
Proceedings of the 6 t h Eurographics Workshop
on Graphics Hardware, Vienna, Sept. 1991, to
be published by Springer Verlag.

Hardware Outline Character Rasterization

Marc Morgan, Roger D. Hersch
Peripheral Systems Laboratory

Swiss Federal lnstitute of Technology, Lausanne

Introduction

For several years, engineers and typographers have been working on a new generation
of fonts. The old bitmap description of a character is giving way to characters defined by
their outlines. This new description of a character makes a font independent of the size of
the desired bitmap character. This in turn makes the font independent of the resolution of
the hardware which will be used to render the text.

Studies undertaken at the Peripheral Systems Laboratory (LSP) at the Swiss Federal
lnstitute of Technology (EPFL) have led to an algorithm for the rasterization and filling of
outline characters. This algorithm is the base of an intelligent font rasterization program
[Hersch89]. The fonts are given by outlines described by cubic Bézier splines and by line
segments. The quality of the resulting black and white bitmaps depends on two important
aspects of the program: the sub-pixel precision used during the rasterization and an
appropriate control of the phase of the contour relative to the pixel grid.

Rasterizat ion
T Ts ggg

1: 'a;
.'.... ,/"

25 pixels 100 pixels 400 pixels high

Oul l ine
Fig. 1 Outline fonts can be transformed into bitmaps of any scale without

redesigning the characters

Motivation

The generation of a whole font (ASCII codes 3 2 to 126) by the intelligent character
rasterization program [HerschSOI at a resolution of 300 dpi has been evaluated on a 16MHz
M68020. Figure 2 shows that, in the program, grid outline adaptation (phase control) is
independent of the size of the characters. However, the scan-conversion and filling times
become dominant for large characters. Characters are generated at a rate of 5 0 characters
per second at 600 dpi. This is clearly not sufficient for a high performance raster image
processor. Since time consuming parts of the program are already written in assembly
language, further performance improvements can be obtained by designing an application
specific IC (ASIC).

Given the complexity of intelligent character rasterization, i t is not possible to implement
al1 its functionalities into a circuit. It was chosen to assign the ASIC the task of the highly
repetitive part of the algorithm leaving the more complex work to the main processor. In
other words, only scan-conversion and filling were integrated on the ASIC. Phase control is
much more complex and requires the programming capabilities of a general-purpose processing
unit.

80
76
72
68
64
60
56
52
48
44 filling time
40
36
32 scan-conversion
28 time
24
20
16 grid outline
12 adaptation time
8
4
O height of character E,

XI w iw 140 180 220 260 300 340 in pixels

Prrlori
Fig. 2 Average generation time of a character by sofware.

This ASlC is mainly intended for high resolution (600 dpi). A t such a high resolution,
only simplified phase control is required. This ASlC can also be used for average resolution
printers (300 dpi) whereby good quality results can only be achieved with complete phase
control.

The Environment

The ASlC which has been designed is a simple coprocessor. It has a circular input
buffer to which the main processor writes the character outline data. Once the coprocessor
is ready to return the bitmap character, it sends an interrupt signal to the main procesor
which can then read the bitmap words sequentially. Synchronisation between the processor
and the ASlC is achieved by standard interrupt request and handshake signals
(CircularBufferEmpty, Full, and HaIfFuIl).

The first prototype of the circuit has been designed to generate raster characters up to
64 pixels high and wide. This prototype was realised to demonstrate the feasibility of such
a circuit. The final version of this circuit would need to generate larger characters (256 x
256 pixels for example).

The Algorithms

The principal task of the ASlC is to scan-convert the outline of the character which it
will then fiIl before sending the resulting bitmap back to the main processor.

The Flag Fill Algorithm

The flag fil1 algorithm used by the ASlC is one [Ackland811 which was improved for
the purpose of accurate shape filling [HerschSOI. The basics of the algorithm wil l quickly be
exposed here.

A pixel is considered as being inside an outline i f more than 50% of its surface lies
inside the outline. For characters, the element of the outline which crosses a pixel can be
considered as a line segment. Therefore, a pixel is inside an outline i f its center is inside.

