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Abstract. Numerous problems in electronic imaging systems in-
volve the need to interpolate from irregularly spaced data. One ex-
ample is the calibration of color input/output devices with respect to
a common intermediate objective color space, such as XYZ or
L* a* b*. In the present report we survey some of the most impor-
tant methods of scattered data interpolation in two-dimensional and
in three-dimensional spaces. We review both single-valued cases,
where the underlying function has the form f.R?—R or fFR3—R, and
multivalued cases, where the underlying function is f:R>—R? or
f:R3—R3. The main methods we review include linear triangular (or
tetrahedral) interpolation, cubic triangular (Clough—Tocher) interpo-
lation, triangle based blending interpolation, inverse distance
weighted methods, radial basis function methods, and natural neigh-
bor interpolation methods. We also review one method of scattered
data fitting, as an illustration to the basic differences between scat-
tered data interpolation and scattered data fitting. © 2002 SPIE and
IS&T. [DOI: 10.1117/1.1455013]

1 Introduction

These examples concern the interpolation of single-
valued data, where the underlying function has the form
f:R>—R or f:R*—R. But other cases may require the in-
terpolation of multivalued data, where the underlying func-
tion is of the formf:R2—R? or f:R3—R3. As an illustra-
tion to the case off:R?>—R?, consider the geometric
correction of aerial or satellite views by “landmark based
morphing.”? Airborne and satellite images are often dis-
torted because of the earth curvature and the oblique view-
ing angles. In this case we are given an original, distorted
image that includes a few identifiable ground control points
(pillars, road junctions, etg. For each of these scattered
control points we know both the distortéxly) coordinates
in the image, and the realu(v) coordinates on a geo-
graphic map. Our task is, therefore, to interpolate between
these few known points in order to obtain the underlying
geometric correction transformatiérii?— R?, that will al-
low us later to obtain the rectified image by resampling.
Similar cases occur also in medical imaging, where it is
required to match images obtained from a patient at differ-

The problem of scattered data interpolation consists of con-ent times or with different imaging techniques, or to com-
structing a continuous function of two, three, or more inde- pare them with a standard anatomical data set. In all of
pendent variables that interpolates data values which arghese bivariate two-valued casesR?— R?) we actually

only known at some scattered points in the two- need to solve two instances of the bivariate single-valued

dimensional (2D) plane [or, respectively, in the three-
dimensional3D) or ND spacé. The need for interpolation
from irregularly spaced data occurs in many different fields,

interpolation problem f: R2—R), one for each of the two
destination coordinates.
Another example, in the field of electronic color repro-

such as medical imaging, meteorological or geological duction systems, illustrates the casefdt>*— R3. This ex-
modeling, cartography, and computer aided geometric de-ample concerns the calibration of color input/output de-
sign. For example, in meteorology weather measurementyices (such as a scanner and a printaith respect to a
are available from irregularly located observation stations; common intermediate objective color sp@sach as<YZor

and in geostatistics and geology aquifer properties andL*a*b*). In such cases the input device calibration is of-
layer structures are studied from data that is only availableten based on establishing a mapping between the 3D
at a few given locations. The data at these few locationsdevice-dependerRGB color space of the input device and
must be interpolated to the nodes of an underlying grid in the chosen 3D objective color spa@ay, theXYZspace.”
order to allow the use of 2D or 3D scientific visualization This is done by using color patches from a standard color

tools to illustrate the variation in the data. Interpolation is catalog, such as the Pantone catalagich color patch is
also required for the construction of isolines or contour fed to the input device to obtain its deviB&Bvalues, and

maps based on the available data.
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then measured by a spectrophotometer to obtairK¥&
values. This gives us a set of several hundred points that are
scattered within the 3D inplRGB space, to each of which
there are associated three scalar values—the coordinates of
the same patch in th¥YZ color space. In this case the
value at each point of the scattered point set is itself a 3D
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quantity, so that we actually need to solve three instances ofets, extension to three or more dimensions, the need for a

the single-valued problem—one for each of K¥Zcom- preprocessing stefriangulation, Voronoi tesselation, etc.

ponents. simplicity of use, particular artifacts known, and various
In the present survey we will mainly concentrate on the method-family specific criteria.

basic problem of scattered data interpolation for single- Notations: Except where indicated otherwise, the fol-

valued, scalar quantitigsuch as the geographic elevation lowing notations will be adopted throughout this review:

over irregularly spaced pointx(y;) in the plane, or the =~ We assume that we are given a setroflistinct points

temperature at scattered points ,{y; ,z;) in spacé. How- P.,...,P, that are scattered in animensional Euclidean
ever, if an interesting vector or matrix expression is avail- Space(usuallyN=2 or 3. Each pointP; is located at the
able for the multivalued case, we will also mention it. vector positionx; , and has a numerical valug. Our task

The problem of scattered data interpolation in two or (in the single-valued cagds to find good interpolation
more independent variables has been addressed in manfunctionsf(x) such thatz;=f(x;) for all i=1,...n.
papers and book chapters that are dispersed in various sci-
entific d|§C|pI|nes. And |ndeeq, numerous methods with Triangulation (or Tetrahedrization ) Based
many variants have been devised to solve this profiiein. Methods
Our aim in the present paper is to briefly survey those . . . .
methods which are most relevant for the needs of electronic! N€ interpolation methods belonging to this category oper-
imaging systems, and to provide useful references with &te in two steps: First, the scattered point set is triangulated
more detailed accounts on these methods, for the benefit ofi" t_hetz 2D fa}[_s)aor ter:rahed_r izedin dthe'tip cas}eharthl then,
the interested readers. It should be noted that the concept r][ u;leépo a_:%n SC en:r(]a :js use thWI f|n eacl r'aT@E| A
involved in scattered data interpolation are largely inspired etrahedron ese methods are hereiore always local.
from the fundamental concepts in the interpolation of regu- good source of information on triangulation, tetrahedriza-

larly spaced data. Readers who desire a short introductior}ion and their derived scattered data interpolation methods

on classical interpolation methods in this elementary case’” Chap. 20 in Ref. 10.

may consult, for example, Chap. 11 in Ref. 10 or Refs. ) ) o
11-13. 2.1 The Triangulation (or Tetrahedrization) of a

The different approaches to the interpolation of scattered Scattered Point Set
data can be classified into global methods, in which eachLet us start first with the 2D case. Clearly, a given point set
interpolated value is influenced by all of the data, and local in the plane has many different triangulations. It may be
methods, in which the interpolated value is only influenced therefore desirable to find among these triangulations an
by the values at “nearby” points from the scattered point optimal one which avoids as much as possible poorly
set. Global methods are practically limited to small data shaped trianglessuch as thin and elongated triangles; see
sets due to the computational efforts they require; more-Ref. 10, p. 433 and Fig. 20.19 therPNVe say “as much as
over, an addition or deletion of a data point, or a correction possible” because this is not always possible, especially in
in any of the coordinates of a data point, will modify the the vicinity of the external boundaries of the given point set
interpolated values throughout the entire domain of defini- (Ref. 8, p. 13%.] One of the “nicer” candidates is the De-
tion. Local methods, on the other hand, are capable of treatlaunay triangulation, i.e., the triangulation obtained by con-
ing much larger data sets, and they are less sensitive to dataecting all the neighboring points in the Voronoi diagram of
modifications, but they may become quite complex, too, if the given point sefRef. 14, pp. 186-187; Ref. 15, p. 8

a smooth result is required. [Note that the Delaunay triangulation is not necessarily
The methods surveyed in the present paper will be clas-unique. For example, in the case of four points forming a
sified into the following categories: square either diagonal produces a valid Delaunay triangu-

lation. Such points are always cocircul@ef. 15, p. 28]

