblique stress, and o
scaling for printing at different physical sizes.

re tels
ments qui
tion de
ent les
 de
 façon
urs de

 fonte
nts de
ents de
s ou des
mblages
 ou des
 soit des
ction de

ques est
es.

e de
s sont
r police,
rrondis
s à la

ractères
er des
s sont
se des
n des
rtaines

e la
 Pour
certain
ologie

aisse,
r des
ractères
.

Résumé

Les caractères typographiques comportent implicitement des éléments de structu
que des jambages, des barres, des parties arrondies, des arches et des empatte
sont répétés sur tous les caractères d'une même police. Bien que cette informa
structure soit importante et qu'elle soit présente lorsque les typographes dessin
polices, elle n'est pas exprimée explicitement par la technologie actuelle
représentation des caractères par contours. Par conséquent, pour modifier de
cohérente le style d'une police, il est actuellement nécessaire de modifier les conto
tous ses caractères.

Nous proposons dans cette thèse une nouvelle méthode de description de
extrêmement souple qui décrit explicitement les caractères d'après leurs éléme
structure, c'est-à-dire un assemblage d'éléments de forme paramétrable. Les élém
structure sont soit des composants paramétrables prédéfinis tels que des jambage
barres de largeur paramétrable, ou bien ils peuvent être décrits comme des asse
de composants géométriques paramétrables tels que des "tracés de pinceaux"
demi-boucles. Les éléments terminaux sont soit des empattements paramétrables
composants formés par des tracés de plume, des ellipses et des courbes de corre
contour. La méthode de génération de caractères à partir de composants géométri
illustrée par la reconstruction des caractères de base de quelques polices classiqu

En utilisant cette méthode nous avons réalisé un prototype de systèm
génération de polices à partir d'éléments de formes paramétrables. Les police
caractérisées par la structure inhérente des caractères indépendemment de leu
par une information de catégorie de police (types de jambage, types de jonction, a
ronds ou carrés verticaux ou obliques), par des paramètres globaux spécifique
police et par d'autres paramètres spécifiques à la police relatifs à un groupe de ca
ou à un caractère individuel. En jouant sur les paramètres globaux, on peut cré
polices dérivées, variant en largeur, graisse, contraste et forme. De telles police
utiles pour produire du texte condensé de haute qualité, pour changer la grais
caractères ou bien pour l'ajustement optique des caractères. La modificatio
paramètres relatifs à la catégorie de la police permet également d'explorer ce
variations de parties de l'alphabet latin.

Nous montrons que la qualité des polices produites est bonne lors d
reproduction des caractères de polices existantes (Times, Helvetica, Bodoni).
explorer le potentiel d'application de cette méthode, nous avons mené à bien un
nombre d'expériences typographiques au-delà des capacités de la techn
traditionnelle de description de polices par contours telles que variation de gr
condensation, modification de la proportion hauteur des minuscules / hauteu
majuscules, augmentation du contraste, accentuation de la nature oblique des ca
arrondis et ajustement optique des caractères pour l'impression à différentes tailles

1

. 5

. . . . 7
 8
. . . 10

. . . . 11
 . . . 11
 . . . 12
. . . 13
. . . 13
. . . 16
. . . 16
. . . . 17
. . . 18
 . . 19
 . . 19
 . . 21
. . . 24
 . . . 28
 . . 28
 . . 30
. . . 31
. . . 34
 . . 34
 . . 38
. . . 39
. . . 41
 . . . 41

. . . . 44
 . . . 44
. . . 45
 47
 . . . 47
. . . 47
. . . 50
 . . 51
Table Of Contents

1. Introduction 5
1.1 Preface .
1.2 Previous work in font parametrization .
1.3 Content of this thesis .
1.4 Terminology .

2. Structures and components 11
2.1 Structure of characters .

2.1.1 Character structure. .
2.1.2 Structure element connecting graph .

2.1.2.1 Basic structure elements in structure graphs
2.1.2.2 Basic connections in structure graphs .
2.1.2.3 Design of structure graphs .
2.1.2.4 Refinement of structure graphs.

2.2 Components .
2.2.1 Components for straight strokes .
2.2.2 Curves suitable for font parametrization. .

2.2.2.1 Modelling quadrant curves .
2.2.2.2 Curvature of single curve segment .
2.2.2.3 Curvatures of successively connected curve segments

2.2.3 Components for round parts .
2.2.3.1 The loop component .
2.2.3.2 The half-loop component .
2.2.3.3 The sweep component .

2.2.4 Components for terminals .
2.2.4.1 The serif component .
2.2.4.2 The slant-serif component .
2.2.4.3 The dot component .
2.2.4.4 The path component .

2.3 Summary. .

3. Font parametrization 43
3.1 Earmark-based refinement of structure graphs .

3.1.1 Serif styles .
3.1.2 Analysis on common earmarks .

3.2 Parametrisable character synthesis methods .
3.2.1 Component position dependency .

3.2.1.1 Relationships between components .
3.2.1.2 Component dependency graph .
3.2.1.3 Methods to specify dependency .

2

 . . . 52
 . . 53
 . . 54
 . . 55
. . . 56
. . 56
 . . 60
 . . 61
 . . . 62
 . . . 65
 . . . 65
 . . . 67
. . . 67
 . . 68
 . . 69
. . . 70
 . . . 72
 . . . 74

. . . . 75
. . . . 76
 . . . 78
 . . . 79
. . . 81
 . . . 81
. . . 83
 . . . 84
 . . . 84
. . . 86
. . . 88
 . . 88
. . . 89
. . 91
. . 92
. . . 92
 . 92
. . 93
 . . . 95
 . . . 97

. . . 99
3.2.2 Component shape tuning. .
3.2.2.1 Dimension. .
3.2.2.2 Orientation .
3.2.2.3 Curvature. .

3.2.3 Boundary correction .
3.2.3.1 Trim extension of component outlines .
3.2.3.2 Smooth corner of intersected components
3.2.3.3 Hand tuned boundary correction .

3.2.4 The complete parametrisable character synthesis method
3.3 Parameter files .

3.3.1 Coordinate system .
3.3.2 Parameter hierarchy. .

3.3.2.1 Global parameters and local parameters
3.3.2.2 Local parameter grouping. .
3.3.2.3 The parameter hierarchy .

3.3.3 An example of parameter files.
3.4 Technical issues regarding the font synthesizer .
3.5 Summary. .

4. Implementation of the parametrisable font synthesizing system 75
4.1 Classes .

4.1.1 The base class .
4.1.2 The derived classes .
4.1.3 Other classes .

4.2 The implementation of the parameter hierarchy .
4.2.1 Parameter files .
4.2.2 Implementation .

4.3 Output forms of synthesized characters. .
4.3.1 Component-based rasterization of synthesized characters
4.3.2 Outline generation of synthesized characters .

4.4 Automatic optical spacing .
4.4.1 The principle of automatic optical spacing .
4.4.2 The implementation.

4.5 Automatic hinting and grid-fitting .
4.5.1 The theory of grid-fitting and hinting .
4.5.2 The implementation.

4.5.2.1 Automatic generation of traditional hints. .
4.5.2.2 Grid-fitting component-based characters without hints

4.6 Evaluation. .
4.7 Summary. .

5. Experiments and applications 99
5.1 A visual environment .

3

. . . 99
. . 101
 . . 104
. . 105
. . 105
. . 106
. . 108
. . 109
 . 109
. 110
. . 111
. . 113
 . . 113

29

131

137
5.1.1 Character visualization .
5.1.2 Global parameter modification .

5.2 Typographical experiments and applications .
5.2.1 Font variation.

5.2.1.1 Boldness .
5.2.1.2 Condensation.
5.2.1.3 Stress .
5.2.1.4 Contrast .
5.2.1.5 Height proportion .
5.2.1.6 Variations in multiple dimensions.

5.2.2 Optical scaling .
5.2.3 Parametrization of existing fonts.

5.3 Summary. .

6. Conclusion and future work 115

References 117

Appendix A. The β value for a quarter of an arc 123

Appendix B. The β value for approximating an ellipse 125

Appendix C. Proof of parameter η 127

Appendix D. Description of characters by components 1

Appendix E. Enlarged resynthesized component-based characters

Appendix F. The variation cube of “e” 135

Appendix G. Parameter files of parametrisable Times Roman

4

1.1 Preface

5

everal
f type
rocess
e the
e our
ments
es. As
ld the

atics, or

CHAPTER 1

Introduction

1.1 Preface

The twenty-six letters that we use today have evolved over the course of s
millennia. Although printing is a far more recent phenomenon, the development o
styles — the refinement of symbols we use to express ourselves in writing — is a p
that began when man first started to communicate. Legibility and beauty might b
two most important reasons which have continuously driven typographers to refin
letterforms. To make our written symbols easy to read and write, basic structure ele
such as vertical stems and horizontal bars have evolved naturally in our typefac
man’s knowledge of science accumulated, typographers started to dream: cou
beauty of our characters and their structure elements be represented by mathem
by geometry?

Figure 1.1: The Roman capitals of the Column of Trajan in 114 A.D.

6

Chapter 1: Introduction

to the
 own
olumn
 1.1).
 were
sually
 found
n. By

 stone
selled.
m the

he old
l rules
metry
 were
r and
eenth
ed by
reo in

height
tting of
s and

pply
pes of
aithfully
Perhaps the closest direct ancestor of our letterform can be dated back
ancient Roman Empire. The most important contribution of the Romans to our
alphabet was the visual refinement of capital letters. The capitals incised in the C
of Trajan in 114 A.D. have been called the perfect expression of letters (Fig.
“Indeed, they are the basis of all of our typefaces” [Labuz88, pp.31]. Roman letters
engraved with thick and thin strokes and graceful curves. Thicker strokes are u
referred to as major strokes; thinner stroke are minor strokes. Researchers have
that the tool required to produce these embellishments was a double-pointed pe
shifting the angle of the pen, the Roman could produce lines of any width. When a
was to be carved, a sketch of the letter was first made with this tool and then chi
Yet the Roman capitals are not geometrically designed; their beauty comes fro
subtleties of their curves and strokes.

Fourteen hundred years later, the Renaissance humanists rediscovered t
values of the antique past. During that time, artists tended to find the mathematica
of beauty for their art works, and scientific discoveries and methods such as geo
and the rule of proportion were applied to their artistic designs. The Roman capitals
therefore naturally described through mathematical constructions drawn with rule
compass. For example, Fig. 1.2a, a letterform design from the middle of the sixt
century, displays beautiful circles, curves, reference points and lines construct
mathematical calculation. The capital letters designed by Frate Vespasiano Amphia
1572 suggest that the width of a main stem should be one eighth of the letter’s
(Fig. 1.2b). These letter construction models served as references for the punchcu
printing types, even though it was not possible to strictly apply those reference line
curves onto the small piece of hand-cut steel types.

Figure 1.2: Character constructions in Renaissance: a) curves designed by circles; b)
regularized proportion of stroke width to character height.

Only with the advent of digital typography were typographers really able to a
geometry to type design. Computers were used to calculate the geometrical sha
characters and the generated character shapes were transferred onto negatives f

(a) (b)

1.2 Previous work in font parametrization

7

s were
adays,
 font
s the
apable
et the
ation
: could
 such as

ed or
cters’
ing yet

 shape
gital

s the

6a].
rs and
s and

nd pen
ctions.

h the
tafont
Serifs
 the
 serifs
ed. In
r parts

le

dern
so as
ge of

roman
afont is
quires
orld
ters

esign-
by digital laser photocomposer. New character design and representation method
developed by the cooperation of typographers and computer scientists. Now
almost every typesetting system produces characters by outlines. The outline
technology represents a character by its outline description and reproduce
character’s image by a computer program called the font rasterizer. Outlines are c
of describing the shape of a character either with straight lines or curved arcs, y
outline representation lacks the ability to describe specific typographical inform
such as widths of strokes and the squareness of round parts. A problem came up
we design and represent characters so as to make sure that typographical features
stroke width, serif length and squareness of round strokes could be controll
modified? Incorporating typographical information as parameters into the chara
representation rather than describing characters by their contours — an interest
difficult problem — has attracted both typographers and computer scientists.

1.2 Previous work in font parametrization

The earliest attempt known to describe typographic characters by parametrizable
primitives was that of P. Coueignoux, who designed one of the first fully di
typesetter controllers [Coueignoux81].

The most serious published work done in the field of parametrizable fonts i
Metafont system, a programmable parametrizable font synthesizing system [Knuth8
The Metafont system relies on a few basic paradigms for generating characte
symbols. The main character parts such as horizontal, vertical, diagonal stroke
round parts are specified by describing the path of a pen with given orientations a
widths. The pen’s central path is described by a sequence of pen positions and dire
From this information, Metafont computes a smooth centerline pen trajectory. Wit
given pen positions, widths and orientations, and with the centerline trajectory, Me
infers the description of the boundary of the corresponding pen stroke [Hobby89].
with font dependent serif width, height and depth information are adjusted to
computed stroke boundary. The shape boundary resulting from the assembly of
and stroke can either be directly filled, or traced by a small circular pen and then fill
addition to strokes defined by pen trajectories, Metafont specifies round characte
covering one or multiple quadrants by superarcs, i.e. scaled arcs defined within a sing
quadrant whose boundaries are given by superellipses [Knuth86a, pp.126].

The Metafont program was used by Donald Knuth to create his Computer Mo
typeface family [Knuth86b]. The Computer Modern typefaces were parametrized
to automatically generate optically scaled fonts and to generate by simple chan
parametrization sans-serif, typewriter, semi-bold, bold, condensed and slanted
fonts. Separate character shape descriptions are used for the italic font. Since Met
both a complete programming language and a flexible font design tool, using it re
both advanced programming and typographic skills. Only a few individuals in the w
are known to use Metafont, often for the design of non-Latin charac
[Haralambous94] [Southall98]. One of the lessons learned by users of Metafont d

8

Chapter 1: Introduction

om to
xplains
ly on

ased
 basic
ertical
 it is
hich

strokes
ethod

uited
rs by
Fan91]
 when
or high
ll not

 the
n to
racter
ified.
ch as
, it is
their
is not
lines.
tting
f the
 by

method
erive
posed
e parts
ly, our
basic
ing Latin characters is that Metafont’s pen paradigm does not offer sufficient freed
generate character shapes exactly according to the designer’s intention. This e
why besides Computer Modern, most Metafont designs for Latin fonts rely heavi
outline descriptions [Billawala89].

The recent Infinifont system [MacQueen93] [Bauermeister96] is a feature-b
parametrizable font description and reconstruction system. Its authors describe the
mechanism to assemble a character such as character “E” from parametrizable v
bars, horizontal bars and serifs. However, most of their work is not published and
therefore not known how they synthesize different typeface categories and w
paradigms they use for synthesizing curved character shapes and serif variants.

Schneider describes a method for assembling parametrizable pen-based
into typographic characters [Schneider98]. Regarding Latin character shapes, the m
suffers from the same limitations as Metafont. It seems however particularly well s
for synthesizing Chinese characters. The method of assembling characte
parametrizable strokes has already been tried for Chinese characters [Dong91] [
[Dürst93]. Industrial implementation has shown that good results can be obtained
the stroke-based Chinese characters are used for lower resolution applications. F
resolution applications, however, the quality of the reproduced characters is sti
satisfying especially for connections and curved strokes.

Some researchers try to incorporate additional information (constraints) to
outline representation of characters [Shamir98] [Zalik95]. They use this informatio
constrain the relationship (distance or spatial order) between vertices of cha
outlines and, possibly, the moving directions of vertices when the outlines are mod
By carefully specifying these point-to-point constraints, some typeface variations su
variation of boldness can be carried out. But, for more complex typeface variations
difficult to predicate the behaviour of each contour point and thus to specify
constraints. For example, for varying the contrast and oblique stress of a font, it
sufficient to constrain the trajectory of some character contour points to straight
Adding constraints to character outlines seems to be more suitable for grid-fi
character outlines during the process of rasterization. For example, some o
instructions used in TrueType [Microsoft95a] fonts specify the grid-fitting method
constraining the behaviour of character outline points.

1.3 Contents of this thesis

In this thesis, we propose a component-based parametrizable font representation
and the implementation of its prototype. Traditional Latin letter shapes which d
from Antiqua and Grotesque (sans-serif) typefaces [Tschichold65] can be decom
into basic structure elements: vertical stems, round parts (also called curved shap
or bowls), arches, horizontal bars, diagonal bars, serifs and terminals. Converse
aim is to synthesize traditional letter shapes by coherently assembling such
structure elements (Fig. 1.3).

1.3 Contents of this thesis

9

nents)
e both
rizontal
uch as
inals. In
ndard
 results

lement

 the
curve

 font
haracter
aracter

guage
rameter
lems
g are

ments
rizable
Figure 1.3: Assembling a character by basic structure elements.

The challenge resides in defining parametrizable geometric shapes (compo
with which most instances of structure elements can be synthesized. We propos
components for structure elements representing straight strokes such as stems, ho
bars and diagonal bars, as well as components for curved structure elements s
round parts and arches. Components are also designed to describe serifs and term
order to support different typeface categories, we also propose a set of sta
parametrizable junctions between shape components. The research work and the
of this thesis will be presented in chapters 2 to 5.

In chapter 2, we analyze and describe the character structure by a structure e
connecting graph. Then, we present in the same chapter our design of components — the
basic typographical shape synthesizing primitives. To derive our model for
parametrization of curved structure elements and strokes, our research on
descriptions suitable for parametrizable fonts is presented.

In chapter 3, we present the model and principles of our parametrizable
synthesis system. Characters are synthesized by using a set of parametrizable c
synthesis methods, one basic method for each character. To generate the ch
components, the system makes use of hierarchically organized parameters.

In chapter 4, a prototype implementation based on the C++ programming lan
is given. Ideas presented in chapter 2 and chapter 3, such as the hierarchical pa
organization, will be realized by the prototype implementation. Technical prob
regarding rasterization, automatic optical spacing, grid-fitting and automatic hintin
discussed.

Typographical experiments are presented in chapter 5. These experi
demonstrate the capabilities and application potential of the proposed paramet
component-based font synthesis system.

Components Assembling Outlined or filled

top serif

foot serif

round/curved
elements

xheight
stem

ascender
stem

10

Chapter 1: Introduction

inol-
nsis-
day’s

ext.

 A
to be

ign.
mily
ica

apers.
aces.
 for
 are
mous

 and
igital
ining
 any

ctical

al
le of
le

. In
or a

ly
r (for
1.4 Terminology

In this thesis, traditional typographic terminology [Labuz88, pp.23-25] and the term
ogy used in digital typography will both be used. Sometimes, there is a little inco
tency between the traditional meaning of a term and its explanation according to to
computer font technology. In such a case, the meaning should adapted to the cont

• A typeface is a distinctive design for a set of visually related symbols.
typeface represents an abstract design idea for how letterforms are
presented.

• A typeface family is a collection of typeface variations based on a single des
For example, Helvetica is a type style design. The Helvetica typeface fa
may contain Helvetica normal, Helvetica light, Helvetica bold, Helvet
condensed, Helvetica italic and other typefaces.

• This thesis focuses on text typefaces and not on decorative typefaces. Text
typefaces are used for the continuous setting of text in books and newsp
Legible, suitable and aesthetically pleasing letters are critical to text typef
Decorative typefaces (mainly created in the 19th century) are used
decoration purposes in which attractiveness, novelty and loudness
emphasized. The distinction between them can be found in Rockledge’s fa
Typefinder system [Rockledge91].

• A font is a particular example of a typeface, traditionally in a particular size,
contains symbols for each element of a particular character set. In d
typography, since outline fonts are scalable, a font is often a file conta
description data for shapes of all characters which can be scaled to
particular size by computer programs. It seems that there is no pra
difference between a scalable digital font and a typeface.

• A parametrizable font is a font with parameters controlling typographic
features. Not only the size of a character is scalable, but also the sty
characters can be varied. By changing certain parameters, a parametrizabfont
may generate all typefaces or scalable fonts in a typeface family.

• A glyph is an individual symbol which appears when it has been printed
digital typography, a glyph is represented either in the form of an outline
bitmapped image (array of dots) that is to be displayed or printed.

• A character synthesis method is a C++ object member function special
conceived for the typeface-independent generation of a given characte
example ASCII character “m”).

2.1 Structure of characters

11

basic

en

e
ibe the
racters
be the
signed

ade of
al bars,
Nowa-
oesn’t
 spa-
harac-
. This

CHAPTER 2

Structures and components

In out font parametrization method, a character is constructed by pieces of
descriptive shapes, called components. Components are connected to or placed betwe
each other according to a structure graph which describe their relationship, i.e. th
character structure. The structure graph is a conceptual model used to descr
component decomposition of characters and, conversely, the assembling of cha
from their components. In this chapter, we first present our methodology to descri
structure of characters. Then we will introduce the basic components we have de
and our method to parametrize components.

2.1 Structure of characters

2.1.1 Character structure

While Chinese characters are written by basic strokes, Roman characters are m
some basic structure elements, such as vertical stems, horizontal bars, diagon
slanted top serifs, foot serifs, loops, bowls, arches, dots, tails and ears (Fig. 2.1).
days, thousands of different text typefaces have been invented. However, one d
have much difficulty to recognize a letterform in any text typeface. That is due to the
tial ordering of its structure elements (stems, bars, bowls, arches, etc.). The way c
ter elements are connected is intentionally maintained across different typefaces
kind of intrinsic spatial ordering and connection of elements in a character is calledchar-
acter structure.

Figure 2.1: Some basic elements in Roman letters. This figure shows some important
structure elements.

optical
correction

arch

round
part

ascender
stem

round
part

diagonal
bar

narrow
diagonal
bar

descender
stem

ascender
line

x-height
line

base
line
descender
line

top
serif

serif

serif

12

Chapter 2: Structures and components

nition
e rela-
racters
 edges
tween
 graph
ormal
eleton
eptual

er for
nts by

sed in
tures
track
s, we
ns are
flesh.
acter
line of
leton?
ection
hape
ed and

ould
r, and

cter is
embled

ctions.
tems,
ed by
onent
spatial
ns. A
 or be
. The
Previous work on character structure focused on character and feature recog
as well as character synthesis. C. H. Cox III and his colleagues [Cox82] studied th
tionship between two aspects of characters: the embellishments of physical cha
and the skeleton of letters. The basic elements of skeletons are (1) vertices, (2)
which specify the spatial ordering between vertices, and (3) the relationships be
vertices and edges. An extension of the symbolic representation commonly used in
theory was employed to depict skeletons, which made it possible to do some f
graph analysis. Readers are referred to [Cox82] for a detailed description of the sk
model. As an application, the skeleton model was used to bridge between the conc
description of a letterform and the corresponding physical embellished charact
character recognition. Cox et al. have also proposed a way to create different fo
applying different stroke definitions to their skeleton model.

The idea of using a skeleton to represent the character structure is also u
other frameworks for different purposes, such as finding typographical fea
[Herz97], creating thin line or skeleton fonts [Gonczarowski98], and describing the
of a pen [Knuth86a]. However, for the sole purpose of building parametrizable font
found the skeleton representation to have some disadvantages. Firstly, skeleto
suitable for describing the bones of characters, but not for describing their
Secondly, according to the typographer’s point of view, the meaning of a char
skeleton is not very clearly defined. It is often assumed that the skeleton is the mid
a character. Should midlines of embellishments such as serifs be parts of the ske
Cox’s work is a good abstraction which puts emphasis on the relationship and conn
of “vertices”. It might be suitable for letterform shape analysis. But for character s
generation, the typographical meanings of the vertices and edges are not defin
hence, not suitable for synthesizing parametrizable fonts.

The description of character structure for high-fidelity font parametrization sh
be capable of (1) describing the essential ordering of different parts in a characte
(2) refining the shape of the parts and their connection types.

2.1.2 Structure element connecting graph

We use the term structure element connecting graph, or structure graph, to describe
character structures. The purpose of a structure graph is to explain how a chara
decomposed into structure elements and, how these structure elements are ass
into a full blown character.

The symbols used in structure graphs are structure elements and conne
Structure elements are typographically functional parts, such as vertical s
horizontal bars, full or half loops, and serifs. Structure elements can be synthesiz
one or more components (see section 2.2 for a detailed description of comp
design). The order of structure elements in a structure graph reflects the natural
ordering of the corresponding parts in a character, but not their physical positio
structure element can either be connected to one or to more structure elements
simply isolated. If two structure elements connect, a line is drawn connecting them

2.1 Structure of characters

13

 or by

traight

lanted

ps,
e main
hapes,

and
rokes,

f the
bstract
 often
ssed in

 lines.

ards
pped to
 The
connection of two structure elements will be implemented by means of operations
a special connecting component (to be discussed later).

2.1.2.1 Basic structure elements in structure graphs

Three kinds of basic structure elements are introduced in the structure graph: s
strokes, round parts, and terminals. Straight strokes represent all visually (not
geometrically) straight strokes, which include vertical stems, horizontal bars and s
or diagonal bars. Round parts represent all curved or round strokes, which include loo
half loops, arches, bowls, counters, dots, etc. Stems and round parts build up th
body of characters. These body strokes are often terminated by some styled s
which are called terminals. Serifs and pears are common terminals for straight
curved strokes respectively. The graph symbols that we defined for straight st
round parts and terminals are shown in Fig. 2.2.

Figure 2.2: Straight strokes, round parts and terminals used in structure graphs.

Note that symbols are designed to try to reflect the common shapes o
corresponding part in a character. However, round parts and terminals are a
symbols, which may represent very different shapes. Hence refinements are
necessary for these elements. Refinement of round parts and terminals are discu
section 2.1.2.4.

2.1.2.2 Basic connections in structure graphs

Connections, or junctions between structure elements, are simply represented by
There are four different junction types used in the structure graphs: meet, link, join and
cross. Names for these junction types are partly inspired by [Cox82] but oriented tow
physical typefaces. However, these junctions types often cannot be one-to-one ma
physical character shapes. They are conceptual types of connections.

horizontal bars

vertical stems

diagonal stems

round parts

terminals

structure elements:

straight strokes

14

Chapter 2: Structures and components

ans of

 their

 The

n arch
ph, the

Both
 very

implementation of these connection types may require additional sub-types as a me
refinement. Symbols of junction types are drawn in Fig. 2.3.

Figure 2.3: The types of connections used in structure graphs.

 1) meet

Two structure elements, which may be of any type, connect each other at
ends. Most of the meet junctions are smooth. But not necessarily absolutely smooth.
meet junction is often applied when a stem connects to a serif, a stem connects to a
or any round part, two round parts connect to each other, etc. In the structure gra
meet junction is a vertex with two edges, or a vertex of degree two (Fig. 2.4).

Figure 2.4: The meet junction.

 2) link

The end of one structure element is buried in the body of another one.
structure elements can be either stem or round part. This kind of junction is
common when a stem is connected to a round part to produce an “arm”. A link junction is
a vertex of degree three (Fig. 2.5).

any junction

meet

link

cross

join (miter join)

connections:

vertex of
degree 2

2.1 Structure of characters

15

, on the
graph

tion.

raph
 “f”,
Figure 2.5: The link junction.

 3) join

Two stems connect at their end and form a sharp angle, less than 90 degree
internal side and a miter and limited tip on the external side. Although in respect to
theory, the join junction is also a vertex of degree two, it is quite different from the meet
junction. The join junction is a sharp angle and certainly not a smooth connec
Typical examples of join junctions are character “v”, “w” and “z” (Fig. 2.6).

Figure 2.6: The join junction.

 4) cross

Two stems or possibly round parts overlap each other. In the terminology of g
theory, the cross junction is a vertex of degree four. Typical examples are character
“t” and “x” (Fig. 2.7).

Figure 2.7: The cross junction.

vertex of
degree 3

vertex of
degree 2

vertex of
degree 4

16 Chapter 2: Structures and components

er to
cribe a
cters,
 need

y the
ructure
ments

ring the
an be

e often
null to
hs are

efined.
 corre-

sed to

ponent.
nents.
eeps
2.1.2.3 Design of structure graphs

Structure graphs are designed for the purpose of font parametrization. In ord
parametrize most of the text typeface, one structure graph should be able to des
character for many typefaces. Practically, we found that for most of the Latin chara
one structure graph may describe different text typefaces. Only a few characters
design variations, such as the double-storey “a” and the single-storey “a” (Fig. 2.8), and
the looped “g” or the tailed “g”.

To design the structure graph for a character, first we should carefully stud
character shapes in different typeface. Then, the essential font-independent st
elements for the body of the character are abstracted, which include straight ele
and round elements. The ways they connect one to another are also specified du
separation of structure elements. Decorations at the ends of body elements c
represented by terminal elements. Note that in serif typefaces terminal elements ar
serifs or bulbs (pears). In sans-serif typefaces, we should allow the terminal to be
avoid designing variations of structure graphs. Examples of basic structure grap
shown in Fig. 2.8.

Figure 2.8: Examples of basic structure graphs. Character “a” has two structure graphs
which are designed for double-storey and single-storey respectively.

2.1.2.4 Refinement of structure graphs

Both structure elements and connections in the basic structure graphs can be r
Fig. 2.9 gives an example showing the refinement of structure elements and the
sponding components (see section 2.2 for the definition of components).

In the refined structure graphs, shortened names of components can be u
mark the refinement of a structure element. For example, st stands for stem, sw for
sweep, sf for serif, tsf for top-serif, lp for loop and hlp for half-loop, etc. Some structure
elements, such as stems and bars, can be synthesised by a single basic com
Others, such as round parts and terminals, may need two or more compo
Connections in structure graphs will normally be implemented by connecting sw

“d” “h” “a” “a”

2.2 Components 17

x than
may
ow to

ts and

haracter
w to

ing to
 shape
 parts
e some
ese
ure

ing
list

f a

 a
d
are

etric
flexible
and some kind of parameter dependencies. In fact, connections are more comple
the four predefined basic connection types. Therefore, junction variations
sometimes be needed. In the next chapter (Chapter 3), we will discuss in detail h
synthesize characters according to their refined structure graphs (componen
parameters).

Figure 2.9: Refinement of structure elements and the corresponding components.

2.2 Components

The structure graphs discussed in the previous section enable us to separate a c
into basic functional structure elements. In this section, we discuss about ho
synthesize these structure elements by computer.

The challenge resides in defining parametrizable geometric shapes enabl
synthesize most instances of structure elements. We propose some basic
synthesizing primitives for structure elements representing straight strokes, round
and terminals. We see these shape synthesizing primitives as generators which tak
parameters as input and create contours of these basic shapes as output. We call th
synthesized basic shapes components, since they can be assembled into struct
elements and, eventually, characters.

Contour: The contour of a 2-D character shape is represented by pieces of segments includ
straight lines and Bézier curves. In this thesis, contours are often specified by the
of their vertices.

Component: The term component refers to a basic geometric shape used for the synthesis o
part of a character.

Parameters of component: Parameters of a component can be regarded as arguments of
function. They are real values for coordinate, dimension (width or height), angle an
attributes. Parameters in a font are managed in a hierarchical manner. How to prep
parameters for components is discussed in the following chapters of this thesis.

Components represent the concretization of structure elements by geom
shapes. There are some goals we should aim at. Firstly, components should be

sw1+sw2+sw3

sw4+sw5dot+
path

st

sw6+sw7

sw5

sw1

sw2 sw3 sw6
sw7

sw4

dot

st

path

18 Chapter 2: Structures and components

 The
ers. For
 curve
e less
ace, but

 matter
raight
nt we
sign of

y either
to its
nt is a

ed by
olutely
 have
-even
e stem
ameters
 of the
and intelligent enough to enable style coherent modifications of characters.
synthesized shapes should response reasonably to a change of input paramet
example, when the width at the horizontal extremum of a loop changes, the whole
should also be adapted to maintain some curvature properties. Secondly, th
parameters, the better. Reducing the number of parameters does not only save sp
also simplifies the way to control, or tune, the shape of components.

2.2.1 Components for straight strokes

Straight strokes represent vertical stems, horizontal bars and diagonal stems. No
what orientation they have, the two sides of the stroke are parallel. Essentially, st
strokes can be described by their position, orientation and width. The compone
designed for straight strokes is named the stem component, or stem. The basic de
the stem component is shown in Fig. 2.10.

Figure 2.10: The basic design of the stem component.

The stem component needs a departure point P0 and a arrival point P1 to specify its
position and orientation. The width of the stroke is given by parameter w, which is the
geometrical distance between the two edges. The ends of a stem are terminated b
reference lines, such as xheight line and base line, or by lines perpendicular
orientation. The later case is called a butt terminal. The synthesized stem compone
quadrangle labelled by its vertexes as ABCD.

We found that straight strokes in most of the text typefaces can be synthesiz
the basic design of the stem components. Their two long edges are visually abs
straight and parallel. However, some text typeface exist in which straight strokes
slightly concaved edges (Optima, for example). Some fonts even incorporate non
width straight strokes. To parametrize these kinds of fonts, enhanced designs of th
components are possible. The enhanced stem component requires additional par
to specify the depth of the concaved edges and the different width at the two ends
stroke (Fig. 2.11).

A B

D C

P0

P1

A

B

B

C

C

D

D

A

P0

P0

P1

P1

reference line

reference line

w w

w

2.2 Components 19

 curve
ects of

curves
plines
ble for
s. This
airs of

c

d y), a

a long
d at the
der to
 have
 font
Figure 2.11: Possible enhanced design of the stem component.

2.2.2 Curves suitable for font parametrization

Before discussing the components for round parts, let us discuss our method of
representation for parametrizable fonts. Curves are one of the most sensitive asp
the aesthetic feeling of character shapes. In today’s outline font technology, the
which are employed to represent contours are cubic Bézier splines, quadratic B-s
and circular arcs. Industrial practice shows that cubic Bézier splines are most suita
representing character outline parts and therefore also curved component contour
is mainly because the slope of the curve can be easily controlled by successive p
on-curve and off-curve points.

2.2.2.1 Modelling quadrant curves

A cubic Bézier spline is defined by two end points, B0 and B3, and two control points, B1
and B2. We also refer to B0 and B3 as on-curve points, and to B1 and B2 as off-curve
points. The polygon made by B0, B1, B2 and B3 is called the control polygon. The cubi
Bézier curve can be represented in parametric form as

B(t) = (1 - t)3B0 + 3t(1 - t)2B1 + 3t2(1 - t)B2 + t3B3 (2.1)

where, t = [0, 1]. Because the coordinate of each point contains two values (x an
cubic Bézier curve generally has eight free parameters.

Several pieces of Bézier curves can be connected smoothly to synthesize
complex desired shape. It has been noticed that if the Bézier curves start and en
locus of the local extremum of the desired shapes, it is easy to grid-fit them in or
rasterize them at a given resolution. Therefore, outline fonts are regularized to
Bézier spline end points at horizontal and vertical extrema [Stamm94b]. In our

A B

D C

P0

P1 reference line

reference line

w

A B

D C

P0

P1

w0

w1

d
edges are
concaved

edges are
not parallel

20 Chapter 2: Structures and components

ents.
drant
t (for
eters.

ve

e
is to

an be
e pick
parametrization method, we keep this condition for the contours of compon
Therefore Bézier splines for component descriptions are limited to one qua
(Fig. 2.12b). As Fig. 2.12 shows, a Bézier spline occupying exactly one quadran
example the curve in Fig. 2.12b occupies the 3rd quadrant) has only six free param

Figure 2.12: (a) A random Bézier spline has eight free parameters, while (b) a Bézier spline
occupying exactly one quadrant has only six free parameters.

Suppose B0B1 and B3B2 intersect at point A (Fig. 2.12b). We define the relati
positions of the control points B1 and B2 by parameters β1 = |B0B1| / |B0A| and β2 =
|B3B2| / |B3A|. Given departure point B0, arrival point B1 and the quadrant number, th
parameters β1 and β2 control the shape of the quadrant curve. We refer in this thes
the curves defined by the β parameters as β-Bézier curves or β-Bézier splines.

Figure 2.13: Stretch a quadrant Bézier curve: (a) original curve, in which B3, Β2 and A will
be stretched right by vector v; (b) control point B1 defined by parameter β1 can adjust itself
reasonably.

One of the reasons we model quadrant curves with β-Bézier splines is that
parameters β1 and β2 define control points B1 and B2 with some intelligence. For
example, curves representing the contours of the round part of a character c
adjusted reasonably in response to a weight (stroke width) change. In Fig. 2.13, w

x0,y0

x1,y1

x2,y2

x3,y3

x0,y0

x1=x0,y1

x2,y2=y3 x3,y3

B0

B1

B2 B3 x

y

A

(a) (b)

β1 = |B0B1| / |B0A|
β2 = |B3B2| / |B3A|

B0 B1

B2 B'2

B3 B'3

A A' B0 B'1

B'3

A'

(a) |B0B1| = |B0A| * β1 (b) |B0B'1| = |B0A'| * β1

v

2.2 Components 21

” and
h the

 to the
.1)

eriva-

R
ough

cating

ng

e

a-
plines
a curve in the first quadrant, which can be found in many characters such as “o”, “p
“b”, and stretch it horizontally by vector v, so as to make the character bolder. Wit
β-Bézier spline method, we can adjust the control points properly.

2.2.2.2 Curvature of single curve segment

With the aim of synthesizing loops, let us analyse the flexibility offered by β-Bézier
curves. Our first experiment is to see how the curvature behaves in response
varying of parameters β1 and β2. Curvature radius R of a parametric Bézier spline (2
at the point B(t) = [x(t), y(t)]T is given by the formula

(2.2)

And the curvature k, which is the reciprocal of curvature radius, is defined as

k = 1 / R. (2.3)

For a Bézier curve defined by parametric form (2.1), the first and second d
tives of x(t) and y(t) are calculated by

B′(t) = -3(1 - t)2 B0 + 3(1 - 4t + 3t2) B1 + 3t(2 - 3t) B2 + 3t2 B3 (2.4)

B′′ (t) = 6(1 - t) B0 - 6(2 - 3t) B1 + 6(1 - 3t) B2 + 6t B3 (2.5)

where B′(t) = [x′(t), y′(t)]T, B′′ (t) = [x′′ (t), y′′ (t)]T. Thus the values of curvature radius
and curvature k of a Bézier curve can be precisely calculated. By computing en
curvature values at points from t = 0, to t = 1, one obtains the curvature curve indi
the variation of curvature along the Bézier curve.

Without loss of generality, we normalize the curve shown in Fig. 2.12b by letti

|y0 - yA| = 1, |x3 - xA| = 1 (2.6)

so that

B0 = (0, 1), B3 = (1, 0), A = (0, 0). (2.7)

Then we have

B1 = (0, 1 - β1), B2 = (1 - β2, 0). (2.8)

Varying the parameters β1 and β2 from 0 to 1, we obtain families of curves th
apex of which (point with tangent parallel to baseline B0B1) is located within the
circumscribed triangle B0AB3 (Fig. 2.14a). Since curvature conveys the visual inform
tion associated with a given arc, curvatures corresponding to the plotted Bézier s
are given in Fig. 2.14b.

R t() x ′ t()()2 y ′ t()()2+()3 2/

x ′ t()y″ t() x″ t()y ′ t()–
---=

22 Chapter 2: Structures and components

adrant
 curve
urves
 their
vature
h

ee the

hape.
g two
curve

n
rt. The
edian
nt the
ne of
e will
us of
. The
exact

int at
Figure 2.14: Family of cubic Bézier splines covering a quarter of arc and their respective
curvatures, obtained by varying parameters β1 and β2.

From this experiment, we can observe some properties of the curvature of qu
Bézier splines. Firstly, the shape of the curvature line varies more rapidly than the
itself. This explains why curvatures are suitable for analyzing curves. Secondly, c
with β value greater than 0.7 or lower than 0.4 have widely different curvatures at
end points and in their central part. Experience shows that curves having high cur
at their end points and low curvature at their central part (for example curves witβ <
0.4) are not visually pleasant. Thirdly, making β1 very low and β2 very high, and vice
versa, does not affect the Bézier curve very much, but it does affect its curvature (s
dotted curve and curvature lines in Fig. 2.14).

Controlling the curvature of a Bézier curve is not as easy as controlling its s
However, the curvature control at the ends of the curve is important when connectin
Bézier curves to make a sufficiently smooth long curved section, for example a
with CG2 continuity (to be discussed in section 2.2.2.3).

The second property shows that curves with median β values, for example betwee
0.4 and 0.7, have similar curvatures between their end points and their central pa
shapes of these curves are rounder and closer to a quadrant of circle or ellipse. Mβ
values seem to be more suitable for font parametrization. They better represe
outline of real characters from existing outline fonts. For example, if we choose o
the curves in Fig. 2.14a to approximate the quarter circle in the third quadrant, w
choose the one whose β value lies between 0.5 and 0.6. Because the curvature radi
each point on this curve is very close to the radius of the circle which radius is 1
next experiment (Tab. 2.1) has confirmed this property. It is easy to find that the
value of β for approximating a circular arc is around 0.55. One can require the po

0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1B0

B3
A

curvature kB1 = β1 A + (1 - β1) B0
B2 = β2 A + (1 - β2) B3
β = β1 = β2

β=0.3
β=0.7

β=0.3

β=0.5β=0.7

β=1

β=0.1

β=0.1

β=1

β1 = 0.25
β2 = 0.9

t = 0

t = 1

parameter t

(a) (b)

2.2 Components 23

rter of

is
nt

ave one
ves.

faces

al and
s,

ion
 with

f the

pline
f the
riginal
parameter t = 1/2 to have identical coordinates as the corresponding point of a qua
a circle, by solving equation

(2.9)

where B(1/2) is the midpoint of the normalized Bézier curve B0B1B2B3 given in
Fig. 2.14a. Another criterion for finding the β value which approximates a circular arc
requiring the curvature radius at B0 or B3 to be the radius of the arc. This requireme
also generates a β value around 0.55 (see Appendix A).

Our second experiment is concerned with the third property. Will one β value be
good enough for the curves of character shapes? A positive answer enables us to s
parameter and make it much easier to control the shape, or squareness, of the cur

Table 2.1: β1 and β2 values for external and internal arcs of character “o” for different
typeface and their approximation by a single β value.

The experiment considers character outlines of round part from several type
described by Bézier splines. It tries to replace them with single β parameter Bézier
splines. We have analysed the Bézier splines (quadrant arcs) defining the extern
internal contours of character “o” in various font families (Tab. 2.1). In most caseβ1
and β2 values are similar and can therefore be merged into a single β value expressing
the squareness of an arc. Even in the case of widely different β1 and β2 values, an
intermediate common β value can be computed by minimizing a difference funct
which gives the difference between the original Bézier spline and its approximation
a single β1 = β2 = β value. Good visual results are obtained by minimizing the sum o
squares of the distances between points of the new Bézier spline Bnew(u) at parameter
values u = {0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9} and the original s
B(t). In Tab. 2.1, parameter ξ gives the mean absolute distance between the points o
approximating spline (according to the parameter values given above) and the o

External contour Internal contour

3rd quadrant 4th quadrant 3rd quadrant 4th quadrant

β1 β2 β ξ β1 β2 β ξ β1 β2 β ξ β1 β2 β ξ

Bodoni .544 .538 .541 .062 .538 .544 .541 .062 .699 .978 .842 .574 .978 .699 .842 .574

Clarendon .639 .584 .611 .125 .584 .639 .611 .125 .656 .659 .657 .088 .659 .656 .657 .088

Courier .609 .504 .557 .252 .504 .609 .557 .252 .580 .544 .562 .115 .544 .580 .562 .115

Helvetica .830 .405 .633 .310 .405 .830 .633 .310 .434 .728 .590 .360 .735 .434 .593 .342

Lucida .574 .660 .618 .161 .664 .574 .620 .149 .397 .742 .581 .475 .742 .397 .581 .475

Optima .606 .538 .537 .190 .660 .512 .588 .282 .483 .731 .613 .227 .760 .351 .571 .613

Palatino .573 .573 .573 .004 .584 .586 .585 .129 .430 .771 .612 .374 .700 .505 .607 .184

Times .579 .577 .578 .108 .560 .563 .561 .143 .597 .599 .598 .043 .643 .638 .641 .051

Universe .586 .660 .624 .123 .660 .586 .624 .123 .543 .753 .653 .072 .753 .543 .653 .072

B
1
2
--- 

  1 2
2

-------– 1 2
2

-------–,
T

=

24 Chapter 2: Structures and components

d

ur of
mes.

.

s and
imilar,
riginal

two or
urves
he
482].
ity as
spline. In all cases, the mean absolute error distances ξ are very small when compare
with a typical capital letter height value of 800.

For example, let us consider a Bézier curve segment from the internal conto
the lower-case letter “o” of font Palatino, which is a stressed serif font similar to Ti
This curve is defined by B0 = (125, 257), B1 = (125, 152), B2 = (163, 13), B3 = (291, 13),
as shown in the left part of Fig. 2.15. Its β parameters are β1 = 0.430, β2 = 0.771. We
adjust the two control points B1 and B2 such that β1´ = β2´ = β = 0.612 (see Tab. 2.1)
The new curve Bnew(u) is placed overlapped on the old one B(t) in Fig. 2.15a. Fig. 2.15b
shows the curvature radii of the two curves. Comparing the new and the old curve
their curvatures, we found that the geometric shape of the two curves are very s
and that even the curvature of the new curve does not deviate too much from the o
curvature.

Figure 2.15: The third quadrant of the internal loop of letter “o” of typeface Palatino is
replaced by the our β-Bézier curve with equal β values.

2.2.2.3 Curvatures of successively connected curve segments

If the span of a curve occupies more than one quadrant, it will be approximated by
more successively connected Bézier splines. To connect two Bézier c
P = (P0P1P2P3) and Q = (Q0Q1Q2Q3) smoothly, we require the connection points of t
curves to meet some continuity conditions [Farin90, pp.185-210] [Foley90, pp.480-
We distinguish between zero order, first order and second order geometric continu
following (Tab. 2.2):

150 175 200 225 250 275

100

150

200

250

B(t) = B0, B1, B2, B3

Bnew(u) = B0, B1', B2', B3

B0

B1

B2 B3

B1'

B2'

0.2 0.4 0.6 0.8
1

300

400

500

old
new

curvature
radius

t

(a) (b)

2.2 Components 25

n
r,
ges of

e with

ézier
end
e
 true
nd
llipse

d as a
hich is
e best
 their

t the

f
va-
us
et us
 same
Table 2.2: Conditions of geometric continuity of two connected Bézier curves.

It is easy to reach CG1 continuity, but the condition of CG2 continuity is not easy to
meet. Connecting two cubic Bézier curves with CG2 continuity results in a curvature
continuous yet not necessarily twice differentiable long curve. Currently, curves used i
outline fonts are only required to reach CG1 continuity at the connection point. Howeve
typographers design round parts of characters as a whole curve. Sudden chan
curvature along a curve are not intended. So, if we try to approximate the real curv
piecewise Bézier curves, we would like to keep the curvatures at P3 and Q0 as close as
possible, i.e. try to meet the condition of CG2 continuity.

From the discussion in the previous section (section 2.2.2.2), we know that B
curves with median β parameters have curvatures which do not vary strongly from
points to central part. If we connect two such β-Bézier splines, the curvatures at th
connection points will be more likely to be close to each other. This is obviously
when we connect four quadrant β-Bézier splines to approximate a circle. Since the rou
part of characters are more like parts of an ellipse, we expect that the e
approximated by four quadrant β-Bézier splines has also a well behaving curvature.

Let us take a closer look at the curvature radius of an ellipse. Does the β value used
for approximating a circle also work for an ellipse? Since an ellipse can be regarde
scaled circle, we expect that the scale transformation applied to the Bézier curve w
the best approximation of a quadrant circle will generate a Bézier curve which is th
approximation of a quadrant ellipse. This can be proved again by comparing
curvature radii. An ellipse can be presented in a parametric form

P(t) = {x(t) = a cos t, y(t) = b sin t, t ∈ [0, 2π]} (2.10)

where coefficient a is the half axis length in the x direction, coefficient b is the half axis
length in the y direction. Using the example in Fig. 2.15, we have a = (x3 - x0) = 291-125
= 166, b = (y0 - y3) = 257-13 = 244. From (2.2) and (2.10), the curvature radius a
point P(t) = (x(t), y(t)) is

R(t) = (a2 sin2 t + b2 cos2 t)3/2 / (a b) (2.11)

Fig. 2.16a shows the curvature radius for the ideal ellipse. Using β = 0.55, each
quadrant of the ellipse can be approximated by a β-Bézier curve. The curvature radius o
the best approximating β-Bézier spline is shown in Fig. 2.16c. We also show two cur
ture radii of parameter β = 0.6 and β = 0.5 (Fig. 2.16b, Fig. 2.16d). The curvature radi
for β around 0.55 is the most similar to the curvature radius of an ideal ellipse. L
notice that the parameter of an ellipse and a Bézier curve have not exactly the

Order of GC Conditions of Bézier curves P and Q

zero order (CG0) P3 = Q0.

first order (CG1) CG0 and tangent directions at P3 and Q0 are the same.

second order (CG2) CG1, normal vectors at P3 and Q3 have same direction,
and curvatures at P3 and Q3 are identical.

26 Chapter 2: Structures and components

), (d)

ints
 ideal
ellipse
meaning. However, this comparison still holds, since Fig. 2.16(a) and 2.16(b), (c
represent how curvature evolves along the ellipse and the ellipse-like contour.

Figure 2.16: Curvature radii of the four quadrants of an ellipse: (a) an ideal ellipse; (b) the
ellipse approximated by four Bézier curves with β = 0.6; (c) β = 0.55; and (d) β = 0.5. In (b),
(c) and (d), the curvature radius lines of successive Bézier spline segments have been
concatenated.

We can prove that the β value which creates ideal curvatures for the two end po
when the β-Bézier curve is used to approximate a quadrant of a circle also creates
curvatures for the curve’s ends when it is used to approximate a quadrant of an
(see Appendix B).

(a) curvature radii of an ideal ellipse in four quadrants

(b) β = 0.6

(c) β = 0.55, which is the best approximation of an ellipse.

(d) β = 0.5

π/2 π 3π/2 2π0

0 1

0 1

0 1

R

t

R

t

R

t

R

t

2.2 Components 27

ézier
not
 make
d from
ound
 outer
g end
 text

 as

 letters

ign is
es are
e
ntrol

e has a
od, a

ss than
If we model the round part of a character as an ellipse, we can use the B
curves with the ideal β value to construct its outline. However, an ideal ellipse may
have the highest visual aesthetic quality for Latin characters. Typographers tend to
the round part a bit more squared, or fatter, than the ideal ellipse. This can be foun
a statistics of the lower-case letter “o” in real fonts. Letter “o” always specifies the r
part of a letter in a font. In our outline font samples, both the inner contour and the
contour of the character are designed by four Bézier splines with their connectin
points placed at local extrema. The sample fonts are all from commonly used
typeface. We do statistics on the maximum, minimum and the mean β values of the four
Bézier curves (i.e. among eight β values) on the outer and inner contours respectively
well as the mean β values of both contours (Tab. 2.3). The general mean β value of all the
inner and outer contours are also computed. These statistics show that different
“o” designed by typographers have a β value around 0.6 (the general mean β value is
0.601), a little larger than the ideal β of a circle or ellipse.

To summarize, giving some restrictions to the Bézier curve used in font des
essential to the parametrization of fonts. In our font parametrization method, curv
always limited to a quadrant so as to be represented by β parameters. And frequently, th
parameter β1 and β2 can be assigned the same value. In this way, we are able to co
most of the curve segments with five free parameters instead of eight, and the curv
better curvature and continuity at the connection point of two curves. In our meth
Bézier curve is often specified by a triangle B0AB3 describing the dimension of the
curve, and two proportional values β1 and β2 controlling its curvature. Point A is the
intersection of the extension of vector B0B1 and vector B3B2 (Fig. 2.12). If a Bézier
curve does not exceed one quadrant, point A always exists. Curves which span le
one quadrant can be also represented by β values.

Table 2.3: Statistics on the β values of some non-fancy fonts.

Font name
β values of outer cont. β values of inner cont. Mean β value

of both
contoursMax. Min. Mean Max. Min. Mean

Agfa-Times 0.618 0.556 0.579 0.707 0.523 0.599 0.589

Clarendon 0.639 0.584 0.611 0.659 0.656 0.657 0.634

Courier Bold 0.62 0.538 0.578 0.623 0.557 0.589 0.586

Courier 0.638 0.504 0.563 0.613 0.544 0.57 0.567

Frutiger-Roman 0.6 0.547 0.58 0.692 0.476 0.577 0.579

Lucida 0.66 0.574 0.618 0.742 0.397 0.57 0.594

New Century Schoolbook 0.556 0.556 0.556 0.654 0.649 0.651 0.604

URW Times 0.583 0.558 0.57 0.643 0.597 0.611 0.591

Palatino 0.631 0.561 0.583 0.763 0.43 0.605 0.594

Times-Roman 0.639 0.524 0.581 0.792 0.509 0.601 0.591

Univers 0.66 0.586 0.623 0.753 0.543 0.648 0.636

URW Antiqua Normal 0.641 0.637 0.639 0.675 0.654 0.665 0.652

The general mean β value 0.601

28 Chapter 2: Structures and components

 such
sed to

 or a
h are
an be
 be
being
aracter
ight
ca “o”,
uire
t arcs

btain
s is not
el the
2.2.3 Components for round parts

Round parts are synthesized by components named loop, half-loop and sweep. The loop
and half-loop components aim at synthesizing ellipse-like round parts of characters
as the round parts in characters o, b, d, p, q, g. The sweep component is u
synthesize any round stroke inscribed within one quadrant.

2.2.3.1 The loop component

The loop component is defined with the aim of parametrizing the shape of letter “o”,
round part which looks like “o”. A loop has an internal and an external contour, bot
ellipse-like and symmetric in respect to their center points. The contour therefore c
modelled by four quadrant β-Bézier splines. For example, character Helvetica “o” can
modelled by a single loop component, the exterior, respective interior contours
defined by 4 connected quadrant arcs having a common center (Fig. 2.17a). Ch
Times “o” is, however, more complex. While its exterior contour, looking like an upr
ellipse, can be modelled in the same manner as the contours of character Helveti
its interior contour looks like an ellipse with an oblique orientation and would req
circumscribed quadrants with 4 different centres in order to describe it by quadran
(Fig. 2.17b).

Figure 2.17: (a) Helvetica “o” is upright both on the internal and external contours, while
(b) Times “o” has oblique stress on its internal contour.

If we model the oblique stress of the contour as the rotation of an ellipse, we o
curve segments whose end points are not located at local extrema (Fig. 2.18a). Thi
what we want. We prefer to have curve end points at extrema. Therefore, we mod
obliqueness of ellipse-like contours with parameter η which gives the offset of extrema
from the upright ellipse. Given half width p and half height q of the bounding box, ∆p
and ∆q being the corresponding displacements at extrema, the parameter η is defined as

(2.12)

a) Helvetica "o" b) Times "o"

η ∆p
p

------- ∆q
q

-------= =

2.2 Components 29

tical
This formula implies that in Fig. 2.18b, line VH connecting the horizontal and ver
tangential points is parallel to line AB connecting point A = (ox - p, oy) and
B = (ox, oy + q) of the ellipse’s bounding box. For the proof, see Appendix C.

Figure 2.18: (a) Modelling the obliqueness as rotation of an upright ellipse results in end
points which are not located on local extrema. (b) Modelling obliqueness by parameter η.

Figure 2.19: Parameters of the loop component: O1, O2, p1, p2, q1, q2, η1, η2.

O(ox,oy)A

B

p

q
l1

l2

∆p

∆q

η = — = —
∆p
p

∆q
q

V

HU

OA

B

p

q

U

θ

axis of ellipse

(a) (b)

O1

O2

A1

B1

C1

D1

H1I1

J1 K1

p1

q1

A2

B2

C2

D2

H2I2

J2 K2

exterme correction η1

l1

l2

p2

q2

η2

30 Chapter 2: Structures and components

lated.
nt are:

 their
an be
ngles

e
of loops
nt

 loop

r right)
 of
lf-loop
it is.
ttom
r, the
by its
Given the center of an ellipse-like contour, the half width p and half height q of the
bounding box, the contour’s location, dimension and bounding box can be calcu
The parameters of the external contour and the internal contour of a loop compone
the center points O1 and O2, the half width of bonding box p1 and p2, the half height of
the bounding box q1 and q2, and the extrema correction parameters η1 and η2. Note that,
both the internal and the external ellipse-like contours are symmetric in respect to
respective center points. Hence, the four quadrants of the loop component c
generated (Fig. 2.19). We label the external contour by four successive control tria
of β-Bézier curves (A1H1B1, B1I1C1, C1J1D1, D1K1A1) in counterclockwise orientation
(positive orientation), and label the internal contour as (A2K2D2, D2J2C2, C2I2B2,
B2H2A2) in clockwise orientation (negative orientation).

The curvature of the internal and external contours is controlled by thβ
parameters of the quadrant Bézier splines. To ensure the coherent appearances
in different characters across a font, the β parameter of loops is provided as a global fo
parameter (see section 3.3.3). With η controlling stress or obliqueness, and β controlling
curvature, different styles of the character “o” can be simply synthesized by the
component (Fig. 2.20).

Figure 2.20: Synthesizing character “o” in different typefaces.

2.2.3.2 The half-loop component

The round part of many characters can be considered as a half (upper, lower, left o
of a full loop (Fig. 2.21a). The half-loop component is designed to synthesize this kind
round structure element. Besides all the parameters of the loop component, the ha
component needs an additional parameter specifying “which” half of the full loop
This parameter is a tag with four possible values specifying left, top, right and bo
orientation respectively. Since a the shape of a half-loop has no internal contou
synthesized shape of a half-loop has only one contour which can be labelled
vertexes as ABCD in counterclockwise orientation (Fig. 2.21b).

Times

external loop:
 β = 0.59
 η = 0
internal loop:
 β = 0.59
 η = 0.10

Palatino

external loop:
 β = 0.61
 η = -0.07
internal loop:
 β = 0.61
 η = 0.09

Bodoni

external loop:
 β = 0.54
 η = 0
internal loop:
 β = 0.84
 η = 0

Helvetica

external loop:
 β = 0.64
 η = 0
internal loop:
 β = 0.64
 η = 0

2.2 Components 31

”, “p”
at the

meters
es of
hey
ir own

uce a
for
etween
Figure 2.21: (a) Examples of the half loop component, and (b) orientation and labelling of
contours of half loops.

2.2.3.3 The sweep component

Half-loops can be used for synthesizing the round parts of letters, such as “b”, “d
and “q”. When looking at one of these characters (Fig. 2.22a), one can see th
curved part connecting the loop to the bar shows a particular behaviour. Its para
are not directly related to the parameters of the half-loop. Similarly, the arch
characters “h” (Fig. 2.22b), “n”, “m” and “u” cannot be conceived as half-loops. T
are curved character parts connecting two vertical stems and therefore need the
shape description.

Figure 2.22: Example of the sweep components.

In order to support connecting elements made of curved parts, we introd
shape primitive named the sweep component. The sweep component is used
establishing the connections between a loop and a vertical stem (Fig. 2.22a) and b

A

B

C

D

A

B

C

D

top

bottom

rightleft

(a) (b)

sw2

sw1

sw1 sw2

sw1 sw2 sw3

sw4sw5

sw6

sw5 sw4

sw1

sw2 sw3 sw6
sw7

(a) (b) (c) (d)

32 Chapter 2: Structures and components

 as the
hich

and a
oint of

 a

e
ion to
s
of the

e end
olate
n the
d Q(t)).
ating
ating
 both
orithm
in our

r line

or the
 connect
two vertical stems (Fig. 2.22b). It can also be used for creating curved parts such
tail of character “g” (Fig. 2.22c) and the round parts of characters “a” (Fig. 2.22d), w
cannot be modelled by loops and half-loops.

A sweep component is defined by a departure segment, an arrival segment,
center line connecting the center point of the departure segment and the center p
the arrival segment (Fig. 2.23). The departure segment is given by end points Pd and Qd.
The arrival segment is given by end points Pa and Qa. The center line is represented by
Bézier curve B(t) = B0B1B2B3. Since B0 is the center of segment PdQd, and B3 is the
center of segment PaQa, only the control points B1 and B2 need to be provided as
parameters. We can also specify the center line by a β-Bézier curve which requires one
control point A and two β parameters. The sweep component intends to imitate th
trajectory made by a flat pen moving along the center line from the departure posit
the arrival position. The sweep synthesizing algorithm which calculates the two edge
(P(t) and Q(t), in Fig. 2.23) of the pen trajectory determines the resulting shape
sweep component.

Figure 2.23: The sweep component is given by a departure segment, an arrival segment and
a Bézier curve connecting their center points.

The first idea of computing intermediate curve points between the departur
and the arrival end might be by interpolation. One can design algorithms to interp
both the pen orientation and the pen width at a intermediate position betwee
departure and the arrival ends, and thus calculate the points on both edges (P(t) an
We have tried several interpolating methods. However, we found that interpol
methods suffer from two shortcomings: (1) they are not efficient since interpol
requires many calculations; and (2) it is difficult to control the tangent directions at
departure and arrival ends. Therefore, we developed a sweep synthesizing alg
based on the geometric transformation of the center line. This algorithm is used
font parametrization system.

Our sweep synthesizing algorithm consists in scaling and translating the cente
from B(t) = B0B1B2B3 to P(t) = PdP1P2Pa and Q(t) = QdQ1Q2Qa respectively.
Experiences show that the tangent directions at the ends are very important f
synthesis of connecting sweep shapes, especially when the sweep is supposed to

Pd

Pa

Qd

Qa

P(t)
Q(t)

B(t)

2.2 Components 33

font
weep

ol

y

ves
e

smoothly to another sweep or half-loop. Most of the sweeps used in our
parametrization method are within one quadrant. For this kind of sweeps, our s
synthesizing algorithm ensures that the tangent directions at Pd and Qd are identical to
the tangent direction of the center line at B0, and that the tangent directions of Pa and Qa
are identical to the tangent direction of the center line at B3. In Fig. 2.24, we assume line
PdPA is parallel to line QdQA, and line PaPA is parallel to line QaQA. This algorithm can
be generalized by the following steps:

1. Regarding the center line as a β-Bézier which is represented by its contr
triangle B0BAB3, draw a line PdPA from Pd so that line PdPA is parallel to line
B0BA, draw a line PaPA from Pa so that line PaPA is parallel to line B3BA; line
PdPA intersects line PaPA at point PA.

2. Similarly, draw a line QdQA from Qd so that line QdQA is parallel to line B0BA,
draw a line QaQA from Qa so that line QaQA is parallel to line B3BA; line QdQA
intersects line QaQA at point QA.

3. Let β1 = |B0B1| / |B0BA|, β2 = |B3B2| / |B3BA|, find point P1 on PdPA so that
|PdP1| / |PdPA| = β1, find point P2 on PaPA so that |PaP2| / |PaPA| = β2; then
PdP1P2Pa is the control polygon of the Bézier curve P(t).

4. Similarly, find point Q1 on QdQA so that |QdQ1| / |QdQA| = β1, find point Q2 on
QaQA so that |QaQ2| / |QaQA| = β2; then QdQ1Q2Qa is the control polygon of
the Bézier curve Q(t).

Figure 2.24: The sweep component generated by scaling and translating the centerline.

The triangle B0BAB3 and PdPAPa or QdQAQa are not required to be similar. B
keeping the same β values, we ensure that the transformation from B0B1B2B3 to
PdP1P2Pa and to QdQ1Q2Qa are affine transformations. Therefore, the Bézier cur
P(t) = PdP1P2Pa and Q(t) = QdQ1Q2Qa are affine-transformed from the center lin

Qd

B0

Pd

B1

B2
B3

Pa

Qa

P1

P2

Q1

Q2QA

BA

PA

β1 = =
B0B1

B0BA
=

QdQ1

QdQA

PdP1

PdPA

β2 = =
B3B2

B3BA
=

QaQ2

QaQA

PaP2

PaPA

34 Chapter 2: Structures and components

 of a
d that
s the
riginal

f the
 point.

es used
font

sed to

ertical
ective

the lit-
B(t) = B0B1B2B3. These affine transformations ensure that most of the properties
Bézier are kept when the curve is adapted to a new dimension. Practically, we foun
this algorithm not only keeps the tangent direction at both ends, it also keep
orientation change in the generated curve close to the orientation change of the o
centerline curve. Curve P(t) and curve Q(t) are perceived as harmonious.

Note that there is an important limitation of this algorithm. The Bézier curve o
sweep’s center line must not exceed one quadrant and must be without inflection
Otherwise, the curve cannot be represented in β-Bézier format.

2.2.4 Components for terminals

Terminal structure elements represent serifs, slant serifs, dots, pears and any shap
to terminate body strokes. Terminals convey very significant information about
styles, and hence have many variations and are very flexible. Components u
synthesize shapes of terminals are serifs, slant-serifs, dot and correcting paths.

Figure 2.25: The general description of foot, bar and diagonal serifs.

2.2.4.1 The serif component

Serifs are the most important terminal elements which can be used to terminate v
stems, horizontal bars or slanted stems. The foot and bar serifs and their resp
width, height and depth parameters (Fig. 2.25) have been extensively described in

foot serif
width
left

foot serif
width
right

foot
serif
height

foot
serif
depth

vertical
stem

base
line

bar serif
width
top

bar serif
width
bottom

bar serif
height

bar
serif
depth

horizontal
bar

diag serif
width
(outer)

diag serif
width
(inner)

vert.
serif
height

diag
serif
depth
(outer)

diagonal
stem

base
line

diag
serif
depth
(inner)

supporting
curve

serif
slab

serif
slab

serif
slab

2.2 Components 35

y the

n to

hich
 stem
 again
b). This
The

t
the

rs
tem

h

cation
eratures [Knuth86b] [Karow94]. An essential part of foot and bar serif is the slab which
is a line (thick or thin) terminating the respective stem or bar. The corner formed b
serif slab to its respective stem or bar is often made round by using a curve.

 (1) Basic serif design

The basic shape primitive we designed for serifs is the serif component, also called
the foot-serif component (Fig. 2.26). The basic parameters of the serif component are
serif width sw1 and sw2, serif height sh1 and sh2, and serif depth sd1 and sd2. The
parameter dir, which has values left, right, top and bottom indicates the directio
which the serif faces. The serif support lines l1, l2 and l3 define the dimension and
position of the serif (Fig. 2.26a and b) which usually are derived from the stem to w
the serif connects. The support lines are not provided directly, but derived from the
component to which the serif connects. The two round corners ABC and HGF are
β-Bézier splines even though the corner may be sharper than 90 degree (Fig. 2.26
is a special case where we allow β-Bézier splines to occupy more than one quadrant.
resulting shape of the serif component is represented as contour ABCDEFGH.