The bitmap which wil l be generated by the flag fiIl algorithm can be considered as a
set of black horizontal spans for the inside of the outline and white horizontal spans for the
outside. The first pixel of each span is marked by a flag. Once al1 the flags corresponding
to an outline have been set, the flag fiIl algorithm scans the flag imqge memory from left to
right. Each flag encountered indicates the start of a new horizontal interior or exterior span.

Bi t map

f lagf i l f i
Fig. 3 Example of the flag fil1 algorithm applied to a character

The Vert ical Scan-Conversion Algorithm

The Bézier splines and line segments which make up an outline have to be converted
into flags for the filling algorithm. Two strategies can be adopted to scan-convert a Bézier
spline: recursive subdivision or forward differencing [Newman791. Both strategies have been
developed in order to reduce the number of required operations without reducing the
precision of the scan conversion.

Ordinary forward differencing had one main drawback: the incremental step of the
parameter used to describe the curve was a constant. Adaptive forward differencing (AFD)
corrected this problem ILien871. AFD insures that most of the points which are generated
will be used to trace the curve. lnteger AFD further improved the algorithm by using fixed
point or pseudo floating point arithmetic instead of floating point arithmetic [Lien891
[Gonczarowski891. The resulting algorithm is yet faster.

Recursive subdivision has also been optimized CHersch901. It presents several advantages
over forward differencing. First, computation errors aren't amplified in the same way as in
AFD. In order to get the same quality result, recursive subdivision requires a significantly
smaller amount of bits of precision than AFD. Second, recursive subdivision can be carried
out with the control points of a Bézier curve rather than its polynomial equation. This allows
for a better understanding and monitoring of the algorithm.

Scan-conversion b y recursive subdivision

Recursive subdivision of Bézier splines is based on DeCasteljou's theorem. As figure 4
shows, a Bézier spline:

P(u) = Vo.(l -u13 + VI-3u(1 - u) ~ + v2.3u2(1 -u) + v3.u3 with u E [0,11

represented by its control polygon (VonVI ,V2,V3) can be subdivided into two smaller Bézier
splines, (Vo,S, ,S2,S3) and (S3,T1 ,T2,V3). The smaller splines will have their control
polygons closer to the spline. Therefore, if a spline is subdivided enough times, the resulting
control polygons become a sufficient approximation to the spline. One of the delicate points
of the algorithm is the criterion for stopping subdivision. I t is based on the convex hull
property of Bézier curves: a Bézier curve always lies within the convex hull formed by its
control polygon.

S u b d i v i s i o n o f (Vo,Vl ,V2,V3)
i n t o (Vo,Sl ,S2,S3)

and (So,Tl ,TZ,V3):

Cirlrljou Fig. 4 DeCasteljou S subdivision of Bézier splines

Repeated subdivision of Bézier splines can result in three types of Bézier splines:

- splines which don't intersect any scan line, and which can be discarded since they
won't generate any flag,

- splines which don't intersect any vertical grid lines, and can be replaced by vertical
line segments,

- splines which still intersect a scan line and a vertical grid line.

liiill
Fig. 5 The three possible final outcomes of a Bézier subdivision

The third case sets the problem of knowing when to stop subdividing a spline and how
to choose the position of the corresponding flag from where the subdivision left off. The
choice of stopping a subdivision has to take into account the amount of errors which are
tolerated and the precision used in the computations. The criterion we chose tests whether
the spline's bounding box is smaller than the parameter MinFracLength along both the x and
y axis. When this criterion is met, the small spline is replaced by the three line segments
which make up its control polygon. Experience shows that a good trade off for
MinFracLength is 1 18 pixel.

The ASIC implementation of the subdivision-stopping criteria is slightly simplified by an
additionna1 hypothesis: al1 the splines which make up an outline are monotone both along x
and y. This hypothesis implies that the font designer will have to be careful to divide any
splines which aren't monotone into two or more splines which are. Note however that i t is
very rare that non-monotone cubic splines be used. A simple filter can also be applied to
divide non-monotone splines into several monotone splines.