1. triangulation (or tetrahedrization based methods Intuitively, we may say that a triangulation is “nice” if it

(Sec. 2; consists of triangles that are close to being equilateral.
2. inverse distance weighted methd@c. 3; Thereforg, we may compare diﬁgrgnt triangulations of the
. . . ] given point set by finding the minimal angle of each tri-

3. radial basis function methodSec. 4; and angle: the triangulation that has the largest minimal angle

4. natural neighbor methodSec. 5. would be considered the better orfthis is called the

) ) ) ) “maxmin” angle criterion. And it turns out that of all pos-

Finally, in Sec. 6, we will review one method of scat- gjple triangulations, the Delaunay triangulation is the one
tered data fitting, the regression method, as an illustrationthat is guaranteed to produce the largest minimal angle
to the basic difference between scattered data interpolationRef. 14, pp. 188—189; Ref. 15, p. 2Note, however, that
methods and scattered data fitting methods: While interpo-it is not guaranteed that a Delaunay triangulation contains
lation schemes construct functions that pass through theno small angles. A simple example of a Delaunay triangu-
given data points, data fitting schemes produce functionsjation that necessarily contains very small angles is shown
that maintain the nature and the trends of the input data, buin (Ref. 14, p. 291] Furthermore, the Delaunay triangula-
only pass near the data points. The main criteria used fortion is the only one having the property that the circle cir-
comparing the different methods include smoothn@ls  cumscribing any of its triangles contains no other point of
rivative continuity: C°, C'), possibility of extrapolation, the scattered data set, and hence, no other tridfRge 14,
local versus global technique, accuracy and fitting ability, p. 188; Ref. 10, pp. 444—446There exist several different
performance(efficiency, speed suitability for large point  techniques for constructing a Delaunay triangulation of a
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given scattered point set in the plane. An overview on thesevariate linear interpolatidhis applied within each triangle.
algorithms is given in Ref. 10, pp. 448—-453. Let points P,, P,, and P3, located atx;=(X;,Y1), Xo

A similar situation exists also in the 3D case: Since there = (x,,y,) andxz=(x3,y3), be the three vertices of any of
may be many different tetrahedrizations for any scatteredthe underlying triangles in they plane, and let their values
point set in space, it may be desirable to find among thempe z, | z,, andz;. Then, the valug at any arbitrary point
an optimal tetrahedrization that avoids as much as possible |ocated atx= (x,y) within this triangle can be found as
poorly shaped tetrahed(aee Ref. 10, p. 489 and Fig. 20.62 fo|lows.
therg. Here, too, the Delaunay tetrahedrization has some  gyppose that the plane which is defined by the three

particularlly n_ice properties. For example_z, only a Delaunay sints X1,Y1,21), (X2,Y2,25), and Ks,Ys,23) is given by
tetrahedrization ensures that the enclosing sphere of any oP

its tetrahedra contains no other point of the scattered data by 1
set(and hence, no other tetrahegtaIn practice this im- Z=axsTbyTc. (1)
plies that most tetrahedra are neither “too flat” nor “too ) )
long,” so that the volume on which the tetrahedral interpo- ~ BY inserting thex,y,zvalues of each of the three known
lation will be performed has a reasonable shape. In the 3DPOINtS INto this equation we obtain a linear system of equa-
case, too, there exist several techniques for constructing thdlons
Delaunay tetrahedrization of a given scattered point set; an
overview on these algorithms is given in Ref. 10, pp. 490— z;=ax; +by; +c,
491. Optimal tetrahedrizations that are based on other op-
timization criteria than the Delaunay method are briefly re- z,—ax,+ by, +c,
viewed in Ref. 17, pp. 12-13.

Once the given scattered point set has been triangulated
(or tetrahedrized we still need a procedure that finds in zz=axgtbys+c.
which triangle(or tetrahedropan arbitrary new poinP is o
located, in order to be able to find its value by interpolation ~ The coefficientsa,b,c of the plane of Eq.(1) can be
within that triangle(or tetrahedron This can be done by found, therefore, by solving this system of equations. Once
the following search procedurelescribed here for the 3D  these coefficients are known, Ed.) gives us the interpo-

case: lated valuez for any pointP located at= (x,y) within this
triangle.
* Let G; be a point belonging to a known tetrahedin Alternatively, the value at any arbitrary poinP within

« P belongs to the same tetrahedron if there is no inter- the triangle can be also found Imarycentric interpolation

section between segme@tP and any surface of. In Let P, P,, and P; be the three vertices of the triangle,

this case we have found the tetrahedron to whitch 10cated atx,=(x1,y1), Xz=(Xz,¥2) and x3g=(X3,y3).
belongs. Then, the locatiox=(x,y) of any pointP in the x,y plane

can be uniquely expressed as a weighted average of the

e If an intersection with one of the tetrahedron’s sur- locations of these three vertices

faces exists, a new poil@; . ; is chosen in the tetra-
hedron adjacent td@, which shares withr its inter-
sected surface. The procedure is repeated until theX™ 81X11 @2Xz+a3Xs, 2)
correct tetrahedron is found.
wherea; +a,+a;=1. (Note that if the poinf is situated
Another possible procedure is mentioned in Ref. 18, p. inside the triangle, then we also haag>0,i=1,2,3) The
56. _ _ _ weightsa,, a,, a3 are called thebarycentric coordinates
Having described how to find the triangler tetrahe-  of point P (Ref. 15, pp. 23—26 [This term is due to the
dron) in which is located an arbitrary poifit, we can pro-  physical interpretation of the poift as the center of grav-
ceed now to the different interpolation methods inside this ity of the triangleP,P,P5 when weightsa, are attached to
triangle (tetrahedron its verticesP; (barys means in Greek “heavy,” hence, the
term barycenter: center of gravijty
Now, for any linear(or affine functiong of x=(x,y) we

2.2 Linear Triangular (or Tetrahedral) Interpolation clearly have from Eq(2):

Let us start with the 2D case, where the scattered point
(xi,y;) are located in they plane; their values can be
visualized as altitudeg; over this plane. Therefore, the
triangulation of the scattered points in thg plane induces

a piecewise triangular surface over the plane, whose node&We prefer to avoid the popular terms “bilinear interpolation” and “tri-
' linear interpolation” because of their ambiguity. In algebra, a bilinear

are the pointsx; ,y; ,z;). This is a continuous surface made  function is a function that is linear in each of its two variables separately,
up of flat triangular pieces that are joined along edges such as the functiofi(x,y) = xy. This function is linear ir for any fixed
(which is an obvious generalization of broken line func- yﬁ), E}nd linear iny for anly fixe(éxo; buht obviéJulsly, the t?ulrcl;(adce dc;fined by

- - ; ; ; this function isnot a plane, but a hyperbolic paraboloidee, for ex-
tI(_)nS In one (_jlmensm)m Such a Surf_ace is often called a ample, the section on bilinear interpolation in Ref. 15, pp. 231%233
triangulated irregular network. This surface represents, Therefore, we call the 2D linear function that represents a plane,

therefore, a piecewise interpolation scheme in which a bi- f(x,y)=ax+by, a “bivariate linear function.”

