SYNTHESIS OF PARAMETRISABLE FONTS BY
SHAPE COMPONENTS

THESIS N° 1905 (1998)

PRESENTEE AU DEPARTEMENT D’'INFORMATIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR LOBTENTION DU GRADE DE DOCTEUR ES SCIENCES TECHNIQUES

PAR

Changyuan HU

Master of Computer Science and Technology, Nanjing University, Nanjing, Chine
de nationalité chinoise

acceptée sur proposition du jury:
Prof. R. D. Hersch, directeur de thése
Prof. J.P. Buser, rapporteur
Dr. J. Gonczarowski, rapporteur
Dr. P. Karow, rapporteur

Lausanne, EPFL
1998

Thanks

| wish to express my gratitude to my thesis advisor professor Roger D. Hersch, the
head of the Peripheral Systems Laboratory (LSP) of the EPFL, for the unique
opportunity he offered me to do research work in his laboratory, for guiding my research
from the start to the end, and for providing me the best research environment.

Many thanks to all my colleagues in the LSP, who were always there to help me
with small and big problems from updating computer systems to translating French. |
thank in particular Dr. Patrick Emmel for helping me in understanding regulations and in
setting up the typeset format of this thesis. | thank Oscar Figueiredo for translating the
abstract of this thesis to French. Isaac Amidror helped me to improve the English of
some parts of this thesis. | thank him. | also want to thank Fulco Houkes for developing
the visual interface.

| wish to thank also professor André Gurtler, from Basel School of Design, for
correcting the shape of our synthesized characters.

* % %

And finally, many thanks to my parents and all my family.

Abstract

Typographic characters implicitly incorporate structure elements such as stems, bars,
round parts, arches and serifs, which are repeated throughout the characters of a font.
Although this structure information is important when typographers design typefaces, it
is however not explicitly described in today’s outline font technology. As a consequence,
coherently varying the style of an outline font has to be done by modifying contours of
all characters in the font.

We propose in this thesis a new highly flexible font description method, which
explicitly describes characters as structure elements, i.e. as assemblies of parametrisable
shape components. Structure elements are either predefined parametrisable components
such as stems or bars of parametrisable width, or can be described by assemblies of
parametrisable shape components such as sweeps and half-loops. Terminal elements are
either predefined parametrisable serif shape components or are described by components
such as sweeps and ellipse-like round parts and by boundary correcting paths. The
component based character synthesis method is illustrated by the reconstruction of the
basic characters of a few traditional text typefaces.

Using this method, we have developed a prototype of our component based
parametrisable font synthesis system. Fonts are characterized by the font independent
structure of individual characters, by typeface category information (serif types, junction
types, squareness and obliqgueness of round parts), by font-dependent global parameters
and by further font-dependent parameters, referring either to a group of characters or to a
single character. By varying global parameters, derived fonts can be created which vary
in width, weight, contrast and shape. Such derived fonts are useful for producing high-
quality condensed text, for varying the character weight and for optical scaling. Varying
the typeface category information as well enables exploring parts of the traditional Latin
character design space.

We show the high quality of our synthesized fonts by synthesizing characters of
some existing typefaces (Times, Helvetica and Bodoni). To demonstrate the application
potential of this method, we have successfully accomplished typographical experiments,
which are beyond the capability of traditional outline font technology, such as variation
of weight, condensation, height proportion, contrast and oblique stress, and optical
scaling for printing at different physical sizes.

Réesumeé

Les caractéres typographiques comportent implicitement des éléments de structure tels
que des jambages, des barres, des parties arrondies, des arches et des empattements qui
sont répétés sur tous les caracteres d'une méme police. Bien que cette information de
structure soit importante et qu'elle soit présente lorsque les typographes dessinent les
polices, elle n'est pas exprimée explicitement par la technologie actuelle de
représentation des caracteres par contours. Par conséquent, pour modifier de facon
cohérente le style d'une police, il est actuellement nécessaire de modifier les contours de
tous ses caracteres.

Nous proposons dans cette these une nouvelle méthode de description de fonte
extrémement souple qui décrit explicitement les caracteres d'apres leurs éléments de
structure, c'est-a-dire un assemblage d'éléments de forme paramétrable. Les éléments de
structure sont soit des composants paramétrables prédéfinis tels que des jambages ou des
barres de largeur paramétrable, ou bien ils peuvent étre décrits comme des assemblages
de composants géométriqgues paramétrables tels que des "tracés de pinceaux" ou des
demi-boucles. Les éléments terminaux sont soit des empattements paramétrables soit des
composants formés par des tracés de plume, des ellipses et des courbes de correction de
contour. La méthode de génération de caracteres a partir de composants géométriques est
illustrée par la reconstruction des caractéres de base de quelques polices classiques.

En utilisant cette méthode nous avons réalisé un prototype de systeme de
génération de polices a partir d'éléments de formes paramétrables. Les polices sont
caractérisées par la structure inhérente des caracteres indépendemment de leur police,
par une information de catégorie de police (types de jambage, types de jonction, arrondis
ronds ou carrés verticaux ou obliques), par des paramétres globaux spécifiques a la
police et par d'autres parametres spécifiques a la police relatifs a un groupe de caracteres
ou a un caractere individuel. En jouant sur les paramétres globaux, on peut créer des
polices dérivées, variant en largeur, graisse, contraste et forme. De telles polices sont
utiles pour produire du texte condensé de haute qualité, pour changer la graisse des
caracteres ou bien pour l'ajustement optique des caractéres. La modification des
parametres relatifs a la catégorie de la police permet également d'explorer certaines
variations de parties de lI'alphabet latin.

Nous montrons que la qualité des polices produites est bonne lors de la
reproduction des caracteres de polices existantes (Times, Helvetica, Bodoni). Pour
explorer le potentiel d'application de cette méthode, nous avons mené a bien un certain
nombre d'expériences typographiques au-dela des capacités de la technologie
traditionnelle de description de polices par contours telles que variation de graisse,
condensation, modification de la proportion hauteur des minuscules / hauteur des
majuscules, augmentation du contraste, accentuation de la nature oblique des caractéres
arrondis et ajustement optique des caracteres pour l'impression a différentes tailles.

Table Of Contents

1. Introduction

5
LA Preface e 5
1.2 Previous work in font parametrization. 7
1.3Contentof thiSthesis e 8
1.4 Terminologyo oot e 10
2. Structures and components 11

2.1 Structure of characCters 11

2.1.1 Character StrUCIUIe. oo e e e e e 11

2.1.2 Structure element connectinggraph 12
2.1.2.1 Basic structure elements in structure graphs

................... 13
2.1.2.2 Basic connections in structuregraphs 13
2.1.23 Designof structuregraphs 16
2.1.2.4 Refinement of structuregraphs. 16
2.2 COMPONENTS . . . oo e e 17
2.2.1 Components for straight strokes 18
2.2.2 Curves suitable for font parametrization. 19
2.2.2.1 Modelling quadrant Curves 19
2.2.2.2 Curvature of single curve segment. 21
2.2.2.3 Curvatures of successively connected curve segments 24
2.2.3 Components forround partsc.oo i e 28
2.2.3.1 Theloop cCOomponent.t 28
2.2.3.2The half-loopcomponent 30
2.2.3.3The sweep COMPONENtttt 31
2.24 Componentsforterminals. 34
2.24. 1 Theserifcomponent. 34
2.2.4.2 The slant-serif component 38
2.24.3Thedotcomponent. e 39
2.24.4The pathcomponent e 41
2.3 SUMMIAIY . . ottt e e e e e 41
3. Font parametrization 43
3.1 Earmark-based refinement of structure graphs 44
3.1l Serif Styles . . 44
3.1.2 Analysis on common earmarks 45
3.2 Parametrisable character synthesismethods a7
3.2.1 Component position dependency 47
3.2.1.1 Relationships between components a7
3.2.1.2 Component dependency graph 50

3.2.1.3 Methods to specify dependency

3.2.2Component Shape tuniNg.t e
3.2.2. 1 DIMENSION. . o ottt e et e e e e 53
3.2.2.20rentation e 54
3.2.2.3 CUIVALUIE. . . . o ot 55

3.2.3 BOUndary COMECHIONo e e e e 56
3.2.3.1 Trim extension of componentoutlines. 56
3.2.3.2 Smooth corner of intersected components. 60
3.2.3.3 Hand tuned boundary correction 61

3.2.4 The complete parametrisable character synthesismethod 62

3.3 Parameter files 65

3.3.1 Coordinate SYStemM 65

3.3.2 Parameter hierarchy. 67
3.3.2.1 Global parameters and local parameters 67

3.3.2.2 Local parameter grouping.o vttt 68
3.3.2.3 The parameter hierarchy. 69
3.3.3 An example of parameterfiles. 70
3.4 Technical issues regarding the font synthesizer., 72
3D SUMMAY. . . o e 74
4. Implementation of the parametrisable font synthesizing system 75
A] ClaSSBS . o vt ittt 75
4.1.1Thebase Class e e 76
41.2Thederived Classes e 78
4.1.30ther Classes 79
4.2 The implementation of the parameter hierarchy 81
4.2.1 Parameter files 81
4.2.21Implementation 83
4.3 Output forms of synthesized characters. 84
4.3.1 Component-based rasterization of synthesized characters. 84
4.3.2 Outline generation of synthesized characters 86
4.4 Automatic optical SPaCINgo vttt 88
4.4.1 The principle of automatic optical spacing. 88
442 Theimplementation. 89
4.5 Automatic hinting and grid-fitting 91
4.5.1 The theory of grid-fittingand hinting 92
452 Theimplementation. e i i 92
4.5.2.1 Automatic generation of traditional hints. 92
4.5.2.2 Grid-fitting component-based characters without hints. 93
4.6 Evaluation.o 95
A7 SUMIMATY. .« o ittt et e e e e e e e e e e 97
5. Experiments and applications 99
99

B.AAvisual environNMEeNt o

5.1.1 Character visualization
5.1.2 Global parameter modification

5.2.1 Font variation

5.2.3 Parametrization of existing fonts

6. Conclusion and future work

References

Appendix A. The3 value for a quarter of an arc

Appendix B. The3 value for approximating an ellipse

Appendix C. Proof of parameter

Appendix D. Description of characters by components

Appendix E. Enlarged resynthesized component-based characters
Appendix F. The variation cube of “e”

Appendix G. Parameter files of parametrisable Times Roman

5.2 Typographical experiments and applications.
5.2.1.1Boldness
5.2.1.2Condensation.
5.2, 1.3 StreSS. . .
52.14C0Ntrast.
5.2.1.5Heightproportion
5.2.1.6 Variations in multiple dimensions.

5.220pticalscaling.

S. 3 SUMMANY. . . oo

117
123
125
127
129
131
135
137

1.1 Preface 5

CHAPTER 1

Introduction

1.1 Preface

The twenty-six letters that we use today have evolved over the course of several
millennia. Although printing is a far more recent phenomenon, the development of type
styles — the refinement of symbols we use to express ourselves in writing — is a process
that began when man first started to communicate. Legibility and beauty might be the
two most important reasons which have continuously driven typographers to refine our
letterforms. To make our written symbols easy to read and write, basic structure elements
such as vertical stems and horizontal bars have evolved naturally in our typefaces. As
man’s knowledge of science accumulated, typographers started to dream: could the
beauty of our characters and their structure elements be represented by mathematics, or

B A8 CD
EFG
LMNO

HORN
1VX

Figure 1.1: The Roman capitals of the Column of Trajan in 114 A.D.

6 Chapter 1: Introduction

Perhaps the closest direct ancestor of our letterform can be dated back to the
ancient Roman Empire. The most important contribution of the Romans to our own
alphabet was the visual refinement of capital letters. The capitals incised in the Column
of Trajan in 114 A.D. have been called the perfect expression of letters (Fig. 1.1).
“Indeed, they are the basis of all of our typefaces” [Labuz88, pp.31]. Roman letters were
engraved with thick and thin strokes and graceful curves. Thicker strokes are usually
referred to as major strokes; thinner stroke are minor strokes. Researchers have found
that the tool required to produce these embellishments was a double-pointed pen. By
shifting the angle of the pen, the Roman could produce lines of any width. When a stone
was to be carved, a sketch of the letter was first made with this tool and then chiselled.
Yet the Roman capitals are not geometrically designed; their beauty comes from the
subtleties of their curves and strokes.

Fourteen hundred years later, the Renaissance humanists rediscovered the old
values of the antique past. During that time, artists tended to find the mathematical rules
of beauty for their art works, and scientific discoveries and methods such as geometry
and the rule of proportion were applied to their artistic designs. The Roman capitals were
therefore naturally described through mathematical constructions drawn with ruler and
compass. For example, Fig. 1.2a, a letterform design from the middle of the sixteenth
century, displays beautiful circles, curves, reference points and lines constructed by
mathematical calculation. The capital letters designed by Frate Vespasiano Amphiareo in
1572 suggest that the width of a main stem should be one eighth of the letter’s height
(Fig. 1.2b). These letter construction models served as references for the punchcutting of
printing types, even though it was not possible to strictly apply those reference lines and
curves onto the small piece of hand-cut steel types.

1N -

_“' ; i

rd

}
i

+

g

w
(a) (b)

Figure 1.2: Character constructions in Renaissance: a) curves designed by circles; b)
regularized proportion of stroke width to character height.

Only with the advent of digital typography were typographers really able to apply
geometry to type design. Computers were used to calculate the geometrical shapes of
characters and the generated character shapes were transferred onto negatives faithfully

1.2 Previous work in font parametrization 7

by digital laser photocomposer. New character design and representation methods were
developed by the cooperation of typographers and computer scientists. Nowadays,
almost every typesetting system produces characters by outlines. The outline font
technology represents a character by its outline description and reproduces the
character’s image by a computer program called the font rasterizer. Outlines are capable
of describing the shape of a character either with straight lines or curved arcs, yet the
outline representation lacks the ability to describe specific typographical information
such as widths of strokes and the squareness of round parts. A problem came up: could
we design and represent characters so as to make sure that typographical features such as
stroke width, serif length and squareness of round strokes could be controlled or
modified? Incorporating typographical information as parameters into the characters’
representation rather than describing characters by their contours — an interesting yet
difficult problem — has attracted both typographers and computer scientists.

1.2 Previous work in font parametrization

The earliest attempt known to describe typographic characters by parametrizable shape
primitives was that of P. Coueignoux, who designed one of the first fully digital
typesetter controllers [Coueignoux81].

The most serious published work done in the field of parametrizable fonts is the
Metafont systema programmable parametrizable font synthesizing system [Knuth86al].
The Metafont system relies on a few basic paradigms for generating characters and
symbols. The main character parts such as horizontal, vertical, diagonal strokes and
round parts are specified by describing the path of a pen with given orientations and pen
widths. The pen’s central path is described by a sequence of pen positions and directions.
From this information, Metafont computes a smooth centerline pen trajectory. With the
given pen positions, widths and orientations, and with the centerline trajectory, Metafont
infers the description of the boundary of the corresponding pen stroke [Hobby89]. Serifs
with font dependent serif width, height and depth information are adjusted to the
computed stroke boundary. The shape boundary resulting from the assembly of serifs
and stroke can either be directly filled, or traced by a small circular pen and then filled. In
addition to strokes defined by pen trajectories, Metafont specifies round character parts
covering one or multiple quadrants fiyperarcsi.e. scaled arcs defined within a single
guadrant whose boundaries are giversiyyerellipse$Kknuth86a, pp.126].

The Metafont program was used by Donald Knuth to create his Computer Modern
typeface family [Knuth86b]. The Computer Modern typefaces were parametrized so as
to automatically generate optically scaled fonts and to generate by simple change of
parametrization sans-serif, typewriter, semi-bold, bold, condensed and slanted roman
fonts. Separate character shape descriptions are used for the italic font. Since Metafont is
both a complete programming language and a flexible font design tool, using it requires
both advanced programming and typographic skills. Only a few individuals in the world
are known to use Metafont, often for the design of non-Latin characters
[Haralambous94] [Southall98]. One of the lessons learned by users of Metafont design-

8 Chapter 1: Introduction

ing Latin characters is that Metafont’s pen paradigm does not offer sufficient freedom to
generate character shapes exactly according to the designer’s intention. This explains
why besides Computer Modern, most Metafont designs for Latin fonts rely heavily on
outline descriptions [Billawala89].

The recent Infinifont system [MacQueen93] [Bauermeister96] is a feature-based
parametrizable font description and reconstruction system. Its authors describe the basic
mechanism to assemble a character such as character “E” from parametrizable vertical
bars, horizontal bars and serifs. However, most of their work is not published and it is
therefore not known how they synthesize different typeface categories and which
paradigms they use for synthesizing curved character shapes and serif variants.

Schneider describes a method for assembling parametrizable pen-based strokes
into typographic characters [Schneider98]. Regarding Latin character shapes, the method
suffers from the same limitations as Metafont. It seems however particularly well suited
for synthesizing Chinese characters. The method of assembling characters by
parametrizable strokes has already been tried for Chinese characters [Dong91] [Fan91]
[Dirst93]. Industrial implementation has shown that good results can be obtained when
the stroke-based Chinese characters are used for lower resolution applications. For high
resolution applications, however, the quality of the reproduced characters is still not
satisfying especially for connections and curved strokes.

Some researchers try to incorporate additional information (constraints) to the
outline representation of characters [Shamir98] [Zalik95]. They use this information to
constrain the relationship (distance or spatial order) between vertices of character
outlines and, possibly, the moving directions of vertices when the outlines are modified.
By carefully specifying these point-to-point constraints, some typeface variations such as
variation of boldness can be carried out. But, for more complex typeface variations, it is
difficult to predicate the behaviour of each contour point and thus to specify their
constraints. For example, for varying the contrast and oblique stress of a font, it is not
sufficient to constrain the trajectory of some character contour points to straight lines.
Adding constraints to character outlines seems to be more suitable for grid-fitting
character outlines during the process of rasterization. For example, some of the
instructions used in TrueType [Microsoft95a] fonts specify the grid-fitting method by
constraining the behaviour of character outline points.

1.3 Contents of this thesis

In this thesis, we propose a component-based parametrizable font representation method
and the implementation of its prototype. Traditional Latin letter shapes which derive
from Antiqua and Grotesque (sans-serif) typefaces [Tschichold65] can be decomposed
into basic structure elements: vertical stems, round parts (also called curved shape parts
or bowls), arches, horizontal bars, diagonal bars, serifs and terminals. Conversely, our
aim is to synthesize traditional letter shapes by coherently assembling such basic
structure elements (Fig. 1.3).

1.3 Contents of this thesis 9

top serif <7 "] round/curved ¥/
elements
ascender ﬂﬂ ;ﬂ_
stem xheight
stem || |
footserif.J;L._ .& J LJ -

Components —— > Assembling ———— Outlined or filled

Figure 1.3: Assembling a character by basic structure elements.

The challenge resides in defining parametrizable geometric shapes (components)
with which most instances of structure elements can be synthesized. We propose both
components for structure elements representing straight strokes such as stems, horizontal
bars and diagonal bars, as well as components for curved structure elements such as
round parts and arches. Components are also designed to describe serifs and terminals. In
order to support different typeface categories, we also propose a set of standard
parametrizable junctions between shape components. The research work and the results
of this thesis will be presented in chapters 2 to 5.

In chapter 2, we analyze and describe the character structure by a structure element
connecting graph. Then, we present in the same chapter our desagmnpainents— the
basic typographical shape synthesizing primitives. To derive our model for the
parametrization of curved structure elements and strokes, our research on curve
descriptions suitable for parametrizable fonts is presented.

In chapter 3, we present the model and principles of our parametrizable font
synthesis system. Characters are synthesized by using a set of parametrizable character
synthesis methods, one basic method for each character. To generate the character
components, the system makes use of hierarchically organized parameters.

In chapter 4, a prototype implementation based on the C++ programming language
is given. Ideas presented in chapter 2 and chapter 3, such as the hierarchical parameter
organization, will be realized by the prototype implementation. Technical problems
regarding rasterization, automatic optical spacing, grid-fitting and automatic hinting are
discussed.

Typographical experiments are presented in chapter 5. These experiments
demonstrate the capabilities and application potential of the proposed parametrizable
component-based font synthesis system.

10 Chapter 1: Introduction

1.4 Terminology

In this thesis, traditional typographic terminology [Labuz88, pp.23-25] and the terminol-
ogy used in digital typography will both be used. Sometimes, there is a little inconsis-
tency between the traditional meaning of a term and its explanation according to today’s
computer font technology. In such a case, the meaning should adapted to the context.

» A typefaceis a distinctive design for a set of visually related symbols. A
typeface represents an abstract design idea for how letterforms are to be
presented.

» A typeface familys a collection of typeface variations based on a single design.
For example, Helvetica is a type style design. The Helvetica typeface family
may contain Helvetica normal, Helvetica light, Helvetica bold, Helvetica
condensed, Helvetica italic and other typefaces.

» This thesis focuses otext typefacesand not ondecorative typefaceslext
typefaces are used for the continuous setting of text in books and newspapers.
Legible, suitable and aesthetically pleasing letters are critical to text typefaces.
Decorative typefaces (mainly created in the 19th century) are used for
decoration purposes in which attractiveness, novelty and loudness are
emphasized. The distinction between them can be found in Rockledge’s famous
Typefinder system [Rockledge91].

» A fontis a particular example of a typeface, traditionally in a particular size, and
contains symbols for each element of a particular character set. In digital
typography, since outline fonts are scalable, a font is often a file containing
description data for shapes of all characters which can be scaled to any
particular size by computer programs. It seems that there is no practical
difference between a scalable digitaht and atypeface

» A parametrizable fontis a font with parameters controlling typographical
features. Not only the size of a character is scalable, but also the style of
characters can be varied. By changing certain parameters, a paramefiziable
may generate all typefaces or scalable fontstypeface family

* A glyphis an individual symbol which appears when it has been printed. In
digital typography, a glyph is represented either in the form of an outline or a
bitmapped image (array of dots) that is to be displayed or printed.

* A character synthesis methad a C++ object member function specially
conceived for the typeface-independent generation of a given character (for
example ASCII character “m”).

2.1 Structure of characters 11

CHAPTER 2

Structures and components

In out font parametrization method, a character is constructed by pieces of basic
descriptive shapes, called compone@@mponentsre connected to or placed between
each other according to siructure graphwhich describe their relationship, i.e. the
character structure. The structure graph is a conceptual model used to describe the
component decomposition of characters and, conversely, the assembling of characters
from their components. In this chapter, we first present our methodology to describe the
structure of characters. Then we will introduce the basic components we have designed
and our method to parametrize components.

2.1 Structure of characters

2.1.1 Character structure

While Chinese characters are written by basic strokes, Roman characters are made of
some basic structure elements, such as vertical stems, horizontal bars, diagonal bars,
slanted top serifs, foot serifs, loops, bowls, arches, dots, tails and ears (Fig. 2.1). Nowa-
days, thousands of different text typefaces have been invented. However, one doesn’t
have much difficulty to recognize a letterform in any text typeface. That is due to the spa-
tial ordering of its structure elements (stems, bars, bowls, arches, etc.). The way charac-
ter elements are connected is intentionally maintained across different typefaces. This
kind of intrinsic spatial ordering and connection of elements in a character isotelted

acter structure

ascender
top_f line
ser arch . _

i serif ;
optical : . ighelght
correction ine

.
narrow
round diagonal
‘ Ik part _ bar base
round gscender descender diagonal line
part stem stem bar descender
serif line

Figure 2.1: Some basic elements in Roman letters. This figure shows some important

structure elements.

12 Chapter 2: Structures and components

Previous work on character structure focused on character and feature recognition
as well as character synthesis. C. H. Cox Il and his colleagues [Cox82] studied the rela-
tionship between two aspects of characters: the embellishments of physical characters
and the skeleton of letters. The basic elements of skeletons are (1) vertices, (2) edges
which specify the spatial ordering between vertices, and (3) the relationships between
vertices and edges. An extension of the symbolic representation commonly used in graph
theory was employed to depict skeletons, which made it possible to do some formal
graph analysis. Readers are referred to [Cox82] for a detailed description of the skeleton
model. As an application, the skeleton model was used to bridge between the conceptual
description of a letterform and the corresponding physical embellished character for
character recognition. Cox et al. have also proposed a way to create different fonts by
applying different stroke definitions to their skeleton model.

The idea of using a skeleton to represent the character structure is also used in
other frameworks for different purposes, such as finding typographical features
[Herz97], creating thin line or skeleton fonts [Gonczarowski98], and describing the track
of a pen [Knuth86a]. However, for the sole purpose of building parametrizable fonts, we
found the skeleton representation to have some disadvantages. Firstly, skeletons are
suitable for describing the bones of characters, but not for describing their flesh.
Secondly, according to the typographer’s point of view, the meaning of a character
skeleton is not very clearly defined. It is often assumed that the skeleton is the midline of
a character. Should midlines of embellishments such as serifs be parts of the skeleton?
Cox’s work is a good abstraction which puts emphasis on the relationship and connection
of “vertices”. It might be suitable for letterform shape analysis. But for character shape
generation, the typographical meanings of the vertices and edges are not defined and
hence, not suitable for synthesizing parametrizable fonts.

The description of character structure for high-fidelity font parametrization should
be capable of (1) describing the essential ordering of different parts in a character, and
(2) refining the shape of the parts and their connection types.

2.1.2 Structure element connecting graph

We use the ternstructure element connecting grapbr structure graph to describe
character structures. The purpose of a structure graph is to explain how a character is
decomposed into structure elements and, how these structure elements are assembled
into a full blown character.

The symbols used in structure graphs are structure elements and connections.
Structure elements are typographically functional parts, such as vertical stems,
horizontal bars, full or half loops, and serifs. Structure elements can be synthesized by
one or more components (see section 2.2 for a detailed description of component
design). The order of structure elements in a structure graph reflects the natural spatial
ordering of the corresponding parts in a character, but not their physical positions. A
structure element can either be connected to one or to more structure elements or be
simply isolated. If two structure elements connect, a line is drawn connecting them. The

2.1 Structure of characters 13

connection of two structure elements will be implemented by means of operations or by
a special connecting component (to be discussed later).

2.1.2.1 Basic structure elements in structure graphs

Three kinds of basic structure elements are introduced in the structure graph: straight
strokes, round parts, and terminalStraight strokesrepresent all visually (not
geometrically) straight strokes, which include vertical stems, horizontal bars and slanted
or diagonal barRound partgepresent all curved or round strokes, which include loops,
half loops, arches, bowls, counters, dots, etc. Stems and round parts build up the main
body of characters. These body strokes are often terminated by some styled shapes,
which are callederminals Serifs and pears are common terminals for straight and
curved strokes respectively. The graph symbols that we defined for straight strokes,
round parts and terminals are shown in Fig. 2.2.

structure elements:

—1 horizontal bars

|:| vertical stems straight strokes

X/ diagonal stems

O round parts
A terminals

Figure 2.2: Straight strokes, round parts and terminals used in structure graphs.

Note that symbols are designed to try to reflect the common shapes of the
corresponding part in a character. However, round parts and terminals are abstract
symbols, which may represent very different shapes. Hence refinements are often
necessary for these elements. Refinement of round parts and terminals are discussed in
section 2.1.2.4.

2.1.2.2 Basic connections in structure graphs

Connections, or junctions between structure elements, are simply represented by lines.
There are four different junction types used in the structure grapes:link, join and

cross Names for these junction types are partly inspired by [Cox82] but oriented towards
physical typefaces. However, these junctions types often cannot be one-to-one mapped to
physical character shapes. They are conceptual types of connections. The

14 Chapter 2: Structures and components

implementation of these connection types may require additional sub-types as a means of
refinement. Symbols of junction types are drawn in Fig. 2.3.

connections:
any junction
“«—> meet
- > link

—— join (miter join)

— Ccross

Figure 2.3: The types of connections used in structure graphs.
1) meet

Two structure elements, which may be of any type, connect each other at their
ends. Most of theneetjunctions are smooth. But not necessarily absolutely smooth. The
meetjunction is often applied when a stem connects to a serif, a stem connects to an arch
or any round part, two round parts connect to each other, etc. In the structure graph, the
meetjunction is a vertex with two edges, or a vertex of degree two (Fig. 2.4).

J \‘
‘ «—— vertex of
degree 2
7 1
y ¢

Figure 2.4: Themeetjunction.
2) link

The end of one structure element is buried in the body of another one. Both
structure elements can be either stem or round part. This kind of junction is very
common when a stem is connected to a round part to produce an “dmk’juxction is
a vertex of degree three (Fig. 2.5).

2.1 Structure of characters 15

/®
N T vertex of
degree 3

Figure 2.5: Thelink junction.
3) join

Two stems connect at their end and form a sharp angle, less than 90 degree, on the
internal side and a miter and limited tip on the external side. Although in respect to graph
theory, thgoin junction is also a vertex of degree two, it is quite different frormtéet

junction. Thejoin junction is a sharp angle and certainly not a smooth connection.
Typical examples gbin junctions are character “v”, “w” and “z” (Fig. 2.6).

¥
b RN 7%

Figure 2.6: Thejoin junction.
4) cross
Two stems or possibly round parts overlap each other. In the terminology of graph

theory, thecrossjunction is a vertex of degree four. Typical examples are character “f”,
“t” and “x” (Fig. 2.7).

g vertex of
degree 4

Figure 2.7: Thecrossjunction.

16 Chapter 2: Structures and components

2.1.2.3 Design of structure graphs

Structure graphs are designed for the purpose of font parametrization. In order to
parametrize most of the text typeface, one structure graph should be able to describe a
character for many typefaces. Practically, we found that for most of the Latin characters,
one structure graph may describe different text typefaces. Only a few characters need
design variations, such as the double-storey “a” and the single-s&irésid. 2.8), and

the looped “g” or the tailedg”.

To design the structure graph for a character, first we should carefully study the
character shapes in different typeface. Then, the essential font-independent structure
elements for the body of the character are abstracted, which include straight elements
and round elements. The ways they connect one to another are also specified during the
separation of structure elements. Decorations at the ends of body elements can be
represented by terminal elements. Note that in serif typefaces terminal elements are often
serifs or bulbs (pears). In sans-serif typefaces, we should allow the terminal to be null to
avoid designing variations of structure graphs. Examples of basic structure graphs are
shown in Fig. 2.8.

I
o
. @
/\
“d” “h" “a “a

Figure 2.8: Examples of basic structure graphs. Character “a” has two structure graphs
which are designed for double-storey and single-storey respectively.

2.1.2.4 Refinement of structure graphs

Both structure elements and connections in the basic structure graphs can be refined.
Fig. 2.9 gives an example showing the refinement of structure elements and the corre-
sponding components (see section 2.2 for the definition of components).

In the refined structure graphs, shortened names of components can be used to
mark the refinement of a structure element. For exansplstands for stemsw for
sweep sf for serif, tsf for top-serif,Ip for loop andhlp for half-loop, etc. Some structure
elements, such as stems and bars, can be synthesised by a single basic component.
Others, such as round parts and terminals, may need two or more components.
Connections in structure graphs will normally be implemented by connecting sweeps

2.2 Components 17

and some kind of parameter dependencies. In fact, connections are more complex than
the four predefined basic connection types. Therefore, junction variations may
sometimes be needed. In the next chapter (Chapter 3), we will discuss in detail how to
synthesize characters according to their refined structure graphs (components and
parameters).

ath T
dot @?\

swil st

sw7

SW2 SW3 SW6

Figure 2.9: Refinement of structure elements and the corresponding components.

2.2 Components

The structure graphs discussed in the previous section enable us to separate a character
into basic functional structure elements. In this section, we discuss about how to
synthesize these structure elements by computer.

The challenge resides in defining parametrizable geometric shapes enabling to
synthesize most instances of structure elements. We propose some basic shape
synthesizing primitives for structure elements representing straight strokes, round parts
and terminals. We see these shape synthesizing primitives as generators which take some
parametersas input and creamontoursof these basic shapes as output. We call these
synthesized basic shapesmponents since they can be assembled into structure
elements and, eventually, characters.

Contour: The contour of a 2-D character shape is represented by pieces of segments including
straight lines and Bézier curves. In this thesis, contours are often specified by the list
of their vertices.

Component: The term component refers to a basic geometric shape used for the synthesis of a
part of a character.

Parameters of componentParameters of a component can be regarded as arguments of a
function. They are real values for coordinate, dimension (width or height), angle and
attributes. Parameters in a font are managed in a hierarchical manner. How to prepare
parameters for components is discussed in the following chapters of this thesis.

Components represent the concretization of structure elements by geometric
shapes. There are some goals we should aim at. Firstly, components should be flexible

18 Chapter 2: Structures and components

and intelligent enough to enable style coherent modifications of characters. The
synthesized shapes should response reasonably to a change of input parameters. For
example, when the width at the horizontal extremum of a loop changes, the whole curve
should also be adapted to maintain some curvature properties. Secondly, the less
parameters, the better. Reducing the number of parameters does not only save space, but
also simplifies the way to control, or tune, the shape of components.

