
MORG91a 

AN ASIC FOR OUTLINE CHARACTER GENERATION 
Marc Morgan, Roger D. Hersch 

Swiss Federal Institute of Technology, Lausanne, Switzerland 

Abstract 

This paper presents the design and implementation of an 
ASIC for real-time rasterization of characters described by their 
outline based on vertical scan-conversion and flag fill algorithms. 
The chip is a coprocessor which rasterizes outline fonts given 
by Bezier splines and straight line segments. It generates high 
quality fonts 30 times faster than the equivalent assembly 
language code on a 16 MHz M68020. 

Introduction 

For several years, engineers and typographers have been 
working on a new generation of fonts. The old bitmap 
description of a character is giving way to characters defined 
by their outlines. 

Research undertaken at the Peripheral Systems Laboratory 
(LSP) at the Swiss Federal Institute of Technology (EPFL) has 
led to an algorithm for the rasterization and filling of outline 
characters. This algorithm is the base of an intelligent font 
rasterization program [Hersch89]. The fonts are given by 
outlines described by cubic Bezier splines and by line segments. 
The quality of the resulting black and white bitmaps depends on 
two important aspects of the program: the sub-pixel precision 
used during the rasterization and an appropriate control of the 
phase of the contour relative to the pixel grid. 
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Fig. 1 Automatic rasterization of outline fonts 
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Motivation 

The generation of a whole font (ASCII codes 32 to 126) 
by the intelligent character rasterization program [Hersch90] at a 
resolution of 300 dpi has been evaluated on a 16MHz M68020 
microprocessor. Figure 2 shows that grid outline adaptation 
(phase control) is independent of the size of the characters. 
However, the scan-conversion and filling times become dominant 
for large characters. Characters are generated at an average rate 
of 50 characters per second at 600 dpi. This is clearly not 
sufficient for a high performance raster image processor. Since 
time-consuming parts of the program ,are already written in 
assembly language, further performance improvements can be 
obtained by designing an application specific IC (ASIC). 

Given the complexity of intelligent character rasterization, it 
is not possible to implement all its functionalities into one VLS I 
chip. It was chosen to assign the ASIC the task of the highly 
repetitive part of the algorithm leaving the more complex work 
to the main processor. In other words, only scan-conversion 
and filling were integrated on the ASIC. Phase control is much 
more complex and requires the programming capabilities of a 
general-purpose processing unit. 

This ASIC is mainly intended for high-resolution printers 
(600 dpi). At this resolution, only simplified phase control 
(hinting) is required. This ASIC can also be used for 
average-resolution printers (300 dpi) where good quality results 
can only be achieved with complete phase control. 
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Fig. 2 Average generation time of one character by 
software. 

The Environment 

The ASIC has been designed as a simple coprocessor, It 
has a circular input buffer to which the main processor writes 
the character outline data. Once the coprocessor is ready to 
return the bitmap character, it sends an interrupt signal to the 
main processor which can then request the bitmap words 
sequentially from the ASIC. Synchronisation between the 



processor and the ASIC is achieved by standard interrupt 
request and handshake signals (CircularBufferEmpty, Full, and 
HalfFull). 

The first prototype of the circuit has been designed to 
generate raster characters up to 64 pixels high and wide. This 
prototype was realised to demonstrate the feasibility of such a 
circuit. The final version of this circuit will generate larger 
characters (256 x 256 pixels). 

The principal task of the ASIC is to scan-convert the 
outline of the character which it will then fill before sending 
the resulting bitmap back to the main processor. 

The Flag Fill Algorithm 

The flag fill algorithm used by the ASIC is one 
[Ackland81] which was improved for the purpose of accurate 
shape filling [Hersch90]. The basics of the algorithm will be 
explained briefly here. 

A pixel is considered to be inside a shape if more than 
50'l. of its surface lies inside the shape. Since characters have 
relatively flat curves, the section of the outline which crosses a 
pixel can be assumed to be a line segment. Therefore, a pixel 
is considered to be an interior pixel if its center is inside the 
shape. 

The bitmap which will be generated by the flag fill 
algorithm can be considered as a set of black horizontal spans 
for the inside of the shape and white horizontal spans for the 
outside. The first pixel of each span is marked by a flag. Once 
all the flags corresponding to an outline have been set, the flag 
fill algorithm scans the flag image memory from left to right. 
Each flag encountered indicates the start of a new horizontal 
interior or exterior span. 
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Fig. 3 Flag fill algorithm applied to a character 

The Vertical Scan-Conversion Algorithm 

The Bezier splines and line segments which make up an 
outline have to be converted into flags for the filling algorithm. 
Two strategies can be adopted to scan-convert a Bezier spline: 
recursive subdivision and forward differencing [Newman79]. Both 
strategies have been developed in order to reduce the number 
of required operations without reducing the precision of the scan 
conversion. 

Ordinary forward differencing has one main drawback: the 
incremental step of the parameter used to describe the curve is 
a constant. Adaptive forward differencing (AFD) corrects this 
problem [Lien87]. AFD ensures that most of the points which 
are generated will be used to trace the curve. Integer AFD 
further improves the algorithm by using fixed point arithmetic 
instead of floating point arithmetic [Lien89] [Gonczarowski89]. 
The resulting algorithm is yet faster. 

Recursive subdivision has also been optimized [Hersch90]. 
It presents several advantages over forward differencing. First, 
computation errors are not amplified as they are in AFD. In 
order to get the same result, recursive subdivision requires a 
significantly smaller number of bits of precision than AFD. 
Second, recursive subdivision can be carried out with the 
control points of a Bezier curve which provide easy monitoring 
of subdivision depth. 

Scan-conversion by recursive subdivision 

Recursive subdivision of Bezier splines is based on 
DeCasteljou's theorem. As figure 4 shows, a Bezier spline 

P(u) = V0 ·(1-u)3 + V1·3u(1-u)2 + V2·3u2 (1-u) + V3 ·u3 

with u E [0,1] 

represented by its control polygon (V 0 , v1. V 2 • V 3 l can be 
subdivided into two smaller Bezier splines, V0 ,S1 .S2 .S3 ) and 
(S3 ,T1 ,T2 ,V3 ). The smaller splines will have their control 
polygons closer to the spline. Therefore, if a spline is 
subdivided enough times, the resulting control polygons become 
a good approximation to the spline. One of the delicate points 
of the algorithm is the criterion for stopping subdivision. It is 
based on the convex hull property of Bezier curves: a Bezier 
curve always lies within the convex hull formed by its control 
polygon. 
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Fig. 4 DeCasteliou 's subdivision of Bezier splines 

Repeated subdivision of Bezier splines can result in three 
types of Bezier splines (cf figure 5): 

splines which do not intersect any scan line, and which 
can be discarded since they won't generate any flag, 

- splines which do not intersect any vertical grid lines. and 
can be considered as vertical line segments. 

splines which still intersect both a scan line and a vertical 
grid line. 

The third case poses the problem of determining when to 
stop subdividing a spline and how to choose the position of the 
corresponding flag from the point at which the subdivision .left 
off. The choice of stopping a subdivision has to take 1nto 
account the maximum tolerable error and the precision used in 
the computations. The criterion we have chosen is to have the 
spline· s bounding box smaller than the largest tolerable fractional 
error, MinFracLength, along both the x and y axes. When this 
criterion is met, the small spline is replaced by the three line 
segments which make up its control polygon. Experience shows 
that the choice of 1 /8 pixel for MinFracLength is a good 
trade-off. 

The ASIC implementation of the subdivision-stopping criteria 
is slightly simplified by an additional hypothesis: all the splines 
which make up an outline are monotonic along both x and y. 
This hypothesis implies that the font production software will 
have to subdivide any non-monotonic splines. 
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Fig. 5 The three possible final outcomes of a Btizier 
subdivision 

Comparison of recursive subdivision and forward differencing 

The same criteria which we developed for recursive 
subdivision could be applied to adaptive forward differencing 
(AFD) [lien89]. This however would require precomputing the 
next point on the curve before deciding whether the step size 
is correct or needs adjusting. This corresponds to an extra 
addition for each adjust up or down operation. Even so, when 
MinFracLength has been reached, the curve would have to be 
replaced by a line segment, which is less accurate than the 
control polygon given by recursive subdivision. 

Recursive subdivision requires 3 adds and 3 shifts per 
sub-spline (figure 4). Integer AFD requires 3 adds, 2 shifts 
and an increment per step and per adjust up or adjust down 
operation. Both algorithms therefore require approximately the 
same number of arithmetic operations. However, integer AFD 
requires dynamic shift operations which are avoided by recursive 
subdivision. This tends to make AFD slower than subdivision. 
On the other hand, the recursive aspect of subdivision has to 
be implemented with a stack. Stack access will slow down 
subdivision. This problem can be partially eliminated by 
accessing the stack in parallel with other operations. This is 
true for the ASIC presented here which writes into the stack 
at the same time as it computes other control points or as it 
tests the locations of spline control points. 

Another important difference betV.:een the two methods 
comes from the number of bits which are worked on. For 
example, for a maximum curve length of 64 pixels and with 
MinFracLength = 1 /8 pixel, recursive subdivision requires 
14 -bit operators. Ordinary forward differencing would require 35 
bits to get the same precision [Lien89] while AFD would need 
20 bits. AFD therefore would work on 43% more bits than 
recursive subdivision. Having more bits slows down arithmetic 
operations and requires more place on the integrated circuit. 

The Architecture 

The ASIC has been designed to optimise the 
scan-conversion of Bezier splines. Line segments are processed 
by the same subdivision hardware as the splines. 

The last step in the processing of a character consists of 
returning the filled bitmap to the main processor. The ASIC 
reads the flag image memory word by word and fills the outline 
on the fly. At the same time, it clears the flag image memory 
for the next character. 

The architecture of the ASIC is fairly simple (figure 6). It 
can be decomposed into the following blocks: 

- an input interface, 

a circular input buffer to store incoming bytes until they 
can be sent to the subdividers, 

- two nearly identical subdividers for the X and Y 
coordinates, 

- a stack to store intermediate results, 

the sequencer which is based on a small ROM, 

a RAM for the flag image memory, 

- the flag set/fill unit, 

- an output interface. 
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Fig. 6 General architecture of the ASIC 

The Circular Input Buffer 

The circular input buffer is used to store each curve sent 
by the processor, It can store up to 512 words which 
corresponds, for instance, to 64 Bezier splines; each spline is 
described by 4 control points requiring two 14-bit coordinates 
each. 

The Subdivision Units 

The architecture of the subdivision units has been carefully 
optimized for Bezier subdivision. The data processing unit 
(figure 7) is nearly identical for the x and y coordinates. It is 
made up of 1 registers, one adder I subtracter, one adder, four 
busses, and a condition code tester. 

Fig. 7 Architecture of a data processing unit 
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The lour registers lRO, R1, R2, R3) in the center of a 
DPU contain the coordinates of the four control points of a 
Bezier spline. The results of the average operations are stored 
in the two outer registers (AO, A 1 ) . The seventh register (PL) 
latches the last value pushed onto the stack as a temporary 
buffer. An average operation is generated by an adder followed 
by a hard wired shift right. The subtracter is used to test a 
curve to determine whether to keep subdividing it or not. 

Each register contains 14 bits: 6 integer bits and 8 
fractional bits. No extra sign or overflow bits are required since 
averaging is the only operation performed. The 6 integer bits 
allow for characters up to 64 pixels high. The 8 fractional bits 
are sufficient in order to keep the required precision. 

The bus configuration has been designed to enable parallel 
access to both adders and to limit the capacity (pF) of each 
bus. The busses also give access to the stack and the circular 
input buffer. The stack is used to save curve parts from one 
level of subdivision to the next. 

The Stack 

The stack contains the sequence of x and y coordinates of 
points and the type of curve they belong to (Bezier spline or 
line segment). The height of the stack is given by the range of 
accepted coordinates (0.00 to H"3F.FF in our case) and the 
chosen value for MinFracLength (1/8). In our case, a 
maximum of log2 (H"40) + llog2 (1/8ll = 9 levels of recursive 
subdivisions can occur. Since each subdivision requires that 4 
control points (4 • 2 coordinates) of a new spline be stored 
on the stack, the stack has to contain at least 9 • 4 • 2 = 
72 words. Note that no new curve is processed before the last 
one has been completely scan-converted; this keeps memory 
requirements for the stack to a strict minimum. 

The Results 

Simulation work has been completed, although the circuit 
has not yet been manufactured. Character generation rate is 
around 2500 characters per second for fonts with 32-pixel high 
capitals. This character generation speed includes the time 
required to load the character outline into the circuit and to 
fetch the bitmap from it. 

The choice of the technology used for the ASIC was 
based on ease of conception and former experience. The 
solution adopted for the first prototype was VTI' s 1 . 6 urn 
CMOS (CMN16) standard cell technology. The size of the 
ASIC will be under 20 mm2

. 

Conclusions 

This paper has presented a hard-wired algorithm for fast 
rasterization of characters described by their outlines. A 
comparison between recursive subdivision and forward 
differencing shows that recursive subdivision is easier to 
implement in an application specific integrated circuit. The 
proposed architecture guarantees the correct rasterization of 
outline characters due to precise criteria for stopping recursive 
subdivision. 

A simple architecture is proposed for the implementation of 
the rasterization algorithm. Simulations show that the ASIC 
generates an average of 2500 characters/second. This number. 
however, depends on the character size and the font being 
rasterized. This ASIC can be used as the core of a high 
performance raster image processor. 
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