
MORG91a

AN ASIC FOR OUTLINE CHARACTER GENERATION
Marc Morgan, Roger D. Hersch

Swiss Federal Institute of Technology, Lausanne, Switzerland

Abstract

This paper presents the design and implementation of an
ASIC for real-time rasterization of characters described by their
outline based on vertical scan-conversion and flag fill algorithms.
The chip is a coprocessor which rasterizes outline fonts given
by Bezier splines and straight line segments. It generates high
quality fonts 30 times faster than the equivalent assembly
language code on a 16 MHz M68020.

Introduction

For several years, engineers and typographers have been
working on a new generation of fonts. The old bitmap
description of a character is giving way to characters defined
by their outlines.

Research undertaken at the Peripheral Systems Laboratory
(LSP) at the Swiss Federal Institute of Technology (EPFL) has
led to an algorithm for the rasterization and filling of outline
characters. This algorithm is the base of an intelligent font
rasterization program [Hersch89]. The fonts are given by
outlines described by cubic Bezier splines and by line segments.
The quality of the resulting black and white bitmaps depends on
two important aspects of the program: the sub-pixel precision
used during the rasterization and an appropriate control of the
phase of the contour relative to the pixel grid.

segments

/

Height: 25 pixels 100 pixels 400 pixels

Fig. 1 Automatic rasterization of outline fonts

Proceedings of the Society for
Information Display, International
Conference Anaheim, May 1991 ,
Published in SID'91 Digest,
Vol XXII, pp. 201-204.

Motivation

The generation of a whole font (ASCII codes 32 to 126)
by the intelligent character rasterization program [Hersch90] at a
resolution of 300 dpi has been evaluated on a 16MHz M68020
microprocessor. Figure 2 shows that grid outline adaptation
(phase control) is independent of the size of the characters.
However, the scan-conversion and filling times become dominant
for large characters. Characters are generated at an average rate
of 50 characters per second at 600 dpi. This is clearly not
sufficient for a high performance raster image processor. Since
time-consuming parts of the program ,are already written in
assembly language, further performance improvements can be
obtained by designing an application specific IC (ASIC).

Given the complexity of intelligent character rasterization, it
is not possible to implement all its functionalities into one VLS I
chip. It was chosen to assign the ASIC the task of the highly
repetitive part of the algorithm leaving the more complex work
to the main processor. In other words, only scan-conversion
and filling were integrated on the ASIC. Phase control is much
more complex and requires the programming capabilities of a
general-purpose processing unit.

This ASIC is mainly intended for high-resolution printers
(600 dpi). At this resolution, only simplified phase control
(hinting) is required. This ASIC can also be used for
average-resolution printers (300 dpi) where good quality results
can only be achieved with complete phase control.

[msl

10

20

100 300

filling time

scan-conversion
time

grid outline
adaptation time

he ight of character E,
1n pixels

Fig. 2 Average generation time of one character by
software.

The Environment

The ASIC has been designed as a simple coprocessor, It
has a circular input buffer to which the main processor writes
the character outline data. Once the coprocessor is ready to
return the bitmap character, it sends an interrupt signal to the
main processor which can then request the bitmap words
sequentially from the ASIC. Synchronisation between the

processor and the ASIC is achieved by standard interrupt
request and handshake signals (CircularBufferEmpty, Full, and
HalfFull).

The first prototype of the circuit has been designed to
generate raster characters up to 64 pixels high and wide. This
prototype was realised to demonstrate the feasibility of such a
circuit. The final version of this circuit will generate larger
characters (256 x 256 pixels).

The principal task of the ASIC is to scan-convert the
outline of the character which it will then fill before sending
the resulting bitmap back to the main processor.

The Flag Fill Algorithm

The flag fill algorithm used by the ASIC is one
[Ackland81] which was improved for the purpose of accurate
shape filling [Hersch90]. The basics of the algorithm will be
explained briefly here.

A pixel is considered to be inside a shape if more than
50'l. of its surface lies inside the shape. Since characters have
relatively flat curves, the section of the outline which crosses a
pixel can be assumed to be a line segment. Therefore, a pixel
is considered to be an interior pixel if its center is inside the
shape.