2.2.1 Components for straight strokes

Straight strokes represent vertical stems, horizontal bars and diagonal stems. No matter
what orientation they have, the two sides of the stroke are parallel. Essentially, straight
strokes can be described by their position, orientation and width. The component we
designed for straight strokes is named the stem component, or stem. The basic design of
the stem component is shown in Fig. 2.10.

D reference line
D
_w _
\ Py
C
reference line
A

Figure 2.10: The basic design of treemcomponent.

Thestemcomponent needs a departure pBpand a arrival poin®; to specify its
position and orientation. The width of the stroke is given by parameighich is the
geometrical distance between the two edges. The ends of a stem are terminated by either
reference lines, such as xheight line and base line, or by lines perpendicular to its
orientation. The later case is called a butt terminal. The synthesized stem component is a
quadrangle labelled by its vertexesACD.

We found that straight strokes in most of the text typefaces can be synthesized by
the basic design of the stem components. Their two long edges are visually absolutely
straight and parallel. However, some text typeface exist in which straight strokes have
slightly concaved edges (Optima, for example). Some fonts even incorporate non-even
width straight strokes. To parametrize these kinds of fonts, enhanced designs of the stem
components are possible. The enhanced stem component requires additional parameters
to specify the depth of the concaved edges and the different width at the two ends of the
stroke (Fig. 2.11).

2.2 Components 19

——>
D P C o ___ DI P1 Cc ___ referenceline
| X (
I | \
| |
| |
I [
1 |
| [
'l | edgesare | | edges are
! ! ! concaved |1 | notparallel
|- I
| | I |
! w ! ! | I i
| !
L [oy [___ referenceline
A Po B Al Po B
o]
|

Figure 2.11:Possible enhanced design of the stem component.

2.2.2 Curves suitable for font parametrization

Before discussing the components for round parts, let us discuss our method of curve

representation for parametrizable fonts. Curves are one of the most sensitive aspects of
the aesthetic feeling of character shapes. In today’s outline font technology, the curves

which are employed to represent contours are cubic Bézier splines, quadratic B-splines

and circular arcs. Industrial practice shows that cubic Bézier splines are most suitable for

representing character outline parts and therefore also curved component contours. This
is mainly because the slope of the curve can be easily controlled by successive pairs of
on-curve and off-curve points.

2.2.2.1 Modelling quadrant curves

A cubic Bézier spline is defined by two end pointsaBd B;, and two control points, B
and B,. We also refer to Band B; ason-curvepoints, and to Band B, asoff-curve
points. The polygon made byBB;, B, and B is called the control polygon. The cubic
Bézier curve can be represented in parametric form as

B(t) = (1 - tBg + 3t(1 - tfB; + 32(1 - t)B, + 3B (2.1)

where, t = [0, 1]. Because the coordinate of each point contains two values (x and y), a
cubic Bézier curve generally has eight free parameters.

Several pieces of Bézier curves can be connected smoothly to synthesize a long
complex desired shape. It has been noticed that if the Bézier curves start and end at the
locus of the local extremum of the desired shapes, it is easy to grid-fit them in order to
rasterize them at a given resolution. Therefore, outline fonts are regularized to have
Bézier spline end points at horizontal and vertical extrema [Stamm94b]. In our font

20 Chapter 2: Structures and components

parametrization method, we keep this condition for the contours of components.
Therefore Bézier splines for component descriptions are limited to one quadrant
(Fig. 2.12b). As Fig. 2.12 shows, a Bézier spline occupying exactly one quadrant (for
example the curve in Fig. 2.12b occupies the 3rd quadrant) has only six free parameters.

y
X0,yo X0,y0|Bo B1 = |BoB1| / |BoA|
B2 = |B3B2| / |B3A|
X2,y2 B1
X1,y1 X1=X0,Y1
h B2 B3
A X2,y2=y3 X3,y3

X3,y3
() (b)

Figure 2.12:(a) A random Bézier spline has eight free parameters, while (b) a Bézier spline
occupying exactly one quadrant has only six free parameters.

Suppose BB; and BB, intersect at point A (Fig. 2.12b). We define the relative
positions of the control points;Band B, by parameter§; = |ByB4| / |ByA| and, =
|B3B,| / |BsA|. Given departure pointgBarrival point B and the quadrant number, the
parameter$, andf, control the shape of the quadrant curve. We refer in this thesis to
the curves defined by tifieparameters g8-Bézier curve®r 3-Bézier splines

(a) [BoB1| = |BoA| * B (b) [BoB'1| = |BoA'| * B1
Bo Bi A A' Bo B A

Figure 2.13:Stretch a quadrant Bézier curve: (a) original curve, in whigtBBand A will
be stretched right by vector v; (b) control pointdgfined by paramet@; can adjust itself
reasonably.

One of the reasons we model quadrant curves @iBezier splines is that
parameterg3; and 3, define control points Band B, with some intelligence. For
example, curves representing the contours of the round part of a character can be
adjusted reasonably in response to a weight (stroke width) change. In Fig. 2.13, we pick

2.2 Components 21

a curve in the first quadrant, which can be found in many characters such as “o0”, “p” and
“b”, and stretch it horizontally by vector v, so as to make the character bolder. With the
[-Bézier spline method, we can adjust the control points properly.

2.2.2.2 Curvature of single curve segment

With the aim of synthesizing loops, let us analyse the flexibility offere@-Bgzier

curves. Our first experiment is to see how the curvature behaves in response to the
varying of parameter8; andf,. Curvature radius R of a parametric Bézier spline (2.1)

at the point B(t) = [x(t), y(t)] is given by the formula

()2 (y (1))¥2
R = Oy O —x" Oy (O @2)

And the curvature k, which is the reciprocal of curvature radius, is defined as
k=1/R. (2.3)

For a Bézier curve defined by parametric form (2.1), the first and second deriva-
tives of x(t) and y(t) are calculated by

B'(t) = -3(1 - t} By + 3(1 - 4t + 3%) By + 3t(2 - 3t) B, + 3¢ By (2.4)
B"(t)=6(1-t)B) - 6(2-3t) B +6(1-3t)B +6tBy (2.5)
where B(t) = [X'(t), Y(©)]T, B"(t) = [X" (), y" (1)]". Thus the values of curvature radius R
and curvature k of a Bézier curve can be precisely calculated. By computing enough

curvature values at points fromt = 0, to t = 1, one obtains the curvature curve indicating
the variation of curvature along the Bézier curve.

Without loss of generality, we normalize the curve shown in Fig. 2.12b by letting

IYo-Yal =1, [%-xal =1 (2.6)
so that
Bo=(0, 1), B3=(1,0),A= (0, 0). 2.7)
Then we have
B1=(0,1-By, Bo=(1-PB2 0). (2.8)

Varying the parameter$; andf3, from O to 1, we obtain families of curves the
apex of which (point with tangent parallel to baselingBB is located within the
circumscribed triangle #\B3 (Fig. 2.14a). Since curvature conveys the visual informa-
tion associated with a given arc, curvatures corresponding to the plotted Bézier splines
are given in Fig. 2.14b.

22 Chapter 2: Structures and components

Bo 1 t=0 Bi=P1A+ (1-P1)Bo curvature k 4 B=1
EZ)::B[?:AB: (t-P2) Bs 3s5p | |B=0.1

0.8\
= 3

2.5

2

B=0.7
15
1
=1 05 B=0.3
i 0 02 04 06 08 1
Bs parameter t
(@ (b)

Figure 2.14:Family of cubic Bézier splines covering a quarter of arc and their respective
curvatures, obtained by varying paramefirandf,.

From this experiment, we can observe some properties of the curvature of quadrant
Bézier splines. Firstly, the shape of the curvature line varies more rapidly than the curve
itself. This explains why curvatures are suitable for analyzing curves. Secondly, curves
with 3 value greater than 0.7 or lower than 0.4 have widely different curvatures at their
end points and in their central part. Experience shows that curves having high curvature
at their end points and low curvature at their central part (for example curve with
0.4) are not visually pleasant. Thirdly, makiBgvery low andB, very high, and vice
versa, does not affect the Bézier curve very much, but it does affect its curvature (see the
dotted curve and curvature lines in Fig. 2.14).

Controlling the curvature of a Bézier curve is not as easy as controlling its shape.
However, the curvature control at the ends of the curve is important when connecting two
Bézier curves to make a sufficiently smooth long curved section, for example a curve
with CG? continuity (to be discussed in section 2.2.2.3).

The second property shows that curves with meinadues, for example between
0.4 and 0.7, have similar curvatures between their end points and their central part. The
shapes of these curves are rounder and closer to a quadrant of circle or ellipsefSMedian
values seem to be more suitable for font parametrization. They better represent the
outline of real characters from existing outline fonts. For example, if we choose one of
the curves in Fig. 2.14a to approximate the quarter circle in the third quadrant, we will
choose the one whofevalue lies between 0.5 and 0.6. Because the curvature radius of
each point on this curve is very close to the radius of the circle which radius is 1. The
next experiment (Tab. 2.1) has confirmed this property. It is easy to find that the exact
value of3 for approximating a circular arc is around 0.55. One can require the point at

2.2 Components 23

parameter t = 1/2 to have identical coordinates as the corresponding point of a quarter of
a circle, by solving equation

Ao _ [, 2 ,_J2]
B [1—2 . (2.9)

where B(1/2) is the midpoint of the normalized Bézier curyd;B,B; given in
Fig. 2.14a. Another criterion for finding tevalue which approximates a circular arc is
requiring the curvature radius ag Br B; to be the radius of the arc. This requirement
also generatesfavalue around 0.55 (see Appendix A).

Our second experiment is concerned with the third property. WilBoreue be
good enough for the curves of character shapes? A positive answer enables us to save one
parameter and make it much easier to control the shape, or squareness, of the curves.

Table 2.1:3; andf3, values for external and internal arcs of character “o” for different
typeface and their approximation by a singlealue.

External contour Internal contour

3rd quadrant 4th quadrant 3rd quadrant 4th quadran
Bo (B2 | B | & B[B2 | B | & [BL|Ba| B | & |[BL|B2| B | E

Bodoni .544| 538 .541| .062| .538| .544 .541| .062| .699| .978 .842| .574| .978| .699 .842| .574
Clarendon| .639 .584 .611| .125| .584| .639 .611| .125| .656| .659 .657 | .088| .659| .656| .657 | .088
Courier | .609| .504 .557| .252 | .504| .609 .557| .252| .580| .544f 562 | .115| .544| .580| .562 | .115
Helvetica | .830| .40§5 .633| .310| .405| .830 .633 | .310| .434| .728 .590 | .360 | .735| .434] .593| .342
Lucida .574| .660 .618 | .161| .664| .574 .620| .149| .397| .742 .581| .475| .742| .397| .581 | .475
Optima | .606| .538 .537 | .190| .660| .512 .588| .282| .483| .731| .613 | .227 | .760| .351 .571| .613
Palatino | .573| .573 .573| .004| .584| .586/ .585| .129 | .430| .771 .612| .374| .700| .505| .607 | .184
Times .579| 577 578 | .108 | .560| .563 .561 | .143| .597| .599 .598 | .043 | .643| .638 .641 | .051
Universe | .586| .66(.624 | .123 | .660| .586 .624 | .123| .543| .753 .653| .072| .753| .543| .653 | .072

The experiment considers character outlines of round part from several typefaces
described by Bézier splines. It tries to replace them with sigb@arameter Bézier
splines. We have analysed the Bézier splines (quadrant arcs) defining the external and
internal contours of character “0” in various font families (Tab. 2.1). In most dagses,
andf3, values are similar and can therefore be merged into a gingleie expressing
the squarenes®f an arc. Even in the case of widely differ@jtand 3, values, an
intermediate commoR value can be computed by minimizing a difference function
which gives the difference between the original Bézier spline and its approximation with
a single; =B, =B value. Good visual results are obtained by minimizing the sum of the
squares of the distances between points of the new Bézier Bpfi{e) at parameter
valuesu = {0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9} and the original spline
B(t). In Tab. 2.1, parametérgives the mean absolute distance between the points of the
approximating spline (according to the parameter values given above) and the original

24 Chapter 2: Structures and components

spline. In all cases, the mean absolute error disténhees very small when compared
with a typical capital letter height value of 800.

For example, let us consider a Bézier curve segment from the internal contour of
the lower-case letter “0” of font Palatino, which is a stressed serif font similar to Times.
This curve is defined byB= (125, 257), B= (125, 152), B= (163, 13), B= (291, 13),
as shown in the left part of Fig. 2.15. Bgarameters arp; = 0.430,3, = 0.771. We
adjust the two control points;Band B, such thaB3;" = 3," =3 = 0.612 (see Tab. 2.1).

The new curvd8"®u) is placed overlapped on the old d@) in Fig. 2.15a. Fig. 2.15b
shows the curvature radii of the two curves. Comparing the new and the old curves and
their curvatures, we found that the geometric shape of the two curves are very similar,
and that even the curvature of the new curve does not deviate too much from the original
curvature.

Bo
B""(u) = Bo, B1', B2, B3
B1\<{__B(t) = Bo, B, B2, B3 curvature
radius
B1'
old
new

B> B2 Bs

(a) (b)

Figure 2.15:The third quadrant of the internal loop of letter “0” of typeface Palatino is
replaced by the o-Bézier curve with equdd values.

2.2.2.3 Curvatures of successively connected curve segments

If the span of a curve occupies more than one quadrant, it will be approximated by two or
more successively connected Bézier splines. To connect two Bézier curves
P = (RP1P,P3) and Q = (@Q;Q,Q3) smoothly, we require the connection points of the
curves to meet some continuity conditions [Farin90, pp.185-210] [Foley90, pp.480-482].
We distinguish between zero order, first order and second order geometric continuity as
following (Tab. 2.2):

2.2 Components 25

Table 2.2:Conditions of geometric continuity of two connected Bézier curves.

Order of GC Conditions of Bézier curves P and Q
zero order (C§ P3= Q.
first order (CG) cG and tangent directions ag Bnd @ are the same.

second order (C& | CG, normal vectors atfand Q have same direction,
and curvatures atzRand § are identical.

It is easy to reach C@ontinuity, but the condition of C?Cﬁ\,ontinuity is not easy to
meet. Connecting two cubic Bézier curves with?G®ntinuity results in @urvature
continuous yet not necessarily twice differentidbley curve. Currently, curves used in
outline fonts are only required to reach ta®@ntinuity at the connection point. However,
typographers design round parts of characters as a whole curve. Sudden changes of
curvature along a curve are not intended. So, if we try to approximate the real curve with
piecewise Bézier curves, we would like to keep the curvaturegatdPQ as close as
possible, i.e. try to meet the condition of ©&&@ntinuity.

From the discussion in the previous section (section 2.2.2.2), we know that Bézier
curves with mediais parameters have curvatures which do not vary strongly from end
points to central part. If we connect two sUygBézier splines, the curvatures at the
connection points will be more likely to be close to each other. This is obviously true
when we connect four quadrgiBézier splines to approximate a circle. Since the round
part of characters are more like parts of an ellipse, we expect that the ellipse
approximated by four quadrapiBézier splines has also a well behaving curvature.

Let us take a closer look at the curvature radius of an ellipse. Ddgésdhes used
for approximating a circle also work for an ellipse? Since an ellipse can be regarded as a
scaled circle, we expect that the scale transformation applied to the Bézier curve which is
the best approximation of a quadrant circle will generate a Bézier curve which is the best
approximation of a quadrant ellipse. This can be proved again by comparing their
curvature radii. An ellipse can be presented in a parametric form

P(t) = {x(t) =acost, y()=Dbsint[[0, 2r} (2.10)

where coefficient is the half axis length in thedirection, coefficienb is the half axis
length in they direction. Using the example in Fig. 2.15, we hawe(xs - Xg) = 291-125
= 166,b = (yg - y3) = 257-13 = 244. From (2.2) and (2.10), the curvature radius at the

point P(t) = (x(t), y(t)) is
R(t) = (& sirf t + I? co€)32/ (a b) (2.11)

Fig. 2.16a shows the curvature radius for the ideal ellipse. Bsm@.55, each
quadrant of the ellipse can be approximated pyBa&zier curve. The curvature radius of
the best approximating-Bézier spline is shown in Fig. 2.16c. We also show two curva-
ture radii of parametdgd = 0.6 and3 = 0.5 (Fig. 2.16b, Fig. 2.16d). The curvature radius
for 3 around 0.55 is the most similar to the curvature radius of an ideal ellipse. Let us
notice that the parameter of an ellipse and a Bézier curve have not exactly the same

26 Chapter 2: Structures and components

meaning. However, this comparison still holds, since Fig. 2.16(a) and 2.16(b), (c), (d)
represent how curvature evolves along the ellipse and the ellipse-like contour.

/
N\
/
N

V2 T 32 21
(a) curvature radii of an ideal ellipse in four quadrants

o

o
=

(b) p=0.6

-
NN
-l
NN

1
(c) B = 0.55, which is the best approximation of an ellipse.

o

/
N
/
N

o
=

(d)Bp=0.5

Figure 2.16:Curvature radii of the four quadrants of an ellipse: (a) an ideal ellipse; (b) the
ellipse approximated by four Bézier curves v@th 0.6; (c)B = 0.55; and (dp = 0.5. In (b),
(c) and (d), the curvature radius lines of successive Bézier spline segments have been

concatenated.

We can prove that tH{gvalue which creates ideal curvatures for the two end points
when the3-Bézier curve is used to approximate a quadrant of a circle also creates ideal
curvatures for the curve’s ends when it is used to approximate a quadrant of an ellipse

(see Appendix B).

2.2 Components 27

If we model the round part of a character as an ellipse, we can use the Bézier
curves with the ided value to construct its outline. However, an ideal ellipse may not
have the highest visual aesthetic quality for Latin characters. Typographers tend to make
the round part a bit more squared, or fatter, than the ideal ellipse. This can be found from
a statistics of the lower-case letter “0” in real fonts. Letter “0” always specifies the round
part of a letter in a font. In our outline font samples, both the inner contour and the outer
contour of the character are designed by four Bézier splines with their connecting end
points placed at local extrema. The sample fonts are all from commonly used text
typeface. We do statistics on the maximum, minimum and the fhealues of the four
Bézier curves (i.e. among eightvalues) on the outer and inner contours respectively as
well as the meafl values of both contours (Tab. 2.3). The general rBeatue of all the
inner and outer contours are also computed. These statistics show that different letters
“0” designed by typographers havgdaralue around 0.6 (the general mdgamalue is
0.601), a little larger than the idgabf a circle or ellipse.

Table 2.3: Statistics on th@ values of some non-fancy fonts.

[values of outer cont. [values of inner cont. Mearp value

Font name of both
Max. | Min. Mean | Max. Min. Mean | contours
Agfa-Times 0.618 | 0.556| 0.579 0.707 0.528 0.599 0.589
Clarendon 0.639| 0.584 0.611 0.659 0.656 0.657 0.634
Courier Bold 0.62 0.538| 0.578 0.623 0.55f 0.589 0.586
Courier 0.638 | 0.504| 0.563 0.613 0544 0.57 0.567
Frutiger-Roman 0.6 0.547| 0.58 0.692 0476 0.577 0.579
Lucida 0.66 0.574| 0.618)] 0.742 0.397 0.57 0.594
New Century Schoolbook 0.556 0556 0.556 0.654 0.649 0.651 0.604
URW Times 0.583 | 0.558| 0.57 0.643 0.59Fy 0.611 0.591
Palatino 0.631| 0.561f 0583 0.763 0.43 0.605 0.594
Times-Roman 0.639| 0524 0581 0.792 0509 0.6p1 0.591
Univers 0.66 0.586| 0.623] 0.753 0.5483 0.648 0.636
URW Antiqua Normal 0.641| 0.637, 0.639 0.67b 0.654 0.665 0.652
The general mearf3 value 0.601

To summarize, giving some restrictions to the Bézier curve used in font design is
essential to the parametrization of fonts. In our font parametrization method, curves are
always limited to a quadrant so as to be representBgpbyameters. And frequently, the
parametef3; andf3, can be assigned the same value. In this way, we are able to control
most of the curve segments with five free parameters instead of eight, and the curve has a
better curvature and continuity at the connection point of two curves. In our method, a
Bézier curve is often specified by a trianglgAB3 describing the dimension of the
curve, and two proportional valu@s and 3, controlling its curvature. Point A is the
intersection of the extension of vectogE and vector BB, (Fig. 2.12). If a Bézier
curve does not exceed one quadrant, point A always exists. Curves which span less than
one quadrant can be also representef ¥glues.

28 Chapter 2: Structures and components

2.2.3 Components for round parts

Round parts are synthesized by components némopdhalf-loop andsweep Theloop
andhalf-loopcomponents aim at synthesizing ellipse-like round parts of characters such
as the round parts in characters o, b, d, p, d, g. The sweep component is used to
synthesize any round stroke inscribed within one quadrant.

2.2.3.1 The loop component

Theloop component is defined with the aim of parametrizing the shape of letter “0”, or a
round part which looks like “0”. A loop has an internal and an external contour, both are
ellipse-like and symmetric in respect to their center points. The contour therefore can be
modelled by four quadraftBézier splines. For example, character Helvetica “0” can be
modelled by a single loop component, the exterior, respective interior contours being
defined by 4 connected quadrant arcs having a common center (Fig. 2.17a). Character
Times “0” is, however, more complex. While its exterior contour, looking like an upright
ellipse, can be modelled in the same manner as the contours of character Helvetica “0”,
its interior contour looks like an ellipse with an oblique orientation and would require
circumscribed quadrants with 4 different centres in order to describe it by quadrant arcs

N N
NP/ERNND,

a) Helvetica "o" b) Times "o"

Figure 2.17:(a) Helvetica “0” is upright both on the internal and external contours, while
(b) Times “0” has oblique stress on its internal contour.

If we model the oblique stress of the contour as the rotation of an ellipse, we obtain
curve segments whose end points are not located at local extrema (Fig. 2.18a). This is not
what we want. We prefer to have curve end points at extrema. Therefore, we model the
obliqueness of ellipse-like contours with parametevhich gives the offset of extrema
from the upright ellipse. Given half widfhand half height] of the bounding box4p
andAqg being the corresponding displacements at extrema, the paranetfined as

- 4p _Aq
=—= == 2.12
N=% "7 (2.12)

2.2 Components 29

This formula implies that in Fig. 2.18b, line VH connecting the horizontal and vertical
tangential points is parallel to line AB connecting point Agz-(p, q)) and
B = (0., o, +q) of the ellipse’s bounding box. For the proof, see Appendix C.

axis of ellipse
\

- = _0p_Aq
N=p~7
q
A O(ox,0y) y

(@) (b)

Figure 2.18:(a) Modelling the obliqueness as rotation of an upright ellipse results in end
points which are not located on local extrema. (b) Modelling obliqueness by parameter

exterme correction ny

Iy By H,

O

Ky

Figure 2.19: Parameters of the loop componeni; O,, py, P2, G, O, N1, No-

30 Chapter 2: Structures and components

Given the center of an ellipse-like contour, the half widémd half heighg of the
bounding box, the contour’s location, dimension and bounding box can be calculated.
The parameters of the external contour and the internal contour of a loop component are:
the center point®, andO,, the half width of bonding bop; andp,, the half height of
the bounding boxj; andg,, and the extrema correction parametgrandn,. Note that,
both the internal and the external ellipse-like contours are symmetric in respect to their
respective center points. Hence, the four quadrants of the loop component can be
generated (Fig. 2.19). We label the external contour by four successive control triangles
of 3-Bézier curvesA;H,B,, B411,C4, C1J:D4, D1K;A) in counterclockwise orientation
(positive orientation), and label the internal contour AsK{D,, D,J,C,, CsloB,,

BoH,A) in clockwise orientation (negative orientation).

The curvature of the internal and external contours is controlled by the
parameters of the quadrant Bézier splines. To ensure the coherent appearances of loops
in different characters across a font, fhgarameter of loops is provided as a global font
parameter (see section 3.3.3). Witkeontrolling stress or obliqueness, ghdontrolling
curvature, different styles of the character “0” can be simply synthesized by the loop
component (Fig. 2.20).

AN 7N TN MY
_J/ RN\

Times O Palatino O Bodoni O Helvetica O
4

external loop: external loop: external loop: external loop:
3=0.59 B=0.61 3=0.54 B=0.64
n=0 n =-0.07 n=0 n=0

internal loop: internal loop: internal loop: internal loop:
3=0.59 B=0.61 3=0.84 B=0.64
n=0.10 n =0.09 n=0 n=0

Figure 2.20: Synthesizing character “0” in different typefaces.
2.2.3.2 The half-loop component

The round part of many characters can be considered as a half (upper, lower, left or right)
of a full loop (Fig. 2.21a). Thiealf-loopcomponent is designed to synthesize this kind of
round structure element. Besides all the parameters of the loop component, the half-loop
component needs an additional parameter specifying “which” half of the full loop it is.
This parameter is a tag with four possible values specifying left, top, right and bottom
orientation respectively. Since a the shape of a half-loop has no internal contour, the
synthesized shape of a half-loop has only one contour which can be labelled by its
vertexes a®BCDin counterclockwise orientation (Fig. 2.21b).

2.2 Components 31

(@)

C
q |

(@) (b)

bottom

0

d 7,
€

&)

Figure 2.21:(a) Examples of the half loop component, and (b) orientation and labelling of
contours of half loops.

2.2.3.3 The sweep component

Half- Ioops can be used for synthesizing the round parts of letters, such as “b”, “d”, “p”
and “q”. When looking at one of these characters (Fig. 2.22a), one can see that the
curved part connecting the loop to the bar shows a particular behaviour. Its parameters
are not directly related to the parameters of the half-loop. Similarly, the arches of
characters “h” (Fig. 2.22b), “n”, “m” and “u” cannot be conceived as half-loops. They
are curved character parts connecting two vertical stems and therefore need their own
shape description.

sw2 swl sw2
%3 a

swil Sw3 sw6

CY
Figure 2.22:Example of the sweep components.
In order to support connecting elements made of curved parts, we introduce a

shape primitive named thsweepcomponent. The sweep component is used for
establishing the connections between a loop and a vertical stem (Fig. 2.22a) and between

32 Chapter 2: Structures and components

two vertical stems (Fig. 2.22b). It can also be used for creating curved parts such as the
tail of character “g” (Fig. 2.22c) and the round parts of characters “a” (Fig. 2.22d), which
cannot be modelled by loops and half-loops.

A sweepcomponent is defined by a departure segment, an arrival segment, and a
center line connecting the center point of the departure segment and the center point of
the arrival segment (Fig. 2.23). The departure segment is given by end pants &

The arrival segment is given by end poingsaRd Q. The center line is represented by a
Bézier curve B(t) = §B1B,B3. Since B is the center of segmeny®y, and B is the
center of segment_B,, only the control points Band B, need to be provided as
parameters. We can also specify the center line BBézier curve which requires one
control point A and twd3 parameters. Theweepcomponent intends to imitate the
trajectory made by a flat pen moving along the center line from the departure position to
the arrival position. Theweep synthesizing algorithwhich calculates the two edges
(P(t) and Q(t), in Fig. 2.23) of the pen trajectory determines the resulting shape of the
sweep component.

Figure 2.23: Thesweepcomponent is given by a departure segment, an arrival segment and
a Bézier curve connecting their center points.

The first idea of computing intermediate curve points between the departure end
and the arrival end might be by interpolation. One can design algorithms to interpolate
both the pen orientation and the pen width at a intermediate position between the
departure and the arrival ends, and thus calculate the points on both edges (P(t) and Q(t)).
We have tried several interpolating methods. However, we found that interpolating
methods suffer from two shortcomings: (1) they are not efficient since interpolating
requires many calculations; and (2) it is difficult to control the tangent directions at both
departure and arrival ends. Therefore, we developed a sweep synthesizing algorithm
based on the geometric transformation of the center line. This algorithm is used in our
font parametrization system.

Our sweep synthesizing algorithm consists in scaling and translating the center line
from B(t) = ByB1B,B3 to P(t) = RPP,P; and Q(t) = QQ.Q.Q, respectively.
Experiences show that the tangent directions at the ends are very important for the
synthesis of connecting sweep shapes, especially when the sweep is supposed to connect

2.2 Components 33

smoothly to another sweep or half-loop. Most of the sweeps used in our font
parametrization method are within one quadrant. For this kind of sweeps, our sweep
synthesizing algorithm ensures that the tangent directiong atdPQ; are identical to

the tangent direction of the center line gt &1d that the tangent directions gféad Q

are identical to the tangent direction of the center linealnBFig. 2.24, we assume line

PgPa is parallel to line @Qa, and line BP, is parallel to line @Qa. This algorithm can

be generalized by the following steps:

1. Regarding the center line aspBaBézier which is represented by its control
triangle B,BpB3, draw a line P, from Ry so that line fP, is parallel to line

BgBa, draw a line EP, from P, so that line FP, is parallel to line BB,; line
P4Pa intersects line P, at point R.

2. Similarly, draw a line QA from Qq so that line @Qp is parallel to line BBa,
draw a line @QQa from Q, so that line @Q, is parallel to line BBx; line QQa
intersects line ¢, at point Q.

3. Let 31 = BoB1l / BoBal: B2 = B3Bo| / B3Bal, find point R on RP, so that
IP4P1] / P4Pal = B, find point B on RPs so that|P,P,| / P,Pal = By then
P4P1P,P; is the control polygon of the Bézier curve P(t).

4. Similarly, find point Q on QQa so thaiQyQ4| / RyQAl = By, find point Q on

Q.Qa so that|Q,Q,| / RQAl = B then QQ1Q.,Q, is the control polygon of
the Bézier curve Q(t).

ga
B
BA/ B2 P2 3
Pa Pa
Q1
Bl Pl
Bi= BoB1 _ Qdle PdP1
BoBa QdQa PdPa
B, = BsB2 _ QaQ2 _ PaP2
P BsBa QaQa PaPa

/Bo

Qu

Figure 2.24:The sweep component generated by scaling and translating the centerline.

The triangle BBAB3 and RPAP, or Q4QaAQ4 are not required to be similar. By
keeping the sam@ values, we ensure that the transformation frogB,B,B; to
P4P1PoP; and to QQ,Q.,Q, are affine transformations. Therefore, the Beézier curves
P(t) = RP1PPy and Q(t) = QQ,Q.Q, are affine-transformed from the center line

34 Chapter 2: Structures and components

B(t) = ByB1B,B3. These affine transformations ensure that most of the properties of a
Bézier are kept when the curve is adapted to a new dimension. Practically, we found that
this algorithm not only keeps the tangent direction at both ends, it also keeps the
orientation change in the generated curve close to the orientation change of the original
centerline curve. Curve P(t) and curve Q(t) are perceived as harmonious.

Note that there is an important limitation of this algorithm. The Bézier curve of the
sweep’s center line must not exceed one quadrant and must be without inflection point.
Otherwise, the curve cannot be representg¢dBézier format.

2.2.4 Components for terminals

Terminal structure elements represent serifs, slant serifs, dots, pears and any shapes used
to terminate body strokes. Terminals convey very significant information about font
styles, and hence have many variations and are very flexible. Components used to
synthesize shapes of terminals seefs slant-serifs dotand correctingpaths

. bar serif
vertical height
stem supporting bar serif

curve width
f I top
oot foot
serif serif) -
g horizontal J serif
depth height bar slab
R !
base bar serif
line foot serif gerif foot serif width
width slab width bottom
left right
bar
serif
diagonal depth
stem
diag diag
serif / serif
depth depth
(outer) (inner)
N] 1 vert.
base <—,‘ serif
line diag serif gerf diag serif height
width slab width
(outer) (inner)

Figure 2.25:The general description of foot, bar and diagonal serifs.
2.2.4.1 The serif component
Serifs are the most important terminal elements which can be used to terminate vertical

stems, horizontal bars or slanted stems. The foot and bar serifs and their respective
width, height and depth parameters (Fig. 2.25) have been extensively described in the lit-

2.2 Components 35

eratures [Knuth86b] [Karow94]. An essential part of foot and bar serif sldbaevhich
is a line (thick or thin) terminating the respective stem or bar. The corner formed by the
serif slab to its respective stem or bar is often made round by using a curve.

(1) Basic serif design

The basic shape primitive we designed for serifs is¢hécomponent, also called
the foot-serif component (Fig. 2.26). The basic parameters oféng component are
serif width swy and sw,, serif heightshy andsh,, and serif depttsd; and sd,. The
parameterdir, which has values left, right, top and bottom indicates the direction to
which the serif faces. The serif support lilgsl, and |3 define the dimension and
position of the serif (Fig. 2.26a and b) which usually are derived from the stem to which
the serif connects. The support lines are not provided directly, but derived from the stem
component to which the serif connects. The two round corners ABC and HGF are again
B-Bézier splines even though the corner may be sharper than 90 degree (Fig. 2.26b). This
is a special case where we allpvBézier splines to occupy more than one quadrant. The
resulting shape of the serif component is represented as cABRGIDEFGH

Direct parameter: Most parameters have values derived directly from global or local font
parameters. We call them direct parameters. Direct parameters are for example the
stem width, the curved stroke width and the height and width of serifs.