S9(X) =a,9(x1) +8,9(Xz) + a3g(X3)
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Fig. 1 Triangle P,P,P5 and the interpolation point P inside it. By
connecting point P to each of the vertices P,, P,, and P; we obtain
a subdivision of the triangle into three subtriangles, PP,P3, P,PP3
and P,P,P. The distances h; and d; are shown for i=1.

and in particular, since our interpolating function

=f(x,y) is indeed linear, we obtain that the valnat the

point P, i.e., at the locationx=(x,y), is simply the
weighted average of the values at the locations of the
verticesP;, x;=(X;,Y;):

3

with the sameweights a;,a,,a; as in Eq.(2), and a;
+a,+az=1. Since the locations of the poings P, P,
P are known the weighta,,a,,a3 can be found by solv-
ing the linear system of equations defined by E2).for
a,, a,, andas:

= a121+ a222+ a323

a1X1+ a2X2+ aszX3=X,
aiyitazy,tagys=y,
a1+ a2+ a3= 1.

The solution of these equations is

a, X1 Xz Xg\ T/x
a|=|YL Y2 VY3 y (4)
a3 1 1 1 1
or, more explicitly, using the Cramer rule
a1=D1/D, a2=D2/D, a3:D3/D, (5)
where
X1 X Xz X X, X
D=|Y1 Y2 Y3, Di=|Y VY2 Vs,
1 1 1 1 1 1
X1 X3 X1 X X
Do=|Y1 Y V3|, Ds3=|Y1 Y2 Y|.
1 1 1 1 1 1

Note that the weighta; can be interpreted geometrically as
area ratiosa;=A; /A, whereA is the area of the triangle

the interpolation poinP is substituted for the vertelR; (see
Fig. 1): A=areaP,P,P3), A;=areaPP,P3), A,
=areaP,PP3), A;=areaf,P,P) (Ref. 15, p. 24. More-
over, since both of the triangles in each ratiohave the
same basisa; equals also the ratio between the heights of
these triangles. In other words, hf is the distance of ver-
tex P; from the opposite triangle edge adis the distance

of the interpolation pointP from that edge, thena,

= di /h, .

It is important to note that in spite of the form difference
between the results obtained by Ef)) and those obtained
by barycentric coordinatelEgs. (3) and (5)], in fact, the
linear interpolation values obtained by both methods are
identical: since the bivariate linear polynomial passing
through three distinct given points in spaceaiisque

Let us proceed now to the 3D case. Here, the scattered
points (;,Y;,z) are located in the 3D space, and their
values can no longer be visualized along an additional di-
mension. A useful intuition for illustrating this case could
be the temperaturé measured at each of the scattered
points ;,Y;,z;) in the 3D space. In this case the scattered
points ;,y;,z) are first tetrahedrized, and then a linear
interpolation is applied within each tetrahedron.

Given the four vertice®,,P,,P3,P, of any such tetra-
hedron, namely: the locationg;(y; ,z) of its four vertices
and their valued;, the valuet at any arbitrary point?
located atx=(X,y,z) within this tetrahedron can be found
by writing the trivariate linear interpolation polynomial

t=ax+by+cz+d (6)

and finding its coefficienta,b,c,dby solving the linear sys-
tem of equations:

ty=ax;+by;+cz +d,
t,=ax,+by,+cz+d,
ty=axgt+bys+czz+d,
ty=ax,+hby,+cz,+d.

Alternatively, the valuet at any pointP located atx
=(X,Y,2) within the tetrahedron can be found bgrycen-
tric interpolation as a weighted average of the valuges
t= a1t1+ a2t2+ a.3t3+ a4t4, (7)
where the weights,, a,, as, a, are thebarycentric co-
ordinates of the point P in the tetrahedronP,P,P3P,
whose vertice locations arg, . .. ,X,, hamely

8

X= alxl + a2X2 + a.3X3 + a4X4

with a;+a,+az+a,=1. Like in the 2D case, it can be

P,P,P5 andA, is the area of the subtriangle obtained when shown thata,, a,, as, a, are given by

160/ Journal of Electronic Imaging / April 2002 / Vol. 11(2)



P,

Scattered data interpolation methods . . .

Fig. 2 Tetrahedron P,P,P;P, and the interpolation point P inside it.
By connecting point P to each of the vertices P,, P,, P3, and P,
we obtain a subdivision of the tetrahedron into four subtetrahedra,
PP,P;P,, P,PP3;P,, P,P,PP,, and P,P,P;P. The distances h;
and d, are shown for i=1.

X2
Y2 Y3
Z; Z3

1 1

X3

or, more explicitly, by

a1=D1/D,

whereD, D,, D,, D3, andD, are straightforward gener-

a2:D2/D,

Xg\ 7t

X

Y4 y

Z, z

l 1
a3:D3/D,

a4: D4/D,

alizations of their 2D counterparts given in E§).

Note that the weighta; can be interpreted geometrically
as volume ratiosa;=V;/V, where V is the volume
of the tetrahedrorP,P,P3;P, and V; is the volume of

©)

(10

ratio between the heights of these tetrahedra. In other
words, if h; is the distance of verteR; from the opposite
tetrahedron face and, is the distance of the interpolation
point P from that face, them;=d; /h; .

Once again, in spite of the form difference between the
results obtained by Ed6) and those obtained by barycen-
tric coordinate§Eqgs.(7) and(10)], the linear interpolation
is unique, and the interpolated values obtained by the dif-
ferent formulas are identical.

2.3 Linear Multivalued Triangular (or Tetrahedral)
Interpolation

Equations(6) or (7) represent asingle-valuedtetrahedral
interpolation. For a three-valued case such asREB to
XYZconversion, where to each point in the scattered point
set within theRGB space there correspond three values in
the XYZspace, one may use E) three times—once for
each of theXYZ coordinates(using each time the same
weightsa,).

However, the linear three-valued tetrahedral interpola-
tion can be performed also in a different way, which is not
based on barycentric coordinates, and which can be ex-
pressed in an elegant and compact matrix form. Let us first
present this method in the 2D case, i.e., for the interpolation
of a 2D mappingf:R?>—R? from the x,y plane into the
destinationu, v plane.