Cornparison of recursive subdivision and forward differencing

The same criteria which we developed for recursive subdivision could be applied to
adaptive forward differencing (AFD). This however would require precomputing the next point
on the curve before deciding whether the step size is correct or needs adjusting. This
corresponds to an extra addition for each adjust up or down operation. Even so, when

MinFracLength has been reached, the curve would have to be replaced by a line segment,
which is less accurate than the control polygon given by recursive subdivision.

Recursive subdivision requires 6 adds and 6 shifts to generate 2 sub-splines (figure 4).
lnteger AFD requires 3 adds, 2 shifts and an increment to generate each new step and for
each adjust up or adjust down operation. Both algorithms therefore require approximately the
same amount of arithmetic operations. However, integer AFD requires dynamical shift
operations which are avoided by recursive subdivision. This tends to make AFD slower than
subdivision. On the other hand, the recursive aspect of subdivision has to be implemented
with a stack. Stack access will slow down subdivision. 'This problem can be partially
eliminated by accessing the stack in parallel with other operations. This is true for the ASlC
presented here which writes into the stack at the same time as i t computes other control
points or as it tests the locations of spline control points.

Another important difference between the two methods comes from the number of bits
which are worked on. For example, for a maximum curve length of 6 4 pixels and with
MinFracLength = 118 pixel, recursive subdivision requires 14-bit operators. Ordinary forward
differencing would require 3 5 bits to get the same precision [Lien891 while AFD would need
20 bits. AFD therefore would work on 43% more bits than recursive subdivision. Having
more bits slows down arithmetic operations and requires more place on the integrated circuit.

Realization

The ASlC was designed to optimise the scan-conversion of Bézier splines. The
processing of line segments only uses part of the resources which are required by the
splines. It is also based on recursive subdivision.

The last step in the processing of a character consists in returning the filled bitmap to
the main processor. The ASlC reads the flag image memory byte by byte and fills the
outline on the fly. A t the same time, it clears the flag image memory for the next
character.

The Architecture

The architecture of the ASIC is fairly simple (figure 6). It can be decomposed into the
following blocks:

- an input interface,

- a circular input buffer to store incoming bytes until they can be sent to the data
processing units,

- two nearly identical data processing units for the X and Y coordinates,

- a stack to store intermediate results,

- the sequencer which is based on a small ROM,

- a RAM for the flag image memory,

- the flag setl f i l l unit,

- an output interface.

The Circular Input Buffer

The circular input buffer is used to store each curve sent by the processor. It can
store upto 5 1 2 words which corresponds, for instance, to 6 4 Bézier splines; each spline
being described by 4 control points requiring 2 14-bit coordinates each.

Data In

Bitmap &
Output
Sequencer

Data Out

Bloc2
Fig. 6 General architecture of the ASIC

The Data Processing Units

The architecture of the data processing units has been carefully optimized for the Bézier
subdivision algorithm. The data processing unit (figure 7) is nearly identical for the x and y
coordinates. It is made up of 7 registers, one adderlsubtractor, one adder, four busses, and
a condition code tester.

RAM

I

1 Test 1
7

't'
to flag image memory

Circular y
SubDivZ

Fig. 7 Architecture of a data processing unit

The four registers (RO, R I , R2, R3) in the center of a DPU contain the coordinates of
the four control points of a Bézier spline. The results of the average operations are stored in
the two outer registers (AO, A l) . The seventh register (PL) latches the last value pushed
on the stack as a temporary buffer. An average operation is generated by an adder followed
by a division by two which has been implemented as a hard wired shift right. The
subtractor is used to test a curve to determine whether to keep subdividing it or not. The
test logic is the only part of the DPU which differs for the x and y coordinates.

Each register contains 1 4 bits: 6 integer bits and 8 fractional bits. No extra sign or
overflow bits are required since the only operation performed is an average. The 6 integer
bits allow for characters up to 6 4 pixels high. The 8 fractional bits are sufficient in order
to keep the required precision.

The bus configuration has been designed to enable parallel access to both adders and
to limit the capacity (pF) of each bus. The busses also give access to the stack and the
input circular buffer. The stack is used to Save curves from one level of subdivision to the
next.