Indirect parameter: An indirect parameter depends on other components. Indirect parameters
are for example required to keep a relation between two components such as a stem
and its connecting serifs. The support lingd,land k of the serif component are an
example of indirect parameters. More about how to provide a component with
parameters will be discussed in the next chapter.

Iy I serif dir: top 1 I
left hvﬂ right
bottom

Y . VA H_o____.

,,,,,,,, A N
sd sds sdx \ sd>
c 2B G S~ F| _ c 7B G/l Fl o
I3 Shll IShz I3 shy IShz

D E E
SW1 SW2 D SW1 SW2
(@) (b)

Figure 2.26:Basic parameters of the serif component.
(2) Enhanced serif design - attributes of serif types

In order to synthesize the various types of serifs described in typeface classification
books [Rockledge91] [Bauermeister87], we introdattebutes which are regarded as

36 Chapter 2: Structures and components

global parameters for the serif component synthesizer. They describe variations in serif
shapes. Currently, we have three serif attribugesf support typeserif end typeand
serif face type

The curves at the corner ABC and HGF are callexif supports The type of a
serif support can bemooth angled straight or none(Fig. 2.27). The smooth serif sup-
port connects both the stem and the serif slab smoothly, as for example the serifs of the
Times typeface. The angled serif support connects the stem smoothly but may connect
the serif slab with an angle. The straight serif support connects the stem to the slab by a
straight line, and hence generates a triangle serif. The support type none means there is
no curve or line to fill the corner ABC and HGF. This serif support type is designed for
slab/square serifs or thin line serifs [Bauermeister87, pp.ix-xi].

sd sd sd
16
SW SW SW —sw
(a) smooth (b) angled (c) straight (d) none

Figure 2.27:Serif support types.

The line CD and EF of the serif component are catrd ends Serif ends can be
butt or rounded(Fig. 2.28). The butt serif end simply connects C to D and E to F with
two straight line segments, as in the serifs of Times Roman. The rounded serif end
connects both C to D and E to F with two semi-ellipses constructed by two Bézier curves
each. The extension of the rounded end is given as a global parameter.

./

[[
| \
\ \
[[
[[
[[
el =
[[
[\

[[
[\
\ \
[[
[[
[[
el =
[[
[\

— e

rounded end extension

(a) butt end (b) rounded end

Figure 2.28: Serif end types.

2.2 Components 37

The line DE of the serif component is callserif face Enhanced serif design
enables the serif face to fbat, smoothly concaver directly concavéFig. 2.29). The flat
serif face simply connect D and E with a straight line, as in Times Roman. The smoothly
concave serif face and the directly concave serif face both connect D to E with a concave
curve made of two Bézier spline segments. The curve of the smoothly concave serif face
connects the serif slab (support liggWwithout an angle, i.e. at the junctions, serif face
and slab lines have an identical orientation. The depth of the concave serif face is given
as a global parameter.

with angle depth of concave face

(a) flat serif face (c) directly concave

without angle depth of concave face without angle

(b) smoothly concave
Figure 2.29: Serif face types.

With these enhanced serif component types, we are able to synthesize most of the
serif styles, such as transitional serifs, slab serifs and wedge serifs. For example, we
demonstrate in Tab. 2.4 how the serif classification according to Rockledge’s Typefinder
[Rockledge91] and the serif classification according to Bauermeister's PANOSE system
[Bauermeister87] are synthesized with the enhanced design of the serif components. The
classification in the Typefinder is based on the history of characters, while the PANOSE
system emphasizes on the geometrical shapes of characters. This table tries to match the
classification of serif types in both systems and describes these serifs with the attributes
(options of serif styles) of the serif or top serif components.

We are also aware that the serif style attributes may be extended in order to
synthesize a specific serif style which is not appeared in Tab. 2.4.

38 Chapter 2: Structures and components

Table 2.4:Analysis of typographical serif types and our enhanced serif component.

Typefinder's PANOSE system’s Description with attributes of the
classifications classifications serifftopserif components

Venetian Serif Cove Serif Most Roman typefaces have these
Old Style Serif Square Cove Serif kinds of bracketed serifs:

Transitional Serif serif support = smooth/angled

New Transitional Serif serif end = butt/round

serif face = flat/concaved.

Modern Serif Thin Line Serif High contrast Roman typefaces,
often no bracket:

serif support = none

serif end = butt

serif face = flat

Slab Serif Square Serif No bracket, or little bracket:

serif support = none or smooth
with very high3 values

serif end = butt (big serif height)
serif face = flat
Wedge Serif Triangle Serif Triangle serif:

(Hybrid Serif) Exaggerated Serif serif support = straight

serif end = butt (very small serif
height)

serif face = flat
Unable to do exaggerated serifs
Sans Serif Sans Serif null serif components

(stroke with various end))(stroke end controlled by the
parameter of stem component)

2.2.4.2 The slant-serif component

The slant-serif also calledop-serif component is designed mainly for top serifs. We
tend to called it slant-serif because it is not only for the top serif, but can also be used to
synthesize the shape of beaks, tips and etc., for example in character “z” and “T”
(Fig. 2.30).

The slant serif can be modelled by the intersection of the stem and a small diagonal
slab (Fig. 2.31), similar to the serif component. Support lipds, |5 are support lines
derived from the stem it connects to. Param@tgives the slant angle between the slab
and the support link. The serif heighsh serif widthswand serif deptlsd parameters
are defined similarly to corresponding parameters of the serif component. Slané a
serifoften has a tip overshoot over the supportliingenerally for optical correction, the
additional parametayvershootspecifies the amount of overshoot. In the basic slant serif
design, the corner DEF and the face ABC are each connected with a Bézier spline with
curvature controlled bf values. The parametdir describes the orientation of the slant

2.2 Components 39

serif, which can be top-rightr], top-left tl), bottom-right pr), bottom-left bl), right-
top (rt), right-bottom (b), left-top (t) and left-bottomIp).

v 11] khE ==
@Cﬁl m CZ q/tip

tail —

~TZEF -

Figure 2.30: The slant serif component can be used for many purposes.

lovershoot
S _F e
J--16 |
//////////IOT ’
| ¢ = /13::::2’: 1 slant serif orientation (dir):
sh e
) /. | tr
T D/_\ ,/ sd t 7I Ir
K It rt
F i/ 7777777 v & ﬂ
b rb
l2 I1
bl br

Figure 2.31:Basic parameters of the slant serif component.

Enhancements similar to the ones applied to the serif component can be also
applied to the slant serif component in order to synthesize variationssarthsupport
serif endandserif facesReaders are referred to the previous section (section 2.2.4.1).

2.2.4.3 The dot component

Thedot component synthesizes ellipse-like character parts, such as the dot on top of the
character “i” and “j”, and the terminal (pear/bulb) of round strokes in character “a”, “f*,

“I” and “r". It can be modelled as an ellipse with a given rotation angle. Therefore,
parameters are the ellipse ceridetwo axes of the ellipseandb, and the rotation angle

6. The method to represent the rotated ellipse is different from that of the loop

40 Chapter 2: Structures and components

component. Here, the rotated ellipse is generated by an upright ellipse, constructed by
four quadrant Bézier splines and rotated by the rotation #élence the end points of

the Bézier may not be located at the local extrema (Fig. 2.32). The resulting contour can
be labelled by its vertexes ABCD.

Figure 2.32: The dot components and its examples.

There are some reasons to allow end points of Bézier spline segments not to be
located on local extrema. First, the dot components are generally small parts of
characters. The advantage of placing end points at local extrema is not obvious here.
Second, an isolated dot in character, such as “i” and ‘", is often upright; however the
terminating dot/pear/bulbs may have an important rotation angle, which cannot be
modelled by parametat as in the loop component. And last, rotating the axes of an
upright ellipse makes it easy to connect the dot to the end of a round stroke, enforcing the

same orientation for the round stroke and for one of the ellipse’s axes.

As an extension, the dot component can also be a rectangle for the purpose of
synthesizing the square dot in some sans-serif font, such as “i” and “” in the Helvetica
typeface. No additional parameter is needed except a flag giving the type (ellipse or
rectangle) of the dot. If the type is rectangle, the dot component will synthesize a
rectangle by four straight line segments instead of quadrant Bézier splines. By the way, a
rectangle dot can also be synthesized by a stem component.

2.3 Summary 41

2.2.4.4 The path component

One cannot expect to parametrize all kinds of terminals with a limited set of predefined
shapes since the freedom of the typeface designer cannot be limited. With the
components discussed above, we are able to synthesize nearly all body and terminal parts
of regular text typefaces. However, there do exist some terminals which cannot be
directly synthesized by the predefined components. For example in the Times Roman
typeface, some sort of smoothing curves are needed for the connection of a round stroke
to a dot terminal in characters “” and “f”. The cross junction of character “t” also needs

to be corrected by a special triangle-like shape (Fig. 2.33).

O
sy sy 7
correctin
path path g —
A0 Q

Figure 2.33:Example of the boundary correcting path.

The path (or boundary correcting pa)hcomponent is designed mainly for
correcting the shapes built by those predefined components. It has no predefined
parameters. The shape of a correcting path is constructed by lines and Bézier curves
given explicitly. Correcting paths are parametrized since their coordinates are only
allowed to have relative values, not absolute numbers. These coordinate values are given
as proportions of global font parameters such-agightand caps-heightand other
components which have already been parametrized. To be consistent with other
components, correcting path shapes should also be closed.

Theoretically, the flexibility of the path component enables us to construct any
arbitrary shape. One may notice that it introduces additional complexity into the font
parametrization. Fortunately, we use the correcting path only for a few shape corrections.
Depending on implementation, we may generate the correcting paths automatically by
designing specific operations, such asstim@othoperator (section 3.2.3.2) which adds a
smoothing shape to a corner formed by the intersection of two components.

2.3 Summary

In this chapter, we studied the structure of typographical characters and designed
components to synthesize typographical structure elements.

The structure graph we presented is based on the invariant typographical structure
features of characters. This structure graph differs from the skeleton models by the fact

42 Chapter 2: Structures and components

that it combines the connection type between structure elements and the refinable
existing structure elements into one graph. In the next chapter, we will see that the
structure graph is useful for explaining and specifying the font parametrization.

The basic set of components we designed enables us to synthesize most structure
elements of text typefaces. The idea of using intelligent shape primitives to generate
typographical character parts creates the fundament of our font parametrization method.
Through systematic experiments, we introducedptlamdn parameters for describing
single curves and loops. Since these parameters reflect existing typographic and aesthetic
properties, the components’ round parts behave closely to what typographers may expect
in response to variations of weight, obliqueness and contrast.

The stem component is used for the synthesis of all straight parts (vertical,
hotizontal or diagonal) of characters. Round parts are synthesized by the loop/half-loop
component and the sweep component. The sweep component can also be used for the
synthesis of curved connections between character parts. The serif component has
different style options (attributes) enabling the synthesis of different serif types. The dot
component is used to synthesize the isolated dot as well as to synthesize terminals of
curved strokes.

43

CHAPTER 3

Font parametrization

In the previous chapter, we have discussed the structure element connecting graph and
the basic character components. In this chapter, we will present how parametrizable
characters and fonts are synthesized.

First of all, the framework of our font parametrization system consists of two main
parts: theparametrizable character synthesizand theparameter filesas shown in
Fig. 3.1. The parametrizable character synthesizer consists of font-inde pesidense-
trizable character synthesis metho@dsme for each character) andilarary of compo-
nents and operationshat is used by the synthesis methods. The font-independent
parametrizable character synthesis methods define for each character the component
shapes and their connection types. The refined structure graph of each character gives a
visual representation of component shapes and connection types. Parameters (which can
be regarded as function arguments) are used to control shapes, positions and orientations
of components. Hence they are font specific. paeameter filescontain concrete
parameter values for each parametrizable font, including those for global font styles and
those for individual character features. Parameter files have been organized into
hierarchical layers. The parametrizable character synthesis methods pamngareter
entriesto be filled by parameters from the parameter files. The parametrizable character
synthesizer has eomponent and operation libramgontaining procedures for creating
component shapes, and geometric algorithms for realizing assembly operations in order
to assemble components into a full character.

In order to completely specify font-independent parametrizable character synthesis
methods, we first need to refine the structure element connecting graph for all the
typefaces which we would like to synthesize. Typefaces whose structure does not differ,
but whose height proportion, weight and contrast differ can be synthesized by just
modifying parameters. However, typefaces whose structure differ require different
parametrizable character synthesis methods. Let us first present the refinement of the
structure element connecting graph before we present the parametrizable character
synthesis methods. The parameter file organization is another important aspect which
will be also discussed in detail in this chapter.

44 Chapter 3: Font parametrization

parameter : \

files

|

parametrisable character
synthesis methods

synthesizer

library of

components &
operations

|

synthesized characters

parametrisable character

Figure 3.1: Framework of our parametrizable font synthesis system.

3.1 Earmark-based refinement of structure graphs

A structure element connecting graph is a typeface-independent representation of the

spatial relationship between structure elements of a character. To synthesize the structure
elements, we have designed several shape primitives called components. Each structure
element can be synthesized by one or more components depending on its concrete shape.

However, there are so many kinds of physical character embellishments among all
the typefaces that one refined structure graph for each character can hardly cover all
typefaces. We would like to resynthesize most of the commonly used text typefaces. The
question is how many variations of the refined structure graph will be needed to represent
a letter in all target typefaces. The answer resides in both the flexibility of the
components we are designing and the number of styles that we would like to support. We
use components not only to synthesize the shapes of concrete character parts, but also to
modify the styles of the junctions between structure elements. To create variations of
refined structure element connection graph, we will analyse traditional typeface styles.
Based on this analysis, we deduce the required variations.

3.1.1 Serif styles

The most important feature of a typeface is the serif style. It is the first rule that
typographers apply to classify or identify typefaces [Rockledge91], [Bauermeister87].
The enhanced serif and slant-serif terminal components introduced in section 2.2.4 are

3.1 Earmark-based refinement of structure graphs 45

supposed to cover all the serif styles. According to Tab. 2.4, serifs of most text typefaces
can be synthesized by our predefined serif and top-serif components. The serif style
therefore can be selected by just one font parameter. If a terminal in a structure graph is
supposed to be a serif or a slant-serif, it can be represented by just one serif component
or one top serif component respectively. The serif or slant-serif component synthesis
method (library functions) will look up the global serif style parameters to generate the
serif or slant-serif components.

3.1.2 Analysis on common earmarks

Since serif terminals are easy to refine, structure graph refinements are mostly due to
other typeface features, especially those which identify typefaces. Features which
obviously identify or classify typefaces are callearmarks Again, we refer to the
classical typographic work - C. Perfect and G. Rookledge’s book “International Type
Finder” [Rockledge91], which collects more than 300 traditional text typefaces. They
have divided earmarks of these typefaces into two kicmsmon earmarkwhich are
typical common features that can be used to identify a typefacespandl earmarks
which are distinctive ones giving special ornamentation to letters in specific fonts.
Earmarks can be any typeface features including weight, contrast, connection style,
terminal style and height proportion. Among them, many earmarks are decorations of
stroke ends (or terminals) and styles of connections in a character.

Not all of the features which earmarks represent need to be present in the refined
structure graph. Only earmarks which represent features of terminals and connections
between structure elements need to be considered.

Let us consider refinements of terminals and junctions. Examples are taken from
the set of lower-case roman characters. Terminal and junction types for upper-case letters
are similar but simpler. Sometimes it is not easy to tell whether an earmark is related to a
terminal or a junction, for example in character “t” and “w”. In these cases, we assume it
is related to a terminal.

1) Variations of terminals

There are two sorts of terminals: the serifs which terminate straight strokes and the
terminals which terminate curved strokes. For serif typefaces, terminals of curved
strokes, such as bowls, arches and tails, are often bulbs (or pears) and bars. For sans-serif
typefaces, there is often no special decoration at the end of curved strokes. Curved
strokes of sans-serif typeface are terminated abruptly, leaving the end squared or pointed
(Fig. 3.2a). We shall also enable variations to provide terminals of special letters such as
the lower terminal of “b”, the upper terminal of “t” and the upper-center terminal of “w”

(Fig. 3.2b).

46 Chapter 3: Font parametrization

Times Rockwell Helvetica Gill Sans Grotesque
(b)] l l
f f f
Times Helvetica Times New York Bodoni Times Baskerville

Figure 3.2: Terminals of (a) curved strokes and (b) special letters.
2) Variations of junctions

Junctions, or connection types have been classifiedreebglink, join andcross
There is no variation for thmeetconnection. The width of the miter tip of tiwn
connection, such as “v” and “z”, can be controlled by the distance and orientation of the
slanted stems (to be discussed later), therefore no variation is needethsEjunction
has no variation either. Only thiek junction which connects an arch or bowl to a stem
needs variationsmoothor angled(Fig. 3.3a). The connection of the two diagonal bars
to the vertical stem in letter “k” is an interesting case which needs variations to
distinguish the order of connections (Fig. 3.3b).

‘aahhbb

Times Serifa Times Geneva Times Bodoni

(b)
/& two link one v-join
x connections connection

Helvetica Geneva

Figure 3.3: Junction variations: (a) angled or smobittk, (b) letter “k” with either twdink
connections or one-join connections.

3.2 parametrizable character synthesis methods 47

3) Variation of global character structure

Besides the local variations of terminals and junctions, some characters have
different global structures, such as the double storey “a” vs. the single stjrey *
(Fig. 2.8) and the “g” with a belly vs. thg™with a tail. If the shape of a specific charac-
ter can not be obtained by appropriate combinations of components, a new global struc-
ture can be introduced.

3.2 parametrizable character synthesis methods

The refined structure element connecting graph is an abstract character part specification.
This specification is used to write the code of paeametrizable character synthesis
methodof a given character.

The parametrizable character synthesis method requires for each component its
corresponding parameters. The parameters of a component specify the position of the
component and its precise shape. Certain relationships between components must be
maintained. The shape of a component is controlled by the dimension, orientation, angle
and curvature parameters. The shape of a component (for example the extension of a
stem) may also need to be trimmed in order to fit well with other components. The
synthesized character shapes, or glyphs, will be represented in the form of trimmed
component outlines, which in turn can be intersected and merged into glyph outlines or
scan-converted into glyph bitmaps.

3.2.1 Component position dependency

The first step is the placement of each component at a proper position. The vertical
position is controlled by the traditional reference lines. In respect to the horizontal
position, the origin and the left side bearing point are not specified in the parametrizable
character synthesis method. We can generally place the first synthesized component at a
random horizontal position. Positions of the other components are relative to this first
component.

3.2.1.1 Relationships between components

There are two kinds of component-to-component relationships: the distance between two
components, such as two vertical stems, and the connection of two components, such as
a serif and its connecting stem. Some relationships must be maintained to ensure that,
providing any proper parameters, the font synthesizer can generate reasonable character

glyphs.

Relationships between character parts were used in the traditional outline font
technology to specify hinting methods, such as “the line connegtanglp is vertical”,
“the distance between the horizontal projections; @l p is the standard stem width”

48 Chapter 3: Font parametrization

and “p lies betweenpand g". Readers are referred to the hinting systems in Microsoft
TrueType [Microsoft95b], Agfa Intellifont [Agfa91] and Adobe Typel [Adobe90]. In our
component based font parametrization system, relationships between character parts are
used to determine the positions of components. Relationships between contour points are
not necessary, since they will automatically be maintained if the relationships between
components are kept.

The distance relationships may constrain both horizontal and vertical relative
positions of components. Most of the vertical positions depend on the character height
reference lines, such as, for small letters, the base line, the x-height line, the ascender
line and the descender line. So, when two components are put together, we shall study
how to maintain their horizontal distance relationship. We found that almost every
character has two or three main components whose horizontal position relationship
(main component horizontal distanamust be kept, primarily because their horizontal
distance reflects theharacter width For example, consider the vertical stem and the
half-loop of character “b”, and the left, middle and right vertical stem of character “m”
(Fig. 3.4). Other horizontal positions can be specified as a function of the horizontal dis-
tances between the main components. If necessary, some dimension parameters are
defined byproportion parametersExamples are the center position of the half-loop in
character “b” and “d”, and the arch’s top extreme points in character “m”, “n” and “h”.

ascender_o
< ascender
Py xheight 0 | 23
7 l‘ - ST5—= 8
. S22 xheight | =BT £
— 8280
Ol d E- o Q
P P2 SSSo
T ot
iﬂ/ 5D
0, . a .
. — AN AN AN, basine
basdline o
dx, dxy dx,
Xo X1 Xo X1 X2

Legend:

\<—p'»'—>\ Interpolation c =a + p; » (b -),

a c b where p; is a proportion parameter.

Figure 3.4: The relationships describing the components horizontal positions: main
component horizontal distancel; and dx,. Vertical positions are determined by the
character’s horizontal reference lines.

Character width: The traditional typographical definition is the horizontal distance from the
left side bearing point (Isb) to the right side bearing point (rsb). The character origin,
the left side bearing point and the right side bearing point are not suitable for

3.2 parametrizable character synthesis methods 49

parametrization. Therefore the traditional character width is not defined in our font
parametrization system.

Main component horizontal distance:This term generally refers to the horizontal distance
between centerlines of main components. In this thesis, it is often given as parameters
nameddx, dx;, dx. When all parameters of a character are provided, the character’'s
bounding box width and its main component horizontal distance can be derived.

Proportion parameter: A proportion parameter is a parameter specifying proportional
percentage values. It is often a local parameter used to specify one parameter related
to another. It is quite useful for interpolating between positions in order to modify
standard dimension parameters. We write proportion paramet@ as ppp.
Parameter names are alway#atic style.

Each main component horizontal distance is represented in proportion to one of the
standard character width parameters. Traditionally, typographers describe the width
feature of a typeface by referencing the width of lower-case letter “0”. We accordingly
define the bounding box width of letter “0” as the standerdrid letter width, which is
supposed to be referenced by all the letters. To ensure the coherence of character width
features, we define three kinds of main component widthcuhee-to-curve widththe
stem-to-curve widtland thestem-to-stem widt(Fig. 3.5). The curve-to-curve width can
be applied to all round letters such as “0”, “e” and “c”. The stem-to-curve width can be
applied to characters which have a main vertical stem and a main vertical curve, such as
“b”, “d”, “p” and “q”. And the stem-to-stem width can be applied to characters with two
or three main vertical stems, such as “h”, “m”, “n” and “u”. Other characters should
specify their component distance as a proportion of the round letter width. The curve-to-
curve width can be directly derived from the standard round letter width by subtracting
from it the standard vertical curved stroke width.

00 Dbn

Traditional Std. Curve to Curve Stem to Curve Stem to Stem
Round Letter Width Width Width Width

Figure 3.5: Standard width parameters for the reference of main component distances.

Another important component-to-component relationship are the connection types
(see examples in Fig. 3.6). When a serif is connected to a stem, its position and dimen-
sion shall all depend on the stem so as to ensure that the serif never flies apart. When a
sweep is used to connect a half-loop to a vertical stem, its span will be determined by
both the half-loop and the vertical stem so that it really touches both of them. Such con-
nection relationships represent the dependency of one component on another. For exam-
ple, a serif depends on a stem.

50 Chapter 3: Font parametrization

Varying the design of junctions and terminals may require different component
shapes, but generally their respective dependency remains. In Fig. 3.6, for example, no
matter if there is a spur or not, one end (departure end) of connecting sywe#p c
always depends on the position of the connected jefrhe same applies to the other
connecting sweepsc

Connecting sweep Cg

To connect top serif must link to ¢, and meet c;.
C, to stem ¢, <
support lines of . . L
c, %Fr)e derived C2 Upper junction variation: smooth.
from the edges of c;.
Co
C5 C5
Co Lower junction variation: meet.
Spur cg is made by a Co
top serif with zero width, (1
height and depth. Ca
C3 cg=null

If there is a spur, ¢, should If there's no spur, ¢, should
linkto ¢y - depends on ¢c,. meet ¢ - depends on ¢,

Figure 3.6: The relationship describing the connection dependency: serifs depend on the
stem and connecting sweeps depend on their two neighbouring components. This figure also
shows that local variations of the junction don’t affect the component’s connection
dependency.

The purpose of studying the relationships between component is to clarify the
dependency of positions between components and to ensure that no redundant or
disturbing parameter is introduced to control the position of components. For example,
the departure points4PQy and the arrival points of the connecting swegpncthe
example of character “b” (Fig. 3.6) should be determined by the half-lpepad the
stem @. Otherwise, if we would introduce direct parameters to control the sweep’s
positions, these parameters would have to be hand-tuned each time the distance between
the stem and the half-loop is changed.

3.2.1.2 Component dependency graph

We can represent the distance and connection relationship by an acyclic directed graph,
thecomponent dependency graphcomponent dependency graph has generally one or,
sometimes, two root nodes which stand for the horizontal position of the main
components of a character. The first level child nodes are main components which
depend on the distance at the root node(s). The second level child nodes are terminals
(serif, dots etc.) and connecting sweeps. More levels are possible but not common. The
dependency relationships are represented by arrow-headed lines. An example can be
found in Fig. 3.7.

3.2 parametrizable character synthesis methods 51

Generally, varying the design of junctions and terminals does not affect their
component dependency graph. The dependency relationship between components often
remains the same. But the implementation of the dependency may be different according
to the different styles of junctions or terminals.

% | |
root: main component width dx,
Cs , / \
Co first level: Co Cy
Cy / M
C3 second level: C» C3 Cs Cs
dx
Xo tox

Figure 3.7: The relationship between components can be represented by a component
dependency graph.

The component dependency graph also represents the steps for assembling
components into a character. The distances represented by the root nodes should be
provided as direct parameters at the beginning. Components located at the first level of
the graph are synthesized first. Then, components on the second level can be synthesized
and linked to the first level components.

3.2.1.3 Methods to specify dependency

We generally place one of the main components which will be synthesized first at a
random horizontal position and name it thgposition (see Fig. 3.4 and Fig. 3.7 for
examples). We introduce direct parameters nadxgddx,, ... for the distance between

the first synthesized main component and other main component(s) of the first level in
the component dependency graph. Thus, their positionsgatedx,, X5 + dXy, ...
respectively.

The connection relationship is a little more complex to specify. The position
parameters of components at the second level of the component dependency graph
depend on the first level components. The position parameters of the second level
components are indirect parameters derived from the first level components. Support
contour points of the synthesized components can be used to derive indirect parameters.
For example, ity is a stemgg. A refers to the support poiAtof the synthesized stem.

Here are some notations:

Notation 3.1: Pt (X, y)is a point with coordinaté, y)
Notation 3.2: Ln (py, py) is a line connecting poim andp,.

Notation 3.3: If pis a pointp.xis the x element gf, p.yis the y element gf.

52 Chapter 3: Font parametrization

Notation 3.4: If cis a component.prefers to a support point of

Notation 3.5: Given two points or numbers and b, and given interpolating factdr
varying between 0 and 1, the interpolation can be writtéplta&, b, f)
which equalséa + f * (b - a)’ (see also Fig. 3.4.).

Notation 3.6: The form{a, &, as, ...} stands for the argument list of a component.

With these notations, we specify, for example, the dependency relationships “top serif ¢
depends on stemptand “sweep g depends on steny@nd half loop ¢ with the
mathematical expressions given in Fig. 3.8. For the connecting syetye @xample
gives the argument list for amarigled connection. A $mootfi junction (see also

Fig. 3.6) requires slightly different expressions for swegpagrival points Band Q so

as to make the sweep end appear horizontal.

co.D co.C I3

=%| w, = saversemw
w, = SdNarrowHor CurveW

List of arguments for component c2 and c5:
C,: {1 =Ln (cy.B, ¢co.C);
I, = Ln (cq.D, co.A);
|3 =Ln (Co.C, Co.D);
}

Cs: { P4 =1¢4.B;
Qg =¢1.C;
Pa=Pt(Xo+w/2,
iplt (xheight, baseline, armDepth));
Qe}1 =Pt (Pa.X, Pay - Wy);

Figure 3.8:An example of mathematical expressions specifying dependency. The
expressions exist in the argument list of compongrind g. This figure doesn’t showsc
and g.

3.2.2 Component shape tuning

In the previous section (section 3.2.1), we have shown how to place a component at a
proper position and how to maintain the relationships between components. In this
section, we present means of controlling the precise shape of a component.

The shape of a component is synthesized with its parameters, or arguments of the
component synthesis functions (we also use the term “component” to refer to the
component synthesis function). The shape of a component can be tuned by controlling
the parameters which control the component’s dimension, orientation and curvature.

3.2 parametrizable character synthesis methods 53

3.2.2.1 Dimension

The first aspect of a component shape is its dimension: the width of a stem, the width of
a loop or half-loop, the height and width of a serif, the radius of a round dot, the width of
the ends of a sweep, etc. Most of the dimensional characteristics of character parts can be
standardized for all characters in a font. For example, the width of a vertical stem
remains the same for all lower-case characters or, respectively, for all capital characters
in typefaces such as Times or Helvetica. Arguments of main components are specified as
global font parameters (section 3.3).

If the standard dimension parameter needs to be enlarged or reduced for a specific
part in a given character, a factor can be introduced as a local parameter to modify (scale)
the standard dimension parameter. The scaling factor keeps a relationship between a
special component dimension and the standard one, because most special dimensions do
have a relationship with standard parameters. This relationship can be preserved when,
for example, the weight of the font is varied.

In detail, let us summarize the dimensional arguments of the previously defined
components (see section 2.2 for the definition of component parameters).

» Stem Stem width is controlled by parameter Stem length is limited by the
departure poinPy and the arrival poirf®; of its center line.

» Loopandhalf-loop Their overall size is controlled lpy, q;, po, andg,, which
represent the half width and half height of the external and internal loop
bounding boxes. If the internal loop center and external loop center are
common, the difference between andp, is the stroke width of the vertical
part of the loop, and accordingly the difference betwgesndq, is the stroke
width of the horizontal part of the loop. The dimensional paranpgtandq,
are often controlled by the character height reference lines since the size of the
loop or half-loop always occupies the space between the baseline to the x-height
(for lower-case letters) or the caps-height (for capital letters) lines. Therefore,
parameter®, andqg, can be derived frorp; andq, by subtracting from them
the standard width of vertical and horizontal curved strokes respectively.

» SweepThe width of a sweep is controlled by the width of both the departure
line segment and the arrival line segment given by the departure pgiatsl
Qg and the arrival point®, andQ, respectively. If a sweep connects to some
other component, its departure and/or arrival points will depend on other points.
The open end of a sweep, such as the tail of character “e” and “t”, are controlled
by introducing a local parameter controlling the tail’s width.

» Serifandtop-serif Their dimension width, height and depth are controlled by
SWy, SW,, shy, shy, sd; andsd, respectively (see Fig. 2.26). These parameters are
required to be uniform in a font, and hence are assigned directly corresponding
global font parameters. The length of the serif face is also affected by the
support lines; andl,, which represent the two sides of the connecting stem.

54

Chapter 3: Font parametrization

Dot: Width and height are controlled by parametandb (Fig. 2.32). Isolated

dots have a standard size given by global font parameters. However, the dot as a
terminal element may have a varied size, which requires local dimension
modifying parameters (Fig. 2.33).

Patht Dimension of arbitrary paths should also be controlled as much as

possible by standardized global font parameters. We try to find dimensional

relationship between them so that the points which construct a path are
controlled by local relative parameters and the number of local parameters is as
small as possible.

3.2.2.2 Orientation

Orientation of components includes the slant angle of loops, half-loops, dots and
diagonal stems, the slope angle of the open end of sweeps, and the orientation of serifs,
top-serifs and half-loops. Many of the angles are controlled by some method other than
by giving the angle in degrees. We summarize the details below.

Stem The orientation of a diagonal stem is determined by the stem’s departure
point P; and arrival pointP,. The positions of these two points are often

controlled by the character width, such as “x”, “v’, and “z”", not by angle
(Fig. 3.9d).

Loop andhalf-loop The slant angle, or stress, of the external and internal loop
are controlled by parametgy andn, respectively, which are the displacement

of the extreme points (Fig. 3.9a). Half-loop quadrants are given as directions by
parametedir, whose value may be left, right, top or bottom (for example, the
orientation of the half-loop in Fig. 3.9b is “left”).

SweepThe open end of a sweep has a slope, for example the end of the tail of
character “e” (Fig. 3.9b), “a” and “t”. The slope orientation is an important
typeface feature which needs to be controlled if the weight, stress or contrast
varies. We often introduce a local parameter specifying the degree of the slope
angle. The end of a sweep is given by two poRgsand Q, which can be

derived from the angle and the tail’s width. Trigonometric functions sin(x) and
cos(x) are needed.

Serifandtop-serif Orientations are specified by paramelierwhich has values

left, right, top or bottom. The topserif has a slanted serif slab (Fig. 3.9c). The
angle of the serif slab is specified by the component’s parathdike angle of

a topserif can be given as a global font parameter since it is often uniform
throughout a whole font. Top-serifs can be used to synthesize beaks in character
“z” (Fig. 3.9d), “F”, etc. In these cases, the slab angle defines the beak’s angle.

dot If the dot is slanted, the angdecan be explicitly specified (for example the
terminal dot in Fig. 3.9c).