Suppose that the poif for which we want to estimate
the value of the mapping is situatedxat (x,y) inside the
triangle formed by the point8,, P,, andP3 of our known
data set, that are located, respectivelyxat (X1,Y1), X5
=(X,,Y2), andxz=(X3,Y3) (see Fig. 3; note that through-
out this discussion we do not distinguish between pdits
and the corresponding vectoxs that emanate from the
origin and point toP;). Let us express point in terms of
the affine coordinate system that is generated by the vectors
Xo,—X; andxz—Xq , the vectors which define the two triangle

the subtetrahedron obtained when the interpolationedges emanating from ponx& We have, thereforésee
point P is substituted for the vertelP; (see Fig. 2

V: VOIUme(P1P2P3P4) y

=volume(P,P,PsP). Moreover, since both of the tetrahe-
dra in each rati@; have the same basig, equals also the

V1=V0|ume(PP2P3P4),
=volumeP,PP;P,), Vz=volumeP,P,PP,), and V,

Va

X-X)a,

XX

Fig. 3):
X=Xy +(Xo—Xq)as+ (X3—Xq) a3, (11

where a,,a; are the coordinates of point in this new

Fig. 3 Triangle P,P,P; in the x,y plane is mapped by the 2D transformation f:R?>—R? into triangle
Q,0Q,Q3 in the u, v plane. The point P is mapped by linear triangular interpolation into the destination
point Q. The coordinates of points P, P,, Pz and P are X, =(X1,Y1), X2=(X2,¥>), X3=(X3,¥3), and
x=(x,y), and the coordinates of points Q;, Q,, Q3 and Q are u;=(uq,v;), U,=(Uy,V,), U3
=(usz,v3), and u=(u,v).
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Fig. 4 Tetrahedron P,P,P;P, in the x,y,z space is mapped by the 3D transformation f:R®—R? into
tetrahedron Q;Q,Q3Q, in the u,v,w space. The point P is mapped by linear tetrahedral interpolation
into the destination point Q The coordinates of points P,, P,, P3, P,, and P are x;=(X1,Y1,21),
Xo=(X2,Y2,2Z2), X3=(X3,¥3,23), Xa=(X4,Y¥4,24), and x=(x,y,Z), and the coordinates of points Q,
Q2, Q3, Q4, and Q are uy=(uy, vy, W), Up=(Uz,V2,W;), Ug=(Us, V3, Ws3), Us=(Us,V4,W,), and u

=(u,v,w).

coordinate systenfnote that G<a,,a;<1 anda,+az=<1, This can be reformulated as
since poinix is situated inside the triangleln other words:

X X1 Xo—Xq X3— X1 u Uq Up—u; Uz—U; ao

= o+ ds = + .

y Y1 Yo Y1 Y3 VY1 v U1 Uo—Uy U3~V \83

or
Inserting here the values af, andas from Eqg.(12) we

X=X1+ (Xo—Xg)ax+ (Xg—X1)as, obtain, therefore

y=Yyi1t+(y2—Y1a+(ys—Yyias.

u Uq Up—U; Uz~ U
This can be reformulated as vl = vy + S
_ _ -1
X\ [Xg (Xz—xl X3=X1\[a, X(Xz X1 X3 Xl) X=X | 14
y Y1 Yo—VY1 Ysz—Yi/\@s/’ Yo2—Y1 Y3— Y1 Yy=V1

and hence, we obtain This is the interpolated image of our pointx in the

destinationu, v plane.

a; X_Xl) (12) The 3D case, i.e., the interpolation of a 3D mapping

_(XZ_Xl XS_Xl) -t

az) \y,—y: Y3—Y1 Y—Y1 f:R3*—-R2 from thex,y,zspace into the destinatian v, w
space, is a straightforward generalization of the 2D case,
Let now u;=(uy,v1), U,=(Uy,v,), and us=(usz,v3) where the source and destination triangles are replaced by a
be the known images under the mappih@f points x; source and a destination tetrahedsae Fig. 4 The 3D

=(X1,Y1), X2=(X5,Y2), andxs=(X3,y3) in the destination  tetrahedral linear interpolation is defined, therefore, by the
u, v plane. These points define the image of our triangle in following pair of equations, which are the 3D analogs of
the destination plane. Using linear triangulation interpola- Eds.(11) and(13):

tion, our interpolation pointx=(x,y) is mapped to the
pointu=(u,v), inside the destination triangle, that has the

same relative coordinates,,a; with respect to the new X=X+ (X = Xp)apt (Xg=Xy)ag+ (Xa=X1)as, (19
coordinate system defined by the destination triarigée
Fig. 3. We have, therefore, in analogy with Ed.J1): U= U+ (Uy— Uy) 8+ (Us—Up)ag+ (Ug— Uy, (16
U=U;+(Uz—ug)az+(uz—ur)as (13
wherex; are four points of the given data set that define the
or tetrahedron in the sourogy,zspace in which the interpo-
lation point x is located, andy; are their known images
u=u;+(Uuz—ug)ax+(Uz—Uup)as, under the mapping in the destinatioru, v, w space(see
Fig. 4). The interpolated image= (u,v,w) of the pointx
v=v,+(vy—vq)art(vz—v)as. =(x,Y,2) is given, therefore, by the 3D analog of EG4):
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u Uy Up—U; Ug—U; Ug—Uj 10, p. 444; also, the searc_h algorithm presented at the end
of Sec. 2.1 may not work in nonconvex cases.
UV |=| Uy |+| Vo—U1 U3—U1 Uy U3
W W1 Wa=Wp W3—=W; Wg—W
Xo—X1 Xz—X; Xg—X;\ ! X=Xy 2.4 IT/;e C/?L;gh—Tocher Method: A Cubic Triangular
nterpolation
X[ Y2=Y1 Y3~ Y1 Ya V1 Y=vyi|. (17 P . .

-2, As we have seen earlier, one of the main drawbacks of

Lmh BTh 4T h piecewise linear interpolation schemes is that they are only

C° continuous but noC! continuous(i.e., they are not
smooth across the boundaries between triangles or tetrahe-
dra). C* continuity obviously requires piecewise interpola-
tion schemes based on polynomials of higher order than 1.
For example, in the 2D case the planar triangular surfaces
of the linear interpolation should be replaced by curved

that good triangulation or tetrahedrization routines are iangular surfaces, whose slopes to both sides of each

availablg, and they run quite quickly. However, they suffer Poundary can be <'J‘0|JU5tE>(11I and made equal. .

from a few considerable drawbacks. In order to guarante€" continuity across boundaries,
(1) Although piecewise linear interpolation guarantees a We need to have more information at each of the triangle

continuous result, it introduces derivative discontinuities on Vertices or edges. Typically, we need to know at each point,

the boundaries between adjacent triangles tetrahedra in addition to its location and its value, its gradigne., in

In other words, the resulting piecewise interpolating func- the case of a 2D scattered point set, #heand y-partial

tion is C° continuous but no€* continuous(smooth. This derivatives, or the tangent plane, or equivalently, its normal

may lead to some objectionable, clearly visible artifacts YECtO. However, since the assumption of given gradients

such as a faceted appearariBef. 20, p. 735 is not always realistic, in most cases they will have to be

(2) Since a triangulatiorfor tetrahedrizationonly cov- $:r;]t_imatedb frgm thg given dpoint Vﬁlusgef' 15,| p. 301 |
ers the convex hull of the scattered point set, extrapolation, NS ¢an be done by considering the known values not only
beyond the convex hull—whenever required—is not pos- in ;he vertices of the fmangle in quesuon,_but.also in its
sible with the linear interpolation scherfgee an illustrated neighbors; a few possible methods for estimating the gra-
example in(Ref. 19, pp. 319—320. dients, both local and global methods, are discussed and

(3) Since triangulation(or tetrahedrizationof a scat- comé)agedsm Ref]; %13; Ref. 32 pp. 173-176; ar;}d dRef. 17b’
tered point set is not unique, a different triangulation will PP- 8—9. Some of these gradient estimation methods can be

result in different interpolated values at each intermediate CONSidered as an additional preprocessing step, to be per-
point. formed immediately after the triangulation step.