Direct parameter: Most parameters have values derived directly from global or local fon
parameters. We call them direct parameters. Direct parameters are for example
stem width, the curved stroke width and the height and width of serifs.

Indirect parameter: An indirect parameter depends on other components. Indirect paramete
are for example required to keep a relation between two components such as a s
and its connecting serifs. The support lines l1, l2 and l3 of the serif component are an
example of indirect parameters. More about how to provide a component wit
parameters will be discussed in the next chapter.

Figure 2.26: Basic parameters of the serif component.

 (2) Enhanced serif design - attributes of serif types

In order to synthesize the various types of serifs described in typeface classifi
books [Rockledge91] [Bauermeister87], we introduce attributes, which are regarded as

A

BC

D E

FG

H

sw1 sw2

l1 l2

l3
sh2sh1

sd2sd1

l1 l2

A H

l3

C

D

B G

E

F

sw1 sw2

sh2

sd2

sh1

sd1

serif dir:

left

top

right

bottom

(a) (b)

36 Chapter 2: Structures and components

n serif

-
 of the
onnect
b by a
there is
d for

ith
if end
urves
global parameters for the serif component synthesizer. They describe variations i
shapes. Currently, we have three serif attributes: serif support type, serif end type and
serif face type.

The curves at the corner ABC and HGF are called serif supports. The type of a
serif support can be smooth, angled, straight or none (Fig. 2.27). The smooth serif sup
port connects both the stem and the serif slab smoothly, as for example the serifs
Times typeface. The angled serif support connects the stem smoothly but may c
the serif slab with an angle. The straight serif support connects the stem to the sla
straight line, and hence generates a triangle serif. The support type none means
no curve or line to fill the corner ABC and HGF. This serif support type is designe
slab/square serifs or thin line serifs [Bauermeister87, pp.ix-xi].

Figure 2.27: Serif support types.

The line CD and EF of the serif component are called serif ends. Serif ends can be
butt or rounded (Fig. 2.28). The butt serif end simply connects C to D and E to F w
two straight line segments, as in the serifs of Times Roman. The rounded ser
connects both C to D and E to F with two semi-ellipses constructed by two Bézier c
each. The extension of the rounded end is given as a global parameter.

Figure 2.28: Serif end types.

sd

sw

θ

sd

sw

sd

sw sw

(a) smooth (b) angled (c) straight (d) none

rounded end extension

(a) butt end (b) rounded end

C

D E

F

2.2 Components 37

othly
ncave

rif face
ce
 given

t of the
le, we
finder
ystem
ts. The
OSE

atch the
ributes

er to
The line DE of the serif component is called serif face. Enhanced serif design
enables the serif face to be flat, smoothly concave or directly concave (Fig. 2.29). The flat
serif face simply connect D and E with a straight line, as in Times Roman. The smo
concave serif face and the directly concave serif face both connect D to E with a co
curve made of two Bézier spline segments. The curve of the smoothly concave se
connects the serif slab (support line l3) without an angle, i.e. at the junctions, serif fa
and slab lines have an identical orientation. The depth of the concave serif face is
as a global parameter.

Figure 2.29: Serif face types.

With these enhanced serif component types, we are able to synthesize mos
serif styles, such as transitional serifs, slab serifs and wedge serifs. For examp
demonstrate in Tab. 2.4 how the serif classification according to Rockledge’s Type
[Rockledge91] and the serif classification according to Bauermeister’s PANOSE s
[Bauermeister87] are synthesized with the enhanced design of the serif componen
classification in the Typefinder is based on the history of characters, while the PAN
system emphasizes on the geometrical shapes of characters. This table tries to m
classification of serif types in both systems and describes these serifs with the att
(options of serif styles) of the serif or top serif components.

We are also aware that the serif style attributes may be extended in ord
synthesize a specific serif style which is not appeared in Tab. 2.4.

depth of concave face

depth of concave facewith angle

without angle without angle

(c) directly concave(a) flat serif face

(b) smoothly concave

C

D E

F

38 Chapter 2: Structures and components

e
sed to
d “T”

gonal

ab

erif
e with
nt
Table 2.4: Analysis of typographical serif types and our enhanced serif component.

2.2.4.2 The slant-serif component

The slant-serif, also called top-serif, component is designed mainly for top serifs. W
tend to called it slant-serif because it is not only for the top serif, but can also be u
synthesize the shape of beaks, tips and etc., for example in character “z” an
(Fig. 2.30).

The slant serif can be modelled by the intersection of the stem and a small dia
slab (Fig. 2.31), similar to the serif component. Support lines l1, l2, l3 are support lines
derived from the stem it connects to. Parameter θ gives the slant angle between the sl
and the support line l3. The serif height sh, serif width sw and serif depth sd parameters
are defined similarly to corresponding parameters of the serif component. Since aslant-
serif often has a tip overshoot over the support line l3, generally for optical correction, the
additional parameter overshoot specifies the amount of overshoot. In the basic slant s
design, the corner DEF and the face ABC are each connected with a Bézier splin
curvature controlled by β values. The parameter dir describes the orientation of the sla

Typefinder’s
classifications

PANOSE system’s
classifications

Description with attributes of the
serif/topserif components

Venetian Serif

Old Style Serif

Transitional Serif

New Transitional Serif

Cove Serif

Square Cove Serif

Most Roman typefaces have these
kinds of bracketed serifs:

serif support = smooth/angled

serif end = butt/round

serif face = flat/concaved.

Modern Serif Thin Line Serif High contrast Roman typefaces,
often no bracket:

serif support = none

serif end = butt

serif face = flat

Slab Serif Square Serif No bracket, or little bracket:

serif support = none or smooth
with very high β values

serif end = butt (big serif height)

serif face = flat

Wedge Serif

(Hybrid Serif)

Triangle Serif

Exaggerated Serif

Triangle serif:

serif support = straight

serif end = butt (very small serif
height)

serif face = flat

Unable to do exaggerated serifs.

Sans Serif Sans Serif

(stroke with various end)

null serif components

(stroke end controlled by the
parameter of stem component)

2.2 Components 39

 also

1).

 of the
 “f”,
ore,

loop
serif, which can be top-right (tr), top-left (tl), bottom-right (br), bottom-left (bl), right-
top (rt), right-bottom (rb), left-top (lt) and left-bottom (lb).

Figure 2.30: The slant serif component can be used for many purposes.

Figure 2.31: Basic parameters of the slant serif component.

Enhancements similar to the ones applied to the serif component can be
applied to the slant serif component in order to synthesize variations of the serif support,
serif end and serif faces. Readers are referred to the previous section (section 2.2.4.

2.2.4.3 The dot component

The dot component synthesizes ellipse-like character parts, such as the dot on top
character “i” and “j”, and the terminal (pear/bulb) of round strokes in character “a”,
“j” and “r”. It can be modelled as an ellipse with a given rotation angle. Theref
parameters are the ellipse center O, two axes of the ellipse a and b, and the rotation angle
θ. The method to represent the rotated ellipse is different from that of the

top serif

beak
beak

tip

top serif

tail

A

BC

l1l2

l3

D

F

O

E

θ

overshoot
sw

sh

sd
trtl

rt

rb

brbl

lb

lt

slant serif orientation (dir):

40 Chapter 2: Structures and components

ted by
f
ur can

 to be
rts of
 here.
r the
ot be
 an
ing the

ose of
etica
se or
ize a
way, a
component. Here, the rotated ellipse is generated by an upright ellipse, construc
four quadrant Bézier splines and rotated by the rotation angle θ. Hence the end points o
the Bézier may not be located at the local extrema (Fig. 2.32). The resulting conto
be labelled by its vertexes as ABCD.

Figure 2.32: The dot components and its examples.

There are some reasons to allow end points of Bézier spline segments not
located on local extrema. First, the dot components are generally small pa
characters. The advantage of placing end points at local extrema is not obvious
Second, an isolated dot in character, such as “i” and “j”, is often upright; howeve
terminating dot/pear/bulbs may have an important rotation angle, which cann
modelled by parameter η as in the loop component. And last, rotating the axes of
upright ellipse makes it easy to connect the dot to the end of a round stroke, enforc
same orientation for the round stroke and for one of the ellipse’s axes.

As an extension, the dot component can also be a rectangle for the purp
synthesizing the square dot in some sans-serif font, such as “i” and “j” in the Helv
typeface. No additional parameter is needed except a flag giving the type (ellip
rectangle) of the dot. If the type is rectangle, the dot component will synthes
rectangle by four straight line segments instead of quadrant Bézier splines. By the
rectangle dot can also be synthesized by a stem component.

b

a

A

B

C

D

O

HI

J K

θ
A

b

a
B

C

D

O
x

H

I

J

K
rotate

2.3 Summary 41

fined
h the
al parts
ot be
oman
 stroke

eeds

r
efined
curves
 only
e given

other

 any
 font
ctions.
lly by
 a

igned

ucture
e fact
2.2.4.4 The path component

One cannot expect to parametrize all kinds of terminals with a limited set of prede
shapes since the freedom of the typeface designer cannot be limited. Wit
components discussed above, we are able to synthesize nearly all body and termin
of regular text typefaces. However, there do exist some terminals which cann
directly synthesized by the predefined components. For example in the Times R
typeface, some sort of smoothing curves are needed for the connection of a round
to a dot terminal in characters “j” and “f”. The cross junction of character “t” also n
to be corrected by a special triangle-like shape (Fig. 2.33).

Figure 2.33: Example of the boundary correcting path.

The path (or boundary correcting path) component is designed mainly fo
correcting the shapes built by those predefined components. It has no pred
parameters. The shape of a correcting path is constructed by lines and Bézier
given explicitly. Correcting paths are parametrized since their coordinates are
allowed to have relative values, not absolute numbers. These coordinate values ar
as proportions of global font parameters such as x-height and caps-height, and other
components which have already been parametrized. To be consistent with
components, correcting path shapes should also be closed.

Theoretically, the flexibility of the path component enables us to construct
arbitrary shape. One may notice that it introduces additional complexity into the
parametrization. Fortunately, we use the correcting path only for a few shape corre
Depending on implementation, we may generate the correcting paths automatica
designing specific operations, such as the smooth operator (section 3.2.3.2) which adds
smoothing shape to a corner formed by the intersection of two components.

2.3 Summary

In this chapter, we studied the structure of typographical characters and des
components to synthesize typographical structure elements.

The structure graph we presented is based on the invariant typographical str
features of characters. This structure graph differs from the skeleton models by th

θ

boundary
correcting
path

boundary
correcting
path

42 Chapter 2: Structures and components

finable
at the

ructure
erate
ethod.

esthetic
 expect

tical,
lf-loop
 for the
nt has
e dot
nals of
that it combines the connection type between structure elements and the re
existing structure elements into one graph. In the next chapter, we will see th
structure graph is useful for explaining and specifying the font parametrization.

The basic set of components we designed enables us to synthesize most st
elements of text typefaces. The idea of using intelligent shape primitives to gen
typographical character parts creates the fundament of our font parametrization m
Through systematic experiments, we introduced the β and η parameters for describing
single curves and loops. Since these parameters reflect existing typographic and a
properties, the components’ round parts behave closely to what typographers may
in response to variations of weight, obliqueness and contrast.

The stem component is used for the synthesis of all straight parts (ver
hotizontal or diagonal) of characters. Round parts are synthesized by the loop/ha
component and the sweep component. The sweep component can also be used
synthesis of curved connections between character parts. The serif compone
different style options (attributes) enabling the synthesis of different serif types. Th
component is used to synthesize the isolated dot as well as to synthesize termi
curved strokes.

 43

ph and
izable

ain

dent
ponent

 gives a
ich can
ntations

s and
d into

racter
g
 order

thesis
ll the

 differ,
y just
erent
 of the
aracter
 which
CHAPTER 3

Font parametrization

In the previous chapter, we have discussed the structure element connecting gra
the basic character components. In this chapter, we will present how parametr
characters and fonts are synthesized.

First of all, the framework of our font parametrization system consists of two m
parts: the parametrizable character synthesizer and the parameter files, as shown in
Fig. 3.1. The parametrizable character synthesizer consists of font-independent parame-
trizable character synthesis methods (one for each character) and a library of compo-
nents and operations that is used by the synthesis methods. The font-indepen
parametrizable character synthesis methods define for each character the com
shapes and their connection types. The refined structure graph of each character
visual representation of component shapes and connection types. Parameters (wh
be regarded as function arguments) are used to control shapes, positions and orie
of components. Hence they are font specific. The parameter files contain concrete
parameter values for each parametrizable font, including those for global font style
those for individual character features. Parameter files have been organize
hierarchical layers. The parametrizable character synthesis methods contain parameter
entries to be filled by parameters from the parameter files. The parametrizable cha
synthesizer has a component and operation library containing procedures for creatin
component shapes, and geometric algorithms for realizing assembly operations in
to assemble components into a full character.

In order to completely specify font-independent parametrizable character syn
methods, we first need to refine the structure element connecting graph for a
typefaces which we would like to synthesize. Typefaces whose structure does not
but whose height proportion, weight and contrast differ can be synthesized b
modifying parameters. However, typefaces whose structure differ require diff
parametrizable character synthesis methods. Let us first present the refinement
structure element connecting graph before we present the parametrizable ch
synthesis methods. The parameter file organization is another important aspect
will be also discussed in detail in this chapter.

44 Chapter 3: Font parametrization

of the
tructure
tructure
 shape.

ng all
ver all
s. The
resent
 the
rt. We
t also to
ns of
tyles.

 that
r87].
.4 are
Figure 3.1: Framework of our parametrizable font synthesis system.

3.1 Earmark-based refinement of structure graphs

A structure element connecting graph is a typeface-independent representation
spatial relationship between structure elements of a character. To synthesize the s
elements, we have designed several shape primitives called components. Each s
element can be synthesized by one or more components depending on its concrete

However, there are so many kinds of physical character embellishments amo
the typefaces that one refined structure graph for each character can hardly co
typefaces. We would like to resynthesize most of the commonly used text typeface
question is how many variations of the refined structure graph will be needed to rep
a letter in all target typefaces. The answer resides in both the flexibility of
components we are designing and the number of styles that we would like to suppo
use components not only to synthesize the shapes of concrete character parts, bu
modify the styles of the junctions between structure elements. To create variatio
refined structure element connection graph, we will analyse traditional typeface s
Based on this analysis, we deduce the required variations.

3.1.1 Serif styles

The most important feature of a typeface is the serif style. It is the first rule
typographers apply to classify or identify typefaces [Rockledge91], [Bauermeiste
The enhanced serif and slant-serif terminal components introduced in section 2.2

parametrisable character
synthesis methods

library of
components &

operations

parameter
files

synthesized characters
pa

ra
m

et
ris

ab
le

 c
ha

ra
ct

er
sy

nt
he

si
ze

r

3.1 Earmark-based refinement of structure graphs 45

faces
f style
raph is
ponent
thesis
e the

due to
which

Type
hey

onts.
 style,
ns of

efined
ctions

 from
 letters
d to a
me it

nd the
rved

ans-serif
urved

pointed
uch as
“w”
supposed to cover all the serif styles. According to Tab. 2.4, serifs of most text type
can be synthesized by our predefined serif and top-serif components. The seri
therefore can be selected by just one font parameter. If a terminal in a structure g
supposed to be a serif or a slant-serif, it can be represented by just one serif com
or one top serif component respectively. The serif or slant-serif component syn
method (library functions) will look up the global serif style parameters to generat
serif or slant-serif components.

3.1.2 Analysis on common earmarks

Since serif terminals are easy to refine, structure graph refinements are mostly
other typeface features, especially those which identify typefaces. Features
obviously identify or classify typefaces are called earmarks. Again, we refer to the
classical typographic work - C. Perfect and G. Rookledge’s book “International
Finder” [Rockledge91], which collects more than 300 traditional text typefaces. T
have divided earmarks of these typefaces into two kinds: common earmarks which are
typical common features that can be used to identify a typeface, and special earmarks
which are distinctive ones giving special ornamentation to letters in specific f
Earmarks can be any typeface features including weight, contrast, connection
terminal style and height proportion. Among them, many earmarks are decoratio
stroke ends (or terminals) and styles of connections in a character.

Not all of the features which earmarks represent need to be present in the r
structure graph. Only earmarks which represent features of terminals and conne
between structure elements need to be considered.

Let us consider refinements of terminals and junctions. Examples are taken
the set of lower-case roman characters. Terminal and junction types for upper-case
are similar but simpler. Sometimes it is not easy to tell whether an earmark is relate
terminal or a junction, for example in character “t” and “w”. In these cases, we assu
is related to a terminal.

1) Variations of terminals

There are two sorts of terminals: the serifs which terminate straight strokes a
terminals which terminate curved strokes. For serif typefaces, terminals of cu
strokes, such as bowls, arches and tails, are often bulbs (or pears) and bars. For s
typefaces, there is often no special decoration at the end of curved strokes. C
strokes of sans-serif typeface are terminated abruptly, leaving the end squared or
(Fig. 3.2a). We shall also enable variations to provide terminals of special letters s
the lower terminal of “b”, the upper terminal of “t” and the upper-center terminal of
(Fig. 3.2b).

46 Chapter 3: Font parametrization

of the

m
rs
s to
Figure 3.2: Terminals of (a) curved strokes and (b) special letters.

2) Variations of junctions

Junctions, or connection types have been classified to be meet, link, join and cross.
There is no variation for the meet connection. The width of the miter tip of the join
connection, such as “v” and “z”, can be controlled by the distance and orientation
slanted stems (to be discussed later), therefore no variation is needed. The cross junction
has no variation either. Only the link junction which connects an arch or bowl to a ste
needs variations: smooth or angled (Fig. 3.3a). The connection of the two diagonal ba
to the vertical stem in letter “k” is an interesting case which needs variation
distinguish the order of connections (Fig. 3.3b).

Figure 3.3: Junction variations: (a) angled or smooth link, (b) letter “k” with either two link
connections or one v-join connections.

(a)

(b)

θ

Times Rockwell Helvetica Gill Sans Grotesque

Times Helvetica Times New York Times BaskervilleBodoni

Times Serifa Times Geneva

GenevaHelvetica

Times Bodoni

v

(a)

(b)
two link
connections

one v-join
connection

3.2 parametrizable character synthesis methods 47

 have
y “
c-
l struc-

cation.
s

ent its
 of the
ust be

 angle
on of a
 The
mmed
es or

ertical
ontal
izable
ent at a
s first

en two
such as
re that,
aracter

 font

”

3) Variation of global character structure

Besides the local variations of terminals and junctions, some characters
different global structures, such as the double storey “a” vs. the single storea”
(Fig. 2.8) and the “g” with a belly vs. the “g” with a tail. If the shape of a specific chara
ter can not be obtained by appropriate combinations of components, a new globa
ture can be introduced.

3.2 parametrizable character synthesis methods

The refined structure element connecting graph is an abstract character part specifi
This specification is used to write the code of the parametrizable character synthesi
method of a given character.

The parametrizable character synthesis method requires for each compon
corresponding parameters. The parameters of a component specify the position
component and its precise shape. Certain relationships between components m
maintained. The shape of a component is controlled by the dimension, orientation,
and curvature parameters. The shape of a component (for example the extensi
stem) may also need to be trimmed in order to fit well with other components.
synthesized character shapes, or glyphs, will be represented in the form of tri
component outlines, which in turn can be intersected and merged into glyph outlin
scan-converted into glyph bitmaps.

3.2.1 Component position dependency

The first step is the placement of each component at a proper position. The v
position is controlled by the traditional reference lines. In respect to the horiz
position, the origin and the left side bearing point are not specified in the parametr
character synthesis method. We can generally place the first synthesized compon
random horizontal position. Positions of the other components are relative to thi
component.

3.2.1.1 Relationships between components

There are two kinds of component-to-component relationships: the distance betwe
components, such as two vertical stems, and the connection of two components,
a serif and its connecting stem. Some relationships must be maintained to ensu
providing any proper parameters, the font synthesizer can generate reasonable ch
glyphs.

Relationships between character parts were used in the traditional outline
technology to specify hinting methods, such as “the line connecting pi and pj is vertical”,
“the distance between the horizontal projections of pi and pj is the standard stem width

48 Chapter 3: Font parametrization

oft
ur

arts are
ints are
ween

ative
height
cender
ll study
very
nship

tal
the
“m”
l dis-
ers are
 in
”.

,
r

and “pi lies between pj and pk”. Readers are referred to the hinting systems in Micros
TrueType [Microsoft95b], Agfa Intellifont [Agfa91] and Adobe Type1 [Adobe90]. In o
component based font parametrization system, relationships between character p
used to determine the positions of components. Relationships between contour po
not necessary, since they will automatically be maintained if the relationships bet
components are kept.

The distance relationships may constrain both horizontal and vertical rel
positions of components. Most of the vertical positions depend on the character
reference lines, such as, for small letters, the base line, the x-height line, the as
line and the descender line. So, when two components are put together, we sha
how to maintain their horizontal distance relationship. We found that almost e
character has two or three main components whose horizontal position relatio
(main component horizontal distance) must be kept, primarily because their horizon
distance reflects the character width. For example, consider the vertical stem and
half-loop of character “b”, and the left, middle and right vertical stem of character
(Fig. 3.4). Other horizontal positions can be specified as a function of the horizonta
tances between the main components. If necessary, some dimension paramet
defined by proportion parameters. Examples are the center position of the half-loop
character “b” and “d”, and the arch’s top extreme points in character “m”, “n” and “h

Figure 3.4: The relationships describing the components horizontal positions: main
component horizontal distances dx1 and dx2. Vertical positions are determined by the
character’s horizontal reference lines.

Character width: The traditional typographical definition is the horizontal distance from the
left side bearing point (lsb) to the right side bearing point (rsb). The character origin
the left side bearing point and the right side bearing point are not suitable fo

ascender_o

ascender

xheight_o

xheight

baseline
baseline_o

dx1 dx1 dx2
x0 x1 x0 x1 x2

O1

O2

p1

p2

p1

p2

ve
rt

ic
al

 p
os

iti
on

s
ar

e
co

nt
ro

lle
d

by
th

e
tr

ad
iti

on
al

re
fe

re
nc

e
lin

es

pi

a c b

Legend:

Interpolation c = a + pi * (b - a),
where pi is a proportion parameter.

3.2 parametrizable character synthesis methods 49

t

ers
’s

ted

 of the
width
ingly

r width

n
n be
uch as
two
ould
ve-to-
cting

types
dimen-
When a
ed by
 con-

r exam-
parametrization. Therefore the traditional character width is not defined in our fon
parametrization system.

Main component horizontal distance: This term generally refers to the horizontal distance
between centerlines of main components. In this thesis, it is often given as paramet
named dx, dx1, dx2. When all parameters of a character are provided, the character
bounding box width and its main component horizontal distance can be derived.

Proportion parameter: A proportion parameter is a parameter specifying proportional
percentage values. It is often a local parameter used to specify one parameter rela
to another. It is quite useful for interpolating between positions in order to modify
standard dimension parameters. We write proportion parameter as pi or pppi.
Parameter names are always in italic style.

Each main component horizontal distance is represented in proportion to one
standard character width parameters. Traditionally, typographers describe the
feature of a typeface by referencing the width of lower-case letter “o”. We accord
define the bounding box width of letter “o” as the standard “round letter width”, which is
supposed to be referenced by all the letters. To ensure the coherence of characte
features, we define three kinds of main component width: the curve-to-curve width, the
stem-to-curve width and the stem-to-stem width (Fig. 3.5). The curve-to-curve width ca
be applied to all round letters such as “o”, “e” and “c”. The stem-to-curve width ca
applied to characters which have a main vertical stem and a main vertical curve, s
“b”, “d”, “p” and “q”. And the stem-to-stem width can be applied to characters with
or three main vertical stems, such as “h”, “m”, “n” and “u”. Other characters sh
specify their component distance as a proportion of the round letter width. The cur
curve width can be directly derived from the standard round letter width by subtra
from it the standard vertical curved stroke width.

Figure 3.5: Standard width parameters for the reference of main component distances.

Another important component-to-component relationship are the connection
(see examples in Fig. 3.6). When a serif is connected to a stem, its position and
sion shall all depend on the stem so as to ensure that the serif never flies apart.
sweep is used to connect a half-loop to a vertical stem, its span will be determin
both the half-loop and the vertical stem so that it really touches both of them. Such
nection relationships represent the dependency of one component on another. Fo
ple, a serif depends on a stem.

Traditional Std.
Round Letter Width

Curve to Curve
Width

Stem to Curve
Width

Stem to Stem
Width

50 Chapter 3: Font parametrization

nent
ple, no

r

 the
ant or
mple,

ep’s
etween

 graph,
 or,

main
which
rminals
n. The
can be
Varying the design of junctions and terminals may require different compo
shapes, but generally their respective dependency remains. In Fig. 3.6, for exam
matter if there is a spur or not, one end (departure end) of connecting sweep c4 will
always depends on the position of the connected stem c0. The same applies to the othe
connecting sweep c5.

Figure 3.6: The relationship describing the connection dependency: serifs depend on the
stem and connecting sweeps depend on their two neighbouring components. This figure also
shows that local variations of the junction don’t affect the component’s connection
dependency.

The purpose of studying the relationships between component is to clarify
dependency of positions between components and to ensure that no redund
disturbing parameter is introduced to control the position of components. For exa
the departure points Pd, Qd and the arrival points of the connecting sweep c5 in the
example of character “b” (Fig. 3.6) should be determined by the half-loop c1 and the
stem c0. Otherwise, if we would introduce direct parameters to control the swe
positions, these parameters would have to be hand-tuned each time the distance b
the stem and the half-loop is changed.

3.2.1.2 Component dependency graph

We can represent the distance and connection relationship by an acyclic directed
the component dependency graph. A component dependency graph has generally one
sometimes, two root nodes which stand for the horizontal position of the
components of a character. The first level child nodes are main components
depend on the distance at the root node(s). The second level child nodes are te
(serif, dots etc.) and connecting sweeps. More levels are possible but not commo
dependency relationships are represented by arrow-headed lines. An example
found in Fig. 3.7.

c0 c1

c5
c5

c4

c2

c3

c0

c0

c4
c3=null

Connecting sweep c5
must link to c0 and meet c1.To connect top serif

c2 to stem c0,
support lines of
c2 are derived
from the edges of c0.

Spur c3 is made by a
top serif with zero width,
height and depth.

If there is a spur, c4 should
link to c0 - depends on c0.

If there's no spur, c4 should
meet c0 - depends on c0.

Lower junction variation: meet.

Upper junction variation: smooth.

3.2 parametrizable character synthesis methods 51

their
ts often
ording

mbling
ould be
evel of
thesized

t at a
r

n
vel in

ition
 graph
 level

upport
meters.
.

Generally, varying the design of junctions and terminals does not affect
component dependency graph. The dependency relationship between componen
remains the same. But the implementation of the dependency may be different acc
to the different styles of junctions or terminals.

Figure 3.7: The relationship between components can be represented by a component
dependency graph.

The component dependency graph also represents the steps for asse
components into a character. The distances represented by the root nodes sh
provided as direct parameters at the beginning. Components located at the first l
the graph are synthesized first. Then, components on the second level can be syn
and linked to the first level components.

3.2.1.3 Methods to specify dependency

We generally place one of the main components which will be synthesized firs
random horizontal position and name it the x0 position (see Fig. 3.4 and Fig. 3.7 fo
examples). We introduce direct parameters named dx1, dx2, ... for the distance betwee
the first synthesized main component and other main component(s) of the first le
the component dependency graph. Thus, their positions are x0 + dx1, x0 + dx2, ...
respectively.

The connection relationship is a little more complex to specify. The pos
parameters of components at the second level of the component dependency
depend on the first level components. The position parameters of the second
components are indirect parameters derived from the first level components. S
contour points of the synthesized components can be used to derive indirect para
For example, if c0 is a stem, c0.A refers to the support point A of the synthesized stem
Here are some notations:

Notation 3.1: Pt (x, y) is a point with coordinate (x, y).

Notation 3.2: Ln (p1, p2) is a line connecting point p1 and p2.

Notation 3.3: If p is a point, p.x is the x element of p, p.y is the y element of p.

c0
c0c1

c1

c5

c5
c4 c4c2

c2

c3c3

main component width dx1

dx1

root:

first level:

second level:

x0 x1

52 Chapter 3: Font parametrization

erif c

nt at a
 this

 of the
o the
rolling
e.
Notation 3.4: If c is a component, c.p refers to a support point of c.

Notation 3.5: Given two points or numbers a and b, and given interpolating factor f
varying between 0 and 1, the interpolation can be written as iplt (a, b, f),
which equals “a + f * (b - a)” (see also Fig. 3.4.).

Notation 3.6: The form {a1, a2, a3, ...} stands for the argument list of a component.

With these notations, we specify, for example, the dependency relationships “top s2
depends on stem c0” and “sweep c5 depends on stem c0 and half loop c1” with the
mathematical expressions given in Fig. 3.8. For the connecting sweep c5, the example
gives the argument list for an “angled” connection. A “smooth” junction (see also
Fig. 3.6) requires slightly different expressions for sweep c5’s arrival points Pa and Qa so
as to make the sweep end appear horizontal.

Figure 3.8: An example of mathematical expressions specifying dependency. The
expressions exist in the argument list of component c2 and c5. This figure doesn’t show c3
and c4.

3.2.2 Component shape tuning

In the previous section (section 3.2.1), we have shown how to place a compone
proper position and how to maintain the relationships between components. In
section, we present means of controlling the precise shape of a component.

The shape of a component is synthesized with its parameters, or arguments
component synthesis functions (we also use the term “component” to refer t
component synthesis function). The shape of a component can be tuned by cont
the parameters which control the component’s dimension, orientation and curvatur

c0 c1

c5

c5
c2 c2

x0

List of arguments for component c2 and c5:
c2: { l1 = Ln (c0.B, c0.C);

l2 = Ln (c0.D, c0.A);
l3 = Ln (c0.C, c0.D);
...}

c5: { Pd = c1.B;
Qd = c1.C;
Pa = Pt (x0 + w1 / 2,

iplt (xheight, baseline, armDepth));
Qa = Pt (Pa.x, Pa.y - w2);
...}

c0.Cc0.D

c1.A

c1.D

c1.B

c1.C

c0.A c0.B

xheight

baseline

ar
m

D
ep

th

w1

w2

w1 = StdVerStemW
w2 = StdNarrowHorCurveW

Pd

Qd
Pa

Qa

 l3

 l2 l1

3.2 parametrizable character synthesis methods 53

idth of
th of
 can be
stem
racters
ified as

pecific
 (scale)

een a
sions do
 when,

fined

loop
 are
l

of the
height
fore,

ture

e
oints.
rolled

 by
 are
nding
 the

.

3.2.2.1 Dimension

The first aspect of a component shape is its dimension: the width of a stem, the w
a loop or half-loop, the height and width of a serif, the radius of a round dot, the wid
the ends of a sweep, etc. Most of the dimensional characteristics of character parts
standardized for all characters in a font. For example, the width of a vertical
remains the same for all lower-case characters or, respectively, for all capital cha
in typefaces such as Times or Helvetica. Arguments of main components are spec
global font parameters (section 3.3).

If the standard dimension parameter needs to be enlarged or reduced for a s
part in a given character, a factor can be introduced as a local parameter to modify
the standard dimension parameter. The scaling factor keeps a relationship betw
special component dimension and the standard one, because most special dimen
have a relationship with standard parameters. This relationship can be preserved
for example, the weight of the font is varied.

In detail, let us summarize the dimensional arguments of the previously de
components (see section 2.2 for the definition of component parameters).

• Stem: Stem width is controlled by parameter w. Stem length is limited by the
departure point P0 and the arrival point P1 of its center line.

• Loop and half-loop: Their overall size is controlled by p1, q1, p2, and q2, which
represent the half width and half height of the external and internal
bounding boxes. If the internal loop center and external loop center
common, the difference between p1 and p2 is the stroke width of the vertica
part of the loop, and accordingly the difference between q1 and q2 is the stroke
width of the horizontal part of the loop. The dimensional parameter p1 and q1

are often controlled by the character height reference lines since the size
loop or half-loop always occupies the space between the baseline to the x-
(for lower-case letters) or the caps-height (for capital letters) lines. There
parameters p2 and q2 can be derived from p1 and q1 by subtracting from them
the standard width of vertical and horizontal curved strokes respectively.

• Sweep: The width of a sweep is controlled by the width of both the depar
line segment and the arrival line segment given by the departure points Pd and
Qd and the arrival points Pa and Qa respectively. If a sweep connects to som
other component, its departure and/or arrival points will depend on other p
The open end of a sweep, such as the tail of character “e” and “t”, are cont
by introducing a local parameter controlling the tail’s width.

• Serif and top-serif: Their dimension width, height and depth are controlled
sw1, sw2, sh1, sh2, sd1 and sd2 respectively (see Fig. 2.26). These parameters
required to be uniform in a font, and hence are assigned directly correspo
global font parameters. The length of the serif face is also affected by
support lines l1 and l2, which represent the two sides of the connecting stem

54 Chapter 3: Font parametrization

ot as a
sion

 as
ional
 are
 is as

 and
f serifs,
r than

rture
n

gle

oop
nt
ns by
the

tail of
ant
ntrast
slope

and

 The

form
racter
gle.

e

• Dot: Width and height are controlled by parameter a and b (Fig. 2.32). Isolated
dots have a standard size given by global font parameters. However, the d
terminal element may have a varied size, which requires local dimen
modifying parameters (Fig. 2.33).