3.2 parametrizable character synthesis methods 55

dir

loop stress
controlled by n

(@ (b) (c) (d)

Figure 3.9: Various kinds of orientation of components.
3.2.2.3 Curvature

The curvature features of a typeface are reflected by the two sides of a sweep, the internal
and external contour of a loop or half-loop, the outline of a dot, and the support (bracket)
of a serif or topserif. We summarize the curvature control elements as follows.

» SweepThe midline of a sweep isfaBézier curve controlled by control poiat
and the center points at both ends of the sweep. Since both the departure end
and the arrival end of a sweep are given by pditsQy P, and Q,, the

curvature of the sweep is mostly determined by the position of controlAoint
Generally, pointA has two degrees of freedom. But when a sweep is used to
connect two part of a character, we need to constrain Admt single degree

of freedom. For example, the curvature of the upper connecting swgeap (c

Fig. 3.8) is controlled by a local proportion parameter which specifies the hori-
zontal relative displacement of tBeBézier control poinA. Control pointA is
constrained to move horizontally (Fig. 3.10). Typographically, control goint
controls the junction angle between the loop or arch to the vertical stem in
characters such as “b” and “n”.

PPR; typographic meaning:
/ Pq ~—1
A ;
// -
™ N\—1
Paf/ N 2
Qa N

Figure 3.10:Controlling the curvature of a connecting sweep. The local parameger
controls the horizontal relative position of the control point A, hence, typographically, it
controls the junction angle.

56 Chapter 3: Font parametrization

* Loop andhalf-loop The squareness of the external and internal contours of a
loop are controlled b, andf, respectively. Some high contrast typeface, such

as Bodoni, require the internal contour to be more square, which requires a
larger, parameter. Examples can be found in Fig. 2.20 in chapter 2.

» Dot Squareness is controlled by a font level global pararfigter

» Serifandtop-serit The squareness of the serif support, or bracket, is controlled
by a font level global paramet®geyitsupport

3.2.3 Boundary correction

Some characters cannot be synthesized by simply assembling shape primitives
(components). Components for some junctions or terminals need to be trimmed or
patched in order to modify their extension or smooth their corners out. These
modifications are realized Wyoundary correcting pathsSome of the correction cases

are quite common and will be specified by predefb@thdary correcting operations

Boundary correcting path: The boundary correcting path is also a sort of shape primitive
which will be used to add a patch to or substitute a part of the synthesized character
shapes. For example, a boundary correcting path can fix the corner formed by the
intersection of two stem or sweep components and therefore smooth out the corner.

Boundary correcting operation: The operation which adds a boundary correcting path to an
existing component(s). Boundary correcting operations are defined as functions
which takes one or two components and correcting parameters as input and return the
corrected contour.

The two most important boundary correcting operationsarandsmooth
3.2.3.1 Trim extension of component outlines

Sometimes a component needs to be trimmed to limit its extension. This trimming work
is much like what a pair of scissors does - it cuts one piece of paper into two pieces along
a line, and keeps only one piece. We define this function as a boundary correcting
operation namedut, which divides a contour into two parts along a gieatting line

and keeps one of the resulting contours.

Since the contour of a component has a direction, the cutting line should also have
a direction. Theut operation uses the direction of the cutting line to select the resulting
contour which will be kept. The resulting contour contains part of the original contour
and a cutting edge (Fig. 3.11). Orientation of the original contour and of the cutting edge
should remain coherent so that the resulting contour is closed and has the same
orientation as the original one. The straight line is the most commonly used cutting line
in our font parametrization system. In concrete cases, a cutting line is derived from an
existing component.

3.2 parametrizable character synthesis methods 57

cut (contour, cutting_line) ==> new_contour

contour before cutting: contour after cutting:
contour / ==> new_contour //cutting edge
cutting_line Orientation of the cutting edge
obb - is coherent with the contour.

Figure 3.11:Definition of thecut operation.

The cut operation is simple and useful to synthesize character shapes, especially in
realizing junctions and special optical corrections. Here are some examples:

1) a stem and a sweep “meet” each other
The connection symbol in the structure graphnieetis «—» . When a sweep

“meets” a stem smoothly, the stem should be trimmed at the meeting position to be sure
it does not extend out of the sweep (Fig. 3.12).

before cutting: after cutting:
cut (s, 1), where

' cutting line | is '
s / s derived from st
| sweep sw

— —d

Figure 3.12:Example of the use of thaut operation for realizing thmeetconnection.
2) two stems “join” into a tip

The connection symbol in the structure graphdor is —v— , which is derived
from the typical join case in character “v”. From this connection, the ends of both stems
need to be trimmed so that none of them will extend out of the boundary of the tip (see
the example in Fig. 3.13).

58 Chapter 3: Font parametrization

before cutting: after cutting:

cut (s, 1)

S S cut(syly) 2
where, |, is derived

from sweep s,
I, is derived from
sweep s,. tip of the
miter join
PR

Figure 3.13:Example of the use of thaut operation for realizing thin connection.

before cutting: after cutting: structure graph:
[| | S3 -->> S
s St S2-->> 8,

N
q cut (s, 11) S, S,
cut (sz, 1)
where, | is derived s h
from stem s, { S3
% |, is derived from I Y
stem s,. =4
l2

1
a) Helvetica 'k', s3 links into s,, s, links into s;.

before cutting: after cutting: structure graph:

Sy --V-- Sg
I3 (/

Sl St

[
cut (s, 13)
cut (s3, I2) St
> where, I3 is derived 2 S
from stem s,
I, is derived from 7
stem s,. —
\ > J\

b) Times 'k": s, and s; from a tip. Whether the tip overlaps s; or not
depends on their distance, which is a local parameter of this character.

A

I

Figure 3.14:Use of thecut operation for synthesizing character “k”.

3.2 parametrizable character synthesis methods 59

3) one component “links” into another

The connection symbol in the structure graph lfiok is —— . In alink
connection, the end of one component is buried in the body of the other one. To be sure
the end of the linking component never exceeds the body of the linked ormit the
operation can be applied. The examples in Fig. 3.14 demonstrate the different realiza-
tions of the two kinds of junctions for Helvetica charactér (Fig. 3.14a) and Times
character “k” (Fig. 3.14b), and their corresponding structure graphs (an interesting
example of design variation).

before correction: after correction:

the two stems have been cut the two stems are cut

to make a miter join, however again to make the corner
the corner looks too "black". deeper and sharper.

cut (s, 1)

corr. cut (s, 1)

range; where, |; and |, are
oo F derived from stems
depth 1, S and correcting

range and depth.

a) Optical correction of the corner of Helvetica 'v'".

before correction: after correction:

S, Crosses s; continuously, lower-left part of s, has been
however the character may shifted left (s,'), so the whole
look left leaning. character looks more stable.

s,' = duplicate (s))

cut (s, 11)

cut (s, 11)

translate (s,', V)

where, | is derived !
from stem s, I, = -l;.

b) Optical correction of the narrow slanted stem of Times 'X'.

Figure 3.15:Examples of the use of tlveit operation for realizing special optical character
shape corrections.

4) special optical corrections

Optical correction of character shapes is needed so as to ensure that they look as
expected. For example the height of a round letter should be a little higher than that of a
square letter so as to look the same. Generally, optical correction is made by using the
character height reference lines. There are still some special shapes which need to be

60 Chapter 3: Font parametrization

optically corrected and are not subject to the reference lines. For example the sharp
corner of Helveticav” (Fig. 3.15a) should be corrected to look really sharp, and the thin
diagonal stroke in the cross junction of Times “x” (Fig. 3.15b) should be corrected so
that the character looks stable [Jamra93]. These special optical corrections can be real-
ized with the help of theut operation.

3.2.3.2 Smooth corner of intersected components

The bulb/pear-like terminal may need to smooth the corner formed by the sweep and the
dot. In some typefaces, corners formed by two straight component also need to be
smoothed. We define tisgooth boundary correction operatiom fulfill this task. The
smoothoperation generates a smoothing shape from the two given components and some
smoothing parameters (Fig. 3.16). A smoothing shape is a path component which fills the
corner smoothly. The size and shape of the smoothing shape are controlled by smoothing
parameters. This operation first finds the corner by possibly intersecting the two contours
which form the corner. Then tilsenoothoperation constructs a smoothing shape from the
parameters specifying the range of the corner to be smoothed and the tangent length of
the smoothing curve.

smooth (contour;, contour,, r4, f, S;, S;) ==> smoothing_shape

IF\L]_\ S N
S Ty -
... e Seal
. . <
. . AT
. S
. S

corner N

contour;

smoothing curve : _f

¢ "smoothing
¥ shape to be
/ added to the
corner

s, S, lengths of tangents at departure and
arrival points of the smoothing curve;

ry, ro: lengths of two edges of the corner, which
%2 contour [imits the range of the corner to be smoothed.

Figure 3.16:Definition of thesmoothoperation.

In Fig. 3.16, smoothing parameter andr, limit the range of the corner to be
smoothed by restricting the length of the two edges of the corner. Paraspeteds,
control the curvature of the smoothing curve by the length of tangents at both departure
and arrival point. Tangent directions are computed bystheothoperation in order to
ensure smooth connection between the smoothing curve and the two edges of the corner.
The final constructed smoothing shape should cover the smoothed area of the corner
without leak. We can make sure the smoothing shape touches or slightly overlaps the

3.2 parametrizable character synthesis methods 61

smoothed corner. Practically, r,, s; ands, can be given as local parameters relating to
the character’s width and height.

The smoothoperation works quite well in smoothing out the corner of terminals.
Examples in Fig. 3.17 show the smoothing path component added to the corners of two
components in case of a sweep to dot (character “”) and a sweep to stem (character “s”)
smoothing correction.

smoothing
path T

> JS

Figure 3.17:Examples of smoothing paths which are added bgrimeothoperation.

3.2.3.3 Hand tuned boundary correction

Sometimes, the predefined operatioost and smooth are not able to generate the
correction path for some special terminals. In this case, we can construct a correcting
path and add it at the proper position. This hand tuned path component can be used
together with the predefined ones.

boundary boundary
correcting correcting
path / path \
A o
—+{Z Si1 [[sy’
[|
SO SO
L~

cut (s, So.right_edge);
before cut cut (So, S1.lower_edge); after cut

Figure 3.18:The special terminal of Times “t” requires a hand-made correcting path as well
as twocut operations.

For example, the upper terminal of the Times character “t” is a coved triangle-like
shape. As demonstrated in Fig. 3.18, we can compose a path component to describe this
terminal with a few local parameters specifying the dimension relationship to the
existing stemssand g. The local parametespecifies the width of the vertical tip in
proportion to the width of steny,sand g specifies the width of the horizontal tip in
proportion to the width of stem.sThe control point of thB-Bézier curve (point A in the

62 Chapter 3: Font parametrization

figure) is also given in relation to the position of the two stems. To add this new path
component, we apply tleait operation to both of the stemsgasd § to make sure neither
of them will exceed the boundary of the correcting path.

3.2.4 The complete parametrizable character synthesis method

As described above, we are able to specify the position relationship between
components, to specify how to tune component shapes by parameters, and to specify how
to trim or correct the boundary of components. Now, we can describe the complete
parametrizable character synthesis method

A complete parametrizable character synthesis method consists of two parts. A
parameter declaratiorpart and acharacter synthesis method specificatwart. The
parameter declaration part contains place holders for all parameters used for this
character, includinglobal parametersandlocal parametergsection 3.3.2). The charac-
ter synthesis method specifies the type and parameter (argument) list of each component,
as well as the boundary correcting operations. Relationship between parameters and
components are maintained through mathematical expressions. A pseudo C/C++ param-
eter passing format is used to explain the character synthesis method.

Components are often named subsequently, for example; bkesci = 0, 1, 2....
Parameters of each component, which are defined in section 2.2, are written in the
parameter list form as below:

« stem {R, P;, w, terminatog, terminatog}, which also computes and stores
support point#\, B, C andD (see Fig. 2.10);

* loop {Oy, Oy, p1, P2y Gy %, N1, N2}

 halfloop {O, Oy, p1, P, 01, B, N1, Ny, dir}, which also computes and stores
support point#\, B, C andD (see Fig. 2.21);

* sweep {|, Qu Pa Qu By, By} orsweep {B, Qy, Pa, Qa A},

* serif {sw, sw, shy, shy, sd;, sd, dir, |4, I», I3}, which also computes and stores
support points for serif connecting positighandH (see Fig. 2.26);

* topserif {sw, sh, sdf, overshoot, dir,4, |5, I3}, which also computes and stores
support points for serif connecting positiddsindF (Fig. 2.31);

* dot {0, a, b,6};
« path {segmenti=0, 1, ...}
As defined in notation 3.4 in this chapter, once a parametércomponens is

evaluated, it can be referred tosaglater. The result of component stem and half-loop
contain support points which can also be referred in the same way.

3.2 parametrizable character synthesis methods 63

We explain the details of the parametrizable character synthesis method by
providing as example the character “b”. To simplify, we only provide the method for
synthesizing a character with one given junction and terminal type. As indicated in
Fig. 3.19, character “b” has a top-serif, a null spur, its upper junction type is “angled
link” and its lower junction type is “meet”. Local parameters and some global parameters
are indicated. The refined structure graph gives the component type and the connection
between components.

ascender_o refined structure graph:

C2 ascender W c0: stem
< c1: halfloop
cs:angled link co- topserif
Co |Pr xheight o 035 null (no spur)
Saan- o JNEEOE:
e c ¢ (% meet '
Wi P1
W | ©2 © W.
0 T 1 component dependency:
p2 dx
P4
P3 C, — t/ base C(;/ \Cl
canull —pg W2| base o / M
dx
Xo X C; C3 Cs GCs

Figure 3.19:Parameters of character “b”, its refined structure and component dependency.

Referring to Fig. 3.19, we can write the completgametrizable character syn-
thesis methods follows. Font parameters, both global and local, are printediin

Parameter declaration (place holders for parameters):
dx : the distance between the left stem and the right half-loop;
W : the standard vertical stem width;
wj : the standard vertical curved stroke width;

w, : the standard narrow horizontal curved stroke width;
ws : the standard horizontal curved stroke width;

w, : the width of the upper junction;

p; : relative h-position of the half-loop external center;
p, : relative h-position of the half-loop internal center;

ps : relative height of the lower junctiongjc external;

p,4 : relative height of the lower junctionjcinternal;

ps : relative depth of the upper junctiors),c

pg : relative control point position of connecting sweggsee also Fig. 3.10 for the
design of sweep control point);

p; : relative control point position of connecting swegp ¢

64

Chapter 3: Font parametrization

eta : external loop extrema correction, standard;
eta : internal loop extrema correction, standard.

Character synthesis method specification:
I auxiliary namesxg, xq
Xg = random value for the position of the left stem;

X1 =X +dX
/I components:; ¢, G, C3, C4, C5
Co = stem {

Py = Pt &g, base;

P; = Pt &g, ascendey;

W =Wp;

terminatog = the base line;
terminatog = the ascender line;
h

¢, = halfloop {

O1 = Pt &g + p1 * dx, (xheight_ot+ base_9¢/ 2);

Py =Xy +Wq/2-G.01X;
g; = (xheight_o- base_§/ 2;
O, = Pt g+ po * dx,
((xheight_o- wy) + (base_ot+ wy)) / 2);

/I departure point

/I arrival point

I stem width
Il stem terminator gt P
/I stem terminator at P

/I center, external
/I half width
/1 half height

/I center, internal

Py =X -Wy /2 -6.05.X; /I half width

0, = ((xheight_o- ws) - (base_ot+ w,)) / 2; I/ half height

n, = eta; I external loop extrema correction
n, = etay; /l internal loop extrema correction

3
C, = topserif {
sw = standard serif width;
sh = standard serif height;
sd = standard serif depth;
0 = standard topserif angle;
overshoot = standard topserif overshoot;

/I topserif width, global

/I topserif height, global

/I topserif depth, global

/I topserif angle, global
/I overshoot, global

dir = top; /I orientation, constant
[=Ln{cy.B, ©.C}; // support line, derived fromyc
I, =Ln {cq.D, @.A}; /I support line, derived fromg
I3=1Ln{cy.C, .D}; I/ support line, derived fromgc

3

c3 = null; // no spur, a spur is made by a topserif

¢y = sweep {

Py =Pt &g - wg / 2, iplt (base xheight p3));

Qg = Pt &y + W/ 2, iplt (base xheight py));

P,=cl.A;

Qa=0.D;

A =Pt (iplt ((¢.A-x + ¢1.D.x) / 2,Xq, Pg),
(ci.Ay +¢.D.y) 1 2);

[/l departure right
/I departure left
Il arrival right

/I arrival left

Il control point

3.3 Parameter files 65

Cs = sweep {
Py =¢1.B; /I departure right
Qy=¢.C; I/ departure left
P, =Pt {Xg + Wy / 2, iplt xheight base ps)); /I arrival right
Q= Pt +wo/ 2, G.Pyy -Wy); /I arrival left
A =Pt (iplt ((¢.B.x + ¢.C.X) / 2,%5 + W / 2,p7),
(c1.B.y + ¢.C.y) 1 2); /I control point

I3

/I boundary correcting operations:

/I the stem componeng oeeds to be trimmed to connect sesiind sweep £
Cp = cut (¢, Ln (G.A, C,.2)); /I connect topserifc

Co = cut (¢, Ln (c4.Py, ¢4.Qq)); /I stem g and sweep £meet
/I end of the parametrizable character synthesis method for character “b”

3.3 Parameter files

The parametrizable character synthesis method defines how to generate the shape of a
character. To synthesize an instance of the character, one needs to provide every
parameter in the parametrizable character synthesis method with its proper parameter
instances, or to feed parameter files to the parametrizable character synthesizer. In this
section, we will discuss parameters used in our font parametrization system and our
approach to organize parameter files.

3.3.1 Coordinate system

Before describing parameter files, we should answer some questions about the
coordinate system for character design.

The first question is about the unit or granularity of the character design space.
Generally, there are two kinds of parameters: character-size-dependent and character-
size-independent. Character-size-dependent parameters specify the dimension of
character parts. The change (scaling) of a character will need the value of these
parameters to be changed (scaled) proportionally. Character-size-independent
parameters do not relate to the size of a character and hence remain unchanged in
response to the character scaling. Such kinds of parameters are, for example, those which
describe angles, proportions, serif styles, junction and terminal styles etc.

The value of a character-size-dependent parameter depends on the size of the
character. Since physical size (in inch, point or centimetre) depends on physical device
resolution, digital font manufacturers tend to define outline characters in a specific font
design coordinate system which incorporates logical coordinate units (“FUnit” in
TrueType [Microsoft95b] and “character space unit” in Adobe Typel [Adobe90]). The
font design space, which is a rectangle enclosing all characters, can be granulated into a
certain amount of logical coordinate units. And the logical coordinate unit is the smallest

66 Chapter 3: Font parametrization

unit for the coordinate of character outlines. Originally, this granulation is caused by the
digitizing character ourlines from a design master [Karow94, pp.97-98]. In some outline

fonts, however, it is intended to restrict the precision of the coordinate in order to speed
up the rasterization process. For example it is common to have 1000 font units in a
PostScript Typel font and 2048 font units in a TrueType font.

In our font parametrization system, we will not restrict our flexibility to integer
coordinates. Instead, parameters can be real numbers whenever needed. Therefore, the
number of font units in a font design space does not limit the precision of the synthesized
character outlines. But, to compare the fonts we generate with Adobe Type 1 fonts, we
tend to assume the character space to be 1000 by 1000, but with no granularity limitation
(Fig. 3.20).

O

Figure 3.20: The coordinate system for our font parametrization system is similar to the one
used in the traditional outline font technology except that it has no granularity limitation and
that the x-origin is not defined. The bounding box is calculated on-the-fly and will be used to
compute optical spacing between two characters.

The second question is about the values of character-size-dependent parameters.
Theoretically, these parameters depend on the size of the character, and therefore could
be represented as a proportion or percentage of the character size, which usually is
represented by the height or width of some typical letters, such as the height of capital
letters or the width of lower-case letter “0”. For example, in the Times fonts, the standard
vertical stem width is about 20% of the width of lower-case letter “0”. However, we have
observed that the proportion between size-related parameters varies from typeface to
typeface and that it is not important for parametrized fonts. Therefore, most of the
character-size-dependent parameters in our font parameter system have direct values
specifying the dimension of character parts.

The third question is about character origin and width measurements. Since the
coordinate origin is not defined in our parametrizable character synthesis system, it is
often assigned an arbitrary value when the character is synthesized. The traditional width
measurements, such as character width, left side bearing and right side bearing, are not
defined either. Thus, when two characters are placed against each other, the space

3.3 Parameter files 67

between them is not given by any kind of traditional metric tables. We will therefore use
an automatic optical spacing method to calculate character spacing on-the-fly.

3.3.2 Parameter hierarchy

Parameters are organized hierarchically and, for convenience, stored separately in three
parameter filesglobal parametersn the global parameter filgroup parametersn the
group parameter file, artdcal parametersn the local parameter file.

3.3.2.1 Global parameters and local parameters

Basically, there are two hierarchical layers of parameterglttal parameterand the

local parametersGlobal parameters specify general characteristics of all characters in a
font, such as the main stroke widths, character height alignment and serif styles. On the
other hand, local parameters specify individual characteristics of each characters, such as
the modification (enlargement or reduction) of the main stroke widths, the proportion
parameters for relative positions, and special terminal or junction styles.

It is not easy to determine whether a parameter is global or local. Our rule is to
restrict global parameters so that global parameters are really “global”. Here are some
rules for global parameters:

» Global parameters have clearly defined typographical meanings, which means
they are understandable by a typographer without special knowledge of our
component based font synthesis system. Accordingly, global parameters have
names from traditional typographic terminology.

» The purpose of global parameters is to unify font features across individual
characters, and to enable coherent typeface feature modification in a font.
Hence special individual character features are not global parameters.

» Global parameters are common typographical features of all text typefaces, they
therefore often enable typeface identification.

Generally, if a parameter is not global, it is local. Local parameters have special
meanings which are interpreted by the parameter place holders in the parametrizable
character synthesis method for each individual character. A local parameter can only be
seen within the parametrizable character synthesis method which declares it and defines
its meaning. Local parameters do not need to have meaningful names.

We should point out that, since a parametrizable character synthesis method
depends on the character’'s structure graph, the definition of a local parameter in a
parametrizable character synthesis method will not change between different typefaces
as long as they correspond to the same refined structure graph. Thus, local parameters
have relatively fixed meanings between “similar’ typefaces or, quite often, throughout a
family of typefaces.

68 Chapter 3: Font parametrization

3.3.2.2 Local parameter grouping

Sometimes a typographic feature is similar within a group of characters, but not all
characters in a font. The local parameters controlling such kind of features can be
grouped in order to achieve coherent feature modification. The parameter used to
represent a group of coherent local parameters is cafjexip parameter

Parameters which can be grouped and the characters affected by a parameter group
are not fixed for different typefaces. Therefore, a mechanism allowing dynamic grouping
of parameters has been introduced. This mechanism enables the parameter files to have
the following two functions:

1. name definition to define a name for a group parameter and to associate a value
to the defined name;

2. name referenceto refer to the value of a predefined name and to offer support
for simple algebra operations (add, subtract, multiply, divide etc.).

For example, we can define a group parameter to control the junction depth of
character h, m, n and u, because they have similar arches. We can also define a group for
the relative position of the extrema of the arch and the relative position of the curvature
control point for this group of characters (Fig. 3.21a). Similarly, characters b, d, p and g
have some coherent features which can be grouped, such as stress (slant) of the loop,
loop-stem connecting position and connecting sweep curvature (Fig. 3.21b). These
groups are common in many serif and sans-serif typefaces. By grouping these kinds of
feature controlling parameters, we are able to generate coherent feature modifications of
a group of characters (Fig. 3.22).

@)

xheight A

junction
depth

>

>

junction
depth

base

(b)
xheight

junction I

depth

base

Figure 3.21:An example of features which can be controlled by group parameters: (a) the
arches of characters h, m, n, and u; (b) the round parts of characters b, d, p and q.

Coherent feature modification is quite useful for typographers because their jobs
are not only to design completely new typefaces but also to modify, improve or vary

3.3 Parameter files 69

existing fonts under special requirements. A new typeface may be derived from an
existing typeface by coherent modifications of typographic features. For example, the
last line of Fig. 3.22 imitates a typeface called “Corona”, which is derived from Times
Roman by smoothing “link” junctions and thickening serif slabs.

mnu bdpq =
mnu bdpq =
mnu bdpq =
mnu bdpq -

Figure 3.22:Coherent feature modification across character groups. Note that the depth and
curvature of arches in characters h, m, n and u are coherent and so are the round parts of
characters b, d, p and q.

- D D =9

The purpose of group parameters is mainly to achieve coherent local feature
modification. The grouping of local parameters does not reduce the use of local
parameters. The number of local parameters declared in the parametrizable character
synthesis method remains the same but by grouping, they can be modified coherently.
The grouping of local parameters from different characters can be considered as
establishing a link between them.

3.3.2.3 The parameter hierarchy

The three kinds of parameters, global, local and group, are organized hierarchically. The
top-most layer in the hierarchy are global parameters and the bottom-most layer are local
parameters. The group parameters lie between global parameter and local parameters and
are optional (Fig. 3.23).

70 Chapter 3: Font parametrization

global parameter required, valid throughout a whole font, common
between all text typefaces

group parameter optional, valid for a group of characters

local parameter required, valid for individual character, defined
and used in a character’s parametrizable character
synthesis method

Figure 3.23:Parameter hierarchy.

The parameter hierarchy offers much flexibility for preparing parameter files.
Different fonts with trivial feature modification can sometimes be achieved by modifying
local parameters or by grouping some local parameters if they are intended to be
coherent. Modifying a global parameter will result in the coherent modification of
typographic features across a font. However, modifying a local parameter only affects
the character which defines it. The group parameter provides a name definition and
reference mechanism. By defining a name and referring it from several local parameters,
the font synthesizer knows that these local parameters are linked (grouped) together.

3.3.3 An example of parameter files

For our font synthesis experiments, we selected about 100 important global parameters,
which are present in most text typefaces. Some of the global parameters describe
earmark stylesp-curve parameters and character height alignment positions. Others
describe dimensions of character parts, slant serif angles and standard optical
corrections. Different parameters for capital letters, lower-case letters and digits
(including symbols) are present. The set of selected global parameters is important
because it represents important typeface features. But not each of these global
parameters are actually used in every typeface. For example, the sans-serif typeface
Helvetica does not use any of the parameters related to serif features.

In the following table (Tab. 3.1), the global parameters were named according to
their typographic meanings. The first letter indicates the type of the parameter: “i” stands
for an index which often describes type style, and “p” for a parameter which intends to
be a real number (floating or fixed-point integer). The parameters for Times, Bodoni and
Helvetica are based on the same RastWare Type 1 outline fonts. So, the
corresponding character design space is 1000 by 1000. Parameters which may have
different values for capital letters, lower-case letters and symbols are distinguished by
the second letter in their parameter names: “m” for lower-case (minuscular) letter, “c” for
capital letters and “d” for digits and symbols.

1. Many of the RastWare fonts are converted directly from corresponding Type 1 or URW fonts.

3.3 Parameter files

71

Table 3.1:Examples of important global parameters in the global parameter file.

Name Times Heretic:L Bodoni Description
iSerifStyle bracket sans slab general style description
iSerifSupportType smooth n/a none| serif support style
iSerifEndType butt n/a butt serif end style
iSerifFaceType flat n/a flat serif face style
iTopSerifSupportType smooth n/a none topserif support style
iTopSerifEndType butt n/a butt topserif end style
iTopSerifFaceType flat n/a flat topserif face style
pBaseLine 0 0 0 base line position
pXheight 445 521 396 x-height line position
pCaps 659 726 668 capitals height position
pNumbers 659 706 668 digits and symbols h. pos
pAscender 679 726 683 ascender line position
pDescender -220 -220 -234| descender line position
pStdBetaXS 0.54 0.64 0.54 extremely flat curve
pStdBetaS 0.59 0.64 0.59 loop internal and externa
pStdBetaM 0.67 0.64 0.62 serif support, sweep
pStdBetal 0.85 0.64 0.75 | very bent curve
pStdBetaXL 0.95 0.64 0.92 extremely bent curve
pStdLoopEta 0.13 0 0 oblique stress of a loop
pmVerStemW 86 84 100 vertical stem width
pmHorStemw 34 68 25 horizontal stem width
pmNarrow\VerStemw 20 42 18 narrow vert. stem width
pmNarrowHorStemwW 31 68 20 narrow hori. stem width
pmVerCurveW 93 87 120 vertical curve width
pmHorCurveW 33 77 20 horizontal curve width
pmDiagStemw 79 79 120 diagonal stem width
pmNarrowDiagStemW 37 79 25 narrow diag. stem width
pmRoundLetterW 440 474 420 standard round letter width
pmStemStemW 266 332 270 stem-to-stem width: h,m,n,u
pmStemCurveW 312 382 312 stem-to-curve width: b,d,p,q
pmVerSerifW 76 n/a 68 vertical serif width
pmVerSerifD 76 n/a n/a vertical serif depth
pmDiagOuterSerifW 49 n/a 46 diag. outer serif width
pmDiagOuterSerifD 49 n/a n/a diag. outer serif depth
pmbDiaglnnerSerifwW 64 n/a 56 diag. inner serif width
pmDiaglnnerSerifD 64 n/a n/a diag. inner serif depth
pmVerSerifH 15 n/a 20 vertical serif height
pmHorSerifw 105 n/a 145 horizontal serif width
pmHorSerifD 90 n/a n/a horizontal serif depth

72 Chapter 3: Font parametrization

Name Times | Helvetica Bodoni Description
pmHorSerifH 20 n/a 20 horizontal serif height
pmTopSerifAngle 13 n/a 0 degree of slant slab angle
pmDotR 52 52 57 dot radius
pmOptCor 12 11 10 optical correction
PCXXXXXX similar to pmXXXXXX,

specific for capital letters
PAXXXXXX similar to pmXXXXXX,
for digits and symbols

For the local parameters, the average number of local parameters per character is
around 15. Some local parameters can be grouped. In our experiments, we made a group
for parameters controlling the arches of letters “h”, “m”, “n” and “u”, and a group for
parameters controlling the round part of letters “b”, “d”, “p” and “q".

Capital letters and symbols are synthesized by components according to similar
principles as lower-case characters. Fig. 3.24 shows the components and resulting char-
acters for a few representative upper-case Times Roman characters. Generally, stem and
bar widths of capital letters are slightly larger than those of lower-case letters. For a com-
plete description of the component-based design of each capital and lower-case letters,
readers are referred to Appendix D.

diagonal vertical vertical horizontal vertical narrow diagonal
bar width stem width serif width serif width curve width stem width
Vg

BEXQWY
A B E K Q W Y

Figure 3.24:Components and parameters for capital letters.

1d

hl

3.4 Technical issues regarding the font synthesizer

The parametrizable font synthesizer contains a component library which includes

functions to synthesize component instances, functions to do necessary geometric
operations (cut/clip and intersection) and functions to do rasterization (scan conversion,
grid-fitting and optical spacing). The concrete structure of the font synthesizer is

implementation oriented. But no matter how we implement a font synthesizer, it must

take the following technical issues into consideration:

3.4 Technical issues regarding the font synthesizer 73

1. Grid-fitting for rasterization purpose: The actual physical size of a character is
the result of scaling of parameters in respect to the device resolution. As in
traditional outline font technology, intelligent grid-fitting (or hinting) should be
applied when the size of characters is small, because rounding effects may be
detrimental to character quality. Traditional outline technology usually uses
considerable additional information called hints to improve fitting of outline
characters to the target grid. Our parametrizable character synthesis method
already includes the necessary information for grid-fitting, therefore the
overhead (time and storage) for grid-fitting with our font parametrization
system should not be noticeable.

2. Flexible scan conversion: Scan conversion is the process of converting a
geometric outline into pixels for raster devices. It can be based on component
outlines provided that the filling rdleenables shape overlapping. Alternately,
one can merge component outlines to a traditional outline font.

3. Automatic metric table calculation: The metric table contains important
information for optical spacing of character pairs such as left-side bearing,
right-side bearing, character width and character pair kerning. In a font
parametrization system, none of these typesetting information should be stored
permanently. Instead, they will automatically be calculated on-the-fly.

4. Specific geometric operation algorithms: Since general purpose geometric
operation algorithms, for example intersection of two arbitrary shapes, are very
complex and hence not efficient, we intend to design specific algorithms for
shape merging and trimming. Fortunately, the shape of a synthesized
component is more or less known and therefore simplified algorithms can be
applied, reducing their complexity and accelerating their speed.