(4) The use of the Delaunay method guarantees an opti- . >cveral different interpolation methods have been de-
mal triangulation(or tetrahedrizationin the sense that we ViS€d along these linetsee, for example, the minimum

have seen earlier. However, this triangulatigetrahedriza- ~ "9 network method in Ref. 10, p. 475 and Ref. 22, p.
tion) is not necessarily best suited for all applications. In 170; the Powell-Sabin method, Ref. 15, p. 305; and a sur-

some cases it is desired that the triangulation uses a preVeY Of several methods in Ref. 24, pp. 5035/ will

: L ; ; describe here one of the most popular and widely used
defined set of edges; in such particular casesrsstrained :
triangulation maygbe desirabIéFFJZef. 21, pp. 230-234In  Methods, the Clough—Tocher method. This method was
other cases, in order to best suit some known characteristic§"19inally designed for the 2D case, as a tool for the finite
or requirements of the underlying phenomenon, the besttlement methodRef. 25, p. 84; Ref. 26, p. 19but it was
suited triangulatiorfor tetrahedrizationmay depend on the ~ 1&t€r extended also to the geneniD case?’ We will de-
actual values of the data set points, and not only on theirScribe it here for the basic 2D case.
locations. Overviews omlata-dependent triangulationsr ~__ Like piecewise linear interpolation, the Clough—Tocher
data-dependent tetrahedrizationsan be found, respec- Interpolation method, too, is based on a triangulation of the
tively, in Ref. 10, pp. 453—467; Ref. 14, p. 205; or in Ref. given scattered point set. However, it significantly im-
10, pp. 494-502. proves on the linear triangular interpolation methods in that

(5) Finally, as already mentioned, the triangulatian it uses acubic interpolation scheme within each triangle
tetrahedrization of a scattered point set gives teenvex ~ USINg bivariate cubic polynomials. _
hull of the given data set. In cases where the domain is not In order to create a piecewigg'-continuous interpola-
convex (for example, the color gamut of certain devices tion surface, the Clough—Tocher method requires for each
the triangulation may vyield, therefore, triangie@s tetrahe-  triangle the value and the gradiefne., two partial deriva-
dra) that are completely or partially outside the domain, tives) at each of the three vertices, as well as the normal
where interpolations may give meaningless results. In suchderivative at the midpoint of each of the three edges in
cases it may be desired to only triangulate the interior of order to ensure that the normal slope matches across tri-
the data set boundary, and not its full convex hull. Recipesangle boundarie¢Ref. 25, p. 84. The aim is to impose
for doing so are given in Ref. 22, p. 168; Ref. 17, p. 8. these 12 given or estimated constraiftisree per vertex
Note, however, that the important relationship between the+one per edgeon the cubic polynomial defined on our
“maxmin” angle criterion and the Delaunay triangulation triangle. However, this is not possible since a bivariate cu-
(see Sec. 2)lis only guaranteed for the convex cageef. bic polynomial is determined by only ten coefficients

This is the requested interpolated value the destina-
tion space.

This three-valued variant of tetrahedral linear interpola-
tion method can be found in literature in Refs. 18 and 19.

Evaluation: The linear interpolation methods we have
seen earlier are relatively simple to impleméptovided
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P

2

Py

Fig. 5 In the Clough—Tocher method each triangle P, P, P from the
original triangulation is split into three minitriangles.

P(X,y) =a;x3+ a X2y +agxy’+a,y>+ asx? Fig. 6 A cubic Bézier patch over minitriangle P} PP} . The curved
surface of the patch lies beneath the triangulated surface defined by
+agXy+ a7y2+ agX+agy+ajg the control points b;; . The partition of the floor triangle P; P;P; is

the orthogonal projection of the triangulated surface onto the X,y

. . plane. (Adapted from Ref. 26, p. 20, with permission from Elsevier
and can therefore only satisfy ten constraints. Science.)

Nevertheless, it turns out that we can still achieve our
goal by splitting each triangle of the original triangulation
into threeminitrianglesby joining each of the three vertices

_ 3 2 2 3
to the centroidsee Fig. 5, and defining a bivariate cubic P(U,v,W)=D30 1"+ 3Dy " +3D1 5 v+ bo g

polynomial on each of the three minitriangles. This con- +3bg o w?W+ 3bg 1 W2+ bg o w3
struction gives us more degrees of freedom for satisfying . . ) o
our constraints; we will see later how our constraints can +3Dby oUW +3by o "W+ 6by ; uvw  (18)

now be imposed, and what is their geometric significance. . ) )

The key idea behind the Clough—Tocher method is, (€€ Fig. & Note that these cubic polynomials have exactly
therefore, to split each cubic polynomial patch into three ten coefficientsb; ;i bzgo, Pose and bygs are the
cubic polynomial subpatches in order to satisfy the known values at the triangle vertices, and the seven other
Cl-continuity constraints with neighbors. Specifically, a Bezier ordinates are the 2D analogs of the control points of
cubic Beier patchis defined over each minitriangle. a Bezier curve[see the one-dimension@lD) Bezier curve

The triangular Beier patch is a 2D generalization of the Over each of the three triangle boundaries in the figure!
Bezier curve. While the most straightforward 2D generali- Although the control points are not included in our given
zation of the Beier curve consists of rectangular Ber ~ scattered point set, and their valugs , are not knowna
patches(see Chap. 15 in Ref. 15a more useful form for  priori, we will give them values by imposing constraints on
our needs is the generalization of thézBe curve into  the cross-boundary derivatives—just as we do in piecewise
triangular Beier patches(Ref. 28; Ref. 15, Chap. 17  Bezier curves in order to impose a smooth behavior across
These patches are defined over a triangle with known ver-their segment boundaries. As we have seen above, it turns
tices using barycentric coordinates; the generalization toout that the ten coefficients, ; , are not sufficient in order
Bezier tetrahedra in the 3D case is straightforward. The to ensureC! continuity across the three boundaries of the
triangular Beier patch is defined in terms of Bernstein triangle P,P,P5 since they do not give us enough degrees
polynomials (Ref. 15, pp. 44, 283 hence, the name of freedom as we would wish. Hence the idea of splitting
Bernstein—Beier polynomial. Anmth degree Bernstein— each of the original triangles of our triangulation into three
Bezier polynomial defined over a triangle is of the form minitriangles, and defining a cubic Bier patch over each
(Ref. 26, p. 19" of these minitriangles. In order to avoid confusion between
triangles and minitriangles we will use for minitriangles a
notation with primes, e.gRP;P,P3.