The bitmap which will be generated by the flag fill
algorithm can be considered as a set of black horizontal spans
for the inside of the shape and white horizontal spans for the
outside. The first pixel of each span is marked by a flag. Once
all the flags corresponding to an outline have been set, the flag
fill algorithm scans the flag image memory from left to right.
Each flag encountered indicates the start of a new horizontal
interior or exterior span.

Flag Image memory
:::::::::::::::::::·:::

Bit map

Fig. 3 Flag fill algorithm applied to a character

The Vertical Scan-Conversion Algorithm

The Bezier splines and line segments which make up an
outline have to be converted into flags for the filling algorithm.
Two strategies can be adopted to scan-convert a Bezier spline:
recursive subdivision and forward differencing [Newman79]. Both
strategies have been developed in order to reduce the number
of required operations without reducing the precision of the scan
conversion.

Ordinary forward differencing has one main drawback: the
incremental step of the parameter used to describe the curve is
a constant. Adaptive forward differencing (AFD) corrects this
problem [Lien87]. AFD ensures that most of the points which
are generated will be used to trace the curve. Integer AFD
further improves the algorithm by using fixed point arithmetic
instead of floating point arithmetic [Lien89] [Gonczarowski89].
The resulting algorithm is yet faster.

Recursive subdivision has also been optimized [Hersch90].
It presents several advantages over forward differencing. First,
computation errors are not amplified as they are in AFD. In
order to get the same result, recursive subdivision requires a
significantly smaller number of bits of precision than AFD.
Second, recursive subdivision can be carried out with the
control points of a Bezier curve which provide easy monitoring
of subdivision depth.

Scan-conversion by recursive subdivision

Recursive subdivision of Bezier splines is based on
DeCasteljou's theorem. As figure 4 shows, a Bezier spline

P(u) = V0 ·(1-u)3 + V1·3u(1-u)2 + V2·3u2 (1-u) + V3 ·u3

with u E [0,1]

represented by its control polygon (V 0 , v1. V 2 • V 3 l can be
subdivided into two smaller Bezier splines, V0 ,S1 .S2 .S3) and
(S3 ,T1 ,T2 ,V3). The smaller splines will have their control
polygons closer to the spline. Therefore, if a spline is
subdivided enough times, the resulting control polygons become
a good approximation to the spline. One of the delicate points
of the algorithm is the criterion for stopping subdivision. It is
based on the convex hull property of Bezier curves: a Bezier
curve always lies within the convex hull formed by its control
polygon.

T2 v,

Bo111c:hng box o(!
<~.~~~·~' :

Yo ••••••••••••• (•••••••••••••••••••••••••• ;

Subdiv1uon of (V0 ,V1 ,V2,V,)
into (V0 ,S1 ,52 ,51)
cr~d (50 ,T1 ,T2 ,V,):

51 :: (V0 • V1 l I 2
T2 ,, <v, • v, l 1 2
R :: (v1 • V2) 1 2
52 :: (51 • R l I 2
r, , n, . R l 1 2
51 :: (5 2 • T1 l I 2

Fig. 4 DeCasteliou 's subdivision of Bezier splines

Repeated subdivision of Bezier splines can result in three
types of Bezier splines (cf figure 5):

splines which do not intersect any scan line, and which
can be discarded since they won't generate any flag,

- splines which do not intersect any vertical grid lines. and
can be considered as vertical line segments.

splines which still intersect both a scan line and a vertical
grid line.

The third case poses the problem of determining when to
stop subdividing a spline and how to choose the position of the
corresponding flag from the point at which the subdivision .left
off. The choice of stopping a subdivision has to take 1nto
account the maximum tolerable error and the precision used in
the computations. The criterion we have chosen is to have the
spline· s bounding box smaller than the largest tolerable fractional
error, MinFracLength, along both the x and y axes. When this
criterion is met, the small spline is replaced by the three line
segments which make up its control polygon. Experience shows
that the choice of 1 /8 pixel for MinFracLength is a good
trade-off.