The Stack

The stack is 1 6 bits wide to contain sequentially the x and y coordinates of a point
and the type of curve it belongs to (Bézier spline or line segment). To calculate the height
of the stack, one has to take into account the range of accepted coordinates (0.00 to
H'3F.FF in Our case) and the chosen value for MinFracLength (118). In Our case, a
maximum of 6 + 3 = 9 levels of recursive subdivisions can occur. Since each subdivision
requires that 4 control points (4 * 2 coordinates) of a new spline be stored on the stack,
the stack has to contain at least 9 * 4 * 2 = 72 words. Note that no new curve is
processed before the last one has been completely scan-converted; this keeps memory
requirements for the stack to a strict minimum. The stack was assigned 128 words.

The Sequencer

The sequencer is based on a ROM which contains the microcode for the recursive
subdivision of Bézier splines and line segments. The ROM is followed by the necessary
combinatorial logic to generate the DPU's control signals. It is preceded by the ROM address
generator which takes into account the results of the tests and the incrementljump bit from
the ROM. The jump addresses are not coded inside the ROM since this would demand too
large a ROM or would demand a lot of extra jumps. The algorithm contained in the ROM is
represented in figure 8.

The Flag SetJFill Uni t

This unit is used to set each flag in a word of the flag image memory. An exclusive
OR is used to conserve the parity of flags in complex cases. After al1 the flags of an
outline have been computed, this same unit takes each word of the flag image memory and
fills it. This is done at the same time as the processor requests each word. To avoid having
to insert wait states during the processor's read cycle, the filling unit uses a 'fil1 look
ahead' scheme (by analogy to the carry look ahead for an addition).

lmplementation

During the implementation of the circuit, the size of the RAMs required became an
important factor. About half the surface of the circuit is RAM. In an effort to reduce the
RAM surface, the stack, the flag image memory and the circular input buffer were grouped
into a single RAM. This does not have any effect on the speed of the circuit since no two
memories ever had to be accessed at the same time. The result was a denser RAM. Since
the size of the final circuit was still too large, it was chosen to use an external RAM for
the first prototype. The ASlC is connected to the RAM via a 1 6 bit data bus and a 10 bit
address bus. The RAM contains 256 words for the flag image memory (ie 256*16 bits =
64*64 bits), 51 2 words for the circular input buffer, 128 words for the stack, and 128
free words which were used for the test of the circuit. In order to further facilitate the
debugging, a dual port RAM (DPRAM) was chosen instead of a RAM.

O:) POP RO-R3 1

I

7: 1 Test RO, R I ; Avrg l <- (RO+R11/2 1
1 I P- r- ~ n . 1

I

2: 1 Push R3; Avrgl <- (R2+R31/2
I

I \
/

8: 1 Test R I . R2: Avral <- (R I +R21/2 1

3:

6 4:

I . . - I

\ R 3 <- R2; ' R 2 <- R I

9: 1 Test R2. R3; Avrgl <- (R2+R3)/2 1

Push Avrgl; AvrgO <- (RO+R1)/2; Avrgl <- (R I +R2)/2; PL <- Avrgl
I

R I <- AvrgO; AvrgO <- (AvrgO+Avrg1)/2; Avrgl <- [Avrgl +PLI12

1 A: I ~ u s h 1131 Avrgl <- (R2+R3)/2 1
9 B: I ~ u s h Av:gl; R 3 <- Avrgl ; Test R2, Avrgl; ev Avrgl <- (R2+Avrg1)/2 1

I

Other possible jumps are:

To: From: Case of:

O 1,6,9,B,E No flag
A 1,6 Vertical spline
E 1,6,7,8,9,B,C,D Flag found

5:
I

6:

C: 1 Test R2, Avrgl ; ev Avrgl <- (k2+~vrgll /2 1 4

R 2 <- AvrgO; Avrgl <- (AvrgO+Avrg1)/2; Push Avrgl
I

R 3 <- Avrgl; Push Avrgl; Test RO, Avrg l

I

I \
/

D: 1 Test R3, Avrgl ; ev Avrgl <- (R3+Avrg1)/2 1
I

Organilra2 Fig. 8 The organigram

,,
E:

The InputIOutput Interface

Set Flag

The ASlC has been designed as a coprocessor for a M68020. Its inputloutput interface
can be decomposed into:

- the RAM interface: a 1 6 bit data bus, a 1 0 bit address bus, and the usual output
enable and ReadIWrite signals,

- the circular input buffer status flags: CIBJuII, CIBJalfJull and C IB lmp ty
- the CIB-Size-lncrement inputs which update the ASIC's count of the CIB size. There

are two signals to increment the count by 4 (Bézier spline with 4 control points), by
2 (line segments with 2 extremities), or by 1 (end of character command word),

- an interrupt request lReq output to indicate that the bitmap is ready to be sent to the
processor ,

- a bitmap word request input to indicate that the processor is waiting for the next word
of the bitmap,

- and a Memory acknowledge output to indicate that the next bitmap word is on the
processor's data bus or that wait states have to be inserted in the processor's read
cycle.

Subdivision of a Bézier spline

Figure 9 demonstrates the subdivision of a Bézier spline using the DPU described above.
(NB: Notation is the same as in figures 4 and 7.) The four control points of the spline are
loaded either from the stack or from the CI6 in four steps. Then, the endpoints of the
spline are tested to determine whether or not the spline needs a further subdivision step.
The rest of the sequence represents the case where the spline has to be subdivided. At the
end, one sub-spline is in the four registers and is tested for a new subdivision. The other
sub-spline is on the stack in the same order as the first spline (VO first, V3 last).

Pop V0,Vl ,V2,V3
A l <- (R2+R3)/2

vo;
V I

$03
Fig. 9 Sequence of operations for the subdivision of a Bézier spline

Technology

The choice of the technology used for the ASlC was based on ease of conception and
former experience. The solution adopted for the first prototype was VTl's 2 um CMOS
(CMN20a) standard cell technology.

The Results

The prototype circuit was sent to the foundry in May 1991. According to the
simulation work which has been done, we can estimate the rate of generation of characters
at around 2500 characters per second, for capital character sizes of 3 2 pixels. This
estimation doesnat take into account any phase control application time which might be added
by the main processor.

The size of the ASlC is just under 6 by 6 mm.

Conclusions

This paper has presented the algorithm developed for the rasterization of characters
described by their outlines. A comparison between recursive subdivision and forward
differencing shows that recursive subdivision is easier to implement into an application specific
integrated circuit. The proposed architecture guarantees the correct rasterization of outline
characters due to precise criteria for stopping recursive subdivision.

A simple architecture is proposed for the implementation of the rasterization algorithm.
The simulations show that the ASlC can generate 2500 characters/second. It can be used
as the core of a high performance raster image processor.

References

[AcklandBl 1 B.D. Ackland, N.H. Weste, "The Edge Flag Algorithm - A Fill Method
for Raster Scan Displays", IEEE Trans. on Computers, Vol 30, No 1,
pp. 41 -48 (1981)

[Gonczarowski89] J.Gonczarowski, "Fast Generation of Unfilled and Filled Outline
Characters", Raster lmaging and Digital Typography, Cambridge University
Press, pp.97-110. (1989)

IHersch89 1 R. D.Hersch, "Introduction to Font Rasterization", in André, Hersch (eds.),
Raster lmaging and Digital Typography, Cambridge University Press, pp.
1-13. (1989)

[Hersch901 R.D.Hersch, "Efficient Rendering of Outline Characters", 1990 SID
Symposium Digest of Technical papers, Vol. 21, Society for Information
Display, pp. 392-394 (1 990)

[Lien871 S.L.Lien, M.Schantz, V.Pratt, "Adaptive Forward Differencing for
Rendering Curves and Surfaces", Proceedings SIGGRAPH'87, ACM
Computer Graphics, Vol. 21, No. 4, pp. 11 1-1 18. (1 987)

[Lien891 S.L.Lien, M.Schantz, R.Rocchetti, "Rendering Cubic Curves and Surfaces
with lnteger Adaptive Forward Differencing", Proceedings SIGGRAPH'89,
ACM Computer Graphics, Vol. 23, No. 3, pp. 157-166. (1 989)

[Newman791 W. M . Newman, R. F.Sproull, Principles of Interactive Graphics,
McGraw-Hill. (1 979)