P(U:U:W):O<i2k<m —i!j!i<! b j ku'v Wk, Let us see now the geometric interpretation of the con-
i+ tk=m straints that we need to impose in order to ensitecon-

tinuity everywhere on the piecewise interpolating surface.

whereu, v, w are the barycentric coordinates within the AS we can see in Figs. 6—8, the Ber ordinates form
triangle P;P,P5; the coefficientsb; |, are called the W|_th|n_ each m|n|tr|_angle a triangular net, that d|y|d(e_s each
Bezier ordinatesof p. We will be interested here only in Minitriangle edge into three equal segments; this triangular
cubic Bernstein—Beier polynomials (i.e., with m=3), net is known as theontrol net We will call the nine small
whose form is therefore trlgr]g_les that are Qeflned by the control net W|§h|n each
minitriangle microtriangles Note that the microtriangles
are not part of the Baer patch itself, and they only belong
_ to its control net. The curved Beer patch itself is located
ﬂ\rl10te that %ny othler i?]terior fpoint othertthan the c$n£ré)id Wf(;ﬂd also do; beneath the triangulated surface defined by the control net
e centrad s onl chosen or symmety reastor. 20,108 |« (see Fig. § just as a 1D Beier curve lies below ts control
only bivariate, since barycentric coordinates impose thay+w=1. polygon. Now, the constraints we impose in order to ensure
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P

1

Fig. 7 The constraint imposed by the Clough—Tocher method in order to ensure C* continuity: every
two neighboring microtriangles (shown shaded) that lie to both sides of a minitriangle edge must be
coplanar. (Adapted from Ref. 26, p. 20, with permission from Elsevier Science.)

C! continuity can be geometrically interpreted as a 2D gen- tex of a minitriangle are coplanar. This is illustrated in Figs.
eralization of the constraints used in the 1D case to impose/—9, where each shaded pair of microtriangles is coplanar.
a smooth behavior across segment boundaries in a piece- The planes on which lie the microtriangles are deter-
wise Beier curve: Just as in the 1D case the two control mined by the values of the Beer ordinates in the three
line segments to both sides of each boundary must be colminitriangles that make up the triangk®,P,P; (see Fig.
linear, so in our 2D case every two neighboring microtri- 9). The locations of the ten Beier ordinates within each
angles that lie to both sides of a minitriangle edge must beminitriangle are fully determined by the control net: they
coplanar(note that there are three pairs of such coplanarare located at the minitriangle vertices, at the 1/3 and 2/3
microtriangles along each minitriangle edig€his imposes  points of each edge, and at the center of the minitriangle.
also that all neighboring microtriangles that surround a ver- The valuesof these Beier ordinates are determined from
our given(or estimatedl constraints—the value and gradi-
ent at each verteX’; and the normal slope at the edge
midpoints, as followgRef. 28, p. 108 The values of the
Bezier ordinates denoted in Fig. 8 by®" are determined
from the data(value and gradientat the triangle vertices
P,, P,, and P3; for example, the values of the Ber
ordinates located at thiand 2 points of the edg®, P, are
determined by the tangent planesRt and P,, respec-
tively. The three ordinates denoted byA" can be then
determined from the estimated crossboundary derivative
(the normal derivative at the midpoint of each of the three
edges of the triangl®,P,P3): each of them is located on
the plane defined by a microtriangld®,@,A” that is de-
termined by two already known ordinat® and by the
cross-boundary derivative. Then, the ordinates denoted by

Determined from given vertex data (value and gradient)

>

Determined from given cross-boundary derivative

O Weighted average of the 3 adjacent “ @ ”,“A” ordinates
that have already been determined

B Weighted average of the 3 surrounding “O” ordinates
that have already been determined

Fig. 8 Top view of one triangle of the original triangulation, showing
its three minitriangles and its 19 Bézier ordinates (control points).
Each of the three minitriangles consists of nine microtriangles;
crossboundary coplanar microtriangles are shown shaded. Note
that all neighboring microtriangles that surround a common vertex of
a minitriangle are coplanar: If the vertex in question is not a point of
the triangulation (as in the center of this figure) the number of micro-
triangles surrounding it is 3, but if the vertex is a point of the trian-
gulation, the number of surrounding triangles may be larger.
(Adapted from Ref. 26, p. 21, with permission from Elsevier Sci- Fig. 9 A 3D view of Fig. 8. (Adapted from Ref. 24, p. 51, with per-
ence.) mission from Elsevier Science.)
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“O” can be determined by the three adjacent ordin#es est neighbors within the scattered point $éts we have
and A that have already been calculatézince the two  seen following Eq(1), this can be simply done by inserting
adjacent ‘A, @, O" microtriangles must be coplangAnd thex,y,zvalues of each of the six points into the polynomial
finally, the Beier ordinate at the central poin®®” is de- equation, in order to obtain a linear system of six equations
termined by its three surroundirig points so that the three for the six coefficients,, ... ,a5.]
central microtriangles be coplanar. Note that the fact that Now, in order to find the interpolated valzeat an arbi-
makes this construction possible is that we do not need totrary point(x,y) we have to find first in which triangle of
impose restrictions at the third vertex of each minitriangle the triangulation this point is located. Then, the vahie
(the center point as we have just seen, the value and the determined as the weighted average of the values at the
slope there are automatically derived from the vertex andpoint (x,y) of the three interpolating polynomials that cor-
edge-midpoint data of the triangle;P,P;. Hence, the respond to the three triangle verticgef. 31, p. 180
subdivided surface now has enough degrees of freedom to R R R
allow C* continuity of the overall interpolantRef. 29, p.  z=w;f(X,y) +W,f(X,y) +Wsf3(X,y).
53; Ref. 26, p. 22
Once we have understood the logic behind the Clough— To ensure a continuous transition from one triangle to
Tocher interpolation method, we can proceed to practicalthe next we need only ensure that each weights iden-
computation issues. The precise formulas for calculatingtically zero along the edge of the triangle opposite toithe
the Bezier ordinatesh; ; , that satisfy our constraints are vertex. This can be achieved by makiwg proportional to
given in Ref. 15, pp. 305-306; Ref. 26, pp. 22-23; Ref. 28, the kth power of the distance; of the point(x,y) to the
pp. 108-109; and Ref. 29, pp. 52-54. Once the valueSeqge, for somek, typically 3. The weightsw; are then
bi j x are known, we can insert them back into Ef8) in  gcaled to makel, =1 at the vertesi. We have, therefore
order to obtain the specific triangular Ber subpatch over
the minitriangle in question; three such subpatches arey, — q.k/(d,k+d,*+ ds¥).
needed to cover the triangk, P,P3 of our original trian-
gulation. By proceeding in a similar way for all the other  Other variants of this method can also guara@éeon-
triangles, we obtain &£'-continuous piecewise interpolat-  tinuity across triangle boundariéRef. 31, p. 384: Ref. 6,
ing surface that is defined over the triangulation of our pp. 187-188 The extension of such methods to 3D is
given scattered point set. obtained by considering tetrahedra instead of triangles.
There exist several variants and generalizations of the Evaluation: Triangle based blending methods are very
Clough—Tocher method. A 3[r ratherND) version of the  fast, since they are local. Another advantage of these meth-
method is described in Ref. 27; Ref. 28, pp. 116—-117. A ods is that they allow also extrapolation beyond the convex
variant of the Clough—Tocher method which is close€fo hull of the given data points, i.e., outside the region covered
continuity has been proposed in Ref. 26. Another variant of by the triangles. To do this one can partition the exterior of
the Clough—Tocher method has been proposed for cases ithis region by extending lines outwards from the data
which it is known that the underlying function has discon- points on the boundary, for example by bisecting the exte-
tinuities (or discontinuous derivatives along certain  rior angles at the corners. The extrapolated values in each
boundaries?® such semi-infinite quadrilateral region may be then found
Evaluation: Since the Clough—Tocher interpolation as a weighted average of the functioihéx,y) of the two
method is local, it has the advantage of speed: even largeyoundary pointgsee Fig. 4 in Ref. 31, p. 179
scatter point sets can be interpolated quite rapidly. Also, The main disadvantage of triangle based blending meth-
like in the linear triangulation-based interpolation methods, ods, like in all triangulation based methods, is the need to
a correction in any of the given data points only influences triangulate(or to tetrahedrizethe given scattered point set
the interpolated values within the trianglésr tetrahedra  as a preprocessing step before interpolation can be started.
that have this data point as a verfesee Fig. %a) in Ref.
26]. The Clough—Tocher method gives a smo¢@ con- 3
tinuousg interpolation surfacéor volume, which brings out i )
local trends in the data set quite accurately. However, it still One of the most commonly used techniques for interpola-
depends on the quality of the underlying triangulation tion of scattered points is inverse distance weighted inter-