The ASIC implementation of the subdivision-stopping criteria
is slightly simplified by an additional hypothesis: all the splines
which make up an outline are monotonic along both x and y.
This hypothesis implies that the font production software will
have to subdivide any non-monotonic splines.

0 0 0 0 I I I
0 t 0 0 0 I I

··-~·······t·······r·······r·······t·······t·······t··

v~~ti~·a 1 l ~~ @ l l l ~)~" l
gn tne~r···· :-\·;r·····-r--····-r··. ~t ·>····t~~rrespondlng

: :flag?: : : :

Scan <···i·······i·····--·i·······i·······i··· -~·····t·· flags
o t t I I I I

lines ···i·······f f f.•••u·i·· -~·····i•• ' ' ®_.b-d ' ' Elll .
Pixel : ff ' : : : :
center'-..... : · : : ' : : · ··t·······r·······r·······t·······r·······r·······t··

I o t I I t I

Fig. 5 The three possible final outcomes of a Btizier
subdivision

Comparison of recursive subdivision and forward differencing

The same criteria which we developed for recursive
subdivision could be applied to adaptive forward differencing
(AFD) [lien89]. This however would require precomputing the
next point on the curve before deciding whether the step size
is correct or needs adjusting. This corresponds to an extra
addition for each adjust up or down operation. Even so, when
MinFracLength has been reached, the curve would have to be
replaced by a line segment, which is less accurate than the
control polygon given by recursive subdivision.

Recursive subdivision requires 3 adds and 3 shifts per
sub-spline (figure 4). Integer AFD requires 3 adds, 2 shifts
and an increment per step and per adjust up or adjust down
operation. Both algorithms therefore require approximately the
same number of arithmetic operations. However, integer AFD
requires dynamic shift operations which are avoided by recursive
subdivision. This tends to make AFD slower than subdivision.
On the other hand, the recursive aspect of subdivision has to
be implemented with a stack. Stack access will slow down
subdivision. This problem can be partially eliminated by
accessing the stack in parallel with other operations. This is
true for the ASIC presented here which writes into the stack
at the same time as it computes other control points or as it
tests the locations of spline control points.

Another important difference betV.:een the two methods
comes from the number of bits which are worked on. For
example, for a maximum curve length of 64 pixels and with
MinFracLength = 1 /8 pixel, recursive subdivision requires
14 -bit operators. Ordinary forward differencing would require 35
bits to get the same precision [Lien89] while AFD would need
20 bits. AFD therefore would work on 43% more bits than
recursive subdivision. Having more bits slows down arithmetic
operations and requires more place on the integrated circuit.

The Architecture

The ASIC has been designed to optimise the
scan-conversion of Bezier splines. Line segments are processed
by the same subdivision hardware as the splines.

The last step in the processing of a character consists of
returning the filled bitmap to the main processor. The ASIC
reads the flag image memory word by word and fills the outline
on the fly. At the same time, it clears the flag image memory
for the next character.

The architecture of the ASIC is fairly simple (figure 6). It
can be decomposed into the following blocks:

- an input interface,

a circular input buffer to store incoming bytes until they
can be sent to the subdividers,

- two nearly identical subdividers for the X and Y
coordinates,

- a stack to store intermediate results,

the sequencer which is based on a small ROM,

a RAM for the flag image memory,

- the flag set/fill unit,

- an output interface.

Sequencer

Bllmep l
Output
Sequencer

0111 In

01t1 Out

Fig. 6 General architecture of the ASIC

The Circular Input Buffer

The circular input buffer is used to store each curve sent
by the processor, It can store up to 512 words which
corresponds, for instance, to 64 Bezier splines; each spline is
described by 4 control points requiring two 14-bit coordinates
each.

The Subdivision Units

The architecture of the subdivision units has been carefully
optimized for Bezier subdivision. The data processing unit
(figure 7) is nearly identical for the x and y coordinates. It is
made up of 1 registers, one adder I subtracter, one adder, four
busses, and a condition code tester.