• Path: Dimension of arbitrary paths should also be controlled as much
possible by standardized global font parameters. We try to find dimens
relationship between them so that the points which construct a path
controlled by local relative parameters and the number of local parameters
small as possible.

3.2.2.2 Orientation

Orientation of components includes the slant angle of loops, half-loops, dots
diagonal stems, the slope angle of the open end of sweeps, and the orientation o
top-serifs and half-loops. Many of the angles are controlled by some method othe
by giving the angle in degrees. We summarize the details below.

• Stem: The orientation of a diagonal stem is determined by the stem’s depa
point P1 and arrival point P2. The positions of these two points are ofte
controlled by the character width, such as “x”, “v”, and “z”, not by an
(Fig. 3.9d).

• Loop and half-loop: The slant angle, or stress, of the external and internal l
are controlled by parameter η1 and η2 respectively, which are the displaceme
of the extreme points (Fig. 3.9a). Half-loop quadrants are given as directio
parameter dir, whose value may be left, right, top or bottom (for example,
orientation of the half-loop in Fig. 3.9b is “left”).

• Sweep: The open end of a sweep has a slope, for example the end of the
character “e” (Fig. 3.9b), “a” and “t”. The slope orientation is an import
typeface feature which needs to be controlled if the weight, stress or co
varies. We often introduce a local parameter specifying the degree of the
angle. The end of a sweep is given by two points Pa and Qa which can be
derived from the angle and the tail’s width. Trigonometric functions sin(x)
cos(x) are needed.

• Serif and top-serif: Orientations are specified by parameter dir, which has values
left, right, top or bottom. The topserif has a slanted serif slab (Fig. 3.9c).
angle of the serif slab is specified by the component’s parameter θ. The angle of
a topserif can be given as a global font parameter since it is often uni
throughout a whole font. Top-serifs can be used to synthesize beaks in cha
“z” (Fig. 3.9d), “F”, etc. In these cases, the slab angle defines the beak’s an

• dot: If the dot is slanted, the angle θ can be explicitly specified (for example th
terminal dot in Fig. 3.9c).

3.2 parametrizable character synthesis methods 55

internal
acket)

re end

nt
d to

(c
hori-

t
m in
Figure 3.9: Various kinds of orientation of components.

3.2.2.3 Curvature

The curvature features of a typeface are reflected by the two sides of a sweep, the
and external contour of a loop or half-loop, the outline of a dot, and the support (br
of a serif or topserif. We summarize the curvature control elements as follows.

• Sweep: The midline of a sweep is a β-Bézier curve controlled by control point A
and the center points at both ends of the sweep. Since both the departu
and the arrival end of a sweep are given by points Pd, Qd, Pa and Qa, the
curvature of the sweep is mostly determined by the position of control poiA.
Generally, point A has two degrees of freedom. But when a sweep is use
connect two part of a character, we need to constrain point A to a single degree
of freedom. For example, the curvature of the upper connecting sweep 5 in
Fig. 3.8) is controlled by a local proportion parameter which specifies the
zontal relative displacement of the β-Bézier control point A. Control point A is
constrained to move horizontally (Fig. 3.10). Typographically, control poinA
controls the junction angle between the loop or arch to the vertical ste
characters such as “b” and “n”.

Figure 3.10: Controlling the curvature of a connecting sweep. The local parameter pppi
controls the horizontal relative position of the control point A, hence, typographically, it
controls the junction angle.

(a) (b) (c) (d)

θθ

θ

θ
θ

dx

dir

dir

loop stress
controlled by η

A

Qd

Qa

Pd

Pa

pppi
typographic meaning:

56 Chapter 3: Font parametrization

of a
ch
res a

lled

itives
ed or
hese
s

ter
he
r.

s
the

 work
 along
ecting

 have
lting
tour
 edge
 same
g line
m an
• Loop and half-loop: The squareness of the external and internal contours
loop are controlled by β1 and β2 respectively. Some high contrast typeface, su
as Bodoni, require the internal contour to be more square, which requi
larger β2 parameter. Examples can be found in Fig. 2.20 in chapter 2.

• Dot: Squareness is controlled by a font level global parameter βdot.

• Serif and top-serif: The squareness of the serif support, or bracket, is contro
by a font level global parameter βserifsupport.

3.2.3 Boundary correction

Some characters cannot be synthesized by simply assembling shape prim
(components). Components for some junctions or terminals need to be trimm
patched in order to modify their extension or smooth their corners out. T
modifications are realized by boundary correcting paths. Some of the correction case
are quite common and will be specified by predefined boundary correcting operations.

Boundary correcting path: The boundary correcting path is also a sort of shape primitive
which will be used to add a patch to or substitute a part of the synthesized charac
shapes. For example, a boundary correcting path can fix the corner formed by t
intersection of two stem or sweep components and therefore smooth out the corne

Boundary correcting operation: The operation which adds a boundary correcting path to an
existing component(s). Boundary correcting operations are defined as function
which takes one or two components and correcting parameters as input and return
corrected contour.

The two most important boundary correcting operations are cut and smooth.

3.2.3.1 Trim extension of component outlines

Sometimes a component needs to be trimmed to limit its extension. This trimming
is much like what a pair of scissors does - it cuts one piece of paper into two pieces
a line, and keeps only one piece. We define this function as a boundary corr
operation named cut, which divides a contour into two parts along a given cutting line
and keeps one of the resulting contours.

Since the contour of a component has a direction, the cutting line should also
a direction. The cut operation uses the direction of the cutting line to select the resu
contour which will be kept. The resulting contour contains part of the original con
and a cutting edge (Fig. 3.11). Orientation of the original contour and of the cutting
should remain coherent so that the resulting contour is closed and has the
orientation as the original one. The straight line is the most commonly used cuttin
in our font parametrization system. In concrete cases, a cutting line is derived fro
existing component.

3.2 parametrizable character synthesis methods 57

ially in

e sure

tems
 (see
Figure 3.11: Definition of the cut operation.

The cut operation is simple and useful to synthesize character shapes, espec
realizing junctions and special optical corrections. Here are some examples:

1) a stem and a sweep “meet” each other

The connection symbol in the structure graph for meet is . When a sweep
“meets” a stem smoothly, the stem should be trimmed at the meeting position to b
it does not extend out of the sweep (Fig. 3.12).

Figure 3.12: Example of the use of the cut operation for realizing the meet connection.

2) two stems “join” into a tip

The connection symbol in the structure graph for join is , which is derived
from the typical join case in character “v”. From this connection, the ends of both s
need to be trimmed so that none of them will extend out of the boundary of the tip
the example in Fig. 3.13).

contour before cutting:

cutting_line

contour after cutting:

Orientation of the cutting edge
is coherent with the contour.

cutting edge

cut (contour, cutting_line) ==> new_contour

contour new_contour==>

st stst

sw sw

l

cut (st, l), where
cutting line l is
derived from
sweep sw

before cutting: after cutting:

v

58 Chapter 3: Font parametrization
Figure 3.13: Example of the use of the cut operation for realizing the join connection.

Figure 3.14: Use of the cut operation for synthesizing character “k”.

s1 s2s1 s2 s1 s2

l1l2

cut (s1, l2)
cut (s2, l1)
where, l1 is derived
from sweep s1,
l2 is derived from
sweep s2.

before cutting: after cutting:

tip of the
miter join

v

s1

s1

s2 s2

s3

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

s1

s2

s3

l1

l3

l2

l2

cut (s2, l1)
cut (s3, l2)
where, l1 is derived
from stem s1,
l2 is derived from
stem s2.

cut (s2, l3)
cut (s3, l2)
where, l3 is derived
from stem s3,
l2 is derived from
stem s2.

after cutting: structure graph:
s3 -->> s2
s2 -->> s1

before cutting:

after cutting: structure graph:
s2 --v-- s3

before cutting:

a) Helvetica 'k', s3 links into s2, s2 links into s1.

b) Times 'k': s2 and s3 from a tip. Whether the tip overlaps s1 or not
depends on their distance, which is a local parameter of this character.

3.2 parametrizable character synthesis methods 59

e sure
e

ealiza-

sting

look as
at of a
ing the
d to be
3) one component “links” into another

The connection symbol in the structure graph for link is . In a link
connection, the end of one component is buried in the body of the other one. To b
the end of the linking component never exceeds the body of the linked one, thcut
operation can be applied. The examples in Fig. 3.14 demonstrate the different r
tions of the two kinds of junctions for Helvetica character “k” (Fig. 3.14a) and Times
character “k” (Fig. 3.14b), and their corresponding structure graphs (an intere
example of design variation).

Figure 3.15: Examples of the use of the cut operation for realizing special optical character
shape corrections.

4) special optical corrections

Optical correction of character shapes is needed so as to ensure that they
expected. For example the height of a round letter should be a little higher than th
square letter so as to look the same. Generally, optical correction is made by us
character height reference lines. There are still some special shapes which nee

corr.
range

corr.
depth

l2 l1

s1 s2 s1 s2s1 s2

cut (s1, l1)
cut (s2, l2)
where, l1 and l2 are
derived from stems
s1, s2 and correcting
range and depth.

s1

s2 s2'

s1

s2'

s2s2

l1l1'

s2' = duplicate (s2)
cut (s2, l1)
cut (s2', l1')
translate (s2', v)
where, l1 is derived
from stem s1, l1' = -l1.

v

a) Optical correction of the corner of Helvetica 'v'.

b) Optical correction of the narrow slanted stem of Times 'x'.

before correction:
the two stems have been cut
to make a miter join, however
the corner looks too "black".

after correction:
the two stems are cut
again to make the corner
deeper and sharper.

after correction:
lower-left part of s2 has been
shifted left (s2'), so the whole
character looks more stable.

before correction:
s2 crosses s1 continuously,
however the character may
look left leaning.

60 Chapter 3: Font parametrization

 sharp
thin
d so
e real-

nd the
to be

 some
lls the
othing

ntours
the
ngth of

arture

 corner.
corner
ps the
optically corrected and are not subject to the reference lines. For example the
corner of Helvetica “v” (Fig. 3.15a) should be corrected to look really sharp, and the
diagonal stroke in the cross junction of Times “x” (Fig. 3.15b) should be correcte
that the character looks stable [Jamra93]. These special optical corrections can b
ized with the help of the cut operation.

3.2.3.2 Smooth corner of intersected components

The bulb/pear-like terminal may need to smooth the corner formed by the sweep a
dot. In some typefaces, corners formed by two straight component also need
smoothed. We define the smooth boundary correction operation to fulfill this task. The
smooth operation generates a smoothing shape from the two given components and
smoothing parameters (Fig. 3.16). A smoothing shape is a path component which fi
corner smoothly. The size and shape of the smoothing shape are controlled by smo
parameters. This operation first finds the corner by possibly intersecting the two co
which form the corner. Then the smooth operation constructs a smoothing shape from
parameters specifying the range of the corner to be smoothed and the tangent le
the smoothing curve.

Figure 3.16: Definition of the smooth operation.

In Fig. 3.16, smoothing parameter r1 and r2 limit the range of the corner to be
smoothed by restricting the length of the two edges of the corner. Parameters s1 and s2
control the curvature of the smoothing curve by the length of tangents at both dep
and arrival point. Tangent directions are computed by the smooth operation in order to
ensure smooth connection between the smoothing curve and the two edges of the
The final constructed smoothing shape should cover the smoothed area of the
without leak. We can make sure the smoothing shape touches or slightly overla

smoothing curve

r1
s1

s2

r2

corner

s1, s2: lengths of tangents at departure and
arrival points of the smoothing curve;
r1, r2: lengths of two edges of the corner, which
limits the range of the corner to be smoothed.

smoothing
shape to be
added to the
corner

smooth (contour1, contour2, r1, r2, s1, s2) ==> smoothing_shape

contour1

contour2

3.2 parametrizable character synthesis methods 61

 to

als.
of two
ter “s”)

e
ecting
e used

-like
ribe this
 the

n

smoothed corner. Practically, r1, r2, s1 and s2 can be given as local parameters relating
the character’s width and height.

The smooth operation works quite well in smoothing out the corner of termin
Examples in Fig. 3.17 show the smoothing path component added to the corners
components in case of a sweep to dot (character “j”) and a sweep to stem (charac
smoothing correction.

Figure 3.17: Examples of smoothing paths which are added by the smooth operation.

3.2.3.3 Hand tuned boundary correction

Sometimes, the predefined operations, cut and smooth, are not able to generate th
correction path for some special terminals. In this case, we can construct a corr
path and add it at the proper position. This hand tuned path component can b
together with the predefined ones.

Figure 3.18: The special terminal of Times “t” requires a hand-made correcting path as well
as two cut operations.

For example, the upper terminal of the Times character “t” is a coved triangle
shape. As demonstrated in Fig. 3.18, we can compose a path component to desc
terminal with a few local parameters specifying the dimension relationship to
existing stems s0 and s1. The local parameter p0 specifies the width of the vertical tip in
proportion to the width of stem s0, and p1 specifies the width of the horizontal tip i
proportion to the width of stem s1. The control point of the β-Bézier curve (point A in the

smoothing
path

js

boundary
correcting
path

boundary
correcting
path

tA

s0

s1

s0'

s1'

cut (s1, s0.right_edge);
cut (s0, s1.lower_edge);

p1

p0

before cut after cut

62 Chapter 3: Font parametrization

 path

ween
ify how
plete

rts. A

r this
-
ponent,
rs and
param-

in the

s

s

s

s

op
figure) is also given in relation to the position of the two stems. To add this new
component, we apply the cut operation to both of the stems s0 and s1 to make sure neither
of them will exceed the boundary of the correcting path.

3.2.4 The complete parametrizable character synthesis method

As described above, we are able to specify the position relationship bet
components, to specify how to tune component shapes by parameters, and to spec
to trim or correct the boundary of components. Now, we can describe the com
parametrizable character synthesis method.

A complete parametrizable character synthesis method consists of two pa
parameter declaration part and a character synthesis method specification part. The
parameter declaration part contains place holders for all parameters used fo
character, including global parameters and local parameters (section 3.3.2). The charac
ter synthesis method specifies the type and parameter (argument) list of each com
as well as the boundary correcting operations. Relationship between paramete
components are maintained through mathematical expressions. A pseudo C/C++
eter passing format is used to explain the character synthesis method.

Components are often named subsequently, for example, like ci or si, i = 0, 1, 2....
Parameters of each component, which are defined in section 2.2, are written
parameter list form as below:

• stem {P0, P1, w, terminator0, terminator1}, which also computes and store
support points A, B, C and D (see Fig. 2.10);

• loop {O1, O2, p1, p2, q1, q2, η1, η2};

• halfloop {O1, O2, p1, p2, q1, q2, η1, η2, dir}, which also computes and store
support points A, B, C and D (see Fig. 2.21);

• sweep {Pd, Qd, Pa, Qa, B1, B2} or sweep {Pd, Qd, Pa, Qa, A};

• serif {sw1, sw2, sh1, sh2, sd1, sd2, dir, l1, l2, l3}, which also computes and store
support points for serif connecting positions A and H (see Fig. 2.26);

• topserif {sw, sh, sd, θ, overshoot, dir, l1, l2, l3}, which also computes and store
support points for serif connecting positions O and F (Fig. 2.31);

• dot {O, a, b, θ};

• path {segmenti, i = 0, 1, ...}.

As defined in notation 3.4 in this chapter, once a parameter p of component s is
evaluated, it can be referred to as s.p later. The result of component stem and half-lo
contain support points which can also be referred in the same way.

3.2 parametrizable character synthesis methods 63

d by
 for
d in
gled
eters

nection

-

We explain the details of the parametrizable character synthesis metho
providing as example the character “b”. To simplify, we only provide the method
synthesizing a character with one given junction and terminal type. As indicate
Fig. 3.19, character “b” has a top-serif, a null spur, its upper junction type is “an
link” and its lower junction type is “meet”. Local parameters and some global param
are indicated. The refined structure graph gives the component type and the con
between components.

Figure 3.19: Parameters of character “b”, its refined structure and component dependency.

Referring to Fig. 3.19, we can write the complete parametrizable character syn
thesis method as follows. Font parameters, both global and local, are printed in italic.

Parameter declaration (place holders for parameters):
dx : the distance between the left stem and the right half-loop;

w0 : the standard vertical stem width;

w1 : the standard vertical curved stroke width;

w2 : the standard narrow horizontal curved stroke width;

w3 : the standard horizontal curved stroke width;

w4 : the width of the upper junction;

p1 : relative h-position of the half-loop external center;

p2 : relative h-position of the half-loop internal center;

p3 : relative height of the lower junction (c4), external;

p4 : relative height of the lower junction (c4), internal;

p5 : relative depth of the upper junction (c5);

p6 : relative control point position of connecting sweep c4 (see also Fig. 3.10 for the

design of sweep control point);

p7 : relative control point position of connecting sweep c5;

c1

c1

c2
c2

c0
c0

c3

c4

c4: meet
c5

c5:angled link

x0 x1

dx

ascender

xheight

base
w2

w0 w1

w3

w4

ascender_o

xheight_o

base_o

O2
O1

c0 c1

c5c4c2 c3

dx

c0: stem
c1: halfloop
c2: topserif
c3: null (no spur)
c4: sweep
c5: sweep

refined structure graph:

component dependency:

p1

p7

p5

p4
p3

p2

p6c3:null

64 Chapter 3: Font parametrization
eta1 : external loop extrema correction, standard;

eta2 : internal loop extrema correction, standard.

Character synthesis method specification:
// auxiliary names: x0, x1

x0 = random value for the position of the left stem;

x1 = x0 + dx;

// components: c0, c1, c2, c3, c4, c5

c0 = stem {

P0 = Pt (x0, base); // departure point

P1 = Pt (x0, ascender); // arrival point

w = w0; // stem width

terminator0 = the base line; // stem terminator at P0

terminator1 = the ascender line; // stem terminator at P1

};

c1 = halfloop {

O1 = Pt (x0 + p1 * dx, (xheight_o + base_o) / 2); // center, external

p1 = x1 + w1 / 2 - c1.O1.x; // half width

q1 = (xheight_o - base_o) / 2; // half height

O2 = Pt (x0 + p2 * dx,

((xheight_o - w3) + (base_o + w2)) / 2); // center, internal

p2 = x1 - w1 / 2 - c1.O2.x; // half width

q2 = ((xheight_o - w3) - (base_o + w2)) / 2; // half height

η1 = eta1; // external loop extrema correction

η2 = eta2; // internal loop extrema correction

};

c2 = topserif {

sw = standard serif width; // topserif width, global

sh = standard serif height; // topserif height, global

sd = standard serif depth; // topserif depth, global

θ = standard topserif angle; // topserif angle, global

overshoot = standard topserif overshoot; // overshoot, global

dir = top; // orientation, constant

l1 = Ln {c0.B, c0.C}; // support line, derived from c0

l2 = Ln {c0.D, c0.A}; // support line, derived from c0
l3 = Ln {c0.C, c0.D}; // support line, derived from c0

};

c3 = null; // no spur, a spur is made by a topserif

c4 = sweep {

Pd = Pt (x0 - w0 / 2, iplt (base, xheight, p3)); // departure right

Qd = Pt (x0 + w0 / 2, iplt (base, xheight, p4)); // departure left

Pa = c1.A; // arrival right

Qa = c1.D; // arrival left

A = Pt (iplt ((c1.A.x + c1.D.x) / 2, x0, p6),

(c1.A.y + c1.D.y) / 2); // control point

};

3.3 Parameter files 65

pe of a
 every
ameter
 In this
d our

ut the

pace.
racter-

ion of
these
ndent
ged in

e which

 of the
device
c font
” in
The
d into a
allest
c5 = sweep {

Pd = c1.B; // departure right

Qd = c1.C; // departure left

Pa = Pt {x0 + w0 / 2, iplt (xheight, base, p5)); // arrival right

Qa = Pt (x0 + w0 / 2, c5.Pa.y - w4); // arrival left

A = Pt (iplt ((c1.B.x + c1.C.x) / 2, x0 + w0 / 2, p7),

(c1.B.y + c1.C.y) / 2); // control point

};

// boundary correcting operations:

// the stem component c0 needs to be trimmed to connect serif c2 and sweep c4
c0 = cut (c0, Ln (c2.A, c2.Z)); // connect topserif c2
c0 = cut (c0, Ln (c4.Pd, c4.Qd)); // stem c0 and sweep c4 meet

// end of the parametrizable character synthesis method for character “b”

3.3 Parameter files

The parametrizable character synthesis method defines how to generate the sha
character. To synthesize an instance of the character, one needs to provide
parameter in the parametrizable character synthesis method with its proper par
instances, or to feed parameter files to the parametrizable character synthesizer.
section, we will discuss parameters used in our font parametrization system an
approach to organize parameter files.

3.3.1 Coordinate system

Before describing parameter files, we should answer some questions abo
coordinate system for character design.

The first question is about the unit or granularity of the character design s
Generally, there are two kinds of parameters: character-size-dependent and cha
size-independent. Character-size-dependent parameters specify the dimens
character parts. The change (scaling) of a character will need the value of
parameters to be changed (scaled) proportionally. Character-size-indepe
parameters do not relate to the size of a character and hence remain unchan
response to the character scaling. Such kinds of parameters are, for example, thos
describe angles, proportions, serif styles, junction and terminal styles etc.

The value of a character-size-dependent parameter depends on the size
character. Since physical size (in inch, point or centimetre) depends on physical
resolution, digital font manufacturers tend to define outline characters in a specifi
design coordinate system which incorporates logical coordinate units (“FUnit
TrueType [Microsoft95b] and “character space unit” in Adobe Type1 [Adobe90]).
font design space, which is a rectangle enclosing all characters, can be granulate
certain amount of logical coordinate units. And the logical coordinate unit is the sm

66 Chapter 3: Font parametrization

y the
tline

speed
s in a

er
fore, the
sized

ts, we
itation

meters.
e could
ally is
apital

ndard
have
ace to
f the
 values

e the
, it is

l width
are not
 space
unit for the coordinate of character outlines. Originally, this granulation is caused b
digitizing character ourlines from a design master [Karow94, pp.97-98]. In some ou
fonts, however, it is intended to restrict the precision of the coordinate in order to
up the rasterization process. For example it is common to have 1000 font unit
PostScript Type1 font and 2048 font units in a TrueType font.

In our font parametrization system, we will not restrict our flexibility to integ
coordinates. Instead, parameters can be real numbers whenever needed. There
number of font units in a font design space does not limit the precision of the synthe
character outlines. But, to compare the fonts we generate with Adobe Type 1 fon
tend to assume the character space to be 1000 by 1000, but with no granularity lim
(Fig. 3.20).

Figure 3.20: The coordinate system for our font parametrization system is similar to the one
used in the traditional outline font technology except that it has no granularity limitation and
that the x-origin is not defined. The bounding box is calculated on-the-fly and will be used to
compute optical spacing between two characters.

The second question is about the values of character-size-dependent para
Theoretically, these parameters depend on the size of the character, and therefor
be represented as a proportion or percentage of the character size, which usu
represented by the height or width of some typical letters, such as the height of c
letters or the width of lower-case letter “o”. For example, in the Times fonts, the sta
vertical stem width is about 20% of the width of lower-case letter “o”. However, we
observed that the proportion between size-related parameters varies from typef
typeface and that it is not important for parametrized fonts. Therefore, most o
character-size-dependent parameters in our font parameter system have direct
specifying the dimension of character parts.

The third question is about character origin and width measurements. Sinc
coordinate origin is not defined in our parametrizable character synthesis system
often assigned an arbitrary value when the character is synthesized. The traditiona
measurements, such as character width, left side bearing and right side bearing,
defined either. Thus, when two characters are placed against each other, the

bounding box

x

y

3.3 Parameter files 67

 use

n three

s in a
On the
uch as
rtion

 is to
 some

eans
f our
 have

idual
 font.

, they

ecial
rizable
nly be
defines

ethod
r in a
efaces
meters

out a
between them is not given by any kind of traditional metric tables. We will therefore
an automatic optical spacing method to calculate character spacing on-the-fly.

3.3.2 Parameter hierarchy

Parameters are organized hierarchically and, for convenience, stored separately i
parameter files: global parameters in the global parameter file, group parameters in the
group parameter file, and local parameters in the local parameter file.

3.3.2.1 Global parameters and local parameters

Basically, there are two hierarchical layers of parameters: the global parameters and the
local parameters. Global parameters specify general characteristics of all character
font, such as the main stroke widths, character height alignment and serif styles.
other hand, local parameters specify individual characteristics of each characters, s
the modification (enlargement or reduction) of the main stroke widths, the propo
parameters for relative positions, and special terminal or junction styles.

It is not easy to determine whether a parameter is global or local. Our rule
restrict global parameters so that global parameters are really “global”. Here are
rules for global parameters:

• Global parameters have clearly defined typographical meanings, which m
they are understandable by a typographer without special knowledge o
component based font synthesis system. Accordingly, global parameters
names from traditional typographic terminology.

• The purpose of global parameters is to unify font features across indiv
characters, and to enable coherent typeface feature modification in a
Hence special individual character features are not global parameters.

• Global parameters are common typographical features of all text typefaces
therefore often enable typeface identification.

Generally, if a parameter is not global, it is local. Local parameters have sp
meanings which are interpreted by the parameter place holders in the paramet
character synthesis method for each individual character. A local parameter can o
seen within the parametrizable character synthesis method which declares it and
its meaning. Local parameters do not need to have meaningful names.

We should point out that, since a parametrizable character synthesis m
depends on the character’s structure graph, the definition of a local paramete
parametrizable character synthesis method will not change between different typ
as long as they correspond to the same refined structure graph. Thus, local para
have relatively fixed meanings between “similar” typefaces or, quite often, through
family of typefaces.

68 Chapter 3: Font parametrization

ot all
n be
ed to

r group
uping
to have

value

port

th of
roup for
ature
nd q
e loop,
hese

nds of
ions of

r jobs
 vary
3.3.2.2 Local parameter grouping

Sometimes a typographic feature is similar within a group of characters, but n
characters in a font. The local parameters controlling such kind of features ca
grouped in order to achieve coherent feature modification. The parameter us
represent a group of coherent local parameters is called a group parameter.

Parameters which can be grouped and the characters affected by a paramete
are not fixed for different typefaces. Therefore, a mechanism allowing dynamic gro
of parameters has been introduced. This mechanism enables the parameter files
the following two functions:

1. name definition - to define a name for a group parameter and to associate a
to the defined name;

2. name reference - to refer to the value of a predefined name and to offer sup
for simple algebra operations (add, subtract, multiply, divide etc.).

For example, we can define a group parameter to control the junction dep
character h, m, n and u, because they have similar arches. We can also define a g
the relative position of the extrema of the arch and the relative position of the curv
control point for this group of characters (Fig. 3.21a). Similarly, characters b, d, p a
have some coherent features which can be grouped, such as stress (slant) of th
loop-stem connecting position and connecting sweep curvature (Fig. 3.21b). T
groups are common in many serif and sans-serif typefaces. By grouping these ki
feature controlling parameters, we are able to generate coherent feature modificat
a group of characters (Fig. 3.22).

Figure 3.21: An example of features which can be controlled by group parameters: (a) the
arches of characters h, m, n, and u; (b) the round parts of characters b, d, p and q.

Coherent feature modification is quite useful for typographers because thei
are not only to design completely new typefaces but also to modify, improve or

b p d q
h A

xheight

ju
nc

tio
n

de
pt

h

A

ju
nc

tio
n

de
pt

h

base

xheight

base

xheight

base

junction
depth

(a)

(b)

3.3 Parameter files 69

m an
e, the
mes

f

ature
local
aracter
rently.

ed as

ly. The
e local
ters and
existing fonts under special requirements. A new typeface may be derived fro
existing typeface by coherent modifications of typographic features. For exampl
last line of Fig. 3.22 imitates a typeface called “Corona”, which is derived from Ti
Roman by smoothing “link” junctions and thickening serif slabs.

Figure 3.22: Coherent feature modification across character groups. Note that the depth and
curvature of arches in characters h, m, n and u are coherent and so are the round parts o
characters b, d, p and q.

The purpose of group parameters is mainly to achieve coherent local fe
modification. The grouping of local parameters does not reduce the use of
parameters. The number of local parameters declared in the parametrizable ch
synthesis method remains the same but by grouping, they can be modified cohe
The grouping of local parameters from different characters can be consider
establishing a link between them.

3.3.2.3 The parameter hierarchy

The three kinds of parameters, global, local and group, are organized hierarchical
top-most layer in the hierarchy are global parameters and the bottom-most layer ar
parameters. The group parameters lie between global parameter and local parame
are optional (Fig. 3.23).

Times
Flat

Times
Roman

Times
Round

Corona

70 Chapter 3: Font parametrization

les.
ying
to be
 of
ffects
n and
eters,

er.

eters,
scribe
thers
optical
digits
ortant
global
peface

ng to
tands
ds to
i and

y have
ed by
c” for
Figure 3.23: Parameter hierarchy.

The parameter hierarchy offers much flexibility for preparing parameter fi
Different fonts with trivial feature modification can sometimes be achieved by modif
local parameters or by grouping some local parameters if they are intended
coherent. Modifying a global parameter will result in the coherent modification
typographic features across a font. However, modifying a local parameter only a
the character which defines it. The group parameter provides a name definitio
reference mechanism. By defining a name and referring it from several local param
the font synthesizer knows that these local parameters are linked (grouped) togeth

3.3.3 An example of parameter files

For our font synthesis experiments, we selected about 100 important global param
which are present in most text typefaces. Some of the global parameters de
earmark styles, β-curve parameters and character height alignment positions. O
describe dimensions of character parts, slant serif angles and standard
corrections. Different parameters for capital letters, lower-case letters and
(including symbols) are present. The set of selected global parameters is imp
because it represents important typeface features. But not each of these
parameters are actually used in every typeface. For example, the sans-serif ty
Helvetica does not use any of the parameters related to serif features.

In the following table (Tab. 3.1), the global parameters were named accordi
their typographic meanings. The first letter indicates the type of the parameter: “i” s
for an index which often describes type style, and “p” for a parameter which inten
be a real number (floating or fixed-point integer). The parameters for Times, Bodon
Helvetica are based on the same RastWare1 or Type 1 outline fonts. So, the
corresponding character design space is 1000 by 1000. Parameters which ma
different values for capital letters, lower-case letters and symbols are distinguish
the second letter in their parameter names: “m” for lower-case (minuscular) letter, “
capital letters and “d” for digits and symbols.

1. Many of the RastWare fonts are converted directly from corresponding Type 1 or URW fonts.

global parameter required, valid throughout a whole font, common
between all text typefaces

group parameter optional, valid for a group of characters

local parameter required, valid for individual character, defined
and used in a character’s parametrizable character
synthesis method

3.3 Parameter files 71
Table 3.1: Examples of important global parameters in the global parameter file.

Name Times Helvetica Bodoni Description

iSerifStyle bracket sans slab general style description

iSerifSupportType smooth n/a none serif support style

iSerifEndType butt n/a butt serif end style

iSerifFaceType flat n/a flat serif face style

iTopSerifSupportType smooth n/a none topserif support style

iTopSerifEndType butt n/a butt topserif end style

iTopSerifFaceType flat n/a flat topserif face style

pBaseLine 0 0 0 base line position

pXheight 445 521 396 x-height line position

pCaps 659 726 668 capitals height position

pNumbers 659 706 668 digits and symbols h. pos.

pAscender 679 726 683 ascender line position

pDescender -220 -220 -234 descender line position

pStdBetaXS 0.54 0.64 0.54 extremely flat curve

pStdBetaS 0.59 0.64 0.59 loop internal and external

pStdBetaM 0.67 0.64 0.62 serif support, sweep

pStdBetaL 0.85 0.64 0.75 very bent curve

pStdBetaXL 0.95 0.64 0.92 extremely bent curve

pStdLoopEta 0.13 0 0 oblique stress of a loop

pmVerStemW 86 84 100 vertical stem width

pmHorStemW 34 68 25 horizontal stem width

pmNarrowVerStemW 20 42 18 narrow vert. stem width

pmNarrowHorStemW 31 68 20 narrow hori. stem width

pmVerCurveW 93 87 120 vertical curve width

pmHorCurveW 33 77 20 horizontal curve width

pmDiagStemW 79 79 120 diagonal stem width

pmNarrowDiagStemW 37 79 25 narrow diag. stem width

pmRoundLetterW 440 474 420 standard round letter width

pmStemStemW 266 332 270 stem-to-stem width: h,m,n,u

pmStemCurveW 312 382 312 stem-to-curve width: b,d,p,q

pmVerSerifW 76 n/a 68 vertical serif width

pmVerSerifD 76 n/a n/a vertical serif depth

pmDiagOuterSerifW 49 n/a 46 diag. outer serif width

pmDiagOuterSerifD 49 n/a n/a diag. outer serif depth

pmDiagInnerSerifW 64 n/a 56 diag. inner serif width

pmDiagInnerSerifD 64 n/a n/a diag. inner serif depth

pmVerSerifH 15 n/a 20 vertical serif height

pmHorSerifW 105 n/a 145 horizontal serif width

pmHorSerifD 90 n/a n/a horizontal serif depth

72 Chapter 3: Font parametrization

cter is
a group
 for

imilar
g char-
em and
 com-
letters,

ludes
metric
rsion,

er is
must
For the local parameters, the average number of local parameters per chara
around 15. Some local parameters can be grouped. In our experiments, we made
for parameters controlling the arches of letters “h”, “m”, “n” and “u”, and a group
parameters controlling the round part of letters “b”, “d”, “p” and “q”.