tetrahedrization see pointg4)—(5) at the end of Sec. 2.3. polation. Inverse distance weighted methods are also
known as “Shepard methods” after the name of the first

, . contributor in this field®? These methods are basically glo-
2.5 Triangle Based Blending bal, i.e., they use all of the data points to calculate each
The last triangulation-based method for scattered data in-interpolated value. Their basic assumption is that the inter-
terpolation that we describe here is the triangle basedpolated values should be influenced more by nearby points
blending techniqué! Once again, we need first to obtain a and less by the more distant points. The interpolation value
triangulation of our given scattered point set. Then, for at each new poin® is a weighted average of the values of
each point ;,y;) of the scattered point set we calculate a the scattered points, and the weight assigned to each scatter

Inverse Distance Weighted Methods

corresponding quadratic polynomial interpolant point diminishes as the distance from the interpolation
. point to the scatter point increases. As we will see, many
z=f(X,y)=a; x>+ axy+agy’+asx+agy+ag different ways exist for choosing these weights.

Let us start, as usual, with the 2D case. Suppose we are
that passes through the poing (y;) itself and its five near-  given irregularly distributed point®; in the plane, whose
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locations and values are, respectively; ;) andz;. We
wish to construct an interpolating functlof(x y) with
f(x, ,Yi)=z for all i, where the influence of poir®; de-
creases with increasing distance betwéey and ; ,y;).
Shepard’'s original proposal can be formulated as a
weighted average of the values

n

PO hi(x,y)
f0y)=2, Wixy)z=2 s o2 (19
with weights:

hi(x,y)

WixY) = gn- S 0=Wixy)=1, E wi(x,y)=1

Fig. 10 A simple illustration of the behavior of a univariate Shepard

interpolation function based on the 1D counterparts of Egs. (19) and
(20) (20), for various values of the exponent k. (Adapted from Ref. 33, p.
259, with permission from the American Mathematical Society.) The
values of k used in figures (a), (b), (c), and (d) are as follows (from
left to right in each figure):

where, hy(x,y)= g~

and whered;(x,y) is the Euclidean distance between the

points (xy) and 6.y): () =V X)ZF(y—y)s o e e Mk
andk=1 is a chosen exponent. Note thafx,y) is infi- @ 1 1 1 1 1
nitely large at the data poink{,y;) itself. However, it can (b) 2 2 2 2 2
be shown that whefx,y) approaches a data point;(y;), Eg; 120 110 Olg ig 120

f(x,y) tends to the valuez;; therefore, by choosing
f(xi,y;)=z for all the given data points it is guaranteed
that the interpolating functiori(x,y) is cpntinuous(Ref.

32, p. 518. Another favorable property df(x,y) is that it
is bounded above by max and below by mirg; (Ref. 33, of the exponenk, the more pronounced this flatness be-
pp. 255, 257. comes, yielding an effect of “terracing;” and &s-, the

It is interesting to note that for any fixed poiRtlocated interpolating functionf(x,y) approaches a step function
at (x,y), the denominator in Eq19) can be conAsidered as (similar to a 2D histogramwith the valuesf(x;,y;) =z .
a normalization constant so that the magnitudé(afy) is This means that for large valueslothe practical influence
directly proportional to the valug, and inversely propor-  of theith point is essentially limited to a certain “region of

tional to thekth power of the distance froto P;. Inthis ~ influence” around it. Moreover, as clearly shown by Fig.
sense, the formula is analogous to a r/gravitation  11(c), whenk—co the regions of influence of the poin
law” (Ref. 33, p. 256 are clearly bounded by straight line segments. Note that an

The simplest interpolation functioﬁ(x,y) is obtained individual pointP; may be given a larger region of influ-
by choosing in Eq(20) k=1, i.e., ence than the others by simply choosing a higher valde of

for its h;(x,y) in Eq. (20). This is graphically illustrated for

the 1D case in Fig. 1@), and for the 2D case in Fig. 14).

_ The objectionable artifact due to the flatnessf 6f,y)

VX=x)%+(y—y;)? around the data point(,y;) can be cured by imposing at

each data point its real partial derivatives instead of the

However, a disadvantage of this function is that al- zero partial derivatives inherent to the original method.

though it is continuous, it has slope discontinuities in the This can be done by replacing the valugsn Eq. (19) by

form of a cone at each of the data poinss,{;) [see Fig. tangent planes

10(a) for the equivalent 1D cageThis can be cured by

takingk=2, i.e., the square of the distances

1

hi(xvy):

g(x,y)=z+a;(x—x)) +bi(y—vi), (21)

1
(X=X 2+ (y—y)? wherea; andb; are thex-and y-partial derivatives of the
underlying functionz(x,y) at the point §;,y;). The influ-

However, this allows too much influence by far away ence of this correction on the resulting interpolation func-
points(Ref. 6, p. 186. Furthermore, it turns out that such a tion f(x,y) is graphically illustrated in Fig. 12. Note, how-
surface becomes flat near each of the data poitsy), ever, that in most cases the partial derivatives at the data
since its partial derivatives there vanigRef. 33, pp. 258—  points are not given, and they have to be estimated. Ways
260). In fact, as shown in Figs. 10—11, the higher the value for estimating them are given in Ref. 33, pp. 263—-264; Ref.