Fig. 7 Architecture of a data processing unit

r

The lour registers lRO, R1, R2, R3) in the center of a
DPU contain the coordinates of the four control points of a
Bezier spline. The results of the average operations are stored
in the two outer registers (AO, A 1) . The seventh register (PL)
latches the last value pushed onto the stack as a temporary
buffer. An average operation is generated by an adder followed
by a hard wired shift right. The subtracter is used to test a
curve to determine whether to keep subdividing it or not.

Each register contains 14 bits: 6 integer bits and 8
fractional bits. No extra sign or overflow bits are required since
averaging is the only operation performed. The 6 integer bits
allow for characters up to 64 pixels high. The 8 fractional bits
are sufficient in order to keep the required precision.

The bus configuration has been designed to enable parallel
access to both adders and to limit the capacity (pF) of each
bus. The busses also give access to the stack and the circular
input buffer. The stack is used to save curve parts from one
level of subdivision to the next.

The Stack

The stack contains the sequence of x and y coordinates of
points and the type of curve they belong to (Bezier spline or
line segment). The height of the stack is given by the range of
accepted coordinates (0.00 to H"3F.FF in our case) and the
chosen value for MinFracLength (1/8). In our case, a
maximum of log2 (H"40) + llog2 (1/8ll = 9 levels of recursive
subdivisions can occur. Since each subdivision requires that 4
control points (4 • 2 coordinates) of a new spline be stored
on the stack, the stack has to contain at least 9 • 4 • 2 =
72 words. Note that no new curve is processed before the last
one has been completely scan-converted; this keeps memory
requirements for the stack to a strict minimum.

The Results

Simulation work has been completed, although the circuit
has not yet been manufactured. Character generation rate is
around 2500 characters per second for fonts with 32-pixel high
capitals. This character generation speed includes the time
required to load the character outline into the circuit and to
fetch the bitmap from it.

The choice of the technology used for the ASIC was
based on ease of conception and former experience. The
solution adopted for the first prototype was VTI' s 1 . 6 urn
CMOS (CMN16) standard cell technology. The size of the
ASIC will be under 20 mm2

.

Conclusions

This paper has presented a hard-wired algorithm for fast
rasterization of characters described by their outlines. A
comparison between recursive subdivision and forward
differencing shows that recursive subdivision is easier to
implement in an application specific integrated circuit. The
proposed architecture guarantees the correct rasterization of
outline characters due to precise criteria for stopping recursive
subdivision.

A simple architecture is proposed for the implementation of
the rasterization algorithm. Simulations show that the ASIC
generates an average of 2500 characters/second. This number.
however, depends on the character size and the font being
rasterized. This ASIC can be used as the core of a high
performance raster image processor.

[Ackland81]

[Gonczarowski89]

[Hersch89]

[Hersch90]

[Lien87]

[Lien89]

[Newman79]

References

B.D. Ackland, N.H. Weste, "The Edge Flag
Algorithm - A Fill Method for Raster Scan
Displays", IEEE Trans. on Computers, Vol.
30, No. 1, pp. 41-48 (1981)

J. Gonczarowski,
Unfilled and Filled
Raster Imaging and
Cambridge University
(1989)

"Fast Generation of
Outline Characters",
Digital Typography,

Press, pp. 97-110

R.D. Hersch, "Introduction to Font
Rasterization", in J. Andre, R.D.
(eds .). Raster Imaging and
Typography, Cambridge University
pp. 1-13 (1989)

Hersch
Digital
Press,

R.D. Hersch, "Efficient Rendering of Outline
Characters", 1990 SID Symposium Digest of
Technical papers, Vol. 21, Society for
Information Display, pp. 392-394 (1990)

S.L. Lien, M. Schantz, V. Pratt, "Adaptive
Forward Differencing for Rendering Curves
and Surfaces", Proceedings SIGGRAPH'87,
ACM Computer Graphics, Vol. 21, No. 4,
pp. 111-118 (1987)

S.L. Lien, M. Schantz, R. Rocchetti,
"Rendering Cubic Curves and Surfaces with
Integer Adaptive Forward Differencing",
Proceedings SIGGRAPH'89, ACM Computer
Graphics, Vol. 23, No. 3, pp. 157-166
(1989)

W.M. Newman, R.F. Sproull, Principles of
Interactive Graphics, McGraw-Hill. (1979)