Capital letters and symbols are synthesized by components according to s
principles as lower-case characters. Fig. 3.24 shows the components and resultin
acters for a few representative upper-case Times Roman characters. Generally, st
bar widths of capital letters are slightly larger than those of lower-case letters. For a
plete description of the component-based design of each capital and lower-case
readers are referred to Appendix D.

Figure 3.24: Components and parameters for capital letters.

3.4 Technical issues regarding the font synthesizer

The parametrizable font synthesizer contains a component library which inc
functions to synthesize component instances, functions to do necessary geo
operations (cut/clip and intersection) and functions to do rasterization (scan conve
grid-fitting and optical spacing). The concrete structure of the font synthesiz
implementation oriented. But no matter how we implement a font synthesizer, it
take the following technical issues into consideration:

pmHorSerifH 20 n/a 20 horizontal serif height

pmTopSerifAngle 13 n/a 0 degree of slant slab angle

pmDotR 52 52 57 dot radius

pmOptCor 12 11 10 optical correction

pcXXXXXX similar to pmXXXXXX,

specific for capital letters

pdXXXXXX similar to pmXXXXXX,

for digits and symbols

Name Times Helvetica Bodoni Description

diagonal
bar width

vertical
stem width

vertical
serif width

horizontal
serif width

vertical
curve width

narrow diagonal
stem width

3.4 Technical issues regarding the font synthesizer 73

ter is
s in

be
ay be
ses

ine
ethod
the

tion

ing a
onent
ly,

tant
ring,
font
tored

etric
 very
s for
sized
n be

gy of
 font
 font

ation

ith a

ule
1. Grid-fitting for rasterization purpose: The actual physical size of a charac
the result of scaling of parameters in respect to the device resolution. A
traditional outline font technology, intelligent grid-fitting (or hinting) should
applied when the size of characters is small, because rounding effects m
detrimental to character quality. Traditional outline technology usually u
considerable additional information called hints to improve fitting of outl
characters to the target grid. Our parametrizable character synthesis m
already includes the necessary information for grid-fitting, therefore
overhead (time and storage) for grid-fitting with our font parametriza
system should not be noticeable.

2. Flexible scan conversion: Scan conversion is the process of convert
geometric outline into pixels for raster devices. It can be based on comp
outlines provided that the filling rule1 enables shape overlapping. Alternate
one can merge component outlines to a traditional outline font.

3. Automatic metric table calculation: The metric table contains impor
information for optical spacing of character pairs such as left-side bea
right-side bearing, character width and character pair kerning. In a
parametrization system, none of these typesetting information should be s
permanently. Instead, they will automatically be calculated on-the-fly.

4. Specific geometric operation algorithms: Since general purpose geom
operation algorithms, for example intersection of two arbitrary shapes, are
complex and hence not efficient, we intend to design specific algorithm
shape merging and trimming. Fortunately, the shape of a synthe
component is more or less known and therefore simplified algorithms ca
applied, reducing their complexity and accelerating their speed.

5. Font organization: This is an almost stand-alone topic beyond the technolo
font parametrization. But, some issues still need to be considered by the
synthesizer, such as composing hybrid characters and providing some
information necessary for font management including font name, font cre
and modification date, copyright, etc.

In chapter 4, we will present some important algorithms and solutions along w
detailed description of our experimental font parametrization system.

1. Readers are referred to the PostScript language for an explanation of filling rules. The “non-zero winding” r
ensures that pixels in the overlapped area are activated.

74 Chapter 3: Font parametrization

 font
parts:

ters by
itives -
ts. We
esign

izable
 global
ontrol
n of
f local

mple
out the
3.5 Summary

This chapter presented concepts and methods of our component-based
parametrization system. The framework of the system consists of two main
parametrizable character synthesis methods and parameter files.

The parametrizable character synthesis methods enable synthesizing charac
parametrizable components. Characters are built by using predefined shape prim
components, and by specifying the relationships (dependency) between componen
introduced variations of terminals and junctions in order to cover a large character d
space.

The parameter files provide instances of parameters for the parametr
character synthesis methods. Parameters have been organized hierarchically:
parameters control uniform features over the whole font and local parameters c
only features of individual characters. To achieve coherent feature modificatio
similar typographical parts across several characters, we introduced the concept o
parameter grouping.

To explain in detail the parametrizable character synthesis system, a full exa
for one character and its parameters have been given in this chapter. Statistics ab
number of required parameters are provided in section 4.6.

4.1 Classes 75

le

 in our
chy of
er (see
of the
ctions

tion,
caling

ing of
hensive
first
esign a
hical

ethod
 text is
ter files

elves
rch. We
ation

cter’s
t which
rizable
ethod

 helps
CHAPTER 4

Implementation of the parametrizab
font synthesizing system

In the previous chapter, we have presented the algorithms and techniques used
parametrizable character synthesis system and the specification of the hierar
global, group and local parameters. In this chapter, focusing on the font synthesiz
the system framework in Fig. 3.1), we describe our experimental implementation
parametrizable font synthesizing system. The font synthesizer contains a set of fun
which deal with component synthesizing (building), parameter file interpreta
specific geometric operations such as shape trimming and merging, intelligent s
(hinting), and automatic optical spacing.

We started our study on basic font parametrization problems, such as modell
curves and shape primitives for character parts. We used Mathematica, a compre
tool suitable for building mathematics and computation models. After the
experimenting and prototyping phase, we decided to integrate the results and to d
prototype system. This prototype system allows to carry out more typograp
experiments and to evaluate the results.

The font synthesizer and the individual parametrizable character synthesis m
are written in C++. The parameter files, however, are written as readable text. This
parsed and interpreted by the synthesizer. The readable and editable parame
facilitate the creation of derived fonts by appropriately modifying the parameters.

The problems of hinting and automatic optical spacing [Hersch95] are thems
two stand-alone research topics. They are outside the scope of the present resea
have however tried to adapt results from previous work into our font parametriz
system. We also have slightly improved the technique used for automatic spacing.

4.1 Classes

There are some similarities in the data and in the behaviour of each chara
parametrizable character synthesis method. This suggests designing a base objec
contains all the common data elements and functions used by each paramet
character synthesis method. Each parametrizable character synthesis m
corresponds to an individual derived object of this base class. This model also
implementing the parameter hierarchy (Fig. 4.1).

76 Chapter 4: Implementation of the parametrizable font synthesizing system

racter
eters.
s are

meters
n or
ly for
Figure 4.1: The base and derived class model reflect the similarity of parametrizable
character synthesis methods and the hierarchy of parameters.

4.1.1 The base class

The TCharacter class is the base class for each character’s parametrizable cha
synthesis method. Data members of this class consist of all global param
Component synthesizing functions and specific purpose geometric operation
member functions of this class. Some member functions such as the BuildChar() are
virtual. They intend to be overridden in derived classes.

We first define the data type for parameters, which is a real number or a flag.

typedef float TParameter;
typedef short TFlag;

The first part of the base class contains all global parameters. Names of para
begin with a letter indicating whether the parameter is a flag (for example junctio
terminal types) or a real number. A parameter may have three values respective
capital characters, lower-case characters and digits (including symbols).

class TCharacter {
// Data members...

public:
/* The first letter of a global name has */
/* a special meaning: */
/* i - an integer, often used for earmark types */
/* p - parameter, whose type is defined above */
/* serif styles */
static TFlag iSerifStyle;
static TFlag iSerifSupportType;
static TFlag iSerifEndType;
static TFlag iSerifFaceType;
...

TChar62:

-local params...
-BuildChar()...

derived for ‘b’

TChar61:

-local params...
-BuildChar()...

derived for ‘a’

Base class TCharacter:
-global parameters...
-virtual functions BuildChar ()...
-library of components and operations

TChar7A:

-local params...
-BuildChar()...

derived for ‘z’...

4.1 Classes 77

sizing
esults.

 in

n also
nction
/* global parameter names: ****************************/
/* a name is like: p(c/m/d)Xxxx...xxx(W/H/D/A) ******/
/* where, c - capital, m - minuscule, d - digit *****/
/**/
/* reference lines -----------------------------------*/
static TParameter pBaseLine;
static TParameter pXheight;
...
/* beta --*/
static TParameter pBestBeta;
...
static TParameter pLoopExternalBeta;
static TParameter pLoopInternalBeta;
...
/* stem --*/
static TParameter pcVerStemW, pmVerStemW, pdVerStemW;
static TParameter pcHorStemW, pmHorStemW, pdHorStemW;
...
/* character width -----------------------------------*/
static TParameter pcRoundLetterW, pmRoundLetterW, pdRo...;
static TParameter pcStemStemW, pmStemStemW, pdStemStemW;
static TParameter pcStemCurveW, pmStemCurveW, pdStemCurveW;
/*serif --*/
static TParameter pcVerSerifW, pmVerSerifW, pdVerSerifW;
static TParameter pcVerSerifD, pmVerSerifD, pdVerSerifD;
static TParameter pcVerSerifH, pmVerSerifH, pdVerSerifH;
...
/* others --*/
static TParameter pcOptCor, pmOptCor, pdOptCor;
...
/* spacing ---*/
static TParameter pCapitalSpacing;
static TParameter pSmallSpacing;
...
/* end of global parameters ***************************/

The second part of the base class mainly contains functions for synthe
components and functions for inputting parameters and handling synthesized r
Components are stored in a list written as s[] . The data member theGlyph holds the result
of BuildChar (), and theMergedGlyph holds the result after merging all components
theGlyph. Both of these results (contours) are stored in global memory.

protected:
TComponent s[kMaxNbOfComponents];
TGlyph theGlyph;
TGlyph theMergedGlyph;

The constructor of the class is supposed to initialize the parameters. One ca
update the parameters or write parameters to a file by calling the corresponding fu
to load or write a parameter file.

// Member functions
public:

TCharacter ();
virtual ~TCharacter ();

public:
static void LoadGlobalParameters (FILE *fp);
static void LoadGroupParameters (FILE *fp);
virtual void LoadLocalParameters (FILE *fp);
static void WriteGlobalParameters (FILE *fp);
static void WriteGroupParameters (FILE *fp);

78 Chapter 4: Implementation of the parametrizable font synthesizing system

nction
ion

ass.

ts for
ction
r

ss. They

s
 all
virtual void WriteLocalParameters (FILE *fp);

The parametrizable character synthesis method is represented by a fu
BuildChar (), which will be overridden for each individual characters. The funct
UnBuildChar () frees memory when the object is destroyed.

virtual void BuildChar ();
virtual void UnBuildChar ();

A function for synthesizing a component is named as makeXxxx (), which creates
an TComponent object (see section 4.1.3).

protected:
TComponent nullComponent ();
TComponent makeStem (TRealPoint p0, TRealPoint p1,

float w, int end0, int end1);
TComponent makeSerif (float sw1, float sh1, float sd1,

float sw2, float sh2, float sd2,
TLine l1, TLine l2, TLine l3, int dir);

TComponent makeTopSerif (float sw, float sh, float sd,
float theta, float overshoot,
TLine l1, TLine l2, TLine l3, int dir);

TComponent makeSweep (TRealPoint Pd, TRealPoint Qd,
TRealPoint Pa, TRealPoint Qa,
TRealPoint B1, TRealPoint B2);

TComponent makeLoop (TRealPoint center1,
float a1, float b1, float eta1, RealPoint center2,
float a2, float b2, float eta2);

TComponent makeHalfLoop (TRealPoint center1,
float a1, float b1, float eta1, TealPoint center2,
float a2, float b2, float eta2, int dir);

TComponent makeDot (TRealPoint center,
float a, float b, float theta);

Operations specific for components are also member functions of the base cl

TContour cut (TContour theContour, TLine theLine);
TContour unite (TContour cont1, TContour cont2);
TContour smooth (TContour cont1, TContour cont2,

float r1, float r2, float tang1, float tang2);

There are some functions for handling outputs, such as preparing drawing lis
displaying the components and character glyphs. Among them, the fun
MergeGlyphShapes () merges components in theGlyph into a non-overlapping characte
outline and stores it in theMergeGlyphShape.

void MergeGlyphShapes ();
...

}; // end of the base class TCharacter

4.1.2 The derived classes

Each parametrizable character synthesis method is a derived class of the base cla
are named according to their ASCII code with a prefix “TChar”. For example the class
for character “a” is named as “TChar61”, the class for character “z” is named a
“TChar7A”, etc. Generally the TCharXX class has two parts. The first part declares
the parameters used by this character specification.

4.1 Classes 79

y

 this
onent
g

cy graph
t

oring

ome
et

ns a
sized
class TCharXX : public TCharacter {
// Data members
private:

TParameter ppp1;
TParameter ppp2;
...

The second part contains the overriding function BuildChar () which defines the
method to build this character. The constructor TCharXX () acts as the parameter entr
which loads parameters to the parameter place holders.

// Member functions
public:

TChar61 ();
~TChar61 ();

protected:
void BuildChar ();
...

}; // end of TCharXX

The BuildChar () function is the parametrizable character synthesis method. In
function, components are synthesized by calling the corresponding comp
synthesizing functions (makeStem, makeSerif, etc.). Components are trimmed by callin
the proper function and assembled in the same order as the component dependen
(section 3.2.1.2). The result is stored in theGlyph. It comprises all trimmed componen
outlines.

4.1.3 Other classes

This prototype system also defines some other useful classes, such as TGlyph,
TComponent, TPool and TFont.

The TGlyph class defines and manages a dynamic data structure for st
character glyphs. It starts from the definition of a point, the class TRealPoint. A segment,
class TSegment, consists of a departure point, an arrival point and, if it is a curve, s
control points. A contour, class TContour, is a segment ring. And finally, a glyph is a s
of contours.

The TComponent class defines the data structure for components. It contai
“union” of different component types. Both the input parameters and the synthe
results including the auxiliary points are stored in this class.

typedef struct stem_struct { // -- stem and bar
// args
TRealPoint p0;
TRealPoint p1;
float w;
int end0;
int end1;
// outputs
TRealPoint A, B, C, D; // support points

} TStem;
typedef struct serif_struct { // -- foot serif

...

80 Chapter 4: Implementation of the parametrizable font synthesizing system

 are
of a

nts.
ees a
 OS

oding

ntains

this
} TSerif;
typedef struct topserif_struct { // -- top-serif

...
} TTopSerif;
typedef struct sweep_struct { // -- sweep

...
} TSweep;
typedef struct loop_struct { // -- full loop

...
} TLoop;
typedef struct halfloop_struct { // -- half-loop

...
} THalfLoop;
typedef struct dot_struct { // -- dot

...
} TDot;
typedef struct path_struct { // -- others

...
} TPath;

typedef struct component_struct {
int ComponentType;
union {

TStem Stem;
TSerif Serif;
TTopSerif TopSerif;
TSweep Sweep;
TLoop Loop;
THalfLoop HalfLoop;
TDot Dot;
TPath Path;

}; // an anonymous union, so you can access
// its member shortly like s0.Sweep

TContour theContour;
TContour theAuxContour;
...

} TComponent;

The glyph is a dynamic data structure and memory allocating and freeing
frequent. Since the basic unit of memory allocated for a glyph is the memory
segment, we defined the class TPool to take up the memory management for segme
The class TPool manages a pool of memory units for segments and allocates or fr
segment in its own segment pool. This solution is more efficient than calling the
memory management.

The TFont class manages all characters of a font. It contains a character enc
table (element theTable) which indexes each character’s entry by its ASCII code. The
entry of a character contains the name of the character and the TCharXX object of the
character. This enables looking up a character by its name. The class also co
documentary information for font management. The member function GetAChar () is the
first application interface through which an application obtains the object for
character.

typedef struct char_entry {
char name [kMaxCharNameLength];
TCharacter *theChar;

} TCharEntry;

class TFont {

4.2 The implementation of the parameter hierarchy 81

s three
le, the
tion,
meter

efined

. The

 parser.
r each
ake it
 from

to be
 enable
nition

oks
name.
 in a
ed as a
 lines
n this
// data members:
public:

char sFontname [kMaxStringLength];
char sFontfamily [kMaxStringLength];
char sCreator [kMaxStringLength];
char sVersion [kMaxStringLength];
char sDescription [kMaxStringLength];
char sCopyright [kMaxStringLength];
char sEncodingStandard [kMaxStringLength];
...
TCharEntry theTable [kMaxNumberOfCharacters];
// member functions

public:
TFlexFont ();
~TFlexFont ();
TCharacter *GetAChar (int charcode);
...

}; // end of TFont

4.2 The implementation of the parameter hierarchy

4.2.1 Parameter files

Parameters are stored in files in a readable text format. Each concrete font need
kinds of parameters and, accordingly, three parameter files: the global parameter fi
group parameter file and the local parameter file. In order to simplify their manipula
such as preparation, comparison and modification, and to maintain portability, para
files are text files instead of binary ones. Parameter files have a pred
understandable format and the parameter loading functions of the TCharacter class
interpret this format. C or C++ style comments are allowed in the parameter file
basic format is a parameter assignment which looks like

parameter_name = parameter_value;

Global parameters have standard names which can be recognized by the file
Local parameters have no standard name, but the set of local parameters fo
character is fixed. We could give each local parameter a fixed name and m
recognizable by the parameter file parser. However, parameter groups may vary
typeface to typeface, meaning that the grouping of local parameters ought
dynamic.Therefore, the basic parameter assignment format has been extended to
parameter group definition in the parameter files. This is realized by a macro defi
and a reference mechanism.

A macro name is a string starting with the letter “$”. A macro definition lo
similar to a parameter assignment except the left side of the sign “=” is a macro
When the file parser scans in a macro definition, it installs a “name-value” pair
macro definition table which is part of the parser. Then, this macro name can be us
parameter value in a later parameter assignment. For example, the following two
first associate a macro name called “$APercentage” with a value 0.9, then assig
macro name as a parameter value to the parameter named “proportion1” .

82 Chapter 4: Implementation of the parametrizable font synthesizing system

nment
ter
acro
 this
t-fixed

f the
ng the
$APercentage = 0.9; // define a macro
proportion1 = $APercentage; // refer to the macro

Sometimes, a simple expression as the right side value of the parameter assig
will provide much flexibility for parameter grouping. For example, if a parame
“proportion2” is supposed to be the difference between 1.0 and the m
“$APercentage”, we may want to assign expression “1.0 - $APercentage” to
parameter. In order to use simple expressions, we introduce PostScript-like pos
expressions using a limited set of operators: add for add, sub for subtract, mul for
multiply, div for divide, neg for negative, and iplt for interpolate (Tab. 4.1). To provide
for more flexible parameter assignations, we also introduce the if/ifelse branch operators
and some boolean operators (Tab. 4.2).

Table 4.1: Algebra operators for writing parameter files.

Table 4.2: Branch and boolean operators.

The reason to use post-fixed expressions is to simplify the implementation o
grammar parser, despite the fact that the expressions may not look natural. Usi
subtraction operator, we can write the above example as follows.

a. Boolean values “true” is represented as “1”, “false” is
represented as “0”. They are often generated and pushed
into the stack by the boolean operations.

Usage of Operator Meaning in C/C++

a b add a + b

a b sub a - b

a b mul a * b

a b div a / b

a neg - a

a b f iplt a * (1 - f) + b * f

Usage of Operator Meaning in C/C++

a b eq a == b

a b ne a != b

a b ge a >= b

a b gt a > b

a b le a <= b

a b lt a < b

a b and a && b

a b or a || b

a not ! a

(0|1)a a if if (1) a

(0|1) a b ifelse if (1) a else b

4.2 The implementation of the parameter hierarchy 83

roup
herent

21).
 those

er files
group
oup
os are

eter
is of

G, we
acro

d the
ed

holds
stalled)
 search
same

rand it
ed in
or, from

hed on
ed)
out the
proportion2 = 1.0 $APercentage sub; // 1 - &APercentage

Now, let us present the method to link several local parameters into a g
parameter. For example, we want to define a group parameter to achieve the co
modification of the arch depth of characters “h”, “m”, “n” and “u” (see also Fig. 3.
We can define a macro name “$ArchDepth” and then refer to that macro name in
characters.

Since the macro name must be defined before it is referred to, the paramet
should be loaded in a fixed order: first the global parameters file, then the
parameter definition file and finally the local parameter file. Modifying the gr
parameter file requires reloading both the group parameter file where the macr
defined and the local parameter file where the macros are referred to.

The flexible format of parameter files also provides a way to specify param
varying rules in order to make typeface variation. Experiments on the synthes
derived font by modifying parameters are presented in section 5.2.1. In Appendix
give the complete global, group and local parameter files for Times Roman with a m
defined for applying boldness variation.

4.2.2 Implementation

The macro definition and reference mechanism is realized by a table calle
MacroTable, which is functionally similar to the PostScript dictionary. The post-fix
expressions are implemented by a stack called the OperandStack, which is a simplified
version of the operand stack in a PostScript interpreter.

The macro definition and reference mechanism is realized by a table which
name-value pairs. To define a macro, the macro name and values are stored (in
into the table. To reference (or use) a macro, the macro name is used as a key to
the table until it finds the most recently installed name-value pair which has the
macro name. The value is returned to replace the macro’s name.

To process a post-fix expression, the parameter file parser pushes each ope
meets into the OperandStack until it comes across an operator name. These are defin
Tab. 4.1 and Tab. 4.2. Then the parser pops the operands required by the operat
the OperandStack. The binary operators add, sub, mul and div require two operands, the
unary operator neg requires one operand, and the interpolation operator iplt requires
three operands. The boolean operand for the branch operators if and ifelse is treated
according to this rule: value 0 means false, value 1 means true. After executing the
function of the operator, the result is an operand ready for the next operation, pus
top of the OperandStack. The end-of-line character (any comments will be skipp
indicates the end of the expression and the parameter file parser knows to pop
latest operand as the result value of the expression. Then the OperandStack should be
empty again as it was before parsing the expression.

84 Chapter 4: Implementation of the parametrizable font synthesizing system

 make
rted to

ecause

aps, for
rocess
 “flag-

ours
pping

pport

, see
arded
es, an
ing the
4.3 Output forms of synthesized characters

Typographic characters are first synthesized as a set of trimmed components. To
use of them in an application, the synthesized characters can either be conve
displayable bitmaps, or to outlines in order to synthesize traditional outline fonts.

In both cases, the character is scaled just by scaling the global parameters, b
all local parameters are expressed as proportions of global parameters.

4.3.1 Component-based rasterization of synthesized characters

When synthesized component-based characters are converted to character bitm
example for printing and display purpose, they are rasterized. The rasterization p
converts geometrically represented character shapes into bitmaps. The high quality
fill” rasterization algorithm [Hersch88] can correctly convert non-overlapped cont
into bitmaps. However, the component-based character may comprise overla
component contours, which require the flag-fill algorithm to be extended to su
overlapped contours.

The basic flag-fill algorithm can be described by the following two steps:

Step 1: Scan-convert all segments of a contour into pixels and mark them as flags in an
empty device bitmap:

M[i][j], i = 0 .. n-1, j = 0 .. m-1,
which is an array with n rows and m columns of pixels.

Step 2: FOR i = 0 TO n-1 DO // for each ecan line
v := 0; // values of pixels: 0 for white, 1 for black.
FOR j = 0 TO m-1 DO

// 1. toggle pixel values
IF M[i][j] has been marked as a flag THEN

IF v == 0 THEN v := 1 ELSE v := 0 ENDIF ;
ENDIF ;
// 2. set pixel values
M[i][j] := v;

ENDFOR
ENDFOR

If we represent the flagged pixels on a scan line as p1, p2, ..., pk, black pixels are
located between successive pairs of flags: p1p2, p3p4, ..., pk-1pk. This filling result can be
best described as the “even-odd” filling rule in PostScript terminology (Fig. 4.2a
also [Adobe85, pp.70-71]). If two contours overlap, the overlapped area will be reg
as the outside of the filling area. To fill the component based character shap
overlapped area need to be treated as the inside of a filled area. This requires us
filling rule known as the “non-zero winding” rule (Fig. 4.2b).

4.3 Output forms of synthesized characters 85

is
en a
aves a
t an

left to
ember

ibutes,

 flags

 a
d flag

ith the
 bits
 the
 of a
. The
Figure 4.2: Two filling rules and their effects on the overlapped character contours.

To apply the “non-zero winding” filling rule, the basic flag-fill algorithm
modified. The non-zero winding filling rule requires oriented input contours. Wh
scan line intersects a contour, the algorithm can detect if the scan line enters or le
contour part. In this thesis, the positive contour orientation is counterclockwise. A
intersecting point, if the intersecting contour segment traverses the scan line from
right, the scan line enters the contour and vice-versa (see also Fig. 4.2b). To rem
the type of intersection between the scan line and the contour, intersection attr
which indicate in or out, should be associated to each flag.

The basic flag-fill algorithm needs also to be improved in the case that two
overlap in the bitmap. We store flags on each scan line by their x coordinates as well as
their intersection attributes (in or out) in a “sorted flag array”, instead of bit-setting in
bitmap. In this data structure, two overlapped flags will appear twice in the sorte
array. For character rasterization, a flag can be represented by a two-byte integer w
highest bit indicating the intersection attribute of this flag, and the remaining
representing the x coordinate. The maximum length of the flag array depends on
maximum number of possible intersections a scan line has with the contour
character. This number is not large, normally less than ten for Latin characters
modified flag-fill algorithm for the “non-zero winding” filling rule is described below.

Step 1: Scan-convert all segments of a contour into pixels; store the x coordinate of each
pixel associated with its intersection attribute (in or out) in a 2-D flag array:

S[i][j], i = 0 .. n-1, j = 0 .. m-1,
where i is the index of a scan line, n is the maximum number of scan lines, j is the
index of a flag in a scan line, and m is the maximum number of intersections in one
scan line. Sort flags of each scan line (S[i]) in an incremental order. The number of
flags (an even number) in each scan line is also counted and stored in an auxiliary
array:

NbOfFlags[i], i = .. n -1.

Step 2: Find “black” spans on each scan line and paint them to the raster device. A span is
represented by two x coordinates, one for the first pixel, the other for the last pixel.
FOR i = 0 TO n-1 DO // for each scan line s[i]

counter := 0; // initialize to count the winding number
FOR j = 0 TO NbOfFlags[i]-1 DO // for each flag in the scan line

IF S[i][j].attribute == in THEN

p1 p2 p3 p4 scan line p1 p2 p3 p4 scan line
+1 +1 -1 -1

(a) even-odd rule (b) non-zero winding rule

86 Chapter 4: Implementation of the parametrizable font synthesizing system

 outline
d shape
rge all
erged
ped.

n be
 spe-
 only a
ality

tions
e final
ion of
 two
each

everal
r, and
ollows

hich

sitive
counter := counter+1;
IF counter == 1 THEN

first := S[i][j].x;
ENDIF ;

ELSE // the attribute is out
counter := counter-1;
IF counter == 0 THEN

last := S[i][j].x;
paint_span (first, last, i); // in scan line i

ENDIF ;
ENDIF;

ENDFOR;
ENDFOR.

These filling functions are enclosed in a class named TFlagFill, which uses a table
data structure to store flags and attributes of each scan line.

4.3.2 Outline generation of synthesized characters

When a synthesized character is to be used as an outline, for example to draw the
of the character or to convert the synthesized characters from a component-base
description into a traditional outline-based shape description, our system can me
individual component contours of the character into a character outline. The m
character outline may contain several contours but none of the contours is overlap

General purpose union or intersection algorithms for geometric shapes ca
applied to merge components, for example [Vatti92]. We have developed our own
cific shape merging package, which has been used in our font synthesizer. We give
short overview of its working principles, since the detailed description of its function
is outside the scope of the present thesis.

Assuming contours have an orientation, our algorithm first detects all intersec
between two contours. Then a tracing process is applied to find the boundary of th
merged shape. The principle of the tracing algorithm is simple. Suppose the direct
a positive contour is counterclockwise, the tracing algorithm for finding the union of
contours will always choose the right-most branch candidate to follow at
intersection between the two contours.

Since a character may incorporate one or several external and one or s
internal contours, we call the counterclockwise external contour a positive contou
the clockwise internal contour a negative contour. Then a shape is defined as f
(also illustrated in Fig. 4.3).

Definition 4.1: A shape is a set of disconnected positive and negative contours, w
satisfy the following conditions:
1) A negative contour represents a hole and must reside inside a po
contour.

4.3 Output forms of synthesized characters 87

 the

erging
erging
erging

merging
 to cre-
raphic
2) A shape may contain one or more positive contours if none of
positive contours is immediately inside another positive contour.

Figure 4.3: Definition of shapes: good shape vs. bad shapes.

Shapes satisfying these conditions can be correctly merged with our shape m
algorithm, and the result is also a shape respecting these conditions. The shape m
process can be repeated to merge more than two shapes. In the case of m
components of a character, each component is merged successively. This shape
algorithm not only merges character components (Fig. 4.4a), but can also be used
ate combined characters or glyphs (Fig. 4.4b) and to create outlines of complex g
shapes (Fig. 4.4c).

(a) Merging characters components (left) into outlines (right).

(b) Combining two characters (left) into a new glyph (right).

+

+ +
+ +_

__

(a) a legal shape. (b) not a shape:
the negative contour is
outside the positive one.

(c) not a shape:
one positive contour is
immediately inside
another positive one.

88 Chapter 4: Implementation of the parametrizable font synthesizing system

wever
ideal
n vision
ers by
use
atic
s, we

possi-
raster-
value
m per-
 the per-

vision
el in a
ceived
r parts

h as the
pace

ceived
(c) Creating the outline of a complex graphic shape.

Figure 4.4: Merging components (graphical shapes).

4.4 Automatic optical spacing

To layout text, spacing information such as character pair kerning is needed. Ho
this kind of fixed information is not suitable for parametrizable font generation. The
space between a character pair depends on the space perception of the huma
system. Traditionally, typographers tune spaces between many pairs of charact
hand and save them in a kerning table [Karow94, pp.173-192]. This is costly, becan
characters may have n2 possible pairs. For parametrizable fonts, we need an autom
method for building kerning tables. In case of change of weight, contrast or stres
have to generate spacing values on-the-fly.

4.4.1 The principle of automatic optical spacing

Previous work [Hersch95] has shown that automatic spacing of character pairs is
ble and good results have been obtained for both bilevel and graylevel character
izations. The algorithm for automatically computing the best possible spacing
between two given characters is based on a model of how the human visual syste
ceives a space between two character shapes. This model enables us to compute
ceived space between two characters from the geometry of their outline shapes.

The model is based on the assumption that, when we read a text line, our
system recognizes successive characters by activating a spatial-frequency chann
band one octave wide, ranging from one cycle to two cycles per character. The per
intercharacter space is therefore filtered and the shape details of the two characte
are smoothed out. Because the filtering process tends to close open cavities, suc
one in character “c”, the following criteria are used to model the perceptual s
between two characters:

• The inner shape of a character does not have much influence on the per
intercharacter space.

4.4 Automatic optical spacing 89

acter

acter’s

ve

 the

since
, we
s

 shape
which

e

• Only the parts of cavities that can be seen from the exterior of the char
influence the visual intercharacter space.

• The cavity space and exterior contour parts that are close to the next char
contour have the largest effect on the perceived intercharacter space.

The perceptually equivalent space (PES) can be computed based on the abo
criteria and then compared with the ideal optical space (IOS). The kerning adjustment
space (KAS), which can be either positive or negative, is used to compensate
difference between PES and IOS. The kerning adjustment width (KAW) is the result of
dividing the KAS by the character’s height (CH).

KAS = IOS - PES (4.1)

KAW = KAS / CH (4.2)

In our font parametrization system, characters have no predefined width
predefined character width is not suitable for parametrizable fonts. Therefore
compute the kerning adjustment space by placing two character’s bounding boxe
against each other. Suppose the left side of “this” character is placed as xthis, then the
“next” character position xnext can be computed by adding the bounding box width of this
character BBWthis and the kerning adjustment width KAW to xthis.

xnext = xthis + BBWthis + KAW (4.3)

Figure 4.5: Computing optical spacing between two successive characters.

The challenge resides in computing the perceptually equivalent space between
characters. The work presented in [Hersch95] is based on a series of geometric
transformations for character outlines. In this thesis, we introduce another method
is based on the character images instead of the geometrical shapes.

4.4.2 The implementation

To compute the perceptually equivalent space, we need to extract the left wall and the
right wall from a character’s flag-filled bitmap. A left wall is a set of pixels which are th

xthis xnext

BBWthis KAW
baseline

xheight

bounding box

PES
KAS

PES

CH

90 Chapter 4: Implementation of the parametrizable font synthesizing system

st
el and
. 4.6

acter

pace.

)
 space
wn in

y

walls.
leftmost flags of each scan lines. A right wall is a set of pixels which are the rightmo
flags of each scan lines. In case there is no flag on a scan line, the right-most pix
the left-most pixel of the bounding box are used accordingly. The example in Fig
illustrates the extracted right wall of character “c” and the extracted left wall of char
“a” in order to compute the optical space between the character pair “ca”.

Figure 4.6: Walls extracted from characters.

The walls are then filtered to imitate the edge of the perceptually equivalent s
We apply a simple linear filtering process which fills out the concavities with ±45˚
straight lines. The space between the filtered right wall of this character (character “c” in
the example) and the filtered left wall of the next character (character “a” in the example
is the area which the human visual system is most likely to recognize as the white
separating the two characters. The filtered walls of the example in Fig. 4.6 are sho
Fig. 4.7.

Figure 4.7: Filtered walls and perceptually equivalent space (PES).

Suppose the filtered right wall of the this character is stored in an arra
FilteredRightWallthis [i], i = 0 .. n-1; and the filtered left wall of the next character is
stored in an array FilteredLeftWallnext [i], i = 0 .. n-1. The perceptually equivalent space
(PES) can be computed as the sum of the length of all scan lines between the two

bounding box

right wall
of "c"

left wall
of "a"

scan line

bounding box
scan line i

scan line n-1

scan line 0

filtered right wall
of this char

filtered left wall
of the next charPES

4.5 Automatic hinting and grid-fitting 91

based
rithm,
ts of

ished

quires
aracter
 auto-

d. For
m-stem
“curve-
a
. The
void
ter pair

acter
s may
d that

rgely
ficient
(4.4)

Let us analyze the time and space requirement of this image processing
implementation. Once the character has been rasterized by our flag-fill algo
extracting left and right walls consists in returning the minimum and maximum poin
each scan line. The running time is O(n) in respect to the number of scan lines n. The
linear filtering algorithm and the final computation of equation (4.4) can be both fin
in O(n) running time. Therefore, the total running time is O(n), assuming that the
characters have been rasterized. Additional memory to store the extracted walls re
n + n elements, far less than the memory requirement for the flag tables and the ch
bitmaps used at character rasterization time (flag-fill). Fig. 4.8 gives an example of
matically spaced characters computed by this image processing based algorithm.

Figure 4.8: Layout of synthesized characters by automatic optical spacing.

To make the result more pleasant, several tuning parameters are provide
example, the space between a character pair “nn” is regarded as the standard “ste
spacing”, and the space between character pair “oo” is regarded as the standard
curve spacing”. The parameter VisualDepthLimit is used to limit the maximum depth of
concavity so that certain character pairs such as “vo” can be properly spaced
parameter MinSpace gives the minimum space between character walls in order to a
overlapping of character parts, for example the space between the serifs of charac
“vw”.

4.5 Automatic hinting and grid-fitting

Even though automatic hinting and grid-fitting is a problem mainly related to char
rasterization, it is still interesting to see how component-based parametrizable font
be grid-fitted to generate high-quality rasterized characters at small size. We foun
our font parametrization technology facilitates the process of grid-fitting and la
removes the need for hinting, since information about components is generally suf
for grid-fitting.

PES FilteredLeftWallnext i[] FilteredRightWallthis i[]–()
i 0=

n 1–

∑=

92 Chapter 4: Implementation of the parametrizable font synthesizing system

f the
lity of
utline
d grid
 only
ts or
tions
tures
ypical
pe1
logy

or by
n the
n of
tching

 font-

ting
dels.
n.

an be
tation,
nent-
.

small
ature

he
 This
re, at
ercase
m is
control
4.5.1 The theory of grid-fitting and hinting

When an outline character is rasterized into a discrete bitmap, the quality o
character image can be damaged due to rounding effects. To improve the qua
character rasterization, a process called grid-fitting is applied to a character o
before it is scan-converted. Grid-fitting is based on the piecewised deformation an
adaptation of outline parts [Hersch93]. Since traditional character outlines contain
straight line and curve segments, additional information called hints, constrain
instructions is required by traditional outline font rasterizers. The hints or instruc
normally specify how a character outline is to be modified in order to preserve fea
like symmetry, thickness and uniform appearance on the rasterized text page. T
hinting information are the TrueType instructions [Microsoft95b], the Adobe Ty
hstem/vstem based hints [Adobe90], the URW intelligent font scaling techno
[Karow94, pp.105-149] and EPFL RastWare constraint specification [Betrisey89].

Hinting information can be added either by experienced digital typographers
automatic hinting tools. The quality of automatically generated hints depends o
tool’s intelligence to locate typographical parts from geometric outline descriptio
characters. The automatic hinting system described in [Hersch91] uses a model ma
method to find vertices which are to be hinted. This method requires predefined
independent character hinting models for each character or symbol.

With the parametrizable fonts, however, automatic generation of traditional hin
information can be realized without additional information such as predefined mo
Grid-fitting can also be executed on-the-fly without pregenerated hinting informatio

4.5.2 The implementation

4.5.2.1 Automatic generation of traditional hints

To use traditional outline font rasterizers, the synthesized parametrizable fonts c
converted into traditional outline fonts. In this case, besides the outline represen
hint information needs to be added to the converted outline font. With the compo
based character description, many important hints can be generated automatically

Typographic features which are intended to have uniform appearance at
bitmap size, for example main vertical stem width, are controlled by standard fe
measurement hints, such as the Control Value Table (CVT) in Microsoft TrueType and
the stem width snapping array in Adobe Type1. Due to rounding, slight differences of t
real stem width may result in a one pixel difference of the rasterized stem width.
difference can be easily noticed when the stem width is only a few pixels. Therefo
small bitmap size, single standard stem width values are used for lowercase, upp
and digits to avoid uneven rasterization of similar stems. Obviously, this proble
solved with our component-based characters, where the global font parameters
vertical and horizontal stem widths throughout the whole font.

4.5 Automatic hinting and grid-fitting 93

tour
ontour
pe 1,

ed by
they
nerate

aracter
inting
dency
 quality

tting
les for

ntical
 our
eters.
ghout
 the
onent
kept

ound
 the x-
hesis
phase
rs of

tems
stem
ring a
h have
of the

 is

ve
Hint information for individual characters specifies distances between con
points and grid-fitting requirements. With component-based characters, these c
points and their relationships are part of the component designs. As in Adobe Ty
grid-fitting requirements may be directly derived from component information.

Some hints concern very specific character features. They are usually add
experiments [Stamm98]. However, since printing resolutions are increasing,
become less and less important. Therefore, automatic hinting methods should ge
only regular and important hints.

4.5.2.2 Grid-fitting component-based characters without hints

When the synthesized characters are rasterized by our component based ch
rasterizer (section 4.3.1), grid-fitting can be executed without any pregenerated h
information. The component representation of typographical parts and the depen
between components already comprise the necessary information to ensure good
grid-fitting.

Our experimental grid-fitting of parametrizable characters uses basic grid-fi
rules which have been proved to be the most important ones. These grid-fitting ru
bilevel characters include:

• Consistent character features. It is a typographer’s experience that all ide
character parts should have an identical look. Character features in
parametrizable font, such as stem width and serif height, are global param
This means that character features are automatically kept consistent throu
the whole font. Grid-fitting requires for phase control the displacement of
contour of a stem. If the displacement is done based on a whole comp
instead of pieces of segments, the width of the stem is automatically
consistent.

• Phase control of reference lines. To generate horizontally symmetric r
letters such as “o”, we normally center the area between the base line and
height line on the grid. In our component-based parametrizable font synt
system, reference line positions are global parameters. Therefore, this
control of reference lines can be done by controlling the global paramete
the scaled reference line positions.

• Centering of vertical and horizontal stems. Experiences show that vertical s
and horizontal stems have the most impact on the human vision sy
especially when a character is rasterized at a small bitmap size. Cente
stem at the center of a grid not only ensures that stems with the same widt
the same rasterized stem width, but also helps to maintain the symmetry
stem’s serifs after rasterization. Main vertical stems in our component
dependency graph (section 3.2.1.2) are always at the second level which
directly controlled by the main component width of the character. To grid-fit a
stem, the main component width is slightly modified to ensure that successi
stems are centred on the grid.

94 Chapter 4: Implementation of the parametrizable font synthesizing system

s of
. The
ected
 parts
 part
ems
s has
 the
f-loop
rema.
, for

 flat
n of

p and

 bad
grid-
acter
ls
trol
t of
each

 have
d to
• Phase control of vertical and horizontal round parts. There are two kind
round parts in a character: the connecting sweep and the loop or half-loop
position and dimension of a connecting sweep usually depend on the conn
components. To adapt itself to the displacement of connected character
during the grid-fitting process, the contour or vertices of a connecting round
has to be specified as “elastic” according to traditional hinting syst
[Betrisey89]. However, our component synthesizer of sweep component
enough intelligence to adjust a connecting sweep in response to
displacement of the connected components. Regarding the loop and hal
components, phase control can be applied to have nicely rasterized ext
Keeping the phase of the extremum of a round part in a certain range
example between 1/16 to 9/16 [Hersch95], will prevent a “single pixel” or a
“long run” at the extrema. To control the phase of a round part, the positio
the extrema need to be known. Fortunately, our component design for loo
half-loop specifies the extrema explicitly.

• Dropout control. For a bilevel character bitmap, pixel dropout can be a very
defect caused by rasterization at very small size. However, no effective
fitting rule can prevent pixel dropout of a slanted or curved part of a char
by simply modifying its contour. Traditional outline font technology contro
dropout by the filling algorithm. For our component-based fonts, we con
pixel dropout at filling time for each component. Therefore, the pixel dropou
the whole character is controlled. Besides, since we know the types of
component, we can selectively control whether a component is allowed to
pixel dropout or not. For example, we may specify that a serif slab is allowe
have pixel dropout at a certain small bitmap size.

Figure 4.9: On-the-fly grid-fitting of our synthesized characters for grayscale display.
Character sizes measured by capital letter height are 8 pixels, 10 pixels and 12 pixels
respectively. There are 16 graylevels from black to white, printed without gamma correction.
As stated in [Hersch95], grayscale characters look best when viewed on a LCD display.

4.6 Evaluation 95

ly the
. Some
ceptual
verti-
as pos-
n the
se pre-
e base

rs and
imental
odoni
ns-serif
f local
a mean

lexity
tively,
ean of

lution
ponent
stems,
cture
 to
ition,
tc.) by

aracter
he mean
Grid-fitting rules for generating good quality grayscale characters are basical
same as the rules for bilevel characters except that dropout control is not needed
modification are however necessary to enhance the contrast and the overall per
weight [Hersch95]. Instead of centering vertical stems, we align the left edge of a
cal stem to the border of a pixel so that the left side of the stem appears as “black”
sible. Fig. 4.9 describes the results of our on-the-fly grid-fitting method applied o
synthesized characters for grayscale display. The grid-fitting methods used in the
liminary experiments include centering the band area between the x-height and th
lines and left aligning vertical stems to pixel boundary.

4.6 Evaluation

Component based font descriptions require global parameters, group paramete
local parameters. Tab. 4.3 shows how many parameters are needed for our exper
versions of parametrizable lower-case Times, Bodoni and Helvetica characters. B
requires less parameters, since all its serifs are slab serifs (zero serif depth). Sa
font Helvetica further reduces the number of required parameters. The number o
parameters varies from character to character and from typeface to typeface, thus
value is used for statistics.

A 26 lower-case character component-based parametrizable font of the comp
of Times requires approximately 540 parameters, i.e. 1080 bytes. Compara
TrueType requires approximately 1500 bytes for the global parameters and a m
154 bytes per character for storing the outlines of lower-case characters1. The grid-fitting
instructions needed by TrueType for character generation at medium and low reso
require an additional mean amount of 385 bytes per character. In contrast, com
based character descriptions already include all information about their structure (
bars, arches, serifs). From our experiment of on-the-fly grid-fitting, we can conje
that the additional grid-fitting information [Adobe90][Hersch91][Karow94] required
rasterize characters at medium and low resolution is negligibly small. In add
component-based fonts enable generating derived fonts (condensed, semi-bold, e

1. Composite characters such as accentuated characters are described by pointing to the basic ch
shape and to the accent description. Therefore, only basic characters are considered when giving t
storage cost of single character descriptions.

Table 4.3: Nb of parameters and size of font comprising lower-case characters “a” to “z”

Times Bodoni Helvetica

nb of global parameters 110 98 63

nb of group parameters 31 31 31

mean number of local parame-
ters per character

15.3 16.0 14.0

96 Chapter 4: Implementation of the parametrizable font synthesizing system

ns). A
ts. We
torage

size
xtend

rat-
itional

thm to
eration
 tradi-

esizer
the

lines of
rizable
 The
 602
cters’
piler
changing the values of a few global parameters (see chapter 5 for possible variatio
single component-based font may therefore replace several traditional outline fon
therefore expect component-based fonts to require an order of magnitude less s
space than traditional outline fonts.

With our current implementation of the font synthesizer, we either synthe
characters made of partly overlapping components, excluding components which e
out of the character by using the cut operation (section 3.2.3.1) or we can, after gene
ing the components, convert the component-based character descriptions into trad
outline-based characters by using our specifically designed shape merging algori
assemble components into character outlines. Tab. 4.4 shows the character gen
speed for producing component-based character descriptions and for producing
tional outline-based descriptions.

Our experimental component-based font synthesizer consists of the synth
kernel (ComponentEngine, ShapeMerging, Kerning, and FlagFill) and of
parametrizable character synthesis method (CharFiles). It comprises about 15000
C++ programs, among which 30% are comments. The mean size of one paramet
character synthesis method is about 220 lines of C++ without comments.
Metrowerks CodeWarrior IDE 1.7.4 compiler generates about 239KB of PowerPC
native code and 41KB of static data for both the kernel and the 26 chara
parametrizable character synthesis methods. The linked ANSI libraries of this com
are comparatively large, i.e. about 600KB including static data.

Table 4.5: Analysis of the programs of our component-based font synthesizer.

Table 4.4: Lower-case character outline generation speed on a Power Mac 7200/90

Times Bodoni Helvetica

synthesize component-based character
outlines

418 char/s 400 char/s 1350 char/s

synthesize components and merge
them into outline characters

70 char/s 71 char/s 160 char/s

CodeWarrior IDE
.cp and .h

PowerPC 602
native code Static data

ComponentEngine

8800 lines .cp and

1800 lines .h

78K 21K

ShapeMerging 51K 0.9K

Kerning 4K 0.4K

FlagFill 5K 0.4K

CharFiles 5700 lines .cp and .h 101K 18K

Linked Metrowerks’ ANSI C/C++ libraries 495K 110K

4.7 Summary 97

le font
ble for
ming
etrizable

er to
scan-
s been
ditional
.

r the
 that,
study.
racters
sed
4.7 Summary

This chapter presented our implementation of the component-based parametrizab
synthesizing system. Since our component-based font synthesis system is suita
object-oriented programming, the programs are written in the C++ program
language. The comprehensive base class makes adding a new design of a param
character synthesis method as easy as creating a new derived class.

A simple grammar for writing the parameter files has been developed in ord
carry out typographic experiments. To rasterize synthesized characters, a
conversion algorithm adapted for component-based character representation ha
presented. The component-based representation can also be converted into tra
outline-based representation using a specifically designed shape merging algorithm

Automatic optical spacing and automatic hinting are two challenging topics fo
traditional outline font technology, yet have not been solved perfectly. We found
with our component-base font parametrization method, they are both worth a new
The preliminary results are encouraging. The component-based description of cha
is well suited for doing grid-fitting on-the-fly, using our specific component-ba
character rasterizer.

98 Chapter 4: Implementation of the parametrizable font synthesizing system

5.1 A visual environment 99

d font
tions,
eing
rtially
phy

e a
based
ents.

and to
isual
ipheral

global

an be
lobal

 used
et bar,

able
 in an

o open
th just
CHAPTER 5

Experiments and applications

Besides the high storage compression rate (section 4.6), our component-base
parametrization method is also suitable for applying typographical typeface varia
which are often beyond the capabilities of the traditional outline font technology. B
able to carry out typeface variations has been an important goal (yet only pa
reached) of several previous research projects in digital typogra
[Knuth86a][Shamir98][Zalik95] [Schneider98]. In this chapter, we first introduc
visual font design and modification environment based on the component-
parametrizable font synthesizer. Then, we will present a few typographical experim

5.1 A visual environment

To test the prototype of our component-based parametrizable font synthesizer
demonstrate the flexibility and functionality of our font parametrization method, a v
environment for parameter editing and modification has been developed in the Per
Systems Laboratory of the EPFL. This environment, named FlexFont Editor, integrates
functions such as character visualization, parameter file saving and loading,
parameter visual modification, and specimen printing using a multiple document
interface (MDI)1 Windows application.

The term “visual” concerns two aspects. First, any parameter modification c
seen immediately in the character display window. Second, the modifications of g
parameters are done with slide bars and iconed buttons.

5.1.1 Character visualization

The overall appearance of the environment is shown in Fig. 5.1. Some frequently
tools are displayed in tool bars. There are four different tool bars: the character s
the file bar, the parameter bar and the preview bar.

The character set tool bar displays the character set in the opened parametriz
font. By clicking on a character in this tool bar, the selected character is displayed

1. A terminology of Microsoft Windows describing the application’s architecture. A multiple document interface
(MDI) differs from a single document interface (SDI) in that the multiple document interface enables a user t
multiple documents each with its own windows, while the single document interface allows a user to work wi
one document at a time.

100 Chapter 5: Experiments and applications

 filled

eter
iting
 the
in the
eter

ally
 on the
t at

 a
aphers
racter
cter
ither as
zoomed character observing window. Characters can be displayed as either
character images or outlined components.

Figure 5.1: Multiple character displaying windows

The current version of the FlexFont Editor does not support local param
modification. Therefore, we modify local parameter for individual characters by ed
their local parameters in the local parameter file with a text editor. After saving
modified parameter file, we reload the parameter file to update the characters
character observing window. The file tool bar provides a short-cut for param
updating.

The preview tool bar has a character displaying area which displays automatic
spaced character samples. The text is entered through a text editing box. Clicking
“waterfall” button opens a window for displaying and printing the sample tex
different sizes.

The “large character” printing tool in the file tool bar enables printing
component-based character at full-page size according to the size that typogr
generally use to design characters. Clicking on the printer icon brings out a cha
printing window which previews the printing result for the currently selected chara
(Fig. 5.2). Reference lines can be added as options. The character can be printed e
a filled image or as outline components.

5.1 A visual environment 101

nd
font
editor.
 tool

r
ptive
e user

s are
, the
odifies
y the
nd
n the
Figure 5.2: The “large character” printing window.

5.1.2 Global parameter modification

The parameter tool bar contains tools for applying global parameter modification a
typeface style variation. Tools for global parameter modification include:
information editor, reference lines editor, serif style selector, and global parameter
Tools for typeface style variation include: boldness variation tool, contrast variation
and character width variation tool.

The font information editor is a dialogue window which holds editing fields fo
each item of descriptive information in the opened parameter file. Descri
information, sometimes called “font header”, is not part of parameters, but helps th
to manage a parametrizable font.

Character height and the height proportion of different parts of character
controlled by reference lines, such as the base line, the x-height line, the caps line
ascender line and the descender line. Changing the position of reference lines m
the character height throughout the whole font. This process is visualized b
reference line editor window (Fig. 5.3). In this tool, one can click a reference line a
drag it to move its position higher or lower. The effect can be seen immediately o
preview characters, which are selected in the preview text editor field.

102 Chapter 5: Experiments and applications

erif
trating
e cor-
visual-

 serif

eld.
Figure 5.3: The reference line editor window.

The selection of serif styles, which are defined as global parameters for the s
component synthesizer (section 2.2.4.1), are visualized through a set of icons illus
the meaning of each serif style in a dialogue box (Fig. 5.4). By selecting an icon, th
responding serif style is applied to the preview characters and can be immediately
ized.

Figure 5.4: The serif style selection dialogue box.

Modification of other global parameters, such as stem widths, bar widths and
dimensions can be done within the global parameter editing window (Fig. 5.5). The
modification of each parameter is immediately visualized in the window’s preview fi

5.1 A visual environment 103

ertain
ined.
se the
th of
tool to
ness),
Figure 5.5: The general global parameter editing window.

Figure 5.6: The parameter editing window for font condensation.

In order to achieve typographically pleasant typeface style changes, c
relationships between individual global parameter modifications should be mainta
For example, to increase the weight (or boldness) of a typeface by 20%, we increa
width of all vertical stems and diagonal bars by 20%, but only increase the wid
horizontal stems by 15% instead of 20%. We have a special parameter editing
create parameter variation rules for typeface variation of character weight (bold

104 Chapter 5: Experiments and applications

ameter
 the

lobal
 with
be in
erent
ditable
e and

is not
eight

equire
s. Our
ucture
l font

caling
width (condensation), stress (obliqueness) and contrast. Fig. 5.6 shows the par
editing window for doing font condensation. An interface is available for varying
font’s weight, stress and contrast.

The amount of typeface style variation is visualized by a slide bar. The g
parameter which is to be modified in response to this variation can be selected
check boxes. However, the amount of modification of each parameter may not
proportion to the amount of the style variation, and may not be the same for diff
parameters. Therefore, parameter modifications are specified by a curve which is e
in the parameter rule editor window (Fig. 5.7). Each parameter has its own curv
therefore is edited in its own parameter rule editor window.

Figure 5.7: The parameter rule editing window.

5.2 Typographical experiments and applications

parametrizable fonts are developed because traditional outline font technology
suitable for deriving character or font variations, such as variations of character w
(boldness) and non-linear condensation of characters. These variations r
information not only in respect to character outlines but also to character structure
component based font parametrization method explicitly describes a character’s str
and the shape of each of its parts. It is therefore suitable for deriving typographica
variations. It is also suitable for special typographic applications, such as optical s
for high-quality printing.

5.2 Typographical experiments and applications 105

dness
d
stress,
ifying
amily.
 vary
s could

rtical
tal bar
 the
contrast
imes
cters’
l stem
 10%.
e serif
strated
5.2.1 Font variation

A set of fonts corresponding to one typeface but varying in styles such as bol
(weight) and character width is called a font family. Fonts in one family are distinguishe
by styles and by “high level” typographical features, such as boldness, contrast,
condensation and proportion. One may vary any of these features by mod
corresponding parameters. The parametrizable font will create a new font in the f
Starting with Times Roman, we have carried out several experiments trying to
boldness, condensation, stress, contrast and other features. Similar experiment
have been carried out starting from other typefaces.

5.2.1.1 Boldness

Character boldness, or weight variation is obtained by changing the width of ve
stems, vertical curves, slanted bars, horizontal bars, horizontal curves, etc. Horizon
width and vertical stem width will be modified to different extents in response to
increasing character boldness, because bolder characters tend to have higher
between vertical and horizontal strokes. For example, if we want to make T
characters 20% bolder (or 120% of the normal weight), we will increase the chara
vertical stem width by 20% (in this sense, we measure the boldness by vertica
width), and increase the horizontal bar width by an amount less than 20%, say,
When the boldness is increased by more than 30%, we also decrease a little th
width parameter, since bolder characters have less space for serifs. This rule is illu
in Fig. 5.8.

Figure 5.8: Parameter modification rules for varying the characters’ boldness.

150%120%90%

120%

80%

60%

150%
vertical stem width
vertical curved part width
diagonal bar width

horizontal bar width
horizontal curved part width

serif width

boldness

parameter change

106 Chapter 5: Experiments and applications

ed to
s the

arged

ample
r the
Using this rule, we derive from Times Roman new fonts with boldness chang
90%, 110%, 120%, 130% and 150% (Fig. 5.9). The 150% boldness font imitate
Times Bold font. One can compare the character quality by looking at the enl
characters in Fig. 5.10.

Figure 5.9: Fonts derived from Times Roman (displayed in the second line) by varying the
boldness factor.

Figure 5.10: Times Roman and the derived Times Bold. The last line shows the synthesized
Times Bold as trimmed components. See also Appendix D for the component descriptions of
Times Roman.

5.2.1.2 Condensation

High-quality horizontally condensed fonts are needed where space is scarce, for ex
in telephone books. Furthermore, condensed fonts may offer increased flexibility fo

90%

Times
Roman

110%

120%

130%

150%

Times Roman

Times Bold
boldness = 50%

Times Bold
components

5.2 Typographical experiments and applications 107

igh-
width
rs and
ound

tical
global

 up to
cters.
ence it
 by the
presentation of information at display resolution, for example in web browsers. H
quality horizontally condensed fonts are generated by reducing the character
without reducing in the same proportion the thickness of the strokes (stems, ba
curved parts). Since individual character width is controlled by a function of the r
letter width, reducing the size of the global parameter round letter width ensures the
width reduction of most of the characters of the font. Serif width of serifs for ver
stems and diagonal bars should also be reduced according to the amount of
character condensation (see Fig. 5.11 for our experimental rules).

Figure 5.11: Rules of parameter modification for horizontal condensation.

Fig. 5.12 shows text condensed to 95%, 90%, 85% and 80%. Condensation
90% is barely perceptible and enables the generation of high-quality chara
Condensation to 80% already considerably distorts the original character shapes, h
will be considered as a new typeface. Readers can compare the character quality
enlarged characters in Fig. 5.13.

Figure 5.12: Fonts derived from the normal Times typeface (displayed in the first line) by
varying the character width.

90%80%

90%

80%

vertical stem width

serif width

round letter width

condensation

parameter change

Times
Roman

95%

90%

85%

80%

108 Chapter 5: Experiments and applications

were
enson,
faces

became
 18th
ter
 some
tion
man.
Figure 5.13: Condensation up to 90% is barely perceptible; condensation to 80%
considerably distorts the original character shapes.

Figure 5.14: Fonts derived from Times Roman (displayed in the middle line) by varying the
amount of oblique stress.

5.2.1.3 Stress

Characters with oblique stress derive from pen-based manuscript writing and
created soon after the invention of moveable metal type (for example typeface J
created by a Frenchman Nicolar Jenson in 1470 in Venice, Italy). Design of type
evolved from oblique stress to vertical stress characters. Vertical stress characters
fashionable with the designs of the Bodoni and Didot typeface at the end of the
century. Increasing stress obliqueness requires increasing the obliqueness parameη of
the internal loops or half loops. Increasing stress obliqueness may also require
slight modification of the horizontal curved stroke width, and arch junction orienta
(for letter h, n, m and u). In figure 5.14 we try to vary the obliqueness of Times Ro

Times Roman

90% width

80% width

high stress

Times Roman

low stress

5.2 Typographical experiments and applications 109

eased

s and
nable
trast.
trokes

hs of
loops

ter
of
 the x-

nder
s vary
verall

rtical
ted in
The derived font with reduced oblique stress looks nicer than the one with incr
oblique stress.

5.2.1.4 Contrast

By contrast we mean the difference between horizontal strokes and vertical stroke
the transition from thick strokes to thin strokes. Old style typefaces have reaso
contrast while “modern” typefaces, such as Bodoni and Didot have very high con
The thin strokes and serifs can be as thin as hairlines, and the transition from thin s
to thick strokes is abrupt. Increasing the contrast requires reducing the widt
horizontal strokes including horizontal bars and curved parts. Curvature of inner
also need to be increased when the contrast is made higher.

Figure 5.15: Fonts derived from Times Roman (displayed in the middle line) by varying
horizontal to vertical contrast.

5.2.1.5 Height proportion

Character height proportion mainly concerns the proportion of the lower-case letx-
height to the upper-case letter cap-height. The proportion reflects the size relationship
upper-case and lower-case letters. The bodies of lower-case letters rest between
height line and the base-line. The part that reaches above the x-height line is called
ascender and the part that reaches below the base line is called descender. The ascender
line and the descender line control the height relationship of the ascender, the desce
and the character body of lower-case letters. The proportion of these height line
considerably and is a factor having an impact on text readability as well as on the o
darkness of a printed page.

Two variations of the Times Roman typeface are created by changing the ve
position of the x-height line. The ascender line and the descender line are adjus
proportion (Fig. 5.16).

high contrast

Times Roman

low contrast

110 Chapter 5: Experiments and applications

tyles.
d to

derived

d
 5.8)
Figure 5.16: Fonts derived from Times Roman (displayed in the middle line) by varying the
height proportion.

5.2.1.6 Variations in multiple dimensions

New fonts can also be derived by varying more than one dimension of typeface s
Inspired by the designs of Gerrit Nordzij, a dutch type designer [Nordzji91], we trie
vary the few parameters determining the shape of character “e” so as to generate
designs along three different dimensions.

Figure 5.17: Parameters determining the shape of character “e”.

The first dimension is the weight of the character (boldness). All horizontal an
vertical width parameters are equally (which is a bit different from the rules in Fig.
influenced by the boldness parameter. The second dimension is contrast. Increasing the

high x-height

Times Roman

low x-height

1. CH1 = iplt [iplt [normalCH1, maxCH1, boldness], minCH1, contrast]
2. CH2 = iplt [iplt [iplt [normalCH2, maxCH2, boldness], minCH2, contrast],
 iplt [normalCH2, maxCH2, boldness], obliqueStress * 0.6]
3. CV1 = iplt [minCV1, maxCV1, boldness]
4. CV2 = iplt [minCV2, maxCV2, boldness]
5. SH = iplt [iplt [normalSH, maxSH, boldness], minSH, contrast]
6. ST = iplt [iplt [minCV2, maxST, boldness], minST, contrast]
7. EBar = iplt [maxEBar, minEBar, boldness]
8. ETail = iplt [iplt [minETail, maxETail, boldness], minETail, contrast]
9. ηext = minη = 0; ηint = iplt [minη, maxη, obliqueStress]
10. βext = normalβ;
 βint = iplt [iplt [normalβ, maxβ, (contrast + boldness) / 2],
 normalβ, obliqueStress]

explanations:
1: Boldness increases CH1 value, contrast decreases CH1 value.
2: Boldness increases CH2 value, contrast decreases CH2 value,
	 stress obliqueness increases partly CH2 value.
3, 4: Boldness increases CV1 and CV2 values.
5, 6: Boldness increases contrast and decreases SH and ST values.
7: Boldness decreases EBar values.
8: Boldness increases contrast and decreases ETail value.
9: Stress obliqueness increases obliqueness η of interior loops.
10: Contrast and boldness increase obliqueness, reduces squareness β.

CH1

CH2

CV2

CV1

SH

ST

ETail

EBar

iplt (a, b, percentage) =
 a * (1 - percentage) + b * percentage.

Definition of interpolation:

5.2 Typographical experiments and applications 111

 third
 the
tal
r. The
 the

venly
ers are
).

ducing
ually
ilarly
ly one
hape
tein88,
94],

nal
r the
tical
yed at
oint,
racters

 also
nding
t when
end, i.e.

 for
87]. In
f the
t and 5
th,
the 5

 zero
n is
contrast requires reducing the horizontal bar and curve width parameters. The
dimension is stress obliqueness. Increasing stress obliqueness requires increasing
obliqueness parameter η of the internal half-loop and slightly increasing the horizon
curve width parameter determining the stroke width at the bottom of the characte
parameters of the character “e” and the interpolating algorithm for determining
intermediate values are given in Fig. 5.17.

In each dimension, weight, contrast and oblique stress, we consider 5 e
spaced values to generate 125 different styles for character “e”. These charact
placed in a cube representing the three typeface style dimensions (see Appendix F

5.2.2 Optical scaling

Previous generation phototypesetters produced high-quality characters by repro
them photographically from carefully made film masters. Only one master was us
used to create all of the sizes of a particular style [Rubinstein88, pp.40-41]. Sim
digital font technology used in digital laser photocomposing systems uses often on
or two master fonts for producing all sizes. However, in traditional metal type, the s
of letters in the same typeface varies systematically as the size changes [Rubins
pp.40]. Smaller letters must be bolder and fatter to retain their legibility [André
[Haralambous93], [Johnson87].

When a font is optically scaled, the shape of characters varies as in traditio
metal type design. The master design for a digital font is usually optimized fo
purpose of printing running text, whose size is around 12 or 10 point. In our op
scaling experiment, we assume that a parametrizable font is best printed or displa
12 point. To print or display characters of the font at a size smaller than 12 p
parameters of the font should be corrected so as to make the synthesized cha
relatively fatter and larger. Not only the characters’ stroke width is enlarged, but
their x-height and their character width are made slightly larger than correspo
values obtained by plain scaling. Some previous researchers also pointed out tha
scaled to a larger size, character stroke width should not be scaled to the same ext
the character stroke width should be thinner than the plain scaled result.

It has been shown that a parabolic correcting function might be suitable
determining each optically scaled character parameter [Haralambous93] [Johnson
our optical scaling model, optical scaling correction values given as fractions o
capital letter height are used for generating characters at sizes between 12 poin
point. Maximal correction values (maxCoor) for the various parameters (character wid
stem width, bar width, curved element width) are experimentally determined for
point character size. Between 5 point and 12 point, these correction values (corrValue)
are interpolated by the parabola giving the maximal correction at 5 point and a
correction value at 12 point (equation 5.1). The optical scaling correcting functio
shown in Fig. 5.18.

112 Chapter 5: Experiments and applications

 taken
n on a

width
capital
f 1/20
arrow
eight
ptical
ding
(5.1)

Figure 5.18: The parabolic correcting functions for optical scaling between 5pt and 12pt.

To determine the coefficients of maxCorr for different parameters, the printing
resolution and the properties of the printing media (papers and films) need to be
into account. The specimen in Fig. 5.19a has been generated by photo-compositio
3000dpi laser photocomposer. The maximal correction value for the round letter
and for the stem to stem and stem to curved element part spacing is 1/15 of the
letter height. The stem, bar and curved element width have a maximal correction o
capital letter height. The narrow diagonal bar, the narrow horizontal bar and the n
curved element width have a maximal correction value of 1/30 capital letter h
(Fig. 5.18). Fig. 5.19a shows a comparison of characters printed with and without o
scaling. Clearly, optical scaling improves legibility. Fig. 5.19b shows the correspon
optically scaled character shapes magnified to the same size.

Figure 5.19: Comparison between optical scaling and plain scaling.

corrValue ptSize() maxCorr

5pt 12pt–()2
-------------------------------- ptSize 12pt–()2 5pt ptSize 12pt≤ ≤;=

parameter correction

capHeight (pt)10 115 6 7 8 9

2%

4%

6%

8%

round letter width

stem/bar/curve width

narrow stem/bar width

optical
scaling

plain
scaling

5pt
8pt

12pt

5pt
8pt

12pt

5pt

8pt

12pt

(a) (b)

5.3 Summary 113

eface
 one
res,
ace.

or the
e were
ainly
ch as

types
 global
rifs are
odoni
o serif
f”). In
l stem
global,

tation.
refully
rs. To
tomatic
 win-
utline

e have
peface
 and x-
tline
shape

 The
hich is
utting
. The
5.2.3 Parametrization of existing fonts

By making traditional outline fonts parametrizable, we are able to apply to them typ
variations and optical scaling. Because many fonts can be derived from
parametrizable font by varying weight, width and other typographic featu
parametrization of existing outline fonts may also save large amounts of storage sp

Appendix E gives enlarged character examples of our parametrizable fonts f
Times Roman, Helvetica and Bodoni typefaces. The master fonts for each typefac
taken from several outline fonts created and digitized by different companies (m
from URW and Adobe Type 1) and also from published typeface category books su
[Berthold88], [Bauermeister87] and [Rockledge91].

To parametrize an existing font, the first step is to select serif styles, junction
and terminal refined types (see section 3.1.1 and section 3.1.2). Serif styles are
parameters and are specified in the global parameter files. In Times Roman, se
bracketed with smooth serif supports, flat serif faces and butt serif ends. The B
typeface has slab serifs which have thin-line serif slabs (flat faces, butt ends) but n
support. The Helvetica typeface is sans-serif (a French word meaning “without seri
Bodoni and Helvetica typefaces, most of the arches and bowls connect to a vertica
smoothly, and hence should be refined and specified as a smooth junction in the
group or local parameter files.

The second step is to measure parameters which give dimension or orien
Parameters of the produced experimental parametrizable fonts have been ca
measured, extracted and tuned by hand working on masters printed on pape
accelerate the speed of parameter extraction, we have also proposed an au
parameter extracting method based on a “window matching method” [Herz98]. The
dow matching method is used to help locating specific typographic features on o
characters in order to measure them.

5.3 Summary

parametrizable fonts can be used in many application areas. In this chapter w
presented several typographical experiments which were focused on coherent ty
variations such as variations of boldness, condensation, oblique stress, contrast
height proportion. All of these variations are beyond the capabilities of traditional ou
font technology, since these variations require besides the outline character
description additional information about the character structure.

Some of the experiments may have an important application potential.
boldness variation can be used to control the overall darkness of a printed page, w
useful in applications such as fine printing. Character condensation is useful for p
more letters in a limited space, for example for more flexible paragraph formatting

114 Chapter 5: Experiments and applications

metal
optical scaling experiment was able to produce designs similar to the traditional
type where character shapes are adjusted at different sizes.

 115

-based
1, we
shape
hapter
aracters
pter 4,
nted.

ies of

hape
e; they
 study
signed
ate for
raphic
scribe
 by the
urved
ponent

eated
 were
s such
eter file
 define
t style
across
lobal

izable
ied to
eate
ased
CHAPTER 6

Conclusion and future work

This dissertation presents the study and the development of a component
parametrizable character synthesis method. Following the introduction in chapter
describe in detail in chapter 2 our design of components, i.e. parametrizable
primitives used for synthesizing structure elements of typographic characters. In c
3, we discuss the parametrizable character synthesis system which describes ch
by predefined parametrizable components and shape trimming operations. In cha
our implementation of a C++ prototype for this font parametrization system is prese
In chapter 5, we carry out typographical experiments demonstrating the capabilit
our component based parametrizable font synthesizing system.

Let us summarize the main contributions and achievements of this thesis.

Our attempt to reproduce existing text typefaces by parametrizable s
primitives has been successful. Curved parts of characters are difficult to synthesiz
are of primary importance to obtain high-quality characters. Based on a systematic
of the curves suitable for parametrization of round parts of characters, we have de
the loop, half-loop and sweep components. These components were adequ
synthesizing the shapes of round parts and of curved connections in typog
characters. Terminals of strokes differ across different text typefaces. We de
terminals of straight strokes (such as vertical stems, horizontal and diagonal bars)
serif component which enables us to synthesize most serif types. Terminals of c
strokes are synthesized by the combination of the dot component, the sweep com
and automatically generated smoothing shapes.

Using our parametrizable font synthesizing system, we have successfully cr
high-quality derived fonts. Relationship between character structure elements
maintained. We ensure that no components fall apart when we vary font propertie
as boldness, condensation, contrast and oblique stress. The hierarchical param
organization and the PostScript-like parameter expressions provide the means to
parameter modifying rules for each parameter in order to achieve coherent fon
variations. We are also able to make coherent typographical feature modifications
a whole font or across a set of characters by modifying respectively the g
parameters or the group parameters.

Typographical experiments demonstrate the application potential of parametr
component-based fonts. Font style variations and optical scaling can be appl
improve text printing quality. With our font parametrization system, one can cr
personalized font by coherently modifying some parameters. Component-b

116 Chapter 6: Conclusion and future work

a few
meters

-based
tronic

 in the

search
y be

onents
attempt
aphers
tions
f this

and
aracter
parametrized fonts require much less storage space than outline fonts. With
parameter changes, derived fonts can be instantly created. A restricted set of para
is sufficient to generate all characters needed within a document. Component
parametrized fonts can therefore be delivered together with documents over elec
networks (Internet).

The research started with this thesis can be continued in the future, at least
following directions:

The use of local parameters is cumbersome at this stage. In a future re
project, local parameters may be regularized and simplified. Visual tools ma
developed to help editing local parameters.

The idea of describing characters by predefined parametrizable shape comp
is quite suitable for stroke-based characters, for example Chinese characters. The
to describing Chinese characters by “basic strokes” has been tried by some typogr
and computer scientists. However, the quality of curved strokes and the junc
between strokes remain problematic. The author believes that some results o
dissertation, such as the β-Bézier curve controlling method, the sweep component
the smoothing operation, can be extended to help solving problems for Chinese ch
parametrization.

 117

ont

Inc.,

ized
d

e

ifying
B. B.
am,

.

tline
)
 242-

,

References

[Adams89] D. Adams, abcdefg - A Better Constraint Driven Environment for F
Generation, Raster Imaging and Digital Typography (RIDT’89), Eds. J.
André and R. D. Hersch, Cambridge University Press, 1989, 54-70.

[Adobe85] Adobe Systems Inc., PostScript Language Reference Manual, Addison-
Wesley, 1985.

[Adobe90] Adobe Systems Inc., The Type 1 Format Specification, Addison-Wesley,
1990.

[Adobe92] J. Seybold, Adobe’s MultiMasters Technology: Breakthrough in Type
Aesthetics, Seybold Report on Desktop Publishing, Vol. 7, No. 5, 1991, 3-
7, see also "Designing Multiple Master Typefaces", Adobe Systems
http://www.adobe.com.

[Agfa91] Agfa Corp., Intellifont Scalable Typeface Format, 1991.

[André94] Jacques André, Irene Vatton, Dynamic Optical Scaling and Variable-S
Characters, Electronic Publishing - Origination, Dissemination an
Design, Vol. 7, No. 4, 1994, 231–250.

[Bauermeister87] Benjamin Bauermeister, A Manual of Comparative Typography (th
PANOSE system), Van Nostrand Reinhold, NY, 1987.

[Bauermeister96] US Patent 5’586’241, Method and System for Creating, Spec
and Generating Parametric Fonts, issued Dec. 17, 1996, inventors:
Bauermeister, C. D. MacQueen, M. S. DeLaurentis, P. M. Higinboth
D. E. Lipkie, D. J. Munsil, R. G. Beausoleil.

[Berthold88] H.Berthold AG, Berthold Types, H. Berthold AG, Berlin, Germany, 1988

[Betrisey89] Claude Betrisey and Roger D. Hersch, Flexible Application of Ou
Grid Constraints, Raster Imaging and Digital Typography (RIDT’89,
Eds. J. André and R. D. Hersch, Cambridge University Press, 1989,
250.

[Billawala89] N. Billawala, Panadora-an Experience with Metafont, Raster Imaging
and Digital Typography (RIDT’89), Eds. J. André and R. D. Hersch
Cambridge University Press, 1989, 34-53.

118 References

hesis

ray
tter
.,

ese

anji
d

tric

,

s,

cter,
8/
98,

rough
,
n

[Coueignoux75] Ph. Coueignoux, Generation of Roman Printed Fonts, Ph.D T
(adviser: Prof. Schreiber), MIT, June 1975.

[Coueignoux81] Ph. Coueignoux, Character Generation by Computer, Computer
Graphics and Image Processing, Vol. 16, 1981, 240–269.

[Cox82] Charles H. Cox III, Philippe Coueignoux, Barry Blesser and Mur
Eden, Skeletons: A Link Between Theoretical and Physical Le
Descriptions, Pattern Recognition, Vol. 15, No. 1, Pergamon Press Ltd
Great Britain, 1982, 11-22.

[Dong91] Yunmei Dong & Kaide Li, A Parametric Graphics Approach to Chin
Font Design, Raster Imaging and Digital Typography II (RIDT’91), Eds.
R. Morris and J. André, Cambridge University Press, 1991, 156-165.

[Dürst93] Martin J. Dürst, Coordinate-Indenpendent Font Description Using K
as an Example, Electronic Publishing - Origination, Dissemination an
Design (RIDT’94), Vol. 6, No. 3, 1993, 133-143.

[Fan91] Jianping Fan, Towards Intelligent Chinese Character Design, Raster
Imaging and Digital Typography II (RIDT’91), Eds. R. Morris and J.
André, Cambridge University Press, 1991, 166-176.

[Farin90] Gerald Farin, Curves and Surfaces for Computer Aided Geome
Design: A Practical Guide (2nd edition), Academic Press, 1990.

[Foley90] James D. Foley et al, Computer Graphics: Principles and Practice
Second Edition, Addison-Wesley, 1990.

[Gaskell76] P. Gaskell, A Nomenclature for the Letterforms of Roman Type, Visible
Language, Vol. 10, No. 1, 1976, 41–51.

[Gonczarowski93] Jakob Gonczarowski, Curve Technique for Auto-Tracing, Visual and
Technical Aspects of Type, Ed. R. D. Hersch, Cambridge Unicersity Pres
1993, 126-147.

[Gonczarowski98] Jakob Gonczarowski, Producing the Skeleton of a Chara
Electronic Publishing, Artistic Imaging, and Digital Typography (EP’9
RIDT’98), Eds. R. D. Hersch et al., LNCS 1375, Springer-Verlag, 19
66-76.

[Haralambous93] Yannis Haralambous, Parametrization of PostScript Fonts Th
METAFONT - An Alternative to Adobe Multiple Master Fonts
Electronic Publishing - Origination, Dissemination and Desig
(RIDT’94), Vol. 6, No. 3, 1993, 145–157.

 119

se,
.

ng of

s,

rtler,

ting

tring

sis Nº

rsch,
ter
l
,

sics,
tern,

tline
[Haralambous94] Yannis Haralambous, Typesetting Khmer, Electronic Publishing -
Origination, Dissemination and Design, Vol. 7, No. 4, J. Wiley, 1994,
197–215.

[Hersch88] Roger D. Hersch, Vertical Scan-Conversion for Filling Purpo
Proceedings CGI’88, Geneva, Ed. D. Thalmann, Springer Verlag, 1988

[Hersch91] Roger D. Hersch, Claude Bétrisey, Model-based Matching and Hinti
Fonts, Proceedings Siggraph'91, ACM Computer graphics, Vol. 25, No.
4, 1991, 71–80.

[Hersch93] Roger D. Hersch, Font Rasterization: the State of the Art, Visual and
Technical Aspects of Type, Ed. R. D. Hersch, Cambridge University Pres
1993, 78-109.

[Hersch95] Roger D. Hersch, Claude Bétrisey, Justin Bur, and Andre Gu
Perceptually Tuned Generation of Grayscale Fonts, IEEE Computer
Graphics and Applications, Vol. 15, No. 6, November 1995, 78-89.

[Herz94a] Jacky Herz and Roger D. Hersch, Towards a Universal Auto-Hin
System for Typographic Shapes, Electronic Publishing - Origination,
Dissemination and Design, Vol. 7, No. 4, J. Wiley, 1994, 251-260.

[Herz94b] Jacky Herz and Roger D. Hersch, Analyzing Character Shapes by S
Matching Techniques, Electronic Publishing - Origination,
Dissemination and Design (RIDT’94), Vol. 6, No. 3, J.Wiley, 1994, 261-
272.

[Herz97] Jacky Herz, Coherent Processing of Typographic Shapes, Ph.D the
1676, École Polytechnique Fédérale de Lausanne, 1997.

[Herz98] Jacky Hertz, Changyuan Hu, Jakob Gonczarowski and Roger D. He
A Window-Based Method for Automatic Typographic Parame
Extraction, Electronic Publishing, Artistic Imaging, and Digita
Typography (EP’98/RIDT’98), Eds. R. D. Hersch et al, LNCS 1375
Springer-Verlag 1998, 44-54.

[Hobby89] J. D. Hobby, Rasterizing Curves of Constant Width, Journal of the ACM,
Vol. 36, No. 2, April 1989, 209–229.

[Hofstadter85] D. R. Hofstadter, Metafont-Metamathematics and Metaphy
Metamagical Themas: Questing for the Essence of Mind and Pat
Bantam Books, NY, 1985.

[Hu91] Changyuan Hu and Fuyan Zhang, Automatic Hinting of Chinese Ou
Fonts Based on Stroke Separating Method, Proc. the 1st Pacific

120 References

ific

ort in

ype
ool

.

ont

d

n

Conference on Computer Graphics and Applications (Pac
Graphics’93), Seoul, Korea, World Scientific, 1993, 359-368.

[Jamra93] Mark Jamra, Some Elements of Proportion and Optical Image Supp
a Typeface, Visual and Technical Aspects of Type, Ed. R. D. Hersch,
Cambridge, 1993, 47-55.

[Johnson87] Bridget Lynn Johnson, A Model for Automatic Optical Scaling of T
Designs for Conventional and Digital Technology (MSc. thesis), Sch
of Printing, Rochester Institute of Technology, 1987.

[Karow89] Peter Karow, Automatic Hinting for Intelligent Font Scaling, Raster
Imaging and Digital Typography (RIDT’89), Eds. J. André and R. D
Hersch, Cambridge University Press, 1989, 232-241.

[Karow92] Peter Karow, Schriftstatistik, URW Verlag, Hamburg, 1992.

[Karow94] Peter Karow, Font Technology: Description and Tools, Springer Verlag,
1994.

[Knuth86a] Donald E. Knuth, The METAFONT book, Addison Wesley, 1986.

[Knuth86b] Donald E. Knuth, Computer Modern Typefaces (Volume E of Computers
and Typesetting), Addison-Wesley, 1986.

[Labuz88] Ronald Labuz, Typography and Typesetting, Van Nostrand Reinhold,
1988.

[Lancaster86] P. Lancaster, K. Salkauskas, Curve and Surface Fitting, Academic Press,
1986.

[MacQueen93] C. D. McQueen, R. G. Beausoleil, Infinifont: A Parametric F
Generation System, Electronic Publishing - Origination, Dissemination
and Design (RIDT’94), Vol 6, No. 3, 1993, 117-132.

[Morris98] R. A. Morris, R. D. Hersch, A. Coimbra, Legilility of Condense
Perceptually-Tuned Grayscale Fonts, Electronic Publishing, Artistic
Imaging and Digital Typography (EP’98/RIDT’98), Eds. R. D. Hersch, J.
André, H. Brown, LNCS 1375, Springer-Verlag, 1998, 281-193.

[Microsoft95a] Microsoft Corp., TrueType Open Font Specification, Version 1.0, July
1995.

[Microsoft95b] Microsoft Corp., TrueType 1.0 Font Files, Technical Specificatio,
Revision 1.66, November 1995.

 121

ss,

e

nts

sing
l
),

ical
gn,
8/
ce,

ype

ing
y

aler,
n

nts,
n

ont
l

[Nordzji91] G. Nordzij, The Shape of the Stroke, Raster Imaging and Digital
Typography II, Eds. R. Morris and J. André, Cambridge University Pre
1991, 34-42.

[Rockledge91] G. Rockledge and C. Perfect, Rockledge's International Type finder: Th
Essential Handbook of Typeface Recognition and Selection, Moyer Bell
Ltd, distributed by Rizzoli International Publications, 1991.

[Rubinstein88] Richard Rubinstein, Digital Typography, Addison-Wesley, 1988.

[Shamir96] Ariel Shamir and Ari Rappoport, Extraction of Typographic Eleme
from Outline Representations of Fonts, Proc. EUROGRAPHICS’96,
(Eds. J. Rossignac and F. Sillion), Computer Graphics Forum, Vol. 15,
No. 3, 1996, 259-268.

[Shamir98] Ariel Shamir and Ari Rappoport, Feature-Based Design of Fonts U
Constraints, Electronic Publishing, Artistic Imaging and Digita
Typography (EP’98/RIDT’98), (Eds. R. D. Hersch, J. André, H. Brown
St. Malo, France, LNCS 1875, Springer-Verlag, 1998, 93-108.

[Schneider98] U. Schneider, An Object-Oriented Model for the Hierarch
Composition of Letterforms in Computer-Adided Typeface Desi
Electronic Publishing, Artistic Imaging and Digital Typography (EP’9
RIDT’98), Eds. R. D. Hersch, J. André, H. Brown, St. Malo, Fran
LNCS 1875, Springer-Verlag, 1998, 108-125.

[Southall91] Richard Southall, Character Description Techniques in T
Manufacture, Raster Imaging and Digital Typography II (RIDT’91), Eds.
R. Morris and J. André, Cambridge University Press, 1991, 16–27.

[Southall98] Richard Southall, Metafont in Rockies: the Colorado Typemak
Project, Electronic Publishing, Artistic Imaging and Digital Typograph
(EP’98/RIDT’98), Eds. R. D. Hersch, J. André, H. Brown, St. Malo,
France, LNCS 1875, Springer-Verlag, 1998, 167-180.

[Stamm94a] Beat Stamm, Object-Orientation and Extensibility in a Font-Sc
Electronic Publishing - Origination, Dissemination and Desig
(RIDT’94), Vol. 6, No. 3, 1993, 159-170.

[Stamm94b] Beat Stamm, Dynamic Regularisation of Intelligent Outline Fo
Electronic Publishing - Origination, Dissemination and Desig
(RIDT’94), Vol. 6, No. 3, 1993, 219-230.

[Stamm98] Beat Stamm, Visual TrueType: A Graphical Method for Authoring F
Intelligence, Electronic Publishing, Artistic Imaging and Digita

122 References

,

res,
ion
,

Typography (Proc. EP-RIDT’98), Eds. R. D. Hersch, J. André, H. Brown,
St. Malo, France, LNCS 1875, Springer-Verlag, 1998, 77-92.

[Tschichold65] J. Tschichold, Meisterbuch der Schrift, Otto Maier Verlag, Ravensburg
Germany, 1965.

[Vatti92] Bala R. Vatti, A Generic Solution to Polygon Clipping, Communications
of the ACM, Vol. 35, No. 7, 1992.

[Zalik95] Borut Zalik, Font Design with Incompletely Constrained Font Featu
Proc. 3rd Pacific Conference on Computer Graphics and Applicat
(Pacific Graphics’95), Eds. S. Y. Shin, T. L. Kunii, ISBN 981-02-2337-4
World Scientific, 1995, 512-526.

 123

coor-
ion 2.9

ding

t
vature
prox-
APPENDIX A The β value for a quarter of an arc

Referring to Fig. 2.14, if we require the point at parameter t = 1/2 to have identical
dinates as the corresponding center point of a quarter of a circle, we get equat
which can be rewritten as (see also equation 2.1)

Solving this equation, we have,

If we require curvature radii at B(0) and B(1) to be the radius of the correspon
circle with radius 1, we obtain the equation

From equations 2.2, 2.4 and 2.5, we can obtain the curvature at both ends.

Therefore, the equation we need to solve is

Solving this equation with respect to the condition β > 0 yields

Though these two results are slightly different, they both prove that the β value
around 0.55 is the best for approximating a quarter of an arc with one β-Bézier curve.

The difference between these two β-Bézier curves is very small and is no
noticeable by the human eye. This difference can be seen by plotting out their cur
radii (Fig. A.1). This plot also shows that theoretically an arc cannot be precisely ap
imated by a piece of Bézier curve. However, the shape of either of the two β-Bézier
curves is very similar to the quadrant of arc which it approximates (Fig. A.2).

1 1
2
---– 

  3 0

1
3
2
--- 1 1

2
---– 

  2 0

1 β–
3

1
2
--- 

  2

1 1
2
---– 

  1 β–

0
1
2
--- 

  3 1

0
+ + +

1 2
2

-------–

1 2
2

-------–

=

β 4 2 1–()
3

------------------------ 0.552285≈=

R 0() R 1() 1= =

R 0() R 1() 3β2

2 1 β–()
--------------------= =

3β2

2 1 β–()
-------------------- 1=

β 1– 7+
3

--------------------- 0.548584≈=

124 Appendix A

.

Figure A.1: Curvature radii of two Bézier curves which approximate a quadrant of a circle.

Figure A.2: The two Bézier curves and the quadrant circular arc they approximate are
placed at a same place within a coordinate system. Curves are drawn with very thin lines,
however the difference between the three curves are not easily noticeable by the human eye

0.2 0.4 0.6 0.8 1
t

0.985

0.99

0.995

1.005

1.01

1.015

1.02

R

β = 0.552285

β = 0.548584

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
radius = 1

 125

hen it

 long
d

ula
APPENDIX B The β value for approximating an ellipse

We show that the β value which creates ideal curvatures at the two ends of a β-Bézier
curve which approximates a quarter of a circular arc also creates ideal curvatures w
approximates a quarter of an ellipse.

Without loss of generality, let us study the third quadrant of an ellipse whose
axis is a, short axis is b and center located at point [a, b]T. This ellipse can be represente
in parametric form in Fig. B.1.

Figure B.1: Parametric representation of a quadrant of an ellipse.

Let P and Q represent the two end points of the curve, then P = [x(π), y(π)]T,
Q = [x(3π/2), y(3π/2)]T. From equation 2.2 and equation B.1, we can derive the form
for the curvature radius of an ellipse

Therefore,.

We try to approximate the quarter of an ellipse with a piece of β-Bézier curve. Let
B0 = P = [0, b]T, B1 = [0, b(1 - β)]T, B2 = [a(1 - β), 0]T, and B3 = Q = [a, 0]T. In order to
apply the equation 2.2, we calculate the first and second derivatives of B0 and B3 in a
Bézier curve defined by equation 2.1 respectively as following.

a

b

x

y

o

x(t) = a cos t + a
y(t) = b sin t + b{

t

(x(t), y(t))

P

Q

(B.1)

R t() a2 tsin()2 b2 tcos()2+()
3
2

ab
--=

RP = R(π) = b2/a,

RQ = R (3π/2) = a2/b.
(B.2)

B’(0) = -3B0 + 3B1 = [0, -3bβ]T,

B”(0) = 6B0 -12B1 + 6B2 = [6a - 6aβ, -6b + 12bβ]T,

B’(1) = -3B2 + 3B3 = [3aβ, 0]T,

B”(1) = 6B1 - 12B2 + 6B3 = [-6a + 12aβ, 6b - 6bβ]T.

(B.3)

126 Appendix B

e two
f an

wo
also
With equations B.3 and 2.2, one obtain the following results.

Comparing equation B.4 and equation B.2, if we require the curvatures at th
end points of the β-Bézier curve to be identical to the corresponding curvatures o
ellipse, we have

This is exactly the condition for a β value which creates ideal curvatures at the t
ends of a β-Bézier curve which approximates a quarter of a circular arc (see
Appendix A). Solving this equation with respect to the condition β > 0 yields

R 0() 3β2

2 1 β–()
-------------------- b2

a
-----⋅=

R 1() 3β2

2 1 β–()
-------------------- a2

b
----⋅=

(B.4)

3β2

2 1 β–()
-------------------- 1=

β 1– 7+
3

--------------------- 0.548584≈=

 127

ntial
v and

):

ate
 of
’U’.
re
’.
 lines
APPENDIX C Proof of parameter η

Given: Ellipse with center O and two tangents h and v, with respective tange
points H and V. Consider parallelogram UAOB constructed by the tangents h and
by their parallels through O.

HB = ∆p; UB=p; VA = ∆q; UA= q

To be shown:

Figure C.1: Affined transformation.

Proof:

If AB is parallel to VH then .

Consider an affined transformation which maps the ellipse to a circle (Fig. C.1

ellipse -> circle; A->A’; V->V’; B->B’, H->H’, U->U’

The line pairs (OA, OH) and (OB, OV) are support lines of pairs of conjug
diameters of the ellipse. Corresponding support lines (O’A’, O’H’) and (O’B’, O’V’)
the circle are perpendicular. Tangential points V’ and H’ are symmetric to line O
Since angle V’O’B’ is equal to angle A’O’H’ (90 degrees), points A’ and B’ a
symmetric in respect to line O’U’. Circle line A’B’ is therefore parallel to line V’H
Since affine transforms map parallel lines into parallel lines, corresponding ellipse
AB and VH are parallel.

HB
UB
-------- VA

UA
--------- ∆p

p
------- ∆q

q
------- η= = = =

A

B

V

HU B’

A’ O’
V’

U’ H’

affine
transformationO

h

v

HB
UB
-------- VA

UA
---------=

128 Appendix C

 129
APPENDIX D Description of characters by components

Times Roman, lower-case and upper-case:

130 Appendix D

 131
APPENDIX E Enlarged resynthesized component-based
characters

Resynthesized Times Roman lower-case characters:

132 Appendix E
Resynthesized Times Roman capitals:

 133
Resynthesized Bodoni lower-case characters:

134 Appendix E
Resynthesized Helvetica lower-case characters:

 135
APPENDIX F The variation cube of “e”
high

contrast
low

low

weight

high
upright

stress

oblique

136 Appendix F

 137

n

for the
e used

g the

ition
APPENDIX G Parameter files of parametrisable Times Roma

The global, group and local parameters files in this appendix contains parameters
synthesis of a Times Roman normal weight font. These parameter files can also b
to synthesize Times typefaces with different boldness factors by simply modifyin
definition of the macro $BoldnessFactor in the global parameter file.

1. The global parameter file for the parametrisable Times font together with a defin
of the boldness factor:

/* TimesBoldness.glb - the global parameter file for Times ***************/
/* Created: 3/sep/1997 CHU */
/* Modified: 31/aug/1998, CHU, boldness variation by macro def&ref. */
/*---*/
/* This is a global parameter file written to prepare the global */
/* parameters for the component-based font synthesizing system. This */
/* global parameter file has a $BoldnessFactor defined for generating */
/* typefaces in Times family by varying boldness. */
/* The global parameter file is readable, editable and programmable. */
/* However, any modification to this file should be clearly noticed at */
/* this file header. */
/* -------- Copyright 1997, 1998, LSP/EPFL -------- */
/***/

/****================ begin of font information =================****/
sFontname = "TimesBoldness"; /* name of the font */
sFontfamily = "Times"; /* family name of the font */
sCreator = "CHU"; /* author name */
sVersion = "2.0"; /* version munber */
sDescription = "variation of boldness"; /* brief description of the font */
sCopyright = "LSP/DI/EPFL 1998"; /* copyright info */
sEncodingStandard = "ASCII"; /* encoding standard */
iNumberOfCharacters = 26; /* from first to last continously */
iFirstCharCode = 0x61; /* first code, from 'a' */
iLastCharCode = 0x7A; /* lart code, to 'z' */
fScaleFactorU = 1.0; /* scale factor */
fScaleFactorX = 1.0; /* scalex */
fScaleFactorY = 1.0; /* scaley */
/****================= end of font information ==================****/

/*********************** style variation factors ********************/
// To change boldness to X (for example 120%):
// - vertical stem and diagonal bar width increased X
// - horizontal bar width increased to 1 + (X - 1) * 0.5
// - vertical serif width reduced to 1 - (X - 1) * 2.0 if X > 130%
//
$BoldnessFactor = 1.00; /* good through [80%, 150%] */
$BV = $BoldnessFactor; /* for vertical stems and diagolal bars */
$BH = 1.0 $BoldnessFactor 1.0 sub 0.5 mul add; /* for horizontal bars */
$BS = $BoldnessFactor 1.3 gt 1.0 $BoldnessFactor 1.3 sub 2.0 mul sub 1.0 ifelse;
 /* for serif shrinking */

/*********************** global earmark styles **********************/
/* serif style -- */
iSerifStyle = 1; // 1 Times serif, 2 sans-serif
iSerifSupportType = 1; // 1 smooth, 2 angled, 3 straight, 4 none
iSerifEndType = 1; // 1 bracket (butt), 2 round
iSerifFaceType = 1; // 1 flat, 2 concave
iTopSerifSupportType = 1; // 1 smooth, 2 angled, 3 straight, 4 none
iTopSerifEndType = 1; // 1 bracket (butt), 2 round
iTopSerifFaceType = 1; // 1 coved, 2 flat
iHorSerifSupportType = 1; // 1 smooth, 2 angled, 3 straight, 4 none
iHorSerifEndType = 1; // 1 bracket (butt), 2 round
iHorSerifFaceType = 1; // 1 flat, 2 concave
iHorTopSerifSupportType = 1; // 1 smooth, 2 angled, 3 straight, 4 none
iHorTopSerifEndType = 1; // 1 bracket (butt), 2 round
iHorTopSerifFaceType = 1; // 1 coved, 2 flat
pSerifRoundCorrectionH = 0; // height of round correction, not used
pSerifConcaveCorrectionH = 0; // height of concave correction, not used

/*********************** global parameters **************************/
pBaseLine = 0; /* base line position */

138 Appendix G
pXheight = 445; /* x-height line position */
pCaps = 659; /* caps-height line position */
pNumbers = 659; /* height of numbers and symbols */
pAscender = 679; /* ascender line position */
pDescender = -220; /* descender line position */

/* beta & eta --*/
pBestBeta = 0.59; /* other betas may be related to this */
pStdBetaXS = 0.54; /* extra flat curve */
pStdBetaS = 0.59; /* round loop */
pStdBetaM = 0.67; /* normal flat curve */
pStdBetaL = 0.85; /* sharp curve */
pStdBetaXL = 0.95; /* extra sharp curve */

pSerifBeta = 0.67; /* serif support */
pLoopExternalBeta = $pBestBeta; /* loop external */
pLoopInternalBeta = $pBestBeta; /* loop external */

pStdLoopEta = 0.13; /* global eta of loops */

/* stem --*/
pcVerStemW = 104 $BV mul; /* standard vertical stem width list */
pmVerStemW = 86 $BV mul;
pdVerStemW = 78 $BV mul;
pcHorStemW = 40 $BH mul; /* standard horizontal stem width list */
pmHorStemW = 34 $BH mul;
pdHorStemW = 76 $BH mul;
pcNarrowVerStemW = 46 $BV mul; /* standard narrow vertical stem width */
pmNarrowVerStemW = 20 $BV mul;
pdNarrowVerStemW = 0;
pcNarrowHorStemW = 0; /* standard narrow horizontal stem width */
pmNarrowHorStemW = 31 $BH mul;
pdNarrowHorStemW = 66 $BH mul;
pcVerCurveW = 116 $BV mul; /* standard vertical curve width */
pmVerCurveW = 93 $BV mul;
pdVerCurveW = 97 $BV mul;
pcHorCurveW = 38 $BH mul; /* standard horizontal curve width */
pmHorCurveW = 33 $BH mul;
pdHorCurveW = 29 $BH mul;
pcDiagStemW = 99.67 $BV mul; /* standard diagnal stem width */
pmDiagStemW = 79.0 $BV mul;
pdDiagStemW = 89.6 $BV mul;
pcNarrowDiagStemW = 43.33 $BV mul; /* standard narrow diagnal stem width */
pmNarrowDiagStemW = 37 $BV mul;
pdNarrowDiagStemW = 51.13 $BV mul;

/* character width ---*/
pcRoundLetterW = 655; /* standard round letter width RLW */
pmRoundLetterW = 440;
pdRoundLetterW = 452;
pcStemStemW = 0; /* standard SSW, for h, n, m, u */
pmStemStemW = 266;
pdStemStemW = 0;
pcStemCurveW = 0; /* standard SCW, for b, d, p, q */
pmStemCurveW = 312;
pdStemCurveW = 0;

/* serif ---*/
pcVerSerifW = 89 $BS mul; /* standard vertical serif width */
pmVerSerifW = 76 $BS mul;
pdVerSerifW = 95 $BS mul;
pcVerSerifD = $pcVerSerifW; /* standard vertical serif depth */
pmVerSerifD = $pmVerSerifW;
pdVerSerifD = $pdVerSerifW;
pcDiagOuterSerifW = 56 $BS mul; /* standard diagnal outer serif width */
pmDiagOuterSerifW = 49 $BS mul;
pdDiagOuterSerifW = 0;
pcDiagOuterSerifD = $pcDiagOuterSerifW; /* standard diagnal outer serif depth */
pmDiagOuterSerifD = $pmDiagOuterSerifW;
pdDiagOuterSerifD = $pdDiagOuterSerifW;
pcDiagInnerSerifW = 100 $BS mul; /* standard diagnal inner serif width */
pmDiagInnerSerifW = 64 $BS mul;
pdDiagInnerSerifW = 0;
pcDiagInnerSerifD = $pcDiagInnerSerifW; /* standard diagnal inner serif depth */
pmDiagInnerSerifD = $pmDiagInnerSerifW;
pdDiagInnerSerifD = $pdDiagInnerSerifW;
pcVerSerifH = 20; /* standard vertical serif height */
pmVerSerifH = 15;
pdVerSerifH = 18;
pcHorSerifW = 96; /* standard horizontal serif width */
pmHorSerifW = 105;

 139
pdHorSerifW = 80;
pcHorSerifD = $pcHorSerifW; /* standard horizontal serif depth */
pmHorSerifD = $pmHorSerifW;
pdHorSerifD = $pdHorSerifW;
pcHorSerifH = 23; /* standard horizontal serif height */
pmHorSerifH = 20;
pdHorSerifH = 18;
pcTopSerifDeg = -7; /* standard slanted serif orientation */
pmTopSerifDeg = 13 $BS mul;
pdTopSerifDeg = 0;

/* others --*/
pcDotR = 47 $BV mul; /* standard dot radius */
pmDotR = 52 $BV mul;
pdDotR = 0;
pcOptCor = 16; /* standard optical correction */
pmOptCor = 12;
pdOptCor = 16;

/* spacing ---*/
pCapitalSpacing = 187; /* capital ideal optical spacing */
pSmallSpacing = 130; /* small ideal optical spacing */
pCapitalStemSpacing = 217; /* capital NN spacing */
pSmallStemSpacing = 147; /* small nn spacing */
pCapitalCurveSpacing = 67; /* capital OO spacing */
pSmallCurveSpacing = 60; /* small oo spacing */
pCapitalStemToCurveSpacing = 142; /* capital ON spacing */
pSmallStemToCurveSpacing = 104; /* small on spacing */
pCapitalMinimalSpacing = 43; /* capital minimum spacing */
pSmallMinimalSpacing = 29; /* small minimum spacing */

2. The group parameter definition file for the parametrisable Times font:

/* TimesBoldness.grp - the group parameter file for Times ****************/
/* Created: 3/sep/1997 CHU */
/* Modified: 31/aug/1998, CHU, boldness variation by macro def&ref. */
/*---*/
/* This is a group parameter definition file for preparing the group */
/* parameters for the component-based font synthesizing system. This */
/* group parameter file contains macro names of local parameter groups */
/* which will be refered to in the local parameter file. */
/* Rules of macro definitions: */
/* - a macro definition is a "name = value" pair, in which */
/* - a name is a string begin with letter '$', */
/* - value is a float value readable by the C/C++ function scanf (). */
/* Naming convensions: */
/* - the first letter after the '$' is a letter c/m/n indicating */
/* capital/minuscule/number. */
/* Macro definitions may be typeface dependent, hence group names */
/* are user defined. Local parameter grouping is our method of enabling */
/* coherent local feature modification amongst several characters. */
/* The group parameter file is readable, editable and programmable. */
/* However, any modification to this file should be clearly noticed at */
/* this file header. */
/* -------- Copyright 1997, 1998, LSP/EPFL -------- */
/***/

/* group parameters' macro definition for Times *************************/

/*****************************/
/* standard words shortening */
/*****************************/
// Terminal --> Term
// Junction --> Junc
// Horizontal --> Hor
// Vertical --> Ver
// Position --> Pos
// External --> Ext
// Internal --> Int
// Width --> W
// Height --> H
// Depth --> D
// Radius --> R
// Xdirection --> X
// Ydirection --> Y

/* macros for minuscules --*/

// typical character groups and their representative characters:

140 Appendix G
// b/d/p/q --> b same loop, junction
// h/m/n/u --> n same arch
// c/e/o --> e round letter
// k/v/w/x/y/z --> x slanted stem
// f/j/r/y --> f pear terminated
// i/j --> i same dot
//

/* style */
$iSerifStyle = 1; // this overrides the globle parameter
$mBendedTermStyle = 1; // a/c/f/j/r/y, 1 - dot/pear, 2 - butt, 3 - long
$mSweepStemJuncStyle = 1; // a/b/d/g/h/m/n/p/q/r/u, 1 - angled, 2 - smoothed

/* loop */
$mLoopCenterXPosExt = 0.50; // b/d/p/q
$mLoopCenterXPosInt = 0.45; // b/d/p/q
$mLoopEtaExt = $pStdLoopEta; // b/d/p/q
$mLoopEtaInt = 0.00; // b/d/p/q

/* pos */
$mArmPos = 0.84; // h/m/n/u/r
$mEBarPos = 0.64; // e
$mABarPos = 0.68; // a

/* narrow/wide */
$mHorCurveWnarrow = 0.79; // a/f
$mHorCurveWwide = 1.70; // a/b/c/d/e/g/h/m/n/p/q/t/u
$mDotRnarrowa = 0.87; // a/c/f/j/r/y
$mDotRnarrowb = 1.00; // a/c/f/j/r/y
$mVerCurveWnarrow = 0.75; // e/g/s
$mVerCurveWwide = 1.05; // e
$mVerSerifWnarrow = 0.84; // h/k/m/n/u,
$mVerSerifWwide = 1.11; // f
$mDiagSerifOuterWnarrow = 0.76; // v/w/y
$mDiagSerifInnerWwide = 1.25; // k/w/y
$mHorSerifWnarrow = 0.80; // z

/* connecting sweep A */
$mLetterbLowerSweepA = 0.83; // b/d/p/q
$mLetterbUpperSweepA = 0.60; // b/d/p/q

/* arch */
$mLetternArchOuterTop = 0.61; // h/m/n/u
$mLetternArchInnerTop = 0.60; // h/m/n/u
$mLetternArchOuterStart = 0.76; // h/m/n/u
$mLetternArchInnerStart = 0.72; // h/m/n/u
$mLetternArchJuncSweepA = 0.45; // h/m/n/u

/* special earmarks */
$mLetterbLowerJuncStyle = $BoldnessFactor 1.4 lt 3 $mSweepStemJuncStyle ifelse;
 // b, 3 - meet, if bold<1.4, otherwise spur
$mLetterbUpperJuncPos = $mArmPos; // b/d/p/q/g/a

3. The local parameter file for the parametrisable Times font:

/* TimesBoldness.lcl - the local parameter file of Times *****************/
/* Created: 3/sep/1997 CHU */
/* Modified: 31/aug/1998, CHU, boldness variation by macro def&ref. */
/*---*/
/* This is a local parameter file written for preparing every local */
/* parameters for the component-based font synthesizing system. This */
/* local parameter file contains local parameters of each characters. */
/* Some of the parameters are grouped to ensure coherent local feature */
/* modification. */
/* Local parameter names may not be understandable even with the */
/* comments. Fortunately, they are not necessary for users who wants to */
/* derive new typeface just by varing global typeface features, such as */
/* wight, width, contrast, stress and height proportion. To better */
/* understand local parameters, one should read the charXX.cp files. */
/* The local parameter file is readable, editable and programmable. */
/* However, any modification to this file should be clearly noticed at */
/* this file header. */
/* -------- Copyright 1997, 1998, LSP/EPFL -------- */
/***/

char61 // "a"
{
 variation = 1; // 1 - double storey; 2 - single storey

 141
 pdx1 = 0.54; // main width, belly to stem
 pdx2 = 0.50; // secondary width, bulb to stem
 Tr1c1 = $mBendedTermStyle; // 1 dot/pear, 2, 3 butt
 Tr2c2 = 1; // 1 pointed, 2 butt down, 3 butt right,
 // 4 sans-serif, 5 slab-serif
 Jr1c2 = 1; // 1 angled, 2 smoothed, 3 loop
 Jr2c2 = $mSweepStemJuncStyle; // 1 angled, 2 smoothed
 dotAngle = -10; // Degree
 headWidth = 0.60; // in proportion to StdVerStemW
 crr1 = 0.03;
 ppp1 = 0.50; // top arc center
 ppp2 = 0.71; // top arc start
 ppp3 = 0.77; // dot center height
 ppp4 = 0.15; // tail bottom-most x
 ppp5 = 0.45; // tail right-most x
 ppp6 = 0.12; // tail right-most y
 ppp7 = 0.60; // tail curve A.x
 ppp8 = 0.25; // belly left-most height
 ppp9 = 0.60; // s6 curve A.x
 pppA = 0.45; // belly bottom-most x
 pppB = 0.42; // belly inner bottom-most x
 pppC = 0.35; // s8 curve A.x
 pppD = 0.85; // s2 curve A.x
 pppE = 0.18; // tail start y
 pppG = 1 $mArmPos sub; // s8 arrival y, = 1 - ArmPos
 pppH = $mABarPos; // a-bar position
 pppJ = 0.45; // smoothing edge1, related to dx1
 pppK = 0.10; // smoothing edge2, related to pXheight
 pppL = 0.15; // smoothing tang1, related to dx1
 pppM = 0.10; // smoothing tang2, related to pXheight
 narrow1 = $mHorCurveWnarrow; // narrow minuscule horizontal curve width
 narrow2 = $mDotRnarrowa; // narrow minuscule dot width a
 narrow3 = $mDotRnarrowb; // narrow minuscule dot width b
 wide1 = $mHorCurveWwide; // wide minuscule horizontal curve width
}
char62 // "b"
{
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 no topserif
 Tr2c1 = 1; // 1 spur, 2 no spur, 3 half foot serif
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled, 2 smoothed
 Jr2c1 = $mLetterbLowerJuncStyle; // 1 angled with spur, 2 smoothed,
 // 3 angled and meet
 eta1 = $mLoopEtaExt neg; // loop eta external, - 0.15
 eta2 = $mLoopEtaInt; // loop eta internal
 ppp1 = $mLoopCenterXPosExt; // center1.x of the loop
 ppp2 = $mLoopCenterXPosInt; // center2.x of the loop
 ppp3 = 0.13; // junction Tr2c1 height
 ppp4 = 0.16; // junction Tr2c1 internal height
 ppp5 = $mLetterbLowerSweepA; // beta-curve control A of sweep s3
 ppp6 = $mLetterbUpperSweepA; // beta-curve control A of sweep s4
 ppp7 = $mLetterbUpperJuncPos; // arm position of Jr1c1, b/d/p/q
 spurAngle = 13; // Degree
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width, a/b/n
}
char63 // "c"
{
 pdx1 = 0.88; // main width, half-loop to tail
 pdx2 = 0.84; // secondary width, half-loop to bulb
 Tr1c1 = $mBendedTermStyle; // 1 dot, 2, 3 butt
 Tr2c1 = 1; // 1 butt
 eta1 = -0.02; // loop external, non-grp
 eta2 = 0.10; // loop internal, non-grp
 dotAngle = 10; // Degree
 tailAngle = 30; // Degree
 tailWidth = 0.28; // tail width
 ppp1 = 0.50; // loop center external
 ppp2 = 0.55; // loop center internal
 ppp3 = 1.30; // bottom arc width correction
 ppp4 = 0.78; // dot center y
 ppp5 = 0.85; // s2 curve A.x
 ppp6 = 0.35; // tail y
 ppp7 = 0.65; // tail s3 curve A.x
 pppJ = 0.40; // smoothing edge1, related to dx1
 pppK = 0.10; // smoothing edge2, related to pXheight
 pppL = 0.15; // smoothing tang1, related to dx1
 pppM = 0.10; // smoothing tang2, related to pXheight
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width a/b/c/n
 narrow1 = $mDotRnarrowa; // narrow minuscule dot radius a
 narrow2 = $mDotRnarrowb; // narrow minuscule dot radius b
}
char64 // "d"

142 Appendix G
{
 pdx1 = 1.0; // main width, half-loop to stem
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 no serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 no serif
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 Jr2c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 eta1 = $mLoopEtaExt neg; // loop eta external
 eta2 = $mLoopEtaInt; // loop eta internal
 ppp1 = $mLoopCenterXPosExt; // center1.x of the loop
 ppp2 = $mLoopCenterXPosInt; // center2.x of the loop
 ppp3 = 0.83; // s3 Pd.y
 ppp4 = 0.70; // s3 Qd.y
 ppp5 = $mLetterbLowerSweepA; // s3 curve A.x
 ppp6 = $mLetterbUpperSweepA; // s4 curve A.x
 ppp7 = 1 $mLetterbUpperJuncPos sub; // arm position of Jr2c1, b/d/p/q
 spurAngle = 13; // bottom serif slant, never zero.
 wide1 = $mHorCurveWwide; // wide hor curve width, a/b/c/n
}
char65 // "e"
{
 pdx1 = 0.91; // main width, half-loop to tail
 pdx2 = 0.86; // secondary width, half-loop to corner
 Tr2c2 = 1; // 1 butt tail
 Jr1c1 = 1; // 1 perpendicular link
 Jr1c2 = 1; // 1 squared corner
 eta1 = 0.00; // loop eta external
 eta2 = 0.19; // loop eta internal
 tailAngle = 30; // Degree
 tailWidth = 0.28; // tail width
 ppp1 = 0.50; // loop center external
 ppp2 = 0.51; // loop center internal
 ppp3 = 1.30; // bottom arc width correction
 ppp4 = 0.35; // tail right-most y
 ppp5 = 0.65; // tail s3 curve A.x
 ppp6 = $mEBarPos; // e-bar position
 narrow1 = $mVerCurveWnarrow; // narrow minuscule vertical curve width
 wide1 = $mVerCurveWwide; // wide minuscule vertical curve width
 wide2 = $mHorCurveWwide; // wide munuscule horizontal curve width
}
char66 // "f"
{
 pdx1 = 0.41; // main width, stem to bulb
 Tr1c1 = $mBendedTermStyle; // 1 dot, 2 butt, 3 long squared
 Tr2c1 = $iSerifStyle; // 1 serif, 2 no serif
 dotAngle = 30; // Degree
 ppp1 = 0.19; // bar left-most
 ppp2 = 0.27; // bar right-most
 ppp3 = 0.90 $BV 1.0 sub 0.08 mul sub; // dot center y, adjusted to boldness
 ppp4 = 0.50; // top arc internal extreme x
 ppp5 = 0.65; // top arc external extreme x
 ppp6 = 0.85; // top arc start internal y
 ppp7 = 0.69; // top arc start external y
 ppp8 = 0.65; // top arc s5 curve A.x
 pppJ = 0.40; // smoothing edge1, related to dx1
 pppK = 0.07; // smoothing edge2, related to pXheight
 pppL = 0.15; // smoothing tang1, related to dx1
 pppM = 0.05; // smoothing tang2, related to pXheight
 narrow1 = $mHorCurveWnarrow; // narrow minuscule horizontal curve width
 narrow2 = $mDotRnarrowa; // narrow minuscule dot ridus a
 narrow3 = $mDotRnarrowb; // narrow minuscule dot ridus b
 wide1 = $mVerSerifWwide; // wide minuscule vertical serif width/depth
}
char67 // "g"
{
 variation = 1; // 1 - double storey; 2 - single storey
 Tr1c1 = 1; // 1 bar, 2 ear (sw + dot + smooth);
 x0 = 245; // orginal
 /* if variation == 1 */
 eta1 = 0.00; // loop eta external
 eta2 = 0.19; // loop eta internal
 pdx1 = 0.28; // main width, loop center to loop right
 pdx2 = 0.50; // secondary width, to belly right
 pdx3 = 0.50; // third width
 ppp1 = 0.66; // loop center y
 ppp2 = 0.90; // currection of curve width of loop s0
 ppp3 = 0.90; // bar height
 ppp4 = 0.15; // s2 Pd.x
 ppp5 = 0.10; // s2 Qd.x
 ppp6 = 0.15; // s2 Pa.y
 ppp7 = 0.68; // currection of curve width of s2.PaQa
 ppp8 = 0.20; // s2 Qa.y

 143
 ppp9 = 0.47; // s2 curve A.y
 pppA = 0.10; // s3 Pa.x
 pppB = 0.12; // s3 Qa.y --- old y1
 pppC = 0.30; // s3 Qa.x
 pppD = 1.00; // s3 curve A.y
 pppE = 0.32; // currection of curve width of s4.PaQa
 pppF = 0.32; // s4 Pa.y
 pppG = 0.22; // s4 Qa.y
 pppH = 1.00; // s4 curve A.y
 pppI = 0.00; // s5 Pa.x
 pppJ = 0.20; // s5 Qa.x
 pppK = 0.78; // currection of curve width of s6.PaQa
 pppL = 0.42; // s6 Pa.y
 pppM = 0.52; // s6 Qa.y
 pppN = 0.15; // s7 Pa.x
 pppO = 0.22; // s7 Qa.x
 pppP = 0.40; // s7 curve A.y
 narrow1 = $mVerCurveWnarrow; // narrow minuscule vertical curve width
 narrow2 = $mHorCurveWnarrow; // narrow minuscule horizontal curve width
 wide1 = $mHorCurveWwide; // wide munuscule hor curve width
}
char68 // "h"
{
 pdx1 = 1.0; // main width, stem to stem
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 ppp1 = $mLetternArchOuterTop; // arc top outer x
 ppp2 = $mLetternArchInnerTop; // arc top inner x
 ppp3 = $mLetternArchOuterStart; // s5 Pd.y
 ppp4 = $mLetternArchInnerStart; // s5 Qd.y
 ppp5 = $mLetternArchJuncSweepA; // s6 curve A.x
 ppp6 = $mArmPos; // arm position of Jr1c1
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
 narrow1 = $mVerSerifWnarrow; // narrow minuscule vertical serif width
}
char69 // "i"
{
 pdx1 = 0.02; // main width, stem to dot center
 Tr1c1 = 1; // 1 round dot, 2 square dot
 Tr2c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr3c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 narrow1 = $mDotRnarrowa; // narrow minuscule dot radius a
}
char6A // "j"
{
 pdx1 = 0.40; // main width, stem to tail bulb
 pdx2 = 0.02; // secondary width, stem to dot center
 Tr1c1 = 1; // 1 round dot, 2 square dot
 Tr2c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr3c1 = $mBendedTermStyle; // 1 dot/pear, 2 butt, 3 long

 dotAngle = 45 $BV 1.0 sub 10 mul sub; // bulb, Degree, adjusted to boldness
 ppp1 = 0.40; // tail left start s2 Pd.y
 ppp2 = 0.15; // tail right start s2 Qd.y
 ppp3 = 0.50; // tail bottom s2 Pa.x
 ppp4 = 0.65; // tail bottom s2 Qa.x
 ppp5 = 0.73 $BV 1.0 sub 0.2 mul sub; // bulb center y, adjusted to boldness
 ppp6 = 0.66; // tail s4 curve A.x
 pppJ = 0.40; // smoothing edge1, related to dx1
 pppK = 0.07; // smoothing edge2, related to pXheight
 pppL = 0.10; // smoothing tang1, related to dx1
 pppM = 0.05; // smoothing tang2, related to pXheight
 narrow1 = $mDotRnarrowa; // narrow minuscule dot radius a
 narrow2 = $mDotRnarrowb; // narrow minuscule dot radius a
}
char6B // "k"
{
 pdx1 = 0.63; // main width, stem to right-bottom
 pdx2 = 0.62; // secondary width, to right-up
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr1c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Jr1c1 = 1; // 1 singla junction, 2 double junction
 ppp1 = 0.85; // junction center x
 ppp2 = 0.60; // junction center y
 wide1 = $mDiagSerifInnerWwide; // wide diag serif inner width
 narrow1 = $mVerSerifWnarrow; // narrow minuscule vertical serif width
}

144 Appendix G
char6C // "l"
{
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
}
char6D // "m"
{
 pdx1 = 1.0; // main width, stem to stem
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c3 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 Jr1c2 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 ppp1 = $mLetternArchOuterTop; // arc top outer x
 ppp2 = $mLetternArchInnerTop; // arc top inner x
 ppp3 = $mLetternArchOuterStart; // s5 Pd.y
 ppp4 = $mLetternArchInnerStart; // s5 Qd.y
 ppp5 = $mLetternArchJuncSweepA; // s6 curve A.x
 ppp6 = $mArmPos; // arm position of Jr1c2/Jr1c2
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
 narrow1 = $mVerSerifWnarrow; // narrow minuscule vertical serif width
}
char6E // "n"
{
 pdx1 = 1.0; // main width, stem to stem
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 ppp1 = $mLetternArchOuterTop; // arc top outer x
 ppp2 = $mLetternArchInnerTop; // arc top inner x
 ppp3 = $mLetternArchOuterStart; // s5 Pd.y
 ppp4 = $mLetternArchInnerStart; // s5 Qd.y
 ppp5 = $mLetternArchJuncSweepA; // s6 curve A.x
 ppp6 = $mArmPos; // arm position of Jr1c1
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
 narrow1 = $mVerSerifWnarrow; // narrow minuscule serif width h/n/m/u
}
char6F // "o"
{
 eta1 = 0.00; // loop eta external
 eta2 = $pStdLoopEta 0.02 add; // loop eta internal, a little stress
}
char70 // "p"
{
 pdx1 = 1.0; // main width, stem to curve
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 no serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 no serif
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 Jr2c1 = $mSweepStemJuncStyle; // 1 andled link, 2 smoothed link
 eta1 = $mLoopEtaExt neg; // loop eta external
 eta2 = $mLoopEtaInt; // loop eta internal
 ppp1 = $mLoopCenterXPosExt; // loop center1.x
 ppp2 = $mLoopCenterXPosInt; // loop center2.x
 ppp3 = 0.17; // s3 Pd.y
 ppp4 = 0.25; // s3 Qd.y
 ppp5 = $mLetterbLowerSweepA; // s3 curve A.x
 ppp6 = $mLetterbUpperSweepA; // s4 curve A.x
 ppp7 = $mLetterbUpperJuncPos; // arm position of Jr1c1, b/d/p/q/...
 spurAngle = 13; // top serif slant
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
 narrow1 = $mVerSerifWnarrow; // narrow minuscule serif width h/n/m/u
}
char71 // "q"
{
 pdx1 = 1.0; // main width, stem to curve
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 no serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 no serif
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 Jr2c1 = $mSweepStemJuncStyle; // 1 andled link, 2 smoothed link
 eta1 = $mLoopEtaExt neg; // loop eta external
 eta2 = $mLoopEtaInt; // loop eta internal
 ppp1 = $mLoopCenterXPosExt; // loop center1.x
 ppp2 = $mLoopCenterXPosInt; // loop center2.x
 ppp3 = 0.85; // s3 Pd.y
 ppp4 = 0.70; // s3 Qd.y
 ppp5 = $mLetterbLowerSweepA; // s3 curve A.x
 ppp6 = $mLetterbUpperSweepA; // s4 curve A.x
 ppp7 = 1.80; // top spur height correctness of Opt
 ppp8 = 1 $mLetterbUpperJuncPos sub; // arm position of Jr2c1, b/d/p/q/h/n/m

 145
 spurAngle = 20; // top spur slant, Degree
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
}
char72 // "r"
{
 pdx1 = 0.39; // main width, stem to bulb center
 Tr1c1 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr1c2 = $mBendedTermStyle; // 1 dot/pear, 2 butt, 3 long
 Jr1c1 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 dotAngle = 30; // Degree
 ppp1 = $BV 1.0 ge 0.98 $BV 1.0 sub 0.04 mul sub 0.98 ifelse;
 // dot y, adjusted to boldness
 ppp2 = 0.60; // arc s4 curve A.x
 ppp3 = $mArmPos; // arm position of Jr1c1
 pppJ = 0.60; // smoothing edge1, related to dx1
 pppK = 0.07; // smoothing edge2, related to pXheight
 pppL = 0.10; // smoothing tang1, related to dx1
 pppM = 0.10; // smoothing tang2, related to pXheight
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
 narrow1 = $mVerSerifWnarrow; // narrow minuscule ver serif width h/n/m/u
 narrow2 = $mDotRnarrowa; // narrow minuscule dot radius a
 narrow3 = $mDotRnarrowb; // narrow minuscule dot radius b
}
char73 // "s"
{
 pdx1 = 0.52; // main width, left curve to right curve
 pdx2 = 0.57; // secondary width, left tail to right curve
 pdx3 = 0.51; // secondary width, left curve to right tail
 Tr1c1 = $iSerifStyle; // 1 serif-like, 2 butt
 Tr2c1 = $iSerifStyle; // 1 serif-like, 2 butt
 crr1 = 0.12; // special curved stroke stress
 ppp1 = 0.35; // y1, right tail height
 ppp2 = 0.38; // y2, right curve height
 ppp3 = 0.31; // y3, right tail height
 ppp4 = 0.36; // y4, left curve height
 ppp5 = 0.81; // s1 curve A.x
 ppp6 = 0.62; // s2 arrival, s3 start
 ppp7 = 0.60; // s4 arrival, s5 start
 ppp8 = 0.81; // s6 curve A.x
 pppJ = 1.00; // smoothing edge1, related to pXheight
 pppK = 0.43; // smoothing edge2, related to dx1
 pppL = 0.02; // smoothing tang1, related to pXheight
 pppM = 0.15; // smoothing tang2, related to dx1
 tailAngle = 30; // Degree, for sans-serif
 narrow1 = $mVerCurveWnarrow; // narrow minuscule vertical curve width
 narrow2 = $mHorCurveWnarrow; // narrow minuscule horizontal curve width
}
char74 // "t"
{
 Tr1c1 = 1; // 1 concave head, 2 cross bar,
 // 3 cross bar with possibly slanted end
 Tr2c1 = 1; // 1 pointed tail, 2 butt
 tailAngle = 45; // Degree
 tailWidth = 0.50; // tail width
 ppp1 = 0.22; // bar right-most
 ppp2 = 0.28; // tail right-most
 ppp3 = 0.13; // bar left-most
 ppp4 = 0.29; // stem top extension
 ppp5 = 0.15; // tail left-most y
 ppp6 = 0.20; // tail start s2 Pd.y
 ppp7 = 0.25; // tail start s2 Qd.y
 ppp8 = 0.45; // tail bottom most external x
 ppp9 = 0.41; // tail bottom most internal x
 pppA = 0.40; // tail s3 curve A.x
 pppB = 0.55; // top correction left
 pppC = 0.80; // top correction top
 pppD = 0.62; // top correction S4 curve A
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
}
char75 // "u"
{
 pdx1 = 1.0; // main width, stem to stem
 Tr1c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr1c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c2 = $iSerifStyle; // 1 has topserif, 2 sans-serif
 Jr2c2 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
 ppp1 = $mLetternArchOuterTop; // arc bottom outer x
 ppp2 = $mLetternArchInnerTop; // arc botton inner x
 ppp3 = $mLetternArchOuterStart; // s3 Pd.y
 ppp4 = $mLetternArchInnerStart; // s3 Qd.y

146 Appendix G
 ppp5 = $mLetternArchJuncSweepA 1 0.1 iplt;
 // s4 curve A.x, iplt ($, 1, 0.1), bigger than that in 'n'
 ppp6 = 1 $mArmPos sub; // arm position of Jr2c2
 wide1 = $mHorCurveWwide; // wide minuscule hor curve width
 narrow1 = $mVerSerifWnarrow; // narrow minuscule serif ver width h/n/m/u
}
char76 // "v"
{
 pdx1 = 0.73; // main width, left to right
 Tr1c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr1c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 ppp1 = 0.58; // s0 start x
 ppp2 = 0.44; // s1 start x
 narrow1 = $mDiagSerifOuterWnarrow; // narrow diag serif outer width, v/w/y
}
char77 // "w"
{
 pdx1 = 0.71; // main width, similar to v
 pdx2 = 0.15; // secondary width, overlap of two 'v'
 Tr1c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr1c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr1c3 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Jr1c2 = 1; // not used, equivalent to Tr1c2
 ppp1 = 0.56; // s0 start x
 ppp2 = 0.42; // s1 start x
 narrow1 = $mDiagSerifOuterWnarrow; // narrow diag serif outer width, v/w/y
 wide1 = $mDiagSerifInnerWwide; // wide diag serif inner width
}
char78 // "x"
{
 pdx1 = 0.74; // main width, bottom left to right
 Tr1c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr1c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 crr1 = 0.15; // optical crr for bottom-left, stem s6
 crr2 = 0.45; // crr for top-left, s1
 crr3 = 0.05; // crr for top-right, s0
}
char79 // "y"
{
 pdx1 = 0.77; // main width, top left to right
 pdx2 = 0.0; // secondary width, left to tail bulb center
 Tr1c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr1c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c1 = $mBendedTermStyle; // 1 dot/pear, 2 butt, 3 long
 dotAngle = 75; // Degree
 ppp1 = 0.61; // stem s0 start x
 ppp2 = 0.42; // stem s1 start x
 ppp3 = 0.35; // stem s1 start y
 ppp4 = 0.78 $BV 1.0 sub 0.2 mul sub; // dot center y, adjusted to boldness
 ppp5 = 0.05; // tail bottom-most x
 ppp6 = 0.20; // tail s6 curve A.x new !!!
 pppJ = 0.30; // smoothing edge1, related to dx1
 pppK = 0.10; // smoothing edge2, related to pXheight
 pppL = 0.15; // smoothing tang1, related to dx1
 pppM = 0.10; // smoothing tang2, related to pXheight
 narrow1 = $mDiagSerifOuterWnarrow; // narrow diag serif outer width, v/w/y
 narrow2 = $mDotRnarrowa; // narrow minuscule dot radius a
 narrow3 = $mDotRnarrowb; // narrow minuscule dot radius b
 wide1 = $mDiagSerifInnerWwide; // wide diag serif inner width
}
char7A // "z"
{
 pdx1 = 0.78; // main width, bottom left to bottom right
 pdx2 = 0.02; // secondary width, bottom left to top left
 pdx3 = 0.09; // secondary, bottom right to top right
 Tr1c1 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Tr2c2 = $iSerifStyle; // 1 has serif, 2 sans-serif
 Jr1c2 = 1; // no use for Times
 Jr2c1 = 1; // no use for Times
 angle1 = -5; // topBeakAngle Degree
 angle2 = -5; // bottom Beak Angle Degree
 ppp1 = 0.05; // top MiterLimit, in ppp to StdDiagStemW
 ppp2 = 0.05; // bottomMiterLimit, in ppp to StdDiagStemW
 narrow1 = $mHorSerifWnarrow; // narrow hor serif width
}

a Ph.D
 effort
nthesis

uang
sing

ization

cience
arch
 and
matic

cience

from
ith an

jing
Curriculum Vitae

I was born on June 10, 1966, and I hold the Chinese nationality.

Since Jul. 1995, I have been working as a research assistant as well as
candidate at the Peripheral Systems Laboratory (LSP) of EPFL. My main research
was focussed on the design and development of a new parametrisable font sy
system.

From Oct. 1994 to Jun. 1995, I worked as a technical consultant at the HuaG
Electronics Group Inc. (Beijing) for the development of a Chinese photocompo
system. I was in charge of the high-quality high-speed Chinese character raster
technology.

From Sep. 1992 to Aug. 1994, I was a research assistant at the Computer S
Department of Nanjing University (Nanjing, China). I took part in a national rese
project related to the flexible application of Chinese outline fonts. I designed
developed an automatic hinting system for Chinese outline fonts based on auto
stroke separation.

From Sep. 1991 to Aug. 1992, I was a teaching assistant at the Computer S
Department of Tsinghua University (Beijing).

In 1991, I received a Master degree in Computer Science and Application
Nanjing University. For the thesis, I developed a prototype PostScript interpreter w
extension to describe and print Chinese outline characters.

In 1988, I received my Bachelor degree in Computer Science from Nan
University.

	SYNTHESIS OF PARAMETRISABLE FONTS BY SHAPE COMPONE...
	Thanks
	Abstract
	Résumé
	Table Of Contents
	CHAPTER 1 CHAPTER 1 Introduction
	1.1 Preface
	1.2 Previous work in font parametrization
	1.3 Contents of this thesis
	1.4 Terminology

	CHAPTER 2 CHAPTER 2 Structures and components
	2.1 Structure of characters
	2.2 Components
	2.3 Summary

	CHAPTER 3 CHAPTER 3 Font parametrization
	3.1 Earmark-based refinement of structure graphs
	3.2 parametrizable character synthesis methods
	3.3 Parameter files
	3.4 Technical issues regarding the font synthesize...
	3.5 Summary

	CHAPTER 4 CHAPTER 4 Implementation of the parametr...
	4.1 Classes
	4.2 The implementation of the parameter hierarchy
	4.3 Output forms of synthesized characters
	4.4 Automatic optical spacing
	4.5 Automatic hinting and grid-fitting
	4.6 Evaluation
	4.7 Summary

	CHAPTER 5 CHAPTER 5 Experiments and applications
	5.1 A visual environment
	5.2 Typographical experiments and applications
	5.3 Summary

	CHAPTER 6 CHAPTER 6 Conclusion and future work
	APPENDIX A The b value for a quarter of an arc
	APPENDIX B The b value for approximating an ellips...
	APPENDIX C Proof of parameter h
	APPENDIX D Description of characters by components...
	APPENDIX E Enlarged resynthesized component-based ...
	APPENDIX F The variation cube of “e”
	APPENDIX G Parameter files of parametrisable Times...
	Curriculum Vitae