5. Font organization: This is an almost stand-alone topic beyond the technology of
font parametrization. But, some issues still need to be considered by the font
synthesizer, such as composing hybrid characters and providing some font
information necessary for font management including font name, font creation
and modification date, copyright, etc.

In chapter 4, we will present some important algorithms and solutions along with a
detailed description of our experimental font parametrization system.

1. Readers are referred to the PostScript language for an explanation of filling rules. The “non-zero winding” rule
ensures that pixels in the overlapped area are activated.

74 Chapter 3: Font parametrization

3.5 Summary

This chapter presented concepts and methods of our component-based font
parametrization system. The framework of the system consists of two main parts:
parametrizable character synthesis methods and parameter files.

The parametrizable character synthesis methods enable synthesizing characters by
parametrizable components. Characters are built by using predefined shape primitives -
components, and by specifying the relationships (dependency) between components. We
introduced variations of terminals and junctions in order to cover a large character design
space.

The parameter files provide instances of parameters for the parametrizable
character synthesis methods. Parameters have been organized hierarchically: global
parameters control uniform features over the whole font and local parameters control
only features of individual characters. To achieve coherent feature modification of
similar typographical parts across several characters, we introduced the concept of local
parameter grouping.

To explain in detail the parametrizable character synthesis system, a full example
for one character and its parameters have been given in this chapter. Statistics about the
number of required parameters are provided in section 4.6.

4.1 Classes 75

CHAPTER 4

Implementation of the parametrizable
font synthesizing system

In the previous chapter, we have presented the algorithms and techniques used in our
parametrizable character synthesis system and the specification of the hierarchy of
global, group and local parameters. In this chapter, focusing on the font synthesizer (see
the system framework in Fig. 3.1), we describe our experimental implementation of the
parametrizable font synthesizing system. The font synthesizer contains a set of functions
which deal with component synthesizing (building), parameter file interpretation,
specific geometric operations such as shape trimming and merging, intelligent scaling
(hinting), and automatic optical spacing.

We started our study on basic font parametrization problems, such as modelling of
curves and shape primitives for character parts. We used Mathematica, a comprehensive
tool suitable for building mathematics and computation models. After the first
experimenting and prototyping phase, we decided to integrate the results and to design a
prototype system. This prototype system allows to carry out more typographical
experiments and to evaluate the results.

The font synthesizer and the individual parametrizable character synthesis method
are written in C++. The parameter files, however, are written as readable text. This text is
parsed and interpreted by the synthesizer. The readable and editable parameter files
facilitate the creation of derived fonts by appropriately modifying the parameters.

The problems of hinting and automatic optical spacing [Hersch95] are themselves
two stand-alone research topics. They are outside the scope of the present research. We
have however tried to adapt results from previous work into our font parametrization
system. We also have slightly improved the technique used for automatic spacing.

4.1 Classes

There are some similarities in the data and in the behaviour of each character’s

parametrizable character synthesis method. This suggests designing a base object which
contains all the common data elements and functions used by each parametrizable
character synthesis method. Each parametrizable character synthesis method
corresponds to an individual derived object of this base class. This model also helps

implementing the parameter hierarchy (Fig. 4.1).

76 Chapter 4: Implementation of the parametrizable font synthesizing system

Base class TCharacter:

-global parameters...
-virtual functions BuildChar ()...
-library of components and operation

TChar61: TChar6?2: TChar7A:
derived for ‘a’ derived for ‘b’ . derived for ‘z’

-local params... -local params... -local params...
-BuildChary()... -BuildChary()... -BuildChar()...

Figure 4.1: The base and derived class model reflect the similarity of parametrizable
character synthesis methods and the hierarchy of parameters.

4.1.1 The base class

The TCharacterclass is the base class for each character's parametrizable character
synthesis method. Data members of this class consist of all global parameters.
Component synthesizing functions and specific purpose geometric operations are
member functions of this class. Some member functions such &uild€har() are

virtual. They intend to be overridden in derived classes.

We first define the data type for parameters, which is a real number or a flag.

typedef float TParameter;
typedef short TFlag;

The first part of the base class contains all global parameters. Names of parameters
begin with a letter indicating whether the parameter is a flag (for example junction or
terminal types) or a real number. A parameter may have three values respectively for
capital characters, lower-case characters and digits (including symbols).

class TCharacter {
/I Data members...

public:
[* The first letter of a global name has */
/* a special meaning: *
/¥ i-aninteger, often used for earmark types */
[* p - parameter, whose type is defined above */

[* serif styles */

static TFlag iSerifStyle;

static TFlag iSerifSupportType;
static TFlag iSerifEndType;
static TFlag iSerifFaceType;

4.1 Classes

77

/* global parameter names: *** ikttt |
/* aname is like: p(c/m/d)XxxX... XXX(W/H/D/A) ******/
/* where, c - capital, m - minuscule, d - digit *****/

/* reference lines *

static TParameter pBaseLine;

static TParameter pXheight;

/* beta */
static TParameter pBestBeta;

static TParameter pLoopExternalBeta;
static TParameter pLooplnternalBeta;

J* stem *
static TParameter pcVerStemW, pmVerStemW, pdVerStemW,
static TParameter pcHorStemW, pmHorStemW, pdHorStemW,;

/* character width */

static TParameter pcRoundLetterW, pmRoundLetterW, pdRo...;

static TParameter pcStemStemW, pmStemStemW, pdStemStemW;
static TParameter pcStemCurveW, pmStemCurveW, pdStemCurveW;
[*serif *

static TParameter pcVerSerifW, pmVerSerifW, pdVerSerifWw;

static TParameter pcVerSerifD, pmVerSerifD, pdVerSerifD;

static TParameter pcVerSerifH, pmVerSerifH, pdVerSerifH;

I* others */
static TParameter pcOptCor, pmOptCor, pdOptCor;

I* spacing */
static TParameter pCapitalSpacing;
static TParameter pSmallSpacing;

/* en d Of g Iobal param ete rs ***************************/

The second part of the base class mainly contains functions for synthesizing
components and functions for inputting parameters and handling synthesized results.
Components are stored in a list writtersgs The data membeheGlyphholds the result
of BuildChar () andtheMergedGlypholds the result after merging all components in
theGlyph Both of these results (contours) are stored in global memory.

protected:

TComponent s[kMaxNbOfComponents];
TGlyph theGlyph;
TGlyph theMergedGlyph;

The constructor of the class is supposed to initialize the parameters. One can also
update the parameters or write parameters to a file by calling the corresponding function
to load or write a parameter file.

/I Member functions
public:

TCharacter ();
virtual ~TCharacter ();

public:

static void LoadGlobalParameters (FILE *fp);
static void LoadGroupParameters (FILE *fp);
virtual void LoadLocalParameters (FILE *fp);
static void WriteGlobalParameters (FILE *fp);
static void WriteGroupParameters (FILE *fp);

78 Chapter 4: Implementation of the parametrizable font synthesizing system

virtual void WriteLocalParameters (FILE *fp);

The parametrizable character synthesis method is represented by a function
BuildChar () which will be overridden for each individual characters. The function
UnBuildChar ()frees memory when the object is destroyed.

virtual void BuildChar ();
virtual void UnBuildChar ();

A function for synthesizing a component is namednakeXxxx ()which creates
anTComponenbbject (see section 4.1.3).

protected:
TComponent nullComponent ();
TComponent makeStem (TRealPoint p0, TRealPoint p1,
float w, int endO, int endl);
TComponent makeSerif (float swl, float shl, float sd1,
float sw2, float sh2, float sd2,
TLine I1, TLine 12, TLine 13, int dir);
TComponent makeTopSerif (float sw, float sh, float sd,
float theta, float overshoot,
TLine I1, TLine 12, TLine 13, int dir);
TComponent makeSweep (TRealPoint Pd, TRealPoint Qd,
TRealPoint Pa, TRealPoint Qa,
TRealPoint B1, TRealPoint B2);
TComponent makeLoop (TRealPoint centerl,
float al, float b1, float etal, RealPoint center2,
float a2, float b2, float eta2);
TComponent makeHalfLoop (TRealPoint centerl,
float al, float b1, float etal, TealPoint center2,
float a2, float b2, float eta2, int dir);
TComponent makeDot (TRealPoint center,
float a, float b, float theta);

Operations specific for components are also member functions of the base class.

TContour cut (TContour theContour, TLine theLine);

TContour unite (TContour contl, TContour cont2);

TContour smooth (TContour contl, TContour cont2,
float r1, float r2, float tang1l, float tang2);

There are some functions for handling outputs, such as preparing drawing lists for
displaying the components and character glyphs. Among them, the function
MergeGlyphShapes (herges components theGlyphinto a non-overlapping character
outline and stores it itheMergeGlyphShape

void MergeGlyphShapes ();

} /' end of the base class TCharacter

4.1.2 The derived classes

Each parametrizable character synthesis method is a derived class of the base class. They
are named according to their ASCII code with a prefi€hiar. For example the class

for character “a” is named asIChar61, the class for character “z” is named as
“TChar7A, etc. Generally th@ CharXXclass has two parts. The first part declares all

the parameters used by this character specification.

4.1 Classes 79

class TCharXX : public TCharacter {
/l Data members
private:

TParameter pppl;

TParameter ppp2;

The second part contains the overriding func@ildChar () which defines the
method to build this character. The construdi@harXX ()acts as the parameter entry
which loads parameters to the parameter place holders.

/I Member functions
public:

TChar61 ();

~TChar61 ();
protected:

void BuildChar ();

}: I end of TCharxx

TheBuildChar ()function is the parametrizable character synthesis method. In this
function, components are synthesized by calling the corresponding component
synthesizing functionsfakeStepmakeSerifetc.). Components are trimmed by calling
the proper function and assembled in the same order as the component dependency graph
(section 3.2.1.2). The result is storedheGlyph It comprises all trimmed component
outlines.

4.1.3 Other classes

This prototype system also defines some other useful classes, sutGlygh
TComponentTPoolandTFont

The TGlyph class defines and manages a dynamic data structure for storing
character glyphs. It starts from the definition of a point, the §RsslPoint A segment,
classTSegmentconsists of a departure point, an arrival point and, if it is a curve, some
control points. A contour, clagsContour is a segment ring. And finally, a glyph is a set
of contours.

The TComponentlass defines the data structure for components. It contains a
“union” of different component types. Both the input parameters and the synthesized
results including the auxiliary points are stored in this class.

typedef struct stem_struct { /I -- stem and bar
/] args
TRealPoint po;
TRealPoint p1;
float w;
int endO;
int endl;
/I outputs
TRealPoint A, B, C, D; Il support points
} TStem;
typedef struct serif_struct { I -- foot serif

80 Chapter 4: Implementation of the parametrizable font synthesizing system

} TSerif;

typedef struct topserif_struct { // -- top-serif

} T'I"'c')pSerif;

typedef struct sweep_struct { Il -- sweep
} Té\}veep;

typedef struct loop_struct { I -- full loop
} Tl:éop;

typedef struct halfloop_struct { // -- half-loop
} THéIfLoop;

typedef struct dot_struct { Il -- dot

} Tlfibt;

typedef struct path_struct { /I -- others
} TPath:

typedef struct component_struct {
int ComponentType;
union {
TStem Stem,;
TSerif Serif;
TTopSerif TopSerif;
TSweep Sweep;
TLoop Loop;
THalfLoop HalfLoop;
TDot Dot;
TPath Path;
} // an anonymous union, SO you can access
/I its member shortly like s0.Sweep
TContour theContour;
TContour theAuxContour;

} Tébmponent;

The glyph is a dynamic data structure and memory allocating and freeing are
frequent. Since the basic unit of memory allocated for a glyph is the memory of a
segment, we defined the claBBool to take up the memory management for segments.
The classTPool manages a pool of memory units for segments and allocates or frees a
segment in its own segment pool. This solution is more efficient than calling the OS
memory management.

The TFontclass manages all characters of a font. It contains a character encoding
table (elementheTabl@ which indexes each character’'s enbgy its ASCII code. The
entry of a character contains the name of the character afCtieXXobject of the
character. This enables looking up a character by its name. The class also contains
documentary information for font management. The member funGedAChar ()is the
first application interface through which an application obtains the object for this
character.
typedef struct char_entry {
char name [kMaxCharNamelLength];

TCharacter *theChatr;
} TCharEntry;

class TFont {

4.2 The implementation of the parameter hierarchy 81

/I data members:
public:
char sFontname [kMaxStringLength];
char sFontfamily [kMaxStringLength];
char sCreator [kMaxStringLength];
char sVersion [kMaxStringLength];
char sDescription [kMaxStringLength];
char sCopyright [kMaxStringLength];
char sencodingStandard [kMaxStringLength];

TCharEntry theTable [kMaxNumberOfCharacters];
/I member functions
public:
TFlexFont ();
~TFlexFont ();
TCharacter *GetAChar (int charcode);

}: // end of TFont

4.2 The implementation of the parameter hierarchy

4.2.1 Parameter files

Parameters are stored in files in a readable text format. Each concrete font needs three
kinds of parameters and, accordingly, three parameter files: the global parameter file, the
group parameter file and the local parameter file. In order to simplify their manipulation,
such as preparation, comparison and modification, and to maintain portability, parameter
files are text files instead of binary ones. Parameter files have a predefined
understandable format and the parameter loading functions ofGharacter class
interpret this format. C or C++ style comments are allowed in the parameter file. The
basic format is a parameter assignment which looks like

parameter_name = parameter_value;

Global parameters have standard names which can be recognized by the file parser.
Local parameters have no standard name, but the set of local parameters for each
character is fixed. We could give each local parameter a fixed name and make it
recognizable by the parameter file parser. However, parameter groups may vary from
typeface to typeface, meaning that the grouping of local parameters ought to be
dynamic.Therefore, the basic parameter assignment format has been extended to enable
parameter group definition in the parameter files. This is realized by a macro definition
and a reference mechanism.

A macro name is a string starting with the letter “$”. A macro definition looks
similar to a parameter assignment except the left side of the sign “=" is a macro name.
When the file parser scans in a macro definition, it installs a “name-value” pair in a
macro definition table which is part of the parser. Then, this macro name can be used as a
parameter value in a later parameter assignment. For example, the following two lines
first associate a macro name called “$APercentage” with a value 0.9, then assign this
macro name as a parameter value to the parameter named “progortionl

82 Chapter 4: Implementation of the parametrizable font synthesizing system

/I define a macro
/I refer to the macro

$APercentage = 0.9;
proportionl = $APercentage;

Sometimes, a simple expression as the right side value of the parameter assignment
will provide much flexibility for parameter grouping. For example, if a parameter
“proportion2” is supposed to be the difference between 1.0 and the macro
“$APercentage”, we may want to assign expression “1.0 - $APercentage” to this
parameter. In order to use simple expressions, we introduce PostScript-like post-fixed
expressions using a limited set of operatadd for add, sub for subtract,mul for
multiply, div for divide, negfor negative, andplt for interpolate (Tab. 4.1). To provide
for more flexible parameter assignations, we also introdua#itbkse branch operators
and some boolean operators (Tab. 4.2).

Table 4.1: Algebra operators for writing parameter files.

Usage of Operator Meaning in C/C++
a badd a+b
a bsub a-b
a bmul a*b
a bdiv alb
aneg -a
a b fiplt a*(1-f)+b*f

Table 4.2:Branch and boolean operators.

Usage of Operator Meaning in C/C++

a beq a==b

a bne al=b

a bge a>=bh

a bgt a>bhb

able a<=b

a blt a<b

a band a&&b

abor allb
anot la

(0|17 aif if (1) a

(0]1) a bifelse if(1)aelseb

a. Boolean values “true” is represented as “1”, “false” is
represented as “0”. They are often generated and pushed
into the stack by the boolean operations.

The reason to use post-fixed expressions is to simplify the implementation of the
grammar parser, despite the fact that the expressions may not look natural. Using the
subtraction operator, we can write the above example as follows.

4.2 The implementation of the parameter hierarchy 83

proportion2 = 1.0 $APercentage sub; // 1 - &APercentage

Now, let us present the method to link several local parameters into a group
parameter. For example, we want to define a group parameter to achieve the coherent
modification of the arch depth of characters “h”, “m”, “n” and “u” (see also Fig. 3.21).
We can define a macro name “$ArchDepth” and then refer to that macro name in those
characters.

Since the macro name must be defined before it is referred to, the parameter files
should be loaded in a fixed order: first the global parameters file, then the group
parameter definition file and finally the local parameter file. Modifying the group
parameter file requires reloading both the group parameter file where the macros are
defined and the local parameter file where the macros are referred to.

The flexible format of parameter files also provides a way to specify parameter
varying rules in order to make typeface variation. Experiments on the synthesis of
derived font by modifying parameters are presented in section 5.2.1. In Appendix G, we
give the complete global, group and local parameter files for Times Roman with a macro
defined for applying boldness variation.

4.2.2 Implementation

The macro definition and reference mechanism is realized by a table called the
MacroTable which is functionally similar to the PostScript dictionary. The post-fixed
expressions are implemented by a stack calle®fferandStackwhich is a simplified
version of the operand stack in a PostScript interpreter.

The macro definition and reference mechanism is realized by a table which holds
name-value pairs. To define a macro, the macro name and values are stored (installed)
into the table. To reference (or use) a macro, the macro name is used as a key to search
the table until it finds the most recently installed name-value pair which has the same
macro name. The value is returned to replace the macro’s name.

To process a post-fix expression, the parameter file parser pushes each operand it
meets into th@®perandStackintil it comes across an operator name. These are defined in
Tab. 4.1 and Tab. 4.2. Then the parser pops the operands required by the operator, from
the OperandStackThe binary operatosdd suly mul anddiv require two operands, the
unary operatoneg requires one operand, and the interpolation operpliorequires
three operands. The boolean operand for the branch opefatordifelse is treated
according to this rule: value 0 meafadse value 1 meansrue. After executing the
function of the operator, the result is an operand ready for the next operation, pushed on
top of theOperandStackThe end-of-line character (any comments will be skipped)
indicates the end of the expression and the parameter file parser knows to pop out the
latest operand as the result value of the expression. Thédp#randStaclshould be
empty again as it was before parsing the expression.

84 Chapter 4: Implementation of the parametrizable font synthesizing system

4.3 Output forms of synthesized characters

Typographic characters are first synthesized as a set of trimmed components. To make
use of them in an application, the synthesized characters can either be converted to
displayable bitmaps, or to outlines in order to synthesize traditional outline fonts.

In both cases, the character is scaled just by scaling the global parameters, because
all local parameters are expressed as proportions of global parameters.

4.3.1 Component-based rasterization of synthesized characters

When synthesized component-based characters are converted to character bitmaps, for
example for printing and display purpose, they are rasterized. The rasterization process
converts geometrically represented character shapes into bitmaps. The high quality “flag-
fill” rasterization algorithm [Hersch88] can correctly convert non-overlapped contours
into bitmaps. However, the component-based character may comprise overlapping
component contours, which require the flag-fill algorithm to be extended to support
overlapped contours.

The basic flag-fill algorithm can be described by the following two steps:

Step 1: Scan-convert all segments of a contour into pixels and mark them as flags in an
empty device bitmap:
M[i][jI,i=0..n-1,j=0.. m-1,
which is an array witlm rows andm columns of pixels.
Step 2: FORi=0TO n-1DO / for each ecan line
v:=0; I/ values of pixels: 0 for white, 1 for black.
FORj=0TO m-1DO
/I 1. toggle pixel values
IF M[i][j] has been marked as a flIE3gHEN
IF v==0THEN v := 1ELSE v := OENDIF;
ENDIF;
Il 2. set pixel values
MI][] = v;
ENDFOR
ENDFOR

If we represent the flagged pixels on a scan ling apop..., i, black pixels are
located between successive pairs of flags;, P3P, -, A-1Pk- This filling result can be
best described as the “even-odd” filling rule in PostScript terminology (Fig. 4.2a, see
also [Adobe85, pp.70-71]). If two contours overlap, the overlapped area will be regarded
as the outside of the filling area. To fill the component based character shapes, an
overlapped area need to be treated as the inside of a filled area. This requires using the
filling rule known as the “non-zero winding” rule (Fig. 4.2b).

4.3 Output forms of synthesized characters 85

(a) even-odd rule (b) non-zero winding rule

Py | 3\P2 scanline_ Py | 3\P2 scan line,

Figure 4.2: Two filling rules and their effects on the overlapped character contours.

To apply the “non-zero winding” filling rule, the basic flag-fill algorithm is
modified. The non-zero winding filling rule requires oriented input contours. When a
scan line intersects a contour, the algorithm can detect if the scan line enters or leaves a
contour part. In this thesis, the positive contour orientation is counterclockwise. At an
intersecting point, if the intersecting contour segment traverses the scan line from left to
right, the scan line enters the contour and vice-versa (see also Fig. 4.2b). To remember
the type of intersection between the scan line and the contour, intersection attributes,
which indicatein or out, should be associated to each flag.

The basic flag-fill algorithm needs also to be improved in the case that two flags
overlap in the bitmap. We store flags on each scan line byxtbheordinates as well as
their intersection attributesn(or out) in a “sorted flag array”, instead of bit-setting in a
bitmap. In this data structure, two overlapped flags will appear twice in the sorted flag
array. For character rasterization, a flag can be represented by a two-byte integer with the
highest bit indicating the intersection attribute of this flag, and the remaining bits
representing the coordinate. The maximum length of the flag array depends on the
maximum number of possible intersections a scan line has with the contour of a
character. This number is not large, normally less than ten for Latin characters. The
modified flag-fill algorithm for the “non-zero winding” filling rule is described below.

Step 1: Scan-convert all segments of a contour into pixels; store twordinate of each
pixel associated with its intersection attributedr out) in a 2-D flag array:
S[il[j,i=0..n-1,j=0..m-1,
wherei is the index of a scan lina,is the maximum number of scan lingss the
index of a flag in a scan line, andis the maximum number of intersections in one
scan line. Sort flags of each scan line (S[i]) in an incremental order. The number of
flags (an even number) in each scan line is also counted and stored in an auxiliary
array:
NbOfFlags[i], i=.. n -1.

Step 2: Find “black” spans on each scan line and paint them to the raster device. A span is
represented by twocoordinates, one for tHist pixel, the other for th&ast pixel.
FORi=0TO n-1DO Il for each scan line sfi]

counter ;= 0; /[initialize to count the winding number
FOR j = 0TO NbOfFlags|i]-1DO I for each flag in the scan line
IF SJi][j].attribute ==in THEN

86 Chapter 4: Implementation of the parametrizable font synthesizing system

counter := counter+1;
IF counter == THEN
first := S[i][j].x;
ENDIF;
ELSE // the attribute i®ut
counter := counter-1;
IF counter == O’HEN
last := S[i][j].x;
paint_span (first, last, i); //in scan line i
ENDIF;
ENDIF;
ENDFOR;
ENDFOR.

These filling functions are enclosed in a class nanfidagFill, which uses a table
data structure to store flags and attributes of each scan line.

4.3.2 Outline generation of synthesized characters

When a synthesized character is to be used as an outline, for example to draw the outline
of the character or to convert the synthesized characters from a component-based shape
description into a traditional outline-based shape description, our system can merge all
individual component contours of the character into a character outline. The merged
character outline may contain several contours but none of the contours is overlapped.

General purpose union or intersection algorithms for geometric shapes can be
applied to merge components, for example [Vatti92]. We have developed our own spe-
cific shape merging package, which has been used in our font synthesizer. We give only a
short overview of its working principles, since the detailed description of its functionality
is outside the scope of the present thesis.

Assuming contours have an orientation, our algorithm first detects all intersections
between two contours. Then a tracing process is applied to find the boundary of the final
merged shape. The principle of the tracing algorithm is simple. Suppose the direction of
a positive contour is counterclockwise, the tracing algorithm for finding the union of two
contours will always choose the right-most branch candidate to follow at each
intersection between the two contours.

Since a character may incorporate one or several external and one or several
internal contours, we call the counterclockwise external contour a positive contour, and
the clockwise internal contour a negative contour. Then a shape is defined as follows
(also illustrated in Fig. 4.3).

Definition 4.1: A shape is a set of disconnected positive and negative contours, which
satisfy the following conditions:
1) A negative contour represents a hole and must reside inside a positive
contour.

4.3 Output forms of synthesized characters 87

2) A shape may contain one or more positive contours if none of the
positive contours is immediately inside another positive contour.

0 _
el +D t

(a) alegal shape. (b) not a shape: (c) not a shape:
the negative contour is one positive contour is
outside the positive one. immediately inside

another positive one.

Figure 4.3: Definition of shapes: good shape vs. bad shapes.

Shapes satisfying these conditions can be correctly merged with our shape merging
algorithm, and the result is also a shape respecting these conditions. The shape merging
process can be repeated to merge more than two shapes. In the case of merging
components of a character, each component is merged successively. This shape merging
algorithm not only merges character components (Fig. 4.4a), but can also be used to cre-
ate combined characters or glyphs (Fig. 4.4b) and to create outlines of complex graphic
shapes (Fig. 4.4c).

(a) Merging characters components (left) into outlines (right).

NE :
A A j
(b) Combining two characters (left) into a new glyph (right).
RN H@
v Q

J B

] ./

88 Chapter 4: Implementation of the parametrizable font synthesizing system

(c) Creating the outline of a complex graphic shape.

Figure 4.4: Merging components (graphical shapes).

4.4 Automatic optical spacing

To layout text, spacing information such as character pair kerning is needed. However
this kind of fixed information is not suitable for parametrizable font generation. The ideal
space between a character pair depends on the space perception of the human vision
system. Traditionally, typographers tune spaces between many pairs of characters by
hand and save them in a kerning table [Karow94, pp.173-192]. This is costly, because
characters may have possible pairs. For parametrizable fonts, we need an automatic
method for building kerning tables. In case of change of weight, contrast or stress, we
have to generate spacing values on-the-fly.

4.4.1 The principle of automatic optical spacing

Previous work [Hersch95] has shown that automatic spacing of character pairs is possi-
ble and good results have been obtained for both bilevel and graylevel character raster-
izations. The algorithm for automatically computing the best possible spacing value
between two given characters is based on a model of how the human visual system per-
ceives a space between two character shapes. This model enables us to compute the per-
ceived space between two characters from the geometry of their outline shapes.

The model is based on the assumption that, when we read a text line, our vision
system recognizes successive characters by activating a spatial-frequency channel in a
band one octave wide, ranging from one cycle to two cycles per character. The perceived
intercharacter space is therefore filtered and the shape details of the two character parts
are smoothed out. Because the filtering process tends to close open cavities, such as the
one in character “c”, the following criteria are used to model the perceptual space
between two characters:

* The inner shape of a character does not have much influence on the perceived
intercharacter space.

4.4 Automatic optical spacing 89

* Only the parts of cavities that can be seen from the exterior of the character
influence the visual intercharacter space.

» The cavity space and exterior contour parts that are close to the next character’s
contour have the largest effect on the perceived intercharacter space.

The perceptually equivalent spad®ES) can be computed based on the above
criteria and then compared with tltkeal optical space (I0S)rhekerning adjustment
space (KAS)which can be either positive or negative, is used to compensate the
difference betweeRPESandlOS. Thekerning adjustment width (KAWS the result of
dividing theKASby thecharacter’s height (CH)

KAS = |0S - PES (4.1)
KAW = KAS / CH (4.2)

In our font parametrization system, characters have no predefined width since
predefined character width is not suitable for parametrizable fonts. Therefore, we
compute thekerning adjustment spacky placing two character's bounding boxes
against each other. Suppose the left side of “this” character is plasggl,afen the
“next” character positior,e,:Can be computed by adding theunding box widtlof this
characteBBWj,;s and the kerning adjustment widkAW to Xips.

Xnext = %this T BBWihis + KAW (4.3)
KAS
PES\ l /PES xheight
- /
bounding box —
—) CH
Xthis Xnext baseline

BBWinis KAW

Figure 4.5: Computing optical spacing between two successive characters.

The challenge resides in computing therceptually equivalent spadsetween
characters. The work presented in [Hersch95] is based on a series of geometric shape
transformations for character outlines. In this thesis, we introduce another method which
is based on the character images instead of the geometrical shapes.

4.4.2 The implementation

To compute the perceptually equivalent space, we need to extrdeftthall and the
right wall from a character’s flag-filled bitmap.léft wall is a set of pixels which are the

90 Chapter 4: Implementation of the parametrizable font synthesizing system

leftmost flags of each scan linesright wall is a set of pixels which are the rightmost
flags of each scan lines. In case there is no flag on a scan line, the right-most pixel and
the left-most pixel of the bounding box are used accordingly. The example in Fig. 4.6
illustrates the extracted right wall of character “c” and the extracted left wall of character
“a” in order to compute the optical space between the character pair “ca”.

/
bounding box

 © \ |

rightwall left wall
of "¢ of "a"

Figure 4.6: Walls extracted from characters.

The walls are then filtered to imitate the edge of the perceptually equivalent space.
We apply a simple linear filtering process which fills out the concavities i
straight lines. The space between the filtered right wallistharacter (character “c” in
the example) and the filtered left wall of textcharacter (character “a” in the example)
is the area which the human visual system is most likely to recognize as the white space
separating the two characters. The filtered walls of the example in Fig. 4.6 are shown in
Fig. 4.7.

filtered right wall filtered left wall
of this char PES of the next char
\. T/

N A
/ ----------------
bounding box

Figure 4.7: Filtered walls and perceptually equivalent space (PES).

scan line 0

scan line i

scan line n-1

Suppose the filtered right wall of thinis character is stored in an array
FilteredRightWalk,is [i], i=0 .. n-1; and the filtered left wall of theext character is
stored in an arraffilteredLeftWalle,[i], i = O .. n-1. Theperceptually equivalent space
(PES)can be computed as the sum of the length of all scan lines between the two walls.

4.5 Automatic hinting and grid-fitting 91

n-1
PES= Z(FilteredLeftWall.,{i] —FilteredRightWall,,;[i]) (4.4)
i=0

Let us analyze the time and space requirement of this image processing based
implementation. Once the character has been rasterized by our flag-fill algorithm,
extracting left and right walls consists in returning the minimum and maximum points of
each scan line. The running timeQgn) in respect to the number of scan limesThe
linear filtering algorithm and the final computation of equation (4.4) can be both finished
in O(n) running time. Therefore, the total running timeQg¢n), assuming that the
characters have been rasterized. Additional memory to store the extracted walls requires
n + n elements, far less than the memory requirement for the flag tables and the character
bitmaps used at character rasterization time (flag-fill). Fig. 4.8 gives an example of auto-
matically spaced characters computed by this image processing based algorithm.

hamburgefonts

Figure 4.8: Layout of synthesized characters by automatic optical spacing.

To make the result more pleasant, several tuning parameters are provided. For
example, the space between a character pair “nn” is regarded as the standard “stem-stem
spacing”, and the space between character pair “00” is regarded as the standard “curve-
curve spacing”. The paramedsualDepthLimitis used to limit the maximum depth of a
concavity so that certain character pairs such as “vo” can be properly spaced. The
parameteMinSpacegives the minimum space between character walls in order to avoid
overlapping of character parts, for example the space between the serifs of character pair

VW',

4.5 Automatic hinting and grid-fitting

Even though automatic hinting and grid-fitting is a problem mainly related to character
rasterization, it is still interesting to see how component-based parametrizable fonts may
be grid-fitted to generate high-quality rasterized characters at small size. We found that
our font parametrization technology facilitates the process of grid-fitting and largely
removes the need for hinting, since information about components is generally sufficient
for grid-fitting.

92 Chapter 4: Implementation of the parametrizable font synthesizing system

4.5.1 The theory of grid-fitting and hinting

When an outline character is rasterized into a discrete bitmap, the quality of the
character image can be damaged due to rounding effects. To improve the quality of
character rasterization, a process called grid-fitting is applied to a character outline
before it is scan-converted. Grid-fitting is based on the piecewised deformation and grid
adaptation of outline parts [Hersch93]. Since traditional character outlines contain only
straight line and curve segments, additional information called hints, constraints or
instructions is required by traditional outline font rasterizers. The hints or instructions
normally specify how a character outline is to be modified in order to preserve features
like symmetry, thickness and uniform appearance on the rasterized text page. Typical
hinting information are the TrueType instructions [Microsoft95b], the Adobe Typel
hstem/vstem based hints [Adobe90], the URW intelligent font scaling technology
[Karow94, pp.105-149] and EPFL RastWare constraint specification [Betrisey89].

Hinting information can be added either by experienced digital typographers or by
automatic hinting tools. The quality of automatically generated hints depends on the
tool’s intelligence to locate typographical parts from geometric outline description of
characters. The automatic hinting system described in [Hersch91] uses a model matching
method to find vertices which are to be hinted. This method requires predefined font-
independent character hinting models for each character or symbol.

With the parametrizable fonts, however, automatic generation of traditional hinting
information can be realized without additional information such as predefined models.
Grid-fitting can also be executed on-the-fly without pregenerated hinting information.

4.5.2 The implementation
4.5.2.1 Automatic generation of traditional hints

To use traditional outline font rasterizers, the synthesized parametrizable fonts can be
converted into traditional outline fonts. In this case, besides the outline representation,
hint information needs to be added to the converted outline font. With the component-
based character description, many important hints can be generated automatically.

Typographic features which are intended to have uniform appearance at small
bitmap size, for example main vertical stem width, are controlled by standard feature
measurement hints, such as @entrol Value Table (CVTn Microsoft TrueType and
thestem width snapping arragp Adobe Typel. Due to rounding, slight differences of the
real stem width may result in a one pixel difference of the rasterized stem width. This
difference can be easily noticed when the stem width is only a few pixels. Therefore, at
small bitmap size, single standard stem width values are used for lowercase, uppercase
and digits to avoid uneven rasterization of similar stems. Obviously, this problem is
solved with our component-based characters, where the global font parameters control
vertical and horizontal stem widths throughout the whole font.

4.5 Automatic hinting and grid-fitting 93

Hint information for individual characters specifies distances between contour
points and grid-fitting requirements. With component-based characters, these contour
points and their relationships are part of the component designs. As in Adobe Type 1,
grid-fitting requirements may be directly derived from component information.

Some hints concern very specific character features. They are usually added by
experiments [Stamm98]. However, since printing resolutions are increasing, they
become less and less important. Therefore, automatic hinting methods should generate
only regular and important hints.

4.5.2.2 Grid-fitting component-based characters without hints

When the synthesized characters are rasterized by our component based character
rasterizer (section 4.3.1), grid-fitting can be executed without any pregenerated hinting
information. The component representation of typographical parts and the dependency
between components already comprise the necessary information to ensure good quality
grid-fitting.

Our experimental grid-fitting of parametrizable characters uses basic grid-fitting
rules which have been proved to be the most important ones. These grid-fitting rules for
bilevel characters include:

» Consistent character features. It is a typographer’s experience that all identical
character parts should have an identical look. Character features in our
parametrizable font, such as stem width and serif height, are global parameters.
This means that character features are automatically kept consistent throughout
the whole font. Grid-fitting requires for phase control the displacement of the
contour of a stem. If the displacement is done based on a whole component
instead of pieces of segments, the width of the stem is automatically kept
consistent.

» Phase control of reference lines. To generate horizontally symmetric round
letters such as “0”, we normally center the area between the base line and the x-
height line on the grid. In our component-based parametrizable font synthesis
system, reference line positions are global parameters. Therefore, this phase
control of reference lines can be done by controlling the global parameters of
the scaled reference line positions.

» Centering of vertical and horizontal stems. Experiences show that vertical stems
and horizontal stems have the most impact on the human vision system
especially when a character is rasterized at a small bitmap size. Centering a
stem at the center of a grid not only ensures that stems with the same width have
the same rasterized stem width, but also helps to maintain the symmetry of the
stem’s serifs after rasterization. Main vertical stems in oomponent
dependency graplisection 3.2.1.2) are always at the second level which is
directly controlled by thenain component widtbf the character. To grid-fit a
stem, themain component widtls slightly modified to ensure that successive
stems are centred on the grid.

94

Chapter 4: Implementation of the parametrizable font synthesizing system

» Phase control of vertical and horizontal round parts. There are two kinds of
round parts in a character: the connecting sweep and the loop or half-loop. The
position and dimension of a connecting sweep usually depend on the connected
components. To adapt itself to the displacement of connected character parts
during the grid-fitting process, the contour or vertices of a connecting round part
has to be specified as “elastic” according to traditional hinting systems
[Betrisey89]. However, our component synthesizer of sweep components has
enough intelligence to adjust a connecting sweep in response to the
displacement of the connected components. Regarding the loop and half-loop
components, phase control can be applied to have nicely rasterized extrema.
Keeping the phase of the extremum of a round part in a certain range, for
example between 1/16 to 9/16 [Hersch95], will prevent a “single pixel” or a flat
“long run” at the extrema. To control the phase of a round part, the position of
the extrema need to be known. Fortunately, our component design for loop and
half-loop specifies the extrema explicitly.

» Dropout control. For a bilevel character bitmap, pixel dropout can be a very bad
defect caused by rasterization at very small size. However, no effective grid-
fitting rule can prevent pixel dropout of a slanted or curved part of a character
by simply modifying its contour. Traditional outline font technology controls
dropout by the filling algorithm. For our component-based fonts, we control
pixel dropout at filling time for each component. Therefore, the pixel dropout of
the whole character is controlled. Besides, since we know the types of each
component, we can selectively control whether a component is allowed to have
pixel dropout or not. For example, we may specify that a serif slab is allowed to
have pixel dropout at a certain small bitmap size.

hamburrelon
hamburzeton

hamburgefon

Figure 4.9: On-the-fly grid-fitting of our synthesized characters for grayscale display.
Character sizes measured by capital letter height are 8 pixels, 10 pixels and 12 pixels
respectively. There are 16 graylevels from black to white, printed without gamma correction.
As stated in [Hersch95], grayscale characters look best when viewed on a LCD display.

4.6 Evaluation 95

Grid-fitting rules for generating good quality grayscale characters are basically the
same as the rules for bilevel characters except that dropout control is not needed. Some
modification are however necessary to enhance the contrast and the overall perceptual
weight [Hersch95]. Instead of centering vertical stems, we align the left edge of a verti-
cal stem to the border of a pixel so that the left side of the stem appears as “black” as pos-
sible. Fig. 4.9 describes the results of our on-the-fly grid-fitting method applied on the
synthesized characters for grayscale display. The grid-fitting methods used in these pre-
liminary experiments include centering the band area between the x-height and the base
lines and left aligning vertical stems to pixel boundary.

4.6 Evaluation

Component based font descriptions require global parameters, group parameters and
local parameters. Tab. 4.3 shows how many parameters are needed for our experimental
versions of parametrizable lower-case Times, Bodoni and Helvetica characters. Bodoni
requires less parameters, since all its serifs are slab serifs (zero serif depth). Sans-serif
font Helvetica further reduces the number of required parameters. The number of local
parameters varies from character to character and from typeface to typeface, thus a mean
value is used for statistics.

Table 4.3:Nb of parameters and size of font comprising lower-case characters “a” to “z”

Times Bodoni Helvetica
nb of global parameters 110 98 63
nb of group parameters 31 31 31
mean number of local parame-| 15.3 16.0 14.0
ters per character

A 26 lower-case character component-based parametrizable font of the complexity
of Times requires approximately 540 parameters, i.e. 1080 bytes. Comparatively,
TrueType requires approximately 1500 bytes for the global parameters and a mean of
154 bytes per character for storing the outlines of lower-case chatattergrid-fitting
instructions needed by TrueType for character generation at medium and low resolution
require an additional mean amount of 385 bytes per character. In contrast, component
based character descriptions already include all information about their structure (stems,
bars, arches, serifs). From our experiment of on-the-fly grid-fitting, we can conjecture
that the additional grid-fitting information [Adobe90][Hersch91][Karow94] required to
rasterize characters at medium and low resolution is negligibly small. In addition,
component-based fonts enable generating derived fonts (condensed, semi-bold, etc.) by

1. Composite characters such as accentuated characters are described by pointing to the basic character
shape and to the accent description. Therefore, only basic characters are considered when giving the mean
storage cost of single character descriptions.

96 Chapter 4: Implementation of the parametrizable font synthesizing system

changing the values of a few global parameters (see chapter 5 for possible variations). A
single component-based font may therefore replace several traditional outline fonts. We

therefore expect component-based fonts to require an order of magnitude less storage
space than traditional outline fonts.

With our current implementation of the font synthesizer, we either synthesize
characters made of partly overlapping components, excluding components which extend
out of the character by using tbet operation (section 3.2.3.1) or we can, after generat-
ing the components, convert the component-based character descriptions into traditional
outline-based characters by using our specifically designed shape merging algorithm to
assemble components into character outlines. Tab. 4.4 shows the character generation
speed for producing component-based character descriptions and for producing tradi-
tional outline-based descriptions.

Table 4.4:Lower-case character outline generation speed on a Power Mac 7200/90

Times Bodoni Helvetica
synthesize component-based charagte¥18 char/s 400 char/s 1350 char/s
outlines
synthesize components and merge | 70 char/s 71 char/s 160 char/s
them into outline characters

Our experimental component-based font synthesizer consists of the synthesizer
kernel (ComponentEngine, ShapeMerging, Kerning, and FlagFill) and of the
parametrizable character synthesis method (CharFiles). It comprises about 15000 lines of
C++ programs, among which 30% are comments. The mean size of one parametrizable
character synthesis method is about 220 lines of C++ without comments. The
Metrowerks CodeWarrior IDE 1.7.4 compiler generates about 239KB of PowerPC 602
native code and 41KB of static data for both the kernel and the 26 characters’
parametrizable character synthesis methods. The linked ANSI libraries of this compiler
are comparatively large, i.e. about 600KB including static data.

Table 4.5: Analysis of the programs of our component-based font synthesizer.

CodeWarrior IDE PowerPC 602

.cp and .h native code Static data
ComponentEngine 78K 21K
ShapeMerging 8800 lines .cp and 51K 0.9K
Kerning 1800 lines .h 4K 0.4K
FlagFill 5K 0.4K
CharFiles 5700 lines .cp and .Ih 101K 18K
Linked Metrowerks’ ANSI C/C++ libraries 495K 110K

4.7 Summary 97

4.7 Summary

This chapter presented our implementation of the component-based parametrizable font
synthesizing system. Since our component-based font synthesis system is suitable for
object-oriented programming, the programs are written in the C++ programming
language. The comprehensive base class makes adding a new design of a parametrizable
character synthesis method as easy as creating a new derived class.

A simple grammar for writing the parameter files has been developed in order to
carry out typographic experiments. To rasterize synthesized characters, a scan-
conversion algorithm adapted for component-based character representation has been
presented. The component-based representation can also be converted into traditional
outline-based representation using a specifically designed shape merging algorithm.

Automatic optical spacing and automatic hinting are two challenging topics for the
traditional outline font technology, yet have not been solved perfectly. We found that,
with our component-base font parametrization method, they are both worth a new study.
The preliminary results are encouraging. The component-based description of characters
is well suited for doing grid-fitting on-the-fly, using our specific component-based
character rasterizer.

98

Chapter 4: Implementation of the parametrizable font synthesizing system

5.1 A visual environment 99

CHAPTER 5

Experiments and applications

Besides the high storage compression rate (section 4.6), our component-based font
parametrization method is also suitable for applying typographical typeface variations,
which are often beyond the capabilities of the traditional outline font technology. Being
able to carry out typeface variations has been an important goal (yet only partially
reached) of several previous research projects in digital typography
[Knuth86a][Shamir98][Zalik95] [Schneider98]. In this chapter, we first introduce a
visual font design and modification environment based on the component-based
parametrizable font synthesizer. Then, we will present a few typographical experiments.

5.1 A visual environment

To test the prototype of our component-based parametrizable font synthesizer and to
demonstrate the flexibility and functionality of our font parametrization method, a visual
environment for parameter editing and modification has been developed in the Peripheral
Systems Laboratory of the EPFL. This environment, nalRiexFont Editor integrates
functions such as character visualization, parameter file saving and loading, global
parameter visual modification, and specimen printing usingudtiple document
interface (MDI}t Windows application.

The term “visual” concerns two aspects. First, any parameter modification can be
seen immediately in the character display window. Second, the modifications of global
parameters are done with slide bars and iconed buttons.

5.1.1 Character visualization

The overall appearance of the environment is shown in Fig. 5.1. Some frequently used
tools are displayed in tool bars. There are four different tool bars: the character set bar,
the file bar, the parameter bar and the preview bar.

The character set toobar displays the character set in the opened parametrizable
font. By clicking on a character in this tool bar, the selected character is displayed in an

1. Aterminology of Microsoft Windows describing the application’s architecture. A multiple document interface
(MDI) differs from a single document interface (SDI) in that the multiple document interface enables a user to open
multiple documents each with its own windows, while the single document interface allows a user to work with just
one document at a time.

100 Chapter 5: Experiments and applications

zoomed character observing window. Characters can be displayed as either filled
character images or outlined components.

B Flexfont editor 1.1

Fie Options Toobars Window Help

2T T B[Filed Ouined Glohal parameters Fief. lines Eamiatks | Boldness Condensation Cortrast Custom
z] _lalx B3 Char - g (100%) [cIOI=]| —
e =
d
s C]
f
3
h
i
|
k
I
" [I (=TS
n
o
P
q
i
*
t
u
¥
w
«
¥
z =
£ 2ol x] MJ =l

P text |quick brown o jump: Waterfall

a quick brown fox jumps over

Figure 5.1: Multiple character displaying windows

The current version of the FlexFont Editor does not support local parameter
modification. Therefore, we modify local parameter for individual characters by editing
their local parameters in the local parameter file with a text editor. After saving the
modified parameter file, we reload the parameter file to update the characters in the
character observing window. The file tool bar provides a short-cut for parameter
updating.

The preview tool bathas a character displaying area which displays automatically
spaced character samples. The text is entered through a text editing box. Clicking on the
“waterfall” button opens a window for displaying and printing the sample text at
different sizes.

The *“large character” printing tool in the file tool bar enables printing a
component-based character at full-page size according to the size that typographers
generally use to design characters. Clicking on the printer icon brings out a character
printing window which previews the printing result for the currently selected character
(Fig. 5.2). Reference lines can be added as options. The character can be printed either as
a filled image or as outline components.

5.1 A visual environment 101

Character printing

Margins -

Left 120 mm
B Right W

Top 20 mm

Bottorm {20 mm

Options :
W Reference lines

W Ascender line
¥ ¥-Height line
¥ Base line

¥ Descender line

Filled Outlined

®

Print Cancel

Figure 5.2: The “large character” printing window.

5.1.2 Global parameter modification

The parameter tool barcontains tools for applying global parameter modification and
typeface style variation. Tools for global parameter modification include: font
information editor, reference lines editor, serif style selector, and global parameter editor.
Tools for typeface style variation include: boldness variation tool, contrast variation tool
and character width variation tool.

The font information editoris a dialogue window which holds editing fields for
each item of descriptive information in the opened parameter file. Descriptive
information, sometimes called “font header”, is not part of parameters, but helps the user
to manage a parametrizable font.

Character height and the height proportion of different parts of characters are
controlled byreference linessuch as the base line, the x-height line, the caps line, the
ascender line and the descender line. Changing the position of reference lines modifies
the character height throughout the whole font. This process is visualized by the
reference line editor windo\Fig. 5.3). In this tool, one can click a reference line and
drag it to move its position higher or lower. The effect can be seen immediately on the
preview characters, which are selected in the preview text editor field.

102 Chapter 5: Experiments and applications

2 Reference lines M=l
Preview : |ohpigd Filled Outlined

onpig

Beset 0Ok LCancel

Figure 5.3: The reference line editor window.

The selection oterif styles which are defined as global parameters for the serif
component synthesizer (section 2.2.4.1), are visualized through a set of icons illustrating
the meaning of each serif style in a dialogue box (Fig. 5.4). By selecting an icon, the cor-
responding serif style is applied to the preview characters and can be immediately visual-
ized.

Font earmark styles

&

Serif support -

Smooth Angled Straight MHane

<\

Top serif support -

Smoath Angled Shaight Mone

&

Serif end :

Butt Round

<\

Top serif end :

Buitt Round

&

Serif face :

Smooth Light concave Concave

Top serif face : Mot yet implemented

Reset Ok LCancel

Figure 5.4: The serif style selection dialogue box.

Modification of other global parameters, such as stem widths, bar widths and serif
dimensions can be done within tgobal parameter editing windo\Fig. 5.5). The
modification of each parameter is immediately visualized in the window’s preview field.

5.1 A visual environment 103

H Global parameters edition =]
Stems & Dots l Horiz. & Wert. Serif&] Diag. & Top Serifs] Char. width & Curves]

Horizontal stem width Marraw wertical stem width

=1 =T
Wertical stem width ag ;II Marrow horizontal stem width 20 i
Diagonal stem width 73 _| Marrow diagonal stem width 7 _|

Dot radius 52 :II Optical Correction 12 j

Previes | globpram Filled | Outlined

Figure 5.5: The general global parameter editing window.

Character Condensation parameters
i |)
Condensation : |37 X e e
BO % 100% 140 %
Condensation limits : Minimum i ED b amirnum li 140
Stems & Dots] Hariz. & Yert. Serifs] Diag. & Top Serifs] Char. width & Curves]
™ Harizontal stem width ™ Marrow harizontal stem width
W Werlical stern width + ™ Marrow vertical stemn width
W Diagonal stem width + ™ Marow diagonal stem width
[T Dat radiuz [Optical canection
Preview |abcdefghms Filled Outlined
Less << Waterfall Reset Ok LCancel

Figure 5.6: The parameter editing window for font condensation.

In order to achieve typographically pleasant typeface style changes, certain
relationships between individual global parameter modifications should be maintained.
For example, to increase the weight (or boldness) of a typeface by 20%, we increase the
width of all vertical stems and diagonal bars by 20%, but only increase the width of
horizontal stems by 15% instead of 20%. We have a special parameter editing tool to
create parameter variation rules for typeface variation of character weight (boldness),

104 Chapter 5: Experiments and applications

width (condensation), stress (obliqueness) and contrast. Fig. 5.6 shows the parameter
editing window for doing font condensation. An interface is available for varying the
font’'s weight, stress and contrast.

The amount of typeface style variation is visualized by a slide bar. The global
parameter which is to be modified in response to this variation can be selected with
check boxes. However, the amount of modification of each parameter may not be in
proportion to the amount of the style variation, and may not be the same for different
parameters. Therefore, parameter modifications are specified by a curve which is editable
in the parameter rule editor window (Fig. 5.7). Each parameter has its own curve and
therefore is edited in its own parameter rule editor window.

Parameter curve edition

140

Flat
Linear

Spline

5

100 /
ipr—cs

/

Ok
Bl
£0 100 140 Cancel

Figure 5.7: The parameter rule editing window.

5.2 Typographical experiments and applications

parametrizable fonts are developed because traditional outline font technology is not
suitable for deriving character or font variations, such as variations of character weight
(boldness) and non-linear condensation of characters. These variations require
information not only in respect to character outlines but also to character structures. Our
component based font parametrization method explicitly describes a character’s structure
and the shape of each of its parts. It is therefore suitable for deriving typographical font
variations. It is also suitable for special typographic applications, such as optical scaling
for high-quality printing.

5.2 Typographical experiments and applications 105

5.2.1 Font variation

A set of fonts corresponding to one typeface but varying in styles such as boldness
(weight) and character width is calleoat family Fonts in one family are distinguished

by styles and by “high level” typographical features, such as boldness, contrast, stress,
condensation and proportion. One may vary any of these features by modifying
corresponding parameters. The parametrizable font will create a new font in the family.
Starting with Times Roman, we have carried out several experiments trying to vary
boldness, condensation, stress, contrast and other features. Similar experiments could
have been carried out starting from other typefaces.

5.2.1.1 Boldness

Character boldness, or weight variation is obtained by changing the width of vertical
stems, vertical curves, slanted bars, horizontal bars, horizontal curves, etc. Horizontal bar
width and vertical stem width will be modified to different extents in response to the
increasing character boldness, because bolder characters tend to have higher contrast
between vertical and horizontal strokes. For example, if we want to make Times
characters 20% bolder (or 120% of the normal weight), we will increase the characters’
vertical stem width by 20% (in this sense, we measure the boldness by vertical stem
width), and increase the horizontal bar width by an amount less than 20%, say, 10%.
When the boldness is increased by more than 30%, we also decrease a little the serif
width parameter, since bolder characters have less space for serifs. This rule is illustrated
in Fig. 5.8.

parameter change))
vertical stem width

vertical curved part width
diagonal bar width

150%

horizontal bar width

horizontal curved part width
120%

90% 120% 150% boldness
| | |

80%

serif width
60%

Figure 5.8: Parameter modification rules for varying the characters’ boldness.

106 Chapter 5: Experiments and applications

Using this rule, we derive from Times Roman new fonts with boldness changed to
90%, 110%, 120%, 130% and 150% (Fig. 5.9). The 150% boldness font imitates the
Times Bold font. One can compare the character quality by looking at the enlarged
characters in Fig. 5.10.

% abcdefghyjklmnopgrstuvwxyz
-mn abcdefghijklmnopqgrstuvwxyz

now abcdefghijklmnopgrstuvwxyz
=0 abcdefghijklmnopqrstuvwxyz
s abcdefghijklmnopqrstuvwxyz
=% abcdefghijklmnopqrstuvwxyz

Figure 5.9: Fonts derived from Times Roman (displayed in the second line) by varying the
boldness factor.

- hamburgefonts
== hamburgefonts
boldness = 50%
S
Times Bold o T
sz AT DIIr@El OIS
&=
Figure 5.10: Times Roman and the derived Times Bold. The last line shows the synthesized

Times Bold as trimmed components. See also Appendix D for the component descriptions of
Times Roman.

5.2.1.2 Condensation

High-quality horizontally condensed fonts are needed where space is scarce, for example
in telephone books. Furthermore, condensed fonts may offer increased flexibility for the

5.2 Typographical experiments and applications 107

presentation of information at display resolution, for example in web browsers. High-
quality horizontally condensed fonts are generated by reducing the character width
without reducing in the same proportion the thickness of the strokes (stems, bars and
curved parts). Since individual character width is controlled by a function of the round
letter width, reducing the size of the global parametsand letter widthensures the

width reduction of most of the characters of the font. Serif width of serifs for vertical
stems and diagonal bars should also be reduced according to the amount of global
character condensation (see Fig. 5.11 for our experimental rules).

parameter change

89% 99% Z condensation

vertical stem width

serif width

round letter width 80%

Figure 5.11:Rules of parameter modification for horizontal condensation.

Fig. 5.12 shows text condensed to 95%, 90%, 85% and 80%. Condensation up to
90% is barely perceptible and enables the generation of high-quality characters.
Condensation to 80% already considerably distorts the original character shapes, hence it
will be considered as a new typeface. Readers can compare the character quality by the

enlarged characters in Fig. 5.13.

e abcdefghyjklmnopqgrstuvwxyz
= abcdefghijklmnopqrstuvwxyz
« abcdefghijklmnopqrstuvwxyz
= abcdefghijklmnopqrstuvwxyz

a0 abcd»efg’1ijklmn0pqrstuvwxyz

Figure 5.12:Fonts derived from the normal Times typeface (displayed in the first line) by
varying the character width.

108 Chapter 5: Experiments and applications

-~ amburgetonts
- hamburgefonts
- hamburgefonts

Figure 5.13:Condensation up to 90% is barely perceptible; condensation to 80%
considerably distorts the original character shapes.

- bcdeghmnopqu
-~ bcdeghmnopqu
- DCde ghl’IlIlOp Jqu

Figure 5.14:Fonts derived from Times Roman (displayed in the middle line) by varying the
amount of oblique stress.

5.2.1.3 Stress

Characters with oblique stress derive from pen-based manuscript writing and were
created soon after the invention of moveable metal type (for example typeface Jenson,
created by a Frenchman Nicolar Jenson in 1470 in Venice, Italy). Design of typefaces
evolved from oblique stress to vertical stress characters. Vertical stress characters became
fashionable with the designs of the Bodoni and Didot typeface at the end of the 18th
century. Increasing stress obliqueness requires increasing the obliqueness pgrameter

the internal loops or half loops. Increasing stress obliqueness may also require some
slight modification of the horizontal curved stroke width, and arch junction orientation
(for letter h, n, m and u). In figure 5.14 we try to vary the obliqueness of Times Roman.

5.2 Typographical experiments and applications 109

The derived font with reduced oblique stress looks nicer than the one with increased
oblique stress.

5.2.1.4 Contrast

By contrastwe mean the difference between horizontal strokes and vertical strokes and

the transition from thick strokes to thin strokes. Old style typefaces have reasonable

contrast while “modern” typefaces, such as Bodoni and Didot have very high contrast.

The thin strokes and serifs can be as thin as hairlines, and the transition from thin strokes
to thick strokes is abrupt. Increasing the contrast requires reducing the widths of

horizontal strokes including horizontal bars and curved parts. Curvature of inner loops

also need to be increased when the contrast is made higher.

-« hamburgefonts
- hamburgetonts
--- hamburgefonts

Figure 5.15:Fonts derived from Times Roman (displayed in the middle line) by varying
horizontal to vertical contrast.

5.2.1.5 Height proportion

Character height proportion mainly concerns the proportion of the lower-casexietter
heightto the upper-case letteap-height The proportion reflects the size relationship of
upper-case and lower-case letters. The bodies of lower-case letters rest between the x-
height line and the base-line. The part that reaches abowehbight lineis called
ascender and the part that reaches belowadke lineis called descender. Tlascender

line and thedescender lineontrol the height relationship of the ascender, the descender
and the character body of lower-case letters. The proportion of these height lines vary
considerably and is a factor having an impact on text readability as well as on the overall
darkness of a printed page.

Two variations of the Times Roman typeface are created by changing the vertical
position of the x-height line. The ascender line and the descender line are adjusted in
proportion (Fig. 5.16).

110 Chapter 5: Experiments and applications

- hamburgetonts
- hamburgetonts
-+ hamburgefonts

Figure 5.16:Fonts derived from Times Roman (displayed in the middle line) by varying the
height proportion.

5.2.1.6 Variations in multiple dimensions

New fonts can also be derived by varying more than one dimension of typeface styles.
Inspired by the designs of Gerrit Nordzij, a dutch type designer [Nordzji91], we tried to
vary the few parameters determining the shape of character “e” so as to generate derived
designs along three different dimensions.

. CH1 =iplt [iplt [normalCH1, maxCH1, boldness], minCH1, contrast]
. CH2 =iplt [iplt [iplt [normalCH2, maxCH2, boldness], minCH2, contrast],
iplt [normalCH2, maxCH2, boldness], obliqueStress * 0.6]
. CV1 = iplt [minCV1, maxCV1, boldness]
CV2 = iplt [minCV2, maxCV2, boldness]
. SH = iplt [iplt [normalSH, maxSH, boldness], minSH, contrast]
. ST =iplt [iplt [mIinCV2, maxST, boldness], minST, contrast]
. EBar = iplt [maxEBar, minEBar, boldness]
. ETail = iplt [iplt [minETail, maxETail, boldness], minETail, contrast]
9. next = minn = 0; nint = iplt [minn, maxn, obliqueStress]
10. Bext = normalfp;
Bint = iplt [iplt [normalP, maxp, (contrast + boldness) / 2],
normalp, obliqueStress]

Definition of interpolation:

iplt (a, b, percentage) =
a* (1 - percentage) + b * percentage.

oNOUTAW NBR

CH1

SHAY I | -

LCVZ 2 EBar explanations:

% ST : Boldness increases CH1 value, contrast decreases CH1 value.
/4 ; ETalil

: Boldness increases CH2 value, contrast decreases CH2 value,
stress obliqueness increases partly CH2 value.

) / [cHz|

Cv1

, 4: Boldness increases CV1 and CV2 values.

, 6: Boldness increases contrast and decreases SH and ST values.

: Boldness decreases EBar values.

: Boldness increases contrast and decreases ETail value.

: Stress obliqueness increases obliqueness n of interior loops.

0: Contrast and boldness increase obliqueness, reduces squareness [.

1
2
3
5
7
8
9
1

Figure 5.17:Parameters determining the shape of character “e”.

The first dimension is theeight of the character (boldness). All horizontal and
vertical width parameters are equally (which is a bit different from the rules in Fig. 5.8)
influenced by the boldness parameter. The second dimensiontiast Increasing the

5.2 Typographical experiments and applications 111

contrast requires reducing the horizontal bar and curve width parameters. The third
dimension isstress obliquenessncreasing stress obliqueness requires increasing the
obligueness parametgrof the internal half-loop and slightly increasing the horizontal
curve width parameter determining the stroke width at the bottom of the character. The
parameters of the character “e” and the interpolating algorithm for determining the
intermediate values are given in Fig. 5.17.

In each dimension, weight, contrast and oblique stress, we consider 5 evenly
spaced values to generate 125 different styles for character “e”. These characters are
placed in a cube representing the three typeface style dimensions (see Appendix F).

5.2.2 Optical scaling

Previous generation phototypesetters produced high-quality characters by reproducing
them photographically from carefully made film masters. Only one master was usually
used to create all of the sizes of a particular style [Rubinstein88, pp.40-41]. Similarly
digital font technology used in digital laser photocomposing systems uses often only one
or two master fonts for producing all sizes. However, in traditional metal type, the shape
of letters in the same typeface varies systematically as the size changes [Rubinstein88,
pp.40]. Smaller letters must be bolder and fatter to retain their legibility [André94],
[Haralambous93], [Johnson87].

When a font isoptically scaled the shape of characters varies as in traditional
metal type design. The master design for a digital font is usually optimized for the
purpose of printing running text, whose size is around 12 or 10 point. In our optical
scaling experiment, we assume that a parametrizable font is best printed or displayed at
12 point. To print or display characters of the font at a size smaller than 12 point,
parameters of the font should be corrected so as to make the synthesized characters
relatively fatter and larger. Not only the characters’ stroke width is enlarged, but also
their x-height and their character width are made slightly larger than corresponding
values obtained by plain scaling. Some previous researchers also pointed out that when
scaled to a larger size, character stroke width should not be scaled to the same extend, i.e.
the character stroke width should be thinner than the plain scaled result.

It has been shown that a parabolic correcting function might be suitable for
determining each optically scaled character parameter [Haralambous93] [Johnson87]. In
our optical scaling model, optical scaling correction values given as fractions of the
capital letter height are used for generating characters at sizes between 12 point and 5
point. Maximal correction values@xCooj for the various parameters (character width,
stem width, bar width, curved element width) are experimentally determined for the 5
point character size. Between 5 point and 12 point, these correction vaud&l(e
are interpolated by the parabola giving the maximal correction at 5 point and a zero
correction value at 12 point (equation 5.1). The optical scaling correcting function is
shown in Fig. 5.18.

112 Chapter 5: Experiments and applications

corrValug ptSize = M(ptSize— 12p)2; 5pt< ptSize< 12pt
2 (5.1)
(5pt—12p)
A parameter correction
- 8%
round letter width
- 6%
stem/bar/curve width
- 4%
narrow stem/bar width
- 2%
5 6 7 8 9 10 11 capHeight (pt)

Figure 5.18:The parabolic correcting functions for optical scaling between 5pt and 12pt.

To determine the coefficients afiaxCorr for different parameters, the printing
resolution and the properties of the printing media (papers and films) need to be taken
into account. The specimen in Fig. 5.19a has been generated by photo-composition on a
3000dpi laser photocomposer. The maximal correction value for the round letter width
and for the stem to stem and stem to curved element part spacing is 1/15 of the capital
letter height. The stem, bar and curved element width have a maximal correction of 1/20
capital letter height. The narrow diagonal bar, the narrow horizontal bar and the narrow
curved element width have a maximal correction value of 1/30 capital letter height
(Fig. 5.18). Fig. 5.19a shows a comparison of characters printed with and without optical
scaling. Clearly, optical scaling improves legibility. Fig. 5.19b shows the corresponding
optically scaled character shapes magnified to the same size.

ical hamburgefon
gggﬁr?g gg: hambgurgefon S pt h a mbu rg efon
12pt hamburgefon

» hamburgefon

P lain 5pt hamburgefon
scaling 8pt hamburgefon

12pt hamburgefon 12pt hamburg efon

(@) (b)

Figure 5.19: Comparison between optical scaling and plain scaling.

5.3 Summary 113

5.2.3 Parametrization of existing fonts

By making traditional outline fonts parametrizable, we are able to apply to them typeface
variations and optical scaling. Because many fonts can be derived from one
parametrizable font by varying weight, width and other typographic features,
parametrization of existing outline fonts may also save large amounts of storage space.

Appendix E gives enlarged character examples of our parametrizable fonts for the
Times Roman, Helvetica and Bodoni typefaces. The master fonts for each typeface were
taken from several outline fonts created and digitized by different companies (mainly
from URW and Adobe Type 1) and also from published typeface category books such as
[Berthold88], [Bauermeister87] and [Rockledge91].

To parametrize an existing font, the first step is to select serif styles, junction types
and terminal refined types (see section 3.1.1 and section 3.1.2). Serif styles are global
parameters and are specified in the global parameter files. In Times Roman, serifs are
bracketed with smooth serif supports, flat serif faces and butt serif ends. The Bodoni
typeface has slab serifs which have thin-line serif slabs (flat faces, butt ends) but no serif
support. The Helvetica typeface is sans-serif (a French word meaning “without serif”). In
Bodoni and Helvetica typefaces, most of the arches and bowls connect to a vertical stem
smoothly, and hence should be refined and specified as a smooth junction in the global,
group or local parameter files.

The second step is to measure parameters which give dimension or orientation.
Parameters of the produced experimental parametrizable fonts have been carefully
measured, extracted and tuned by hand working on masters printed on papers. To
accelerate the speed of parameter extraction, we have also proposed an automatic
parameter extracting method based on a “window matching method” [Herz98]. The win-
dow matching method is used to help locating specific typographic features on outline
characters in order to measure them.

5.3 Summary

parametrizable fonts can be used in many application areas. In this chapter we have
presented several typographical experiments which were focused on coherent typeface
variations such as variations of boldness, condensation, oblique stress, contrast and x-
height proportion. All of these variations are beyond the capabilities of traditional outline
font technology, since these variations require besides the outline character shape
description additional information about the character structure.

Some of the experiments may have an important application potential. The
boldness variation can be used to control the overall darkness of a printed page, which is
useful in applications such as fine printing. Character condensation is useful for putting
more letters in a limited space, for example for more flexible paragraph formatting. The

114 Chapter 5: Experiments and applications

optical scaling experiment was able to produce designs similar to the traditional metal
type where character shapes are adjusted at different sizes.

115

CHAPTER 6

Conclusion and future work

This dissertation presents the study and the development of a component-based
parametrizable character synthesis method. Following the introduction in chapter 1, we
describe in detail in chapter 2 our design of components, i.e. parametrizable shape
primitives used for synthesizing structure elements of typographic characters. In chapter
3, we discuss the parametrizable character synthesis system which describes characters
by predefined parametrizable components and shape trimming operations. In chapter 4,
our implementation of a C++ prototype for this font parametrization system is presented.

In chapter 5, we carry out typographical experiments demonstrating the capabilities of
our component based parametrizable font synthesizing system.

Let us summarize the main contributions and achievements of this thesis.

Our attempt to reproduce existing text typefaces by parametrizable shape
primitives has been successful. Curved parts of characters are difficult to synthesize; they
are of primary importance to obtain high-quality characters. Based on a systematic study
of the curves suitable for parametrization of round parts of characters, we have designed
the loop, half-loop and sweep components. These components were adequate for
synthesizing the shapes of round parts and of curved connections in typographic
characters. Terminals of strokes differ across different text typefaces. We describe
terminals of straight strokes (such as vertical stems, horizontal and diagonal bars) by the
serif component which enables us to synthesize most serif types. Terminals of curved
strokes are synthesized by the combination of the dot component, the sweep component
and automatically generated smoothing shapes.

Using our parametrizable font synthesizing system, we have successfully created
high-quality derived fonts. Relationship between character structure elements were
maintained. We ensure that no components fall apart when we vary font properties such
as boldness, condensation, contrast and oblique stress. The hierarchical parameter file
organization and the PostScript-like parameter expressions provide the means to define
parameter modifying rules for each parameter in order to achieve coherent font style
variations. We are also able to make coherent typographical feature modifications across
a whole font or across a set of characters by modifying respectively the global
parameters or the group parameters.

Typographical experiments demonstrate the application potential of parametrizable
component-based fonts. Font style variations and optical scaling can be applied to
improve text printing quality. With our font parametrization system, one can create
personalized font by coherently modifying some parameters. Component-based

116 Chapter 6: Conclusion and future work

parametrized fonts require much less storage space than outline fonts. With a few

parameter changes, derived fonts can be instantly created. A restricted set of parameters
is sufficient to generate all characters needed within a document. Component-based

parametrized fonts can therefore be delivered together with documents over electronic

networks (Internet).

The research started with this thesis can be continued in the future, at least in the
following directions:

The use of local parameters is cumbersome at this stage. In a future research
project, local parameters may be regularized and simplified. Visual tools may be
developed to help editing local parameters.

The idea of describing characters by predefined parametrizable shape components
is quite suitable for stroke-based characters, for example Chinese characters. The attempt
to describing Chinese characters by “basic strokes” has been tried by some typographers
and computer scientists. However, the quality of curved strokes and the junctions
between strokes remain problematic. The author believes that some results of this
dissertation, such as tifleBézier curve controlling method, the sweep component and
the smoothing operation, can be extended to help solving problems for Chinese character
parametrization.

117

References

[Adams89] D. Adams, abcdefg - A Better Constraint Driven Environment for Font
GenerationRaster Imaging and Digital Typography (RIDT'8%ds. J.
André and R. D. Hersch, Cambridge University Press, 1989, 54-70.

[Adobe85] Adobe Systems IndPostScript Language Reference Manusdidison-
Wesley, 1985.

[Adobe90] Adobe Systems IncThe Type 1 Format Specificatiohddison-Wesley,
1990.

[Adobe92] J. Seybold, Adobe’s MultiMastefi®chnology: Breakthrough in Type
AestheticsSeybold Report on Desktop Publishikgl. 7, No. 5, 1991, 3-
7, see also "Designing Multiple Master Typefaces", Adobe Systems Inc.,
http://www.adobe.com.

[Agfa91] Agfa Corp. Intellifont Scalable Typeface Format991.

[André94] Jacques André, Irene Vatton, Dynamic Optical Scaling and Variable-Sized
Characters,Electronic Publishing - Origination, Dissemination and
Design Vol. 7, No. 4, 1994, 231-250.

[Bauermeister87] Benjamin BauermeistdrManual of Comparative Typography (the
PANOSE systemyan Nostrand Reinhold, NY, 1987.

[Bauermeister96] US Patent 5586'241, Method and System for Creating, Specifying
and Generating Parametric Fonts, issued Dec. 17, 1996, inventors: B. B.
Bauermeister, C. D. MacQueen, M. S. DelLaurentis, P. M. Higinbotham,
D. E. Lipkie, D. J. Munsil, R. G. Beausoleil.

[Berthold88] H.Berthold AGBerthold TypesH. Berthold AG, Berlin, Germany, 1988.

[Betrisey89] Claude Betrisey and Roger D. Hersch, Flexible Application of Outline
Grid ConstraintsRaster Imaging and Digital Typography (RIDT'89)
Eds. J. André and R. D. Hersch, Cambridge University Press, 1989, 242-
250.

[Billawala89] N. Billawala, Panadora-an Experience with Metafétdster Imaging
and Digital Typography (RIDT'89)Eds. J. André and R. D. Hersch,
Cambridge University Press, 1989, 34-53.

118 References

[Coueignoux75] Ph. Coueignoux, Generation of Roman Printed Fonts, Ph.D Thesis
(adviser: Prof. Schreiber), MIT, June 1975.

[Coueignoux81] Ph. Coueignoux, Character Generation by CompGtanputer
Graphics and Image Processingl. 16, 1981, 240-2609.

[Cox82] Charles H. Cox lll, Philippe Coueignoux, Barry Blesser and Murray
Eden, Skeletons: A Link Between Theoretical and Physical Letter
Descriptions Pattern Recognitionvol. 15, No. 1, Pergamon Press Ltd.,
Great Britain, 1982, 11-22.

[Dong91] Yunmei Dong & Kaide Li, A Parametric Graphics Approach to Chinese
Font DesignRaster Imaging and Digital Typography Il (RIDT'9Hds.
R. Morris and J. André, Cambridge University Press, 1991, 156-165.

[Durst93] Martin J. Durst, Coordinate-Indenpendent Font Description Using Kanji
as an Exampleklectronic Publishing - Origination, Dissemination and
Design (RIDT'94)Vol. 6, No. 3, 1993, 133-143.

[Fan91] Jianping Fan, Towards Intelligent Chinese Character DeRagster
Imaging and Digital Typography Il (RIDT'91)Eds. R. Morris and J.
André, Cambridge University Press, 1991, 166-176.

[Farin90] Gerald Farin,Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide (2nd editigmdcademic Press, 1990.

[Foley90] James D. Foley et aComputer Graphics: Principles and Practice,
Second EditiopAddison-Wesley, 1990.

[Gaskell76] P. Gaskell, A Nomenclature for the Letterforms of Roman Njple
Language\Vol. 10, No. 1, 1976, 41-51.

[Gonczarowski93] Jakob Gonczarowski, Curve Technique for Auto-Tradisgal and
Technical Aspects of Typed. R. D. Hersch, Cambridge Unicersity Press,
1993, 126-147.

[Gonczarowski98] Jakob Gonczarowski, Producing the Skeleton of a Character,
Electronic Publishing, Artistic Imaging, and Digital Typography (EP’98/
RIDT'98), Eds. R. D. Hersch et al., LNCS 1375, Springer-Verlag, 1998,
66-76.

[Haralambous93] Yannis Haralambous, Parametrization of PostScript Fonts Through
METAFONT - An Alternative to Adobe Multiple Master Fonts,
Electronic Publishing - Origination, Dissemination and Design
(RIDT’94), Vol. 6, No. 3, 1993, 145-157.

119

[Haralambous94] Yannis Haralambous, Typesetting Khra&ctronic Publishing -
Origination, Dissemination and Desighol. 7, No. 4, J. Wiley, 1994,
197-215.

[Hersch88] Roger D. Hersch, Vertical Scan-Conversion for Filling Purpose,
Proceedings CGI'88Geneva, Ed. D. Thalmann, Springer Verlag, 1988.

[Hersch9l] Roger D. Hersch, Claude Bétrisey, Model-based Matching and Hinting of
Fonts,Proceedings Siggraph'91, ACM Computer graphi4s. 25, No.
4, 1991, 71-80.

[Hersch93] Roger D. Hersch, Font Rasterization: the State of theviartal and
Technical Aspects of Typed. R. D. Hersch, Cambridge University Press,
1993, 78-109.

[Hersch95] Roger D. Hersch, Claude Bétrisey, Justin Bur, and Andre Gurtler,
Perceptually Tuned Generation of Grayscale FolE&§E Computer
Graphics and Applicationd/ol. 15, No. 6, November 1995, 78-89.

[Herz94a] Jacky Herz and Roger D. Hersch, Towards a Universal Auto-Hinting
System for Typographic Shapeslectronic Publishing - Origination,
Dissemination and Desigol. 7, No. 4, J. Wiley, 1994, 251-260.

[Herz94b] Jacky Herz and Roger D. Hersch, Analyzing Character Shapes by String

Matching Techniques, Electronic Publishing - Origination,
Dissemination and Design (RIDT'R4/0l. 6, No. 3, J.Wiley, 1994, 261-
272.

[Herz97] Jacky Herz, Coherent Processing of Typographic Shapes, Ph.D thesis N°
1676, Ecole Polytechnique Fédérale de Lausanne, 1997.

[Herz98] Jacky Hertz, Changyuan Hu, Jakob Gonczarowski and Roger D. Hersch,
A Window-Based Method for Automatic Typographic Parameter
Extraction, Electronic Publishing, Artistic Imaging, and Digital
Typography (EP’98/RIDT'98)Eds. R. D. Hersch et al, LNCS 1375,
Springer-Verlag 1998, 44-54.

[Hobby89] J. D. Hobby, Rasterizing Curves of Constant Widlthirnal of the ACM
Vol. 36, No. 2, April 1989, 209-229.

[Hofstadter85] D. R. Hofstadter, Metafont-Metamathematics and Metaphysics,
Metamagical Themas: Questing for the Essence of Mind and Pattern,
Bantam Books, NY, 1985.

[Hu91] Changyuan Hu and Fuyan Zhang, Automatic Hinting of Chinese Outline
Fonts Based on Stroke Separating Meth&upc. the 1st Pacific

120 References

Conference on Computer Graphics and Applications (Pacific
Graphics’93) Seoul, Korea, World Scientific, 1993, 359-368.

[Jamra93] Mark Jamra, Some Elements of Proportion and Optical Image Support in
a Typeface,Visual and Technical Aspects of Tyfged. R. D. Hersch,
Cambridge, 1993, 47-55.

[Johnson87] Bridget Lynn Johnson, A Model for Automatic Optical Scaling of Type
Designs for Conventional and Digital Technology (MSc. thesis), School
of Printing, Rochester Institute of Technology, 1987.

[Karow89] Peter Karow, Automatic Hinting for Intelligent Font ScaliiRgster
Imaging and Digital Typography (RIDT'89Eds. J. André and R. D.
Hersch, Cambridge University Press, 1989, 232-241.

[Karow92] Peter KarowSchriftstatistik URW Verlag, Hamburg, 1992.

[Karow94] Peter KarowFont Technology: Description and TopSpringer Verlag,
1994.

[Knuth86a] Donald E. KnutiThe METAFONT boglddison Wesley, 1986.

[Knuth86b] Donald E. KnuthComputer Modern Typefac€golume E of Computers
and Typesetting), Addison-Wesley, 1986.

[Labuz88] Ronald LabuzTypography and Typesettingan Nostrand Reinhold,
1988.

[Lancaster86] P. Lancaster, K. Salkauskasrve and Surface Fittinghcademic Press,
1986.

[MacQueen93] C. D. McQueen, R. G. Beausoleil, Infinifont: A Parametric Font
Generation Systenklectronic Publishing - Origination, Dissemination
and Design (RIDT’'94)Vol 6, No. 3, 1993, 117-132.

[Morris98] R. A. Morris, R. D. Hersch, A. Coimbra, Legilility of Condensed
Perceptually-Tuned Grayscale FontSlectronic Publishing, Artistic
Imaging and Digital Typography (EP’98/RIDT'9&ds. R. D. Hersch, J.
André, H. Brown, LNCS 1375, Springer-Verlag, 1998, 281-193.

[Microsoft95a] Microsoft Corp.TrueType Open Font Specification, Version, Ty
1995.

[Microsoft95b] Microsoft Corp.,TrueType 1.0 Font Files, Technical Specification
Revision 1.66, November 1995.

121

[Nordzji91l] G. Nordzij, The Shape of the StrokBaster Imaging and Digital
Typography |I] Eds. R. Morris and J. André, Cambridge University Press,
1991, 34-42.

[Rockledge91] G. Rockledge and C. Perf&tckledge's International Type finder: The
Essential Handbook of Typeface Recognition and Seledfloger Bell
Ltd, distributed by Rizzoli International Publications, 1991.

[Rubinstein88] Richard Rubinsteibjgital TypographyAddison-Wesley, 1988.

[Shamir96] Ariel Shamir and Ari Rappoport, Extraction of Typographic Elements
from Outline Representations of FontBjoc. EUROGRAPHICS’'96
(Eds. J. Rossignac and F. Sillio@omputer Graphics Forumol. 15,
No. 3, 1996, 259-268.

[Shamir98] Ariel Shamir and Ari Rappoport, Feature-Based Design of Fonts Using
Constraints, Electronic Publishing, Artistic Imaging and Digital
Typography (EP'98/RIDT’98)(Eds. R. D. Hersch, J. André, H. Brown),
St. Malo, France, LNCS 1875, Springer-Verlag, 1998, 93-108.

[Schneider98] U. Schneider, An Object-Oriented Model for the Hierarchical
Composition of Letterforms in Computer-Adided Typeface Design,
Electronic Publishing, Artistic Imaging and Digital Typography (EP’98/
RIDT'98), Eds. R. D. Hersch, J. André, H. Brown, St. Malo, France,
LNCS 1875, Springer-Verlag, 1998, 108-125.

[Southall91] Richard Southall, Character Description Techniques in Type
ManufactureRaster Imaging and Digital Typography Il (RIDT'9Bds.
R. Morris and J. André, Cambridge University Press, 1991, 16-27.

[Southall98] Richard Southall, Metafont in Rockies: the Colorado Typemaking
Project,Electronic Publishing, Artistic Imaging and Digital Typography
(EP’98/RIDT'98) Eds. R. D. Hersch, J. André, H. Brawst. Malo,
France, LNCS 1875, Springer-Verlag, 1998, 167-180.

[Stamm94a] Beat Stamm, Object-Orientation and Extensibility in a Font-Scaler,
Electronic Publishing - Origination, Dissemination and Design
(RIDT’94), Vol. 6, No. 3, 1993, 159-170.

[Stamm94b] Beat Stamm, Dynamic Regularisation of Intelligent Outline Fonts,
Electronic Publishing - Origination, Dissemination and Design
(RIDT'94), Vol. 6, No. 3, 1993, 219-230.

[Stamm98] Beat Stamm, Visual TrueType: A Graphical Method for Authoring Font
Intelligence, Electronic Publishing, Artistic Imaging and Digital

122 References

Typography (Proc. EP-RIDT'98Eds. R. D. Hersch, J. André, H. Brown
St. Malo, France, LNCS 1875, Springer-Verlag, 1998, 77-92.

[Tschichold65] J. TschicholdVieisterbuch der SchrifOtto Maier Verlag, Ravensburg,
Germany, 1965.

[Vatti92] Bala R. Vatti, A Generic Solution to Polygon Clippif@ommunications
of the ACMVol. 35, No. 7, 1992.

[Zalik95] Borut Zalik, Font Design with Incompletely Constrained Font Features,
Proc. 3rd Pacific Conference on Computer Graphics and Application
(Pacific Graphics’95)Eds. S. Y. Shin, T. L. Kunii, ISBN 981-02-2337-4,
World Scientific, 1995, 512-526.

123

aprenpixa T he value for a quarter of an arc

Referring to Fig. 2.14, if we require the point at parameter t = 1/2 to have identical coor-
dinates as the corresponding center point of a quarter of a circle, we get equation 2.9
which can be rewritten as (see also equation 2.1)

2
S AR R AR

Solving this equation, we have,
B = ‘@ = 0.552285

If we require curvature radii at B(0) and B(1) to be the radius of the corresponding
circle with radius 1, we obtain the equation

R(0) = R(1) = 1

From equations 2.2, 2.4 and 2.5, we can obtain the curvature at both ends.

2
R(0) = R(1) = 2&—%3)

Therefore, the equation we need to solve is

3p*
21-p) "

Solving this equation with respect to the condifton Oyields

B = _1;ﬁ=0.548584

Though these two results are slightly different, they both prove thdi Vadue
around 0.55 is the best for approximating a quarter of an arc witi-Beeier curve.

The difference between these tgeBézier curves is very small and is not
noticeable by the human eye. This difference can be seen by plotting out their curvature
radii (Fig. A.1). This plot also shows that theoretically an arc cannot be precisely approx-
imated by a piece of Bézier curve. However, the shape of either of thg-B&aier
curves is very similar to the quadrant of arc which it approximates (Fig. A.2).

124 Appendix A

B = 0.552285

0.2 0.4 0.6 0.8
0. 995}

0.99

0. 985} — 3 =0.548584

Figure A.1: Curvature radii of two Bézier curves which approximate a quadrant of a circle.

1l radius =1

0.2 0.4 0.6 0.8 1

Figure A.2: The two Bézier curves and the quadrant circular arc they approximate are
placed at a same place within a coordinate system. Curves are drawn with very thin lines,
however the difference between the three curves are not easily noticeable by the human eye.

125

aprenpixs 1 e value for approximating an ellipse

We show that th@ value which creates ideal curvatures at the two end3aBézier
curve which approximates a quarter of a circular arc also creates ideal curvatures when it
approximates a quarter of an ellipse.

Without loss of generality, let us study the third quadrant of an ellipse whose long
axis isa, short axis i$ and center located at poirt p] . This ellipse can be represented
in parametric form in Fig. B.1.

{x(t) =—acost+a (B.1)

y() =bsint+b
(x(t), y()

0] Q X

Figure B.1: Parametric representation of a quadrant of an ellipse.

Let P and Q represent the two end points of the curve, then R)=y&f)]’,
Q = [x(3r72), y(3n/2)]T. From equation 2.2 and equation B.1, we can derive the formula
for the curvature radius of an ellipse
3
(a%(sin t)% + b%(cost)?)’

R(Y = ab

Therefore,.

Rp = R(M) = b?/a,
(B.2)
Rq =R (372) = &/b.

We try to approximate the quarter of an ellipse with a pie@eRézier curve. Let
Bo=P =10, b], B; = [0, b(1 -B)]", B, =[a(1 -B), 0], and B, = Q = [a, O. In order to
apply the equation 2.2, we calculate the first and second derivativgsamidBs; in a
Bézier curve defined by equation 2.1 respectively as following.

B'(0) = -3B0 + 3B1 = [0, -3B]

B"(0) = 6By -12B, + 6B, = [6a - 6§, -6b + 12I8]
B'(1) = -3B, + 3B, = [3aB3, 0],

B"(1) = 6By - 12B, + 6B; = [-6a + 128, 6b - 61 .

(B.3)

126 Appendix B

With equations B.3 and 2.2, one obtain the following results.

~ 3[32 2
RO =2a-p a -
~ 3[32 2 ’
R(1) = 2(1-B) DaB

Comparing equation B.4 and equation B.2, if we require the curvatures at the two
end points of thgd-Bézier curve to be identical to the corresponding curvatures of an
ellipse, we have

3p>
21-p °

This is exactly the condition forfavalue which creates ideal curvatures at the two
ends of af-Bézier curve which approximates a quarter of a circular arc (see also
Appendix A). Solving this equation with respect to the condffienOyields

B = Z-l-is'_ﬁzo.548584

127

aprenpixc Proof of parameta

Given: Ellipse with center O and two tangents h and v, with respective tangential
points H and V. Consider parallelogram UAOB constructed by the tangents h and v and
by their parallels through O.

HB = Ap; UB=p; VA =Aq; UA=(q

B @:%:A_F):A_q:
To be shown: UB - UA - p a n

Y Hg .

affine
transformation
_—

Figure C.1: Affined transformation.

Proof:

HB _ VA

If AB is parallel to VH then OB - UA

Consider an affined transformation which maps the ellipse to a circle (Fig. C.1):
ellipse -> circle; A->A; V->V’; B->B’, H->H’, U->U’

The line pairs (OA, OH) and (OB, OV) are support lines of pairs of conjugate
diameters of the ellipse. Corresponding support lines (O’A, O’'H’) and (O'B’, O'V’) of
the circle are perpendicular. Tangential points V' and H' are symmetric to line O’'U’.
Since angle V'O'B’ is equal to angle AO'H (90 degrees), points A and B’ are
symmetric in respect to line O’'U’. Circle line AB’ is therefore parallel to line V'H'.
Since affine transforms map parallel lines into parallel lines, corresponding ellipse lines
AB and VH are paralle[]

128 Appendix C

129

aprenpix D Description of characters by components

Times Roman, lower-case and upper-case:

abcder
b ¢ d

¢ f

o1 7xlm

AN

A
Y

131

aprenpixE ENlarged resynthesized component-based
characters

Resynthesized Times Roman lower-case characters:

abcde
fghijk
Imnop
grstuv
WXYZ

Appendix E

Appendix E

abcde
fghijkl
mnop

135

APPENDIXF T he variation cube of “e”

YIVIID
| LOVVD
high <—— contrast ——> low LDLOLOLOV

\%@ PVVVV 20000
¢ RV VVVV D000

& A0 ULVVVN) sv0es

SASASOTOOVLDNN) 25885
LALLMV | ZEoo
OOV | FE

T TS
TSN

LOLOOLOL
LOOLOLOL

136 Appendix F

137

aprenpix e Parameter files of parametrisable Times Roman

The global, group and local parameters files in this appendix contains parameters for the
synthesis of a Times Roman normal weight font. These parameter files can also be used
to synthesize Times typefaces with different boldness factors by simply modifying the
definition of the macr@BoldnessFactoin the global parameter file.

1. The global parameter file for the parametrisable Times font together with a definition
of the boldness factor:

/* TimesBoldness.glb - the global parameter file for Times ***xikkkickrikf
[* Created: 3/sep/1997 CHU */

/* Modified: 31/aug/1998, CHU, boldness variation by macro def&ref. */
I* */

/* This is a global parameter file written to prepare the global */

[* parameters for the component-based font synthesizing system. This */
[* global parameter file has a $BoldnessFactor defined for generating */
I* typefaces in Times family by varying boldness. */

/* The global parameter file is readable, editable and programmable. */
/* However, any modification to this file should be clearly noticed at */

[* this file header. */

JAE Copyright 1997, 1998, LSP/EPFL -------- *//

/

[rxxx begin of font information k]
sFontname = "TimesBoldness"; /* name of the font */

sFontfamily = "Times"; /* family name of the font */

sCreator = "CHU"; /* author name */

sVersion ="2.0"; [* version munber */

sDescription = "variation of boldness"; /* brief description of the font */
sCopyright = "LSP/DI/EPFL 1998"; /* copyright info */

sEncodingStandard = "ASCII"; /* encoding standard */
iNumberOfCharacters = 26; /* from first to last continously */
iFirstCharCode = 0x61; [* first code, from 'a' */

iLastCharCode = 0x7A; /* lart code, to 'z' */

fScaleFactorU = 1.0; /* scale factor */

fScaleFactorX = 1.0; /* scalex */

fScaleFactorY = 1.0; /* scaley */

[rrxk end of font information rkkk|

style variation factors **xxxikiiksiiik |

// To change boldness to X (for example 120%):

/I - vertical stem and diagonal bar width increased X

/I - horizontal bar width increased to 1 + (X - 1) * 0.5

/I - vertical serif width reduced to 1 - (X - 1) * 2.0 if X > 130%

1

$BoldnessFactor = 1.00; /* good through [80%, 150%)] */

$BV = $BoldnessFactor; [* for vertical stems and diagolal bars */
$BH = 1.0 $BoldnessFactor 1.0 sub 0.5 mul add; /* for horizontal bars */
$BS = $BoldnessFactor 1.3 gt 1.0 $BoldnessFactor 1.3 sub 2.0 mul sub 1.0 ifelse;
[* for serif shrinking */

I global earmark StyleS **********************/

[* serif style */

iSerifStyle = 1; /I 1 Times serif, 2 sans-serif
iSerifSupportType = 1; /I 1 smooth, 2 angled, 3 straight, 4 none
iSerifEndType = 1, /I 1 bracket (butt), 2 round

iSerifFaceType = 1; /I 1 flat, 2 concave

iTopSerifSupportType = 1; /I 1 smooth, 2 angled, 3 straight, 4 none
iTopSerifEndType = 1; /I 1 bracket (butt), 2 round
iTopSerifFaceType = 1; /I 1 coved, 2 flat

iHorSerifSupportType = 1; /I 1 smooth, 2 angled, 3 straight, 4 none
iHorSerifEndType = 1; /I 1 bracket (butt), 2 round
iHorSerifFaceType = 1; /I 1 flat, 2 concave

iHorTopSerifSupportType = 1; // 1 smooth, 2 angled, 3 straight, 4 none
iHorTopSerifEndType = 1, /I 1 bracket (butt), 2 round
iHorTopSerifFaceType = 1; /I 1 coved, 2 flat

pSerifRoundCorrectionH = 0; // height of round correction, not used
pSerifConcaveCorrectionH = 0; // height of concave correction, not used

/ global parameters /
pBaseLine =0; /* base line position */

138 Appendix G

pXheight = 445; /* x-height line position */

pCaps =659; /* caps-height line position */
pNumbers = 659; /* height of numbers and symbols */
pAscender =679; [* ascender line position */
pDescender =-220; /* descender line position */

[* beta & eta *
pBestBeta = 0.59; /* other betas may be related to this */
pStdBetaXS = 0.54; [* extra flat curve */

pStdBetaS = 0.59; /* round loop */

pStdBetaM = 0.67; /* normal flat curve */

pStdBetaL = 0.85; [* sharp curve */

pStdBetaXL = 0.95; [* extra sharp curve */

pSerifBeta = 0.67; [* serif support */

pLoopExternalBeta = $pBestBeta; /* loop external */
pLooplnternalBeta = $pBestBeta; /* loop external */

pStdLoopEta = 0.13; /* global eta of loops */

[* stem */

pcVerStemW = 104 $BV mul; /* standard vertical stem width list */
pmVerStemW = 86 $BV mul;

pdVerStemWw = 78 $BV mul;

pcHorStemW = 40 $BH mul; * standard horizontal stem width list */
pmHorStemW = 34 $BH mul;

pdHorStemW = 76 $BH mul;

pcNarrowVerStemW = 46 $BV mul; /* standard narrow vertical stem width */
pmNarrowVerStemW = 20 $BV mul;

pdNarrowVerStemW = 0;

pcNarrowHorStemW = 0O; [* standard narrow horizontal stem width */
pmNarrowHorStemW = 31 $BH mul;

pdNarrowHorStemW = 66 $BH mul;

pcVerCurveW = 116 $BV mul; /* standard vertical curve width */
pmVerCurveW = 93 $BV mul;

pdVerCurveW = 97 $BV mul;

pcHorCurveW = 38 $BH mul; /* standard horizontal curve width */
pmHorCurveW = 33 $BH mul;

pdHorCurveW = 29 $BH mul;

pcDiagStemW = 99.67 $BV mul; /* standard diagnal stem width */
pmDiagStemW = 79.0 $BV mul;

pdDiagStemW = 89.6 $BV mul;

pcNarrowDiagStemW = 43.33 $BV mul; /* standard narrow diagnal stem width */
pmNarrowDiagStemW = 37 $BV mul;

pdNarrowDiagStemW = 51.13 $BV mul;

* character width *
pcRoundLetterW = 655; [* standard round letter width RLW */
pmRoundLetterW = 440;

pdRoundLetterW = 452;

pcStemStemW = 0; [* standard SSW, for h, n, m, u */
pmStemStemW = 266;

pdStemStemW = 0;

pcStemCurveW = 0; [* standard SCW, for b, d, p, q */
pmStemCurveW = 312;

pdStemCurveW = 0;

[* serif *

pcVerSerifW = 89 $BS mul; /* standard vertical serif width */
pmVerSerifW = 76 $BS mul;

pdVerSerifW = 95 $BS mul;

pcVerSerifD = $pcVerSerifW; /* standard vertical serif depth */
pmVerSerifD = $pmVerSerifW;

pdVerSerifD = $pdVerSerifWw;

pcDiagOuterSerifW = 56 $BS mul; /* standard diagnal outer serif width */
pmDiagOuterSerifW = 49 $BS mul;

pdDiagOuterSerifW = 0;

pcDiagOuterSerifD = $pcDiagOuterSerifW; /* standard diagnal outer serif depth */
pmDiagOuterSerifD = $pmDiagOuterSerifW;

pdDiagOuterSerifD = $pdDiagOuterSerifw;

pcDiaglnnerSerifW = 100 $BS mul; /* standard diagnal inner serif width */
pmDiagInnerSerifW = 64 $BS mul;

pdDiaglnnerSerifW = 0;

pcDiaginnerSerifD = $pcDiaginnerSerifW; /* standard diagnal inner serif depth */
pmDiaglnnerSerifD = $pmDiaglnnerSerifw;

pdDiaglnnerSerifD = $pdDiaginnerSerifw;

pcVerSerifH = 20; [* standard vertical serif height */
pmVerSerifH = 15;

pdVerSerifH = 18;

pcHorSerifW = 96; [* standard horizontal serif width */
pmHorSerifW = 105;

139

pdHorSerifW = 80;

pcHorSerifD = $pcHorSerifW; /* standard horizontal serif depth */
pmHorSerifD = $pmHorSerifW;

pdHorSerifD = $pdHorSerifw;

pcHorSerifH = 23; /* standard horizontal serif height */
pmHorSerifH = 20;

pdHorSerifH = 18;

pcTopSerifDeg = -7; /* standard slanted serif orientation */
pmTopSerifDeg = 13 $BS mul;

pdTopSerifDeg = 0O;

* others */
pcDotR = 47 $BV mul; [* standard dot radius */
pmDotR =52 $BV mul;

pdDotR = 0;

pcOptCor = 16; /* standard optical correction */

pmOptCor = 12;
pdOptCor = 16;

/* spacing */
pCapitalSpacing = 187; /* capital ideal optical spacing */
pSmallSpacing = 130; /* small ideal optical spacing */
pCapitalStemSpacing = 217; /* capital NN spacing */
pSmallStemSpacing = 147 /* small nn spacing */
pCapitalCurveSpacing = 67; /* capital OO spacing */
pSmallCurveSpacing = 60; /* small oo spacing */

pCapitalStemToCurveSpacing = 142; /* capital ON spacing */
pSmallStemToCurveSpacing = 104; /* small on spacing */
pCapitalMinimalSpacing = 43; /* capital minimum spacing */
pSmallMinimalSpacing =29; /* small minimum spacing */

2. The group parameter definition file for the parametrisable Times font:

/* TimesBoldness.grp - the group parameter file for Times ****************/
/* Created: 3/sep/1997 CHU

/* Madified: 31/aug/1998, CHU, boldness variation by macro def&ref. */
I* *

/* This is a group parameter definition file for preparing the group */

/* parameters for the component-based font synthesizing system. This */
[* group parameter file contains macro names of local parameter groups */
/* which will be refered to in the local parameter file. */

/* Rules of macro deflnltlons *

/* - amacro definition is a "name = value" pair, in WhICh */

/* - aname is a string begin with letter '$',

/* -value is a float value readable by the CIC++ functlon scanf (). */

/¥ Naming convensions: */

/* - the first letter after the '$' is a letter ¢/m/n indicating ~ */

I* capital/minuscule/number. */

/¥ Macro definitions may be typeface dependent, hence group names */
/* are user defined. Local parameter grouping is our method of enabling */
/* coherent local feature madification amongst several characters. */

/¥ The group parameter file is readable, editable and programmable. */
/* However, any modification to this file should be clearly noticed at */

/* this file header. */

F e Copyright 1997, 1998, LSP/EPFL -------- */

/ /

[* group parameters' macro definition for Times /

/ /
[* standard words shortening */
/

/I Terminal -->Term
/I Junction -->Junc
/I Horizontal --> Hor
/I Vertical -->Ver

/I Position -->Pos
/I External -->Ext
/I Internal -->Int

/I Width ->W

/I Height -->H

/I Depth ->D

/I Radius -->R

/I Xdirection --> X

/I Ydirection -->Y

/* macros for minuscules */

/I typical character groups and their representative characters:

140 Appendix G

/I bldlplg -->b same loop, junction

/Il himInfu -->n same arch

/I clelo ->e round letter

Il kiviwixlylz --> x slanted stem

I fliily > f pear terminated

I/ -> same dot

1

[* style */

$iSerifStyle = 1; /I this overrides the globle parameter

$mBendedTermStyle = 1; I alclfljirly, 1 - dot/pear, 2 - butt, 3 - long
$mSweepStemJuncStyle = 1; // a/b/d/g/h/m/n/p/g/riu, 1 - angled, 2 - smoothed

/* loop */

$mLoopCenterXPosExt = 0.50; // b/d/p/q
$mLoopCenterXPosint = 0.45; // b/d/p/q
$mLoopEtaExt = $pStdLoopEta; // b/d/p/q

$mLoopEtalnt = 0.00; /1 bld/plq
/* pos */

$mArmPos = 0.84; /I himinfulr
$mEBarPos = 0.64; Il e
$mABarPos = 0.68; Ila

[* narrow/wide */

$mHorCurveWnarrow = 0.79; // a/f
$mHorCurveWwide = 1.70; /I a/b/cldlelg/h/min/p/glt/u
$mDotRnarrowa = 0.87; 1 alclfljirly
$mDotRnarrowb = 1.00; Il alclfljirly
$mVerCurveWnarrow = 0.75; // elgl/s
$mVerCurveWwide = 1.05; Ile
$mVerSerifWnarrow = 0.84; // h/k/m/n/u,
$mVerSerifWwide = 1.11; It
$mDiagSerifOuterWnarrow = 0.76; // viwly
$mDiagSeriflnnerWwide = 1.25; // kiwly
$mHorSerifWnarrow = 0.80; //z

/* connecting sweep A */
$mLetterbLowerSweepA = 0.83; // b/d/p/q
$mLetterbUpperSweepA = 0.60; // b/d/p/q

/* arch */

$mLetternArchOuterTop = 0.61; // h/m/n/u
$mLetternArchinnerTop = 0.60; // h/m/n/u
$mLetternArchOuterStart = 0.76; // h/m/n/u
$mLetternArchinnerStart = 0.72; // h/m/n/u
$mLetternArchJuncSweepA = 0.45; // h/im/n/u

/* special earmarks */
$mLetterbLowerJuncStyle = $BoldnessFactor 1.4 It 3 $mSweepStemJuncStyle ifelse;

/I'b, 3 - meet, if bold<1.4, otherwise spur
$mLetterbUpperJuncPos = $mArmPos; // b/d/p/g/g/a

3. The local parameter file for the parametrisable Times font:

/* TimesBoldness.Icl - the local parameter file of Times *** ¥ kkkxkiiiex]

/* Created: 3/sep/1997 CHU */
/* Modified: 31/aug/1998, CHU, boldness variation by macro def&ref. */
I* */

/* This is a local parameter file written for preparing every local */

[* parameters for the component-based font synthesizing system. This */
/* local parameter file contains local parameters of each characters. */

/* Some of the parameters are grouped to ensure coherent local feature */
/* modification. *

/* Local parameter names may not be understandable even with the */
/* comments. Fortunately, they are not necessary for users who wants to */
/* derive new typeface just by varing global typeface features, such as */

/* wight, width, contrast, stress and height proportion. To better */

/* understand local parameters, one should read the charXX.cp files. */
/* The local parameter file is readable, editable and programmable. */

/* However, any modification to this file should be clearly noticed at */

/* this file header. */

JAE Copyright 1997, 1998, LSP/EPFL -------- */
/ /
char6l //"a"

variation = 1, /I 1 - double storey; 2 - single storey

141

pdx1 = 0.54; /I main width, belly to stem

pdx2 = 0.50; /I secondary width, bulb to stem

Trlcl = $mBendedTermStyle; // 1 dot/pear, 2, 3 butt

Tr2c2 =1, /I 1 pointed, 2 butt down, 3 butt right,
/I 4 sans-serif, 5 slab-serif

Jrlc2 =1, /I 1 angled, 2 smoothed, 3 loop

Jr2c2 = $mSweepStemJuncStyle; // 1 angled, 2 smoothed

dotAngle = -10; /I Degree

headWidth = 0.60; /I in proportion to StdVerStemwW

crrl = 0.03;

pppl = 0.50; / top arc center

ppp2 = 0.71; /I top arc start

ppp3 = 0.77; /I dot center height

ppp4 = 0.15; // tail bottom-most x

ppp5 = 0.45; /I tail right-most x

ppp6 = 0.12; // tail right-most y

ppp7 = 0.60; // tail curve A.x

ppp8 = 0.25; /I belly left-most height

ppp9 = 0.60; /I s6 curve A.x

pppA = 0.45; /I belly bottom-most x

pppB =0.42; /I belly inner bottom-most x

pppC = 0.35; I/ s8 curve A.x

pppD = 0.85; /I s2 curve A.x

pppE =0.18; // tail start y

pppG = 1 $mArmPos sub; /] s8 arrival y, = 1 - ArmPos

pppH = $mABarPos; /I a-bar position

pppJ = 0.45; /I smoothing edgel, related to dx1

pppK = 0.10; // smoothing edge2, related to pXheight

pppL = 0.15; /I smoothing tangl, related to dx1

pppM = 0.10; /I smoothing tang?2, related to pXheight

narrowl = $mHorCurveWnarrow; // narrow minuscule horizontal curve width
narrow2 = $mDotRnarrowa; /I narrow minuscule dot width a

narrow3 = $mDotRnarrowb; /I narrow minuscule dot width b

widel = $mHorCurveWwide; /I wide minuscule horizontal curve width

}

char62 /I"b"

{
Trlcl = $iSerifStyle; /I 1 has topserif, 2 no topserif
Tr2cl =1, /I 1 spur, 2 no spur, 3 half foot serif

Jricl = $mSweepStemJuncStyle; // 1 angled, 2 smoothed

Jr2cl = $mLetterbLowerJuncStyle; // 1 angled with spur, 2 smoothed,
/I 3 angled and meet

etal = $mLoopEtaExt neg; /I loop eta external, - 0.15

eta2 = $mLoopEtaint; /' loop eta internal

pppl = $mLoopCenterXPosExt; // centerl.x of the loop

ppp2 = $mLoopCenterXPosInt; // center2.x of the loop

ppp3 = 0.13; /I junction Tr2c1 height

ppp4 = 0.16; I/l junction Tr2c1 internal height

ppp5 = $mLetterbLowerSweepA; // beta-curve control A of sweep s3

ppp6 = $mLetterbUpperSweepA; // beta-curve control A of sweep s4

ppp7 = $mLetterbUpperJuncPos; // arm position of Jrlcl, b/d/p/q

spurAngle = 13; /I Degree

widel = $mHorCurveWwide; /I wide minuscule hor curve width, a/b/n

}
char63 II"c"
{
pdx1 =0.88; /I main width, half-loop to tail
pdx2 = 0.84; /I secondary width, half-loop to bulb
Trlcl = $mBendedTermStyle; // 1 dot, 2, 3 butt
Tr2cl =1, /' 1 butt
etal =-0.02; /[loop external, non-grp
eta2 = 0.10; /I loop internal, non-grp
dotAngle = 10; /I Degree
tailAngle = 30; /I Degree
tailWwidth = 0.28; // tail width
pppl = 0.50; /l'loop center external
ppp2 = 0.55; /l'loop center internal
ppp3 = 1.30; /I bottom arc width correction
ppp4 = 0.78; /I dot center y
ppp5 = 0.85; /I s2 curve A.x
ppp6 = 0.35; I/ tail y
ppp7 = 0.65; // tail s3 curve A.x
pppd = 0.40; /I smoothing edgel, related to dx1
pppK = 0.10; /I smoothing edge2, related to pXheight
pppL = 0.15; /I smoothing tangl, related to dx1
pppM = 0.10; /I smoothing tang2, related to pXheight

widel = $mHorCurveWwide; /I wide minuscule hor curve width a/b/c/n
narrowl = $mDotRnarrowa; /I narrow minuscule dot radius a
narrow2 = $mDotRnarrowb; /I narrow minuscule dot radius b

}
char64 /[a"

142

Appendix G

pdx1 =1.0; /I main width, half-loop to stem
Trlcl = $iSerifStyle; /' 1 has topserif, 2 no serif
Tr2cl = $iSerifStyle; /' 1 has serif, 2 no serif

Jricl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
Jr2cl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
etal = $mLoopEtaExt neg; /l'loop eta external

eta2 = $mLoopEtalnt; /I loop eta internal

pppl = $mLoopCenterXPosExt; // centerl.x of the loop

ppp2 = $mLoopCenterXPosint; // center2.x of the loop

ppp3 = 0.83; Il s3 Pd.y

ppp4 = 0.70; // s3 Qd.y

ppp5 = $mLetterbLowerSweepA; // s3 curve A.x

ppp6 = $mLetterbUpperSweepA; // s4 curve A.x

ppp7 = 1 $mLetterbUpperJuncPos sub; // arm position of Jr2c1, b/d/p/q
spurAngle = 13; /l bottom serif slant, never zero.

widel = $mHorCurveWwide; /I wide hor curve width, a/b/c/n

}
char65 I/"e"
{
pdx1 =0.91; /I main width, half-loop to tail
pdx2 = 0.86; /I secondary width, half-loop to corner
Tr2c2 = 1, //'1 butt tail
Jrlcl =1, /I 1 perpendicular link
Jrlc2 =1, /I 1 squared corner
etal = 0.00; I loop eta external
eta2 = 0.19; I loop eta internal
tailAngle = 30; /I Degree
tailwidth = 0.28; /1 tail width
pppl = 0.50; I/ loop center external
ppp2 = 0.51; //'loop center internal
ppp3 = 1.30; /I bottom arc width correction
ppp4 = 0.35; // tail right-most y
ppp5 = 0.65; // tail s3 curve A.x
ppp6 = $mEBarPos; /l e-bar position

narrowl = $mVerCurveWnarrow; // narrow minuscule vertical curve width
widel = $mVerCurveWwide; // wide minuscule vertical curve width
wide2 = $mHorCurveWwide; // wide munuscule horizontal curve width

}
char66 /N
{
pdx1 =0.41; /I main width, stem to bulb
Trlcl = $mBendedTermStyle; // 1 dot, 2 butt, 3 long squared
Tr2cl = $iSerifStyle; /I 1 serif, 2 no serif
dotAngle = 30; /I Degree
pppl =0.19; /I bar left-most
ppp2 = 0.27; /I bar right-most
ppp3 = 0.90 $BV 1.0 sub 0.08 mul sub; // dot center y, adjusted to boldness
ppp4 = 0.50; // top arc internal extreme x
ppp5 = 0.65; I/ top arc external extreme x
ppp6 = 0.85; Il top arc start internal y
ppp7 = 0.69; /I top arc start external y
ppp8 = 0.65; // top arc s5 curve A.x
pppJ = 0.40; /I smoothing edgel, related to dx1
pppK = 0.07; /I smoothing edge2, related to pXheight
pppL = 0.15; // smoothing tangl, related to dx1
pppM = 0.05; /I smoothing tang2, related to pXheight

narrowl = $mHorCurveWnarrow; // narrow minuscule horizontal curve width
narrow2 = $mDotRnarrowa; /I narrow minuscule dot ridus a

narrow3 = $mDotRnarrowb; // narrow minuscule dot ridus b

widel = $mVerSerifWwide; /I wide minuscule vertical serif width/depth

}
char67 n"g"
{
variation = 1; /I 1 - double storey; 2 - single storey
Trlcl =1, /I 1 bar, 2 ear (sw + dot + smooth);
X0 = 245; /l orginal
[* if variation == 1 */
etal = 0.00; I loop eta external
eta2 = 0.19; /' loop eta internal
pdx1 = 0.28; /I main width, loop center to loop right
pdx2 = 0.50; /I secondary width, to belly right
pdx3 = 0.50; // third width
pppl = 0.66; I/ loop center y
ppp2 = 0.90; /I currection of curve width of loop sO
ppp3 = 0.90; I/ bar height
ppp4 = 0.15; Il s2 Pd.x
ppp5 = 0.10; Il s2 Qd.x
ppp6 = 0.15; Il s2 Pa.y
ppp7 = 0.68; /I currection of curve width of s2.PaQa

ppp8 = 0.20; /I s2 Qa.y

143

ppp9 = 0.47; /I s2 curve Ay

pppA = 0.10; I/l s3 Pa.x

pppB =0.12; // s3 Qa.y --- old y1

pppC = 0.30; Il s3 Qa.x

pppD = 1.00; /I s3 curve Ay

pppE =0.32; /I currection of curve width of s4.PaQa
pppF = 0.32; Il s4 Pa.y

pppG = 0.22; /I s4 Qa.y

pppH = 1.00; /I s4 curve Ay

pppl = 0.00; 1/ s5 Pa.x

pppd = 0.20; /l s5 Qa.x

pppK =0.78; /I currection of curve width of s6.PaQa
pppL = 0.42; 1l s6 Pa.y

pppM = 0.52; /' s6 Qa.y

pppN = 0.15; Il s7 Pa.x

pppO = 0.22; /I s7 Qa.x

pppP = 0.40; /I s7 curve Ay

narrowl = $mVerCurveWnarrow; // narrow minuscule vertical curve width
narrow2 = $mHorCurveV_/narrow; /I narrow minuscule horizontal curve width
widel = $mHorCurveWwide; /I wide munuscule hor curve width

}

char68 /I"h"

{
pdx1 =1.0; /I main width, stem to stem
Trlcl = $iSerifStyle; /I'1 has topserif, 2 sans-serif
Tr2cl = $iSerifStyle; /I 1 has serif, 2 sans-serif
Tr2c2 = $iSerifStyle; /I'1 has serif, 2 sans-serif

Jricl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
pppl = $mLetternArchOuterTop; // arc top outer x

ppp2 = $mLetternArchinnerTop; // arc top inner x

ppp3 = $mLetternArchOuterStart; // s5 Pd.y

ppp4 = $mLetternArchinnerStart; // s5 Qd.y

ppp5 = $mLetternArchJuncSweepA,; // s6 curve A.x

ppp6 = $MArmPos; /l arm position of Jrlcl

widel = $mHorCurveWwide; // wide minuscule hor curve width
narrowl = $mVerSerifWnarrow; // narrow minuscule vertical serif width

}
char69 I/
{
pdx1 =0.02; /I main width, stem to dot center
Trlcl =1, // 1 round dot, 2 square dot
Tr2cl = $iSerifStyle; /I '1 has topserif, 2 sans-serif
Tr3cl = $iSerifStyle; /' 1 has serif, 2 sans-serif
narrowl = $mDotRnarrowa; /I narrow minuscule dot radius a
}
char6A I/
{
pdx1 = 0.40; /I main width, stem to tail bulb
pdx2 =0.02; /I secondary width, stem to dot center
Trlcl =1, // 1 round dot, 2 square dot
Tr2cl = $iSerifStyle; /I'1 has topserif, 2 sans-serif

Tr3cl = $mBendedTermStyle; // 1 dot/pear, 2 butt, 3 long
dotAngle = 45 $BV 1.0 sub 10 mul sub; // bulb, Degree, adjusted to boldness

pppl = 0.40; // tail left start s2 Pd.y

ppp2 = 0.15; // tail right start s2 Qd.y

ppp3 = 0.50; // tail bottom s2 Pa.x

ppp4 = 0.65; /I tail bottom s2 Qa.x

ppp5 = 0.73 $BV 1.0 sub 0.2 mul sub; // bulb center y, adjusted to boldness
ppp6 = 0.66; // tail s4 curve A.x

pppd = 0.40; /I smoothing edgel, related to dx1

pppK = 0.07; /I smoothing edge2, related to pXheight

pppL = 0.10; /I smoothing tangl, related to dx1

pppM = 0.05; /I smoothing tang2, related to pXheight

narrowl = $mDotRnarrowa; // narrow minuscule dot radius a
narrow2 = $mDotRnarrowb; /I narrow minuscule dot radius a

}

fharGB 1"K"
pdx1 =0.63; /I main width, stem to right-bottom
pdx2 = 0.62; /I secondary width, to right-up
Trlcl = $iSerifStyle; /I '1 has topserif, 2 sans-serif
Trlc2 = $iSerifStyle; /I 1 has serif, 2 sans-serif
Tr2cl = $iSerifStyle; /I 1 has serif, 2 sans-serif
Tr2c2 = $iSerifStyle; /I 1 has serif, 2 sans-serif
Jrlcl =1, /I 1 singla junction, 2 double junction
pppl = 0.85; /I junction center x
ppp2 = 0.60; /l'junction center y

widel = $mDiagSeriflnnerWwide; // wide diag serif inner width
narrowl = $mVerSerifWnarrow; // narrow minuscule vertical serif width

144

Appendix G

char6C I/
Trlcl = $iSerifStyle; /'1 has topserif, 2 sans-serif
Tr2cl = $iSerifStyle; /' 1 has serif, 2 sans-serif

}

char6D /I"m"
pdx1 =1.0; /I main width, stem to stem
Trlcl = $iSerifStyle; /'1 has topserif, 2 sans-serif
Tr2cl = $iSerifStyle; /' 1 has serif, 2 sans-serif
Tr2c2 = $iSerifStyle; /I 1 has serif, 2 sans-serif
Tr2c3 = $iSerifStyle; /'1 has serif, 2 sans-serif

Jrlcl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
Jrlc2 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
pppl = $mLetternArchOuterTop; // arc top outer x

ppp2 = $mLetternArchinnerTop; // arc top inner x

ppp3 = $mLetternArchOuterStart; // s5 Pd.y

ppp4 = $mLetternArchinnerStart; / s5 Qd.y

ppp5 = $mLetternArchJuncSweepA; // s6 curve A.x

ppp6 = $MArmPos; /I arm position of Jr1c2/Jrlc2

widel = $mHorCurveWwide; I/l wide minuscule hor curve width
narrowl = $mVerSerifWnarrow; // narrow minuscule vertical serif width

}

char6E /l"n"

{
pdx1 =1.0; /I main width, stem to stem
Trlcl = $iSerifStyle; /'1 has topserif, 2 sans-serif
Tr2cl = $iSerifStyle; /' 1 has serif, 2 sans-serif
Tr2c2 = $iSerifStyle; /I 1 has serif, 2 sans-serif

Jrlcl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
pppl = $mLetternArchOuterTop; // arc top outer x

ppp2 = $mLetternArchinnerTop; // arc top inner x

ppp3 = $mLetternArchOuterStart; // s5 Pd.y

ppp4 = $mLetternArchinnerStart; / s5 Qd.y

ppp5 = $mLetternArchJuncSweepA; // s6 curve A.x

ppp6 = $MArmPos; /I arm position of Jricl

widel = $mHorCurveWwide; [/l wide minuscule hor curve width
narrowl = $mVerSerifWnarrow; // narrow minuscule serif width h/n/m/u

}
char6F /l"o0"
etal = 0.00; I loop eta external
eta2 = $pStdLoopEta 0.02 add; // loop eta internal, a little stress
char70 /l"p"
{
pdx1 =1.0; /I main width, stem to curve
Trlcl = $iSerifStyle; /'1 has topserif, 2 no serif
Tr2cl = $iSerifStyle; /' 1 has serif, 2 no serif

Jricl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
Jr2cl = $mSweepStemJuncStyle; // 1 andled link, 2 smoothed link
etal = $mLoopEtaExt neg; /l'loop eta external

eta2 = $mLoopEtalnt; /I loop eta internal

pppl = $mLoopCenterXPosExt; // loop centerl.x

ppp2 = $mLoopCenterXPosint; // loop center2.x

ppp3 =0.17; Il s3 Pd.y

ppp4 = 0.25; //'s3 Qd.y

ppp5 = $mLetterbLowerSweepA; // s3 curve A.x

ppp6 = $mLetterbUpperSweepA; // s4 curve A.x

ppp7 = $mlLetterbUpperduncPos; // arm position of Jrlcl, b/d/p/g/...
spurAngle = 13; /I top serif slant

widel = $mHorCurveWwide; I/l wide minuscule hor curve width
narrowl = $mVerSerifWnarrow; // narrow minuscule serif width h/n/m/u

}

char71 nq"

{
pdx1 = 1.0; /l main width, stem to curve
Trlcl = $iSerifStyle; /I 1 has topserif, 2 no serif
Tr2cl = $iSerifStyle; /'1 has serif, 2 no serif

Jrlcl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
Jr2cl = $mSweepStemJuncStyle; // 1 andled link, 2 smoothed link
etal = $mLoopEtaExt neg; /l'loop eta external

eta2 = $mLoopEtalnt; /l'loop eta internal

pppl = $mLoopCenterXPosExt; // loop centerl.x

ppp2 = $mLoopCenterXPosint; // loop center2.x

ppp3 = 0.85; I/ s3 Pd.y

ppp4 = 0.70; // s3 Qd.y

ppp5 = $mlLetterbLowerSweepA; // s3 curve A.x

ppp6 = $mLetterbUpperSweepA; // s4 curve A.x

ppp7 = 1.80; /I top spur height correctness of Opt

ppp8 = 1 $mLetterbUpperJuncPos sub; // arm position of Jr2c1, b/d/p/g/h/n/m

145

spurAngle = 20; I top spur slant, Degree

widel = $mHorCurveWwide; /I wide minuscule hor curve width
}
char72 it
{

pdx1 =0.39; /I main width, stem to bulb center

Trlcl = $iSerifStyle; /I'1 has topserif, 2 sans-serif

Tr2cl = $iSerifStyle; /I 1 has serif, 2 sans-serif

Trlc2 = $mBendedTermStyle; // 1 dot/pear, 2 butt, 3 long
Jricl = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
dotAngle = 30; /I Degree
pppl = $BV 1.0 ge 0.98 $BV 1.0 sub 0.04 mul sub 0.98 ifelse;
// dot y, adjusted to boldness

ppp2 = 0.60; /I arc s4 curve A.x

ppp3 = $MArmPos; /I arm position of Jrlcl

pppd = 0.60; /I smoothing edgel, related to dx1
pppK = 0.07; /I smoothing edge2, related to pXheight
pppL = 0.10; /I smoothing tangl, related to dx1

pppM = 0.10; /I smoothing tang2, related to pXheight

widel = $mHorCurveWwide; /I wide minuscule hor curve width

narrowl = $mVerSerifWnarrow; // narrow minuscule ver serif width h/n/m/u
narrow2 = $mDotRnarrowa; /I narrow minuscule dot radius a

narrow3 = $mDotRnarrowb; /I narrow minuscule dot radius b

}

char73 I"s"
pdx1 =0.52; /I main width, left curve to right curve
pdx2 = 0.57; /I secondary width, left tail to right curve
pdx3 =0.51; /I secondary width, left curve to right tail
Trlcl = $iSerifStyle; Il 1 serif-like, 2 butt
Tr2cl = $iSerifStyle; Il 1 serif-like, 2 butt
crrl =0.12; Il special curved stroke stress
pppl = 0.35; /l'y1, right tail height
ppp2 = 0.38; /l'y2, right curve height
ppp3 = 0.31; /'y3, right tail height
ppp4 = 0.36; /l'y4, left curve height
ppp5 = 0.81; /I s1 curve A.x
ppp6 = 0.62; /I s2 arrival, s3 start
ppp7 = 0.60; /I s4 arrival, s5 start
ppp8 = 0.81; /I s6 curve A.x
pppd = 1.00; /I smoothing edgel, related to pXheight
pppK = 0.43; /I smoothing edge2, related to dx1
pppL = 0.02; /I smoothing tangl, related to pXheight
pppM = 0.15; /I smoothing tang?2, related to dx1
tailAngle = 30; /I Degree, for sans-serif

narrowl = $mVerCurveWnarrow; // narrow minuscule vertical curve width
narrow2 = $mHorCurveWnarrow; // narrow minuscule horizontal curve width

}
char74 it
{
Trlcl =1, /I'1 concave head, 2 cross bar,
/I 3 cross bar with possibly slanted end
Tr2cl =1, // 1 pointed tail, 2 butt
tailAngle = 45; /I Degree
tailwidth = 0.50; // tail width
pppl =0.22; /I bar right-most
ppp2 = 0.28; // tail right-most
ppp3 = 0.13; /I bar left-most
ppp4 = 0.29; /I stem top extension
ppp5 = 0.15; /I tail left-most y
ppp6 = 0.20; // tail start s2 Pd.y
ppp7 = 0.25; // tail start s2 Qd.y
ppp8 = 0.45; // tail bottom most external x
ppp9 = 0.41; // tail bottom most internal x
pppA = 0.40; // tail s3 curve A.x
pppB = 0.55; /I top correction left
pppC = 0.80; /[top correction top
pppD = 0.62; /I top correction S4 curve A
widel = $mHorCurveWwide; /I wide minuscule hor curve width
}
fhar75 /AT
pdx1 =1.0; // main width, stem to stem
Trlcl = $iSerifStyle; /I 1 has serif, 2 sans-serif
Trlc2 = $iSerifStyle; /I '1 has serif, 2 sans-serif
Tr2c2 = $iSerifStyle; /I' 1 has topserif, 2 sans-serif

Jr2c2 = $mSweepStemJuncStyle; // 1 angled link, 2 smoothed link
pppl = $mLetternArchOuterTop; // arc bottom outer x

ppp2 = $mLetternArchinnerTop; // arc botton inner x

ppp3 = $mLetternArchOuterStart; // s3 Pd.y

ppp4 = $mLetternArchinnerStart; / s3 Qd.y

146

Appendix G

ppp5 = $mLetternArchJuncSweepA 1 0.1 iplt;
/I 's4 curve A.x, iplt ($, 1, 0.1), bigger than that in 'n'
ppp6 = 1 $MArmPos sub; /I arm position of Jr2c2
widel = $mHorCurveWwide; // wide minuscule hor curve width
narrowl = $mVerSerifWnarrow; // narrow minuscule serif ver width h/n/m/u

}
char76 v
pdx1 =0.73; /I main width, left to right
Trlcl = $iSerifStyle; /' 1 has serif, 2 sans-serif
Trlc2 = $iSerifStyle; /I 1 has serif, 2 sans-serif
pppl = 0.58; /1 sO start x
ppp2 = 0.44; I s1 start x
narrowl = $mDiagSerifOuterWnarrow; // narrow diag serif outer width, viwly
}
char77 1w
pdx1 =0.71; /I main width, similar to v
pdx2 = 0.15; /I secondary width, overlap of two 'v'
Trlcl = $iSerifStyle; /I 1 has serif, 2 sans-serif
Trlc2 = $iSerifStyle; /'1 has serif, 2 sans-serif
Trlc3 = $iSerifStyle; /' 1 has serif, 2 sans-serif
Jrlc2 =1, /I not used, equivalent to Trlc2
pppl = 0.56; /1 sO start x
ppp2 = 0.42; I s1 start x

narrowl = $mDiagSerifOuterWnarrow; // narrow diag serif outer width, viwly
widel = $mDiagSerifinnerWwide; // wide diag serif inner width

}
?har78 1x"
pdx1 = 0.74; /I main width, bottom left to right
Trlcl = $iSerifStyle; /I 1 has serif, 2 sans-serif
Trlc2 = $iSerifStyle; /'1 has serif, 2 sans-serif
Tr2cl = $iSerifStyle; /' 1 has serif, 2 sans-serif
Tr2c2 = $iSerifStyle; /I 1 has serif, 2 sans-serif
crrl = 0.15; /I optical crr for bottom-left, stem s6
crr2 = 0.45; 1l crr for top-left, s1
) crr3 = 0.05; /I crr for top-right, sO
char79 "y
{
pdx1 =0.77; /I main width, top left to right
pdx2 = 0.0; I/l secondary width, left to tail bulb center
Trlcl = $iSerifStyle; /I 1 has serif, 2 sans-serif
Trlc2 = $iSerifStyle; /' 1 has serif, 2 sans-serif
Tr2cl = $mBendedTermStyle; // 1 dot/pear, 2 butt, 3 long
dotAngle = 75; /I Degree
pppl = 0.61; I stem sO start x
ppp2 = 0.42; I/ stem s1 start x
ppp3 = 0.35; /] stem sl start y
ppp4 = 0.78 $BV 1.0 sub 0.2 mul sub; // dot center y, adjusted to boldness
ppp5 = 0.05; // tail bottom-most x
ppp6 = 0.20; // tail s6 curve A.x new !l
pppJ = 0.30; /I smoothing edgel, related to dx1
pppK = 0.10; /I smoothing edge2, related to pXheight
pppL = 0.15; // smoothing tangl, related to dx1
pppM = 0.10; /I smoothing tang2, related to pXheight

narrowl = $mDiagSerifOuterWnarrow; // narrow diag serif outer width, v/w/y
narrow2 = $mDotRnarrowa; /I narrow minuscule dot radius a

narrow3 = $mDotRnarrowb; /I narrow minuscule dot radius b

widel = $mDiagSeriflnnerWwide; // wide diag serif inner width

}

char7A I"z"

{
pdx1 =0.78; /I main width, bottom left to bottom right
pdx2 =0.02; /I secondary width, bottom left to top left
pdx3 = 0.09; /I secondary, bottom right to top right
Trlcl = $iSerifStyle; /I 1 has serif, 2 sans-serif
Tr2c2 = $iSerifStyle; /'1 has serif, 2 sans-serif
Jrlc2 =1, /I no use for Times
Jr2cl =1, /I no use for Times
anglel = -5; /l topBeakAngle Degree
angle2 = -5; // bottom Beak Angle Degree
pppl = 0.05; /[top MiterLimit, in ppp to StdDiagStemW
ppp2 = 0.05; /I bottomMiterLimit, in ppp to StdDiagStemW

narrowl = $mHorSerifWnarrow; // narrow hor serif width

Curriculum Vitae

| was born on June 10, 1966, and | hold the Chinese nationality.

Since Jul. 1995, | have been working as a research assistant as well as a Ph.D
candidate at the Peripheral Systems Laboratory (LSP) of EPFL. My main research effort
was focussed on the design and development of a new parametrisable font synthesis
system.

From Oct. 1994 to Jun. 1995, | worked as a technical consultant at the HuaGuang
Electronics Group Inc. (Beijing) for the development of a Chinese photocomposing
system. | was in charge of the high-quality high-speed Chinese character rasterization
technology.

From Sep. 1992 to Aug. 1994, | was a research assistant at the Computer Science
Department of Nanjing University (Nanjing, China). | took part in a national research
project related to the flexible application of Chinese outline fonts. | designed and
developed an automatic hinting system for Chinese outline fonts based on automatic
stroke separation.

From Sep. 1991 to Aug. 1992, | was a teaching assistant at the Computer Science
Department of Tsinghua University (Beijing).

In 1991, | received a Master degree in Computer Science and Application from
Nanjing University. For the thesis, | developed a prototype PostScript interpreter with an
extension to describe and print Chinese outline characters.

In 1988, | received my Bachelor degree in Computer Science from Nanjing
University.

	SYNTHESIS OF PARAMETRISABLE FONTS BY SHAPE COMPONE...
	Thanks
	Abstract
	Résumé
	Table Of Contents
	CHAPTER 1 CHAPTER 1 Introduction
	1.1 Preface
	1.2 Previous work in font parametrization
	1.3 Contents of this thesis
	1.4 Terminology

	CHAPTER 2 CHAPTER 2 Structures and components
	2.1 Structure of characters
	2.2 Components
	2.3 Summary

	CHAPTER 3 CHAPTER 3 Font parametrization
	3.1 Earmark-based refinement of structure graphs
	3.2 parametrizable character synthesis methods
	3.3 Parameter files
	3.4 Technical issues regarding the font synthesize...
	3.5 Summary

	CHAPTER 4 CHAPTER 4 Implementation of the parametr...
	4.1 Classes
	4.2 The implementation of the parameter hierarchy
	4.3 Output forms of synthesized characters
	4.4 Automatic optical spacing
	4.5 Automatic hinting and grid-fitting
	4.6 Evaluation
	4.7 Summary

	CHAPTER 5 CHAPTER 5 Experiments and applications
	5.1 A visual environment
	5.2 Typographical experiments and applications
	5.3 Summary

	CHAPTER 6 CHAPTER 6 Conclusion and future work
	APPENDIX A The b value for a quarter of an arc
	APPENDIX B The b value for approximating an ellips...
	APPENDIX C Proof of parameter h
	APPENDIX D Description of characters by components...
	APPENDIX E Enlarged resynthesized component-based ...
	APPENDIX F The variation cube of “e”
	APPENDIX G Parameter files of parametrisable Times...
	Curriculum Vitae