hi(xry):
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Fig. 11 Asimple illustration of the behavior of a bivariate Shepard interpolation function based on Egs.
(19) and (20) for various values of the exponent k. (Adapted from Ref. 33, p. 260, with permission from
the American Mathematical Society.) The values of k used in figures (a), (b), and (c) are as follows:

Figure K, K, ks Ky ks
(@ 2 2 2 2 2
(b) 10 1 5 2 3
(© 20 20 20 20 20

32, pp. 520-521; Ref. 7, Sec. 11; and Ref. 34, Sec. 2.4; seavhere
also the derivative estimation problem in the Clough—

Tocher methodSec. 2.4 earligr R—d i d R
More generally, in order to increase the continuity of the [R—d,(x,y)]. = (xY) ' (xy)
resulting function one may replace the valuet Eq. (19) 0 if di(x,y)=R

by L;z(x,y), whereL;z(x,y) is a local approximation to

the underlying functiorz(x,y) at the “node” (x;,y;), such and whered;(x,y) denotes the Euclidean distance between

thatL,z(x; ,y;) =z (Ref. 35, pp. 140-141; Ref. 6, pp. 185— (x,y) and (;,y;), andR is a radius of influence about the

186). SuchL,;z(x,y) are called nodal functions. Other gen- node ;,y;). This means that data ak;(y;) only influ-

eralizations of the Shepard methods can be found in Ref. 6ences interpolated values at points within this radius. It can

p. 186. be shown that the resulting interpolaifi,y) has continu-
Finally, because the inverse distance weighted methodsyys first partial derivativegRef. 35, pp. 140—141 so that

are global, and hence, their computation is too slow for jt is ! continuous.

large point sets, several ways have been suggested to “lo- gyajuation: Shepard methods suffer from some prob-

calize” them. For example, it has been suggesief. 6, p.  |ems inherent to distance-based schemes. In particular,
189 to use since they are only sensitive to the distance they tend to
5 overweight data clusters. Moreover, because they are
h(x.y)= ( [R di(X,y)]+] 22 distance-based schemes each data point has a radially sym-
n Rd(x,y) ’ metric influence and, hence, data features such as planes,
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Fig. 12 (a) The Shepard interpolation function f(x, y) of Egs. (19) and (20) with k=2 for all five points.
The “flat spots” artifact caused by vanishing first partial derivatives is quite evident. (b) The result of
imposing the estimated partial derivatives at each of the five given points. The improvement obtained
by this method with respect to (a) is clearly visible. (Adapted from Ref. 33, p. 263, with permission from
the American Mathematical Society.)

ridges, and valleys are obscured by this enforced isotropy
around sample pointdRef. 34, p. 116 But although Shep-

ard methods are less efficient and less accurate than some
triangulation-based methods, they are among most viable
candidates for extension to three or more independent vari-
ables, because the triangulation-based methods have greater
complexity and storage requirements associated with their
extension(Ref. 35, p. 140 Also, Shepard methods have
the ability to extrapolate naturally outside the convex hull SN
of the given data point$Ref. 32, p. 521 In fact, it has WLy
been shown that for any choice of equal exponerssl
for the h;(x,y) in Eqg. (19), as the interpolation poinP
recedes infinitely from the cluster of the given poifs,

%(x,y) approaches the average of the valge@dRef. 33, pp.
257; 261-262 This is clearly illustrated in Fig. 13.

The performance of Shepard methods is very dependent
on an appropriate weight functiom(x,y) (Ref. 6, p. 186.
It is instructive to see the list of shortcomings of pure in-
verse distance weighting as mentioned in Shepard’s origi-
nal Pafpel(Refh 3%‘[|‘ﬁ)p. 5.1855])9:3.1“23?6 rimrglfes:gge sug- Fig. 13 An illustration of the behavior of a bivariate Shepard inter-
gests 1or each o . em in ',S weig unc ',0( ' » PP. polation function based on Egs. (19) and (20) for various values of
519-52). The weight function of Eq(22) is reported t0  the exponent k. (Adapted from Ref. 33, p. 262, with permission from
have an accuracy comparable to other local methBas. the American Mathematical Society.) This figure clearly illustrates
35, p. 139 and is therefore a good starting point, provided that the partial derivatives at each point P; are zero. Since the figure
that the parameteR can be well chosen for the given scat- is plotted with large margins around the given points, it also shows
tered point set. See Ref. 8, Sec. 4.1 for an available imple-the asymptotic behavior of the interpolating function f(x,y) away

mentation of a modified Shepard method, including both from the given points: clearly, f(x,y) tends in all directions to the
2D and 3D versions average of the values z;. The point locations (x;,y;), their corre-

sponding values z; and the values of k used for each of them are as
) ) ) follows:
4 Radial Basis Function Methods i 1 2 3 4 5

Radial basis function methods are another example of glo-

bal interpolation methods for scattered points. The initial 0 y3) ©0 @ (1.2,02 ©.05 (1,05
ideas, dating from the late 1960's, are due to Hafdga- z 4 0 3 1 1
sically, these methods can be characterized as follows: For 22 25 3 4 4

each point X; ,y;) of the data set simply choose some func-
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tion hj(x,y), and then determine coefficients so that

f(x,y)=2;a;h;(x,y) interpolates the data. However, as we

will see later, appropriate choices of functiomgx,y) are

or in matrix notation

z=Ma. (25

not easy to make. For example, polynomial functions give a
very bad interpolating surface with many overshoots and
ripples between the given data points; and even those funcé: M-1z
tions that are known to work well are not always easy to '
justify mathematically. The most useful functiohgx,y)
are radial functions of one variable(r), so that the basis
function associated with each data point,{;) is of the
form h;(x,y)=h(d;), whered; is the distance between
(x,y) to (x;,y;). This explains the name of this method
family.

In Hardy’s original method, each data poirg; (y;) is
associated with a quadratic functidn(x,y)=[(x—x;)?

The solution of these equations is given by

This calculation may be considered as a preinterpolation
stage (much like the triangulation step in triangulation-
based methods Once the coefficientsa,, ... ,a, are
known, Eg. (23 [or, respectively, Eq(24)] becomes a
smooth interpolating surface, that gives us the interpolated
valuez for any point(x,y).

This multiquadric surface can be understood geometri-
cally as a weighted sum of “hills” or “hollows” that are
+(y—vy;)?+c?]¥2 which represents a circular two-sheet centered at the point locations; (y;), and whose steepness
hyperboloid (or, whenc=0, a conic surfadecentered at is determined by the weightg (see, for example, Fig. 1 in
(x;,y;). Alternatively, one may associate with each data Ref. 37, p. 16% Clearly, a weighted sum of such quadratic
point (x: ,y;) a quadratic functiorh; (x,y)=[ (x—Xx;)2+ (y terms (two-sheet hyperboloids, paraboloids, tis C*
—y;)2+¢?], which represents a circular paraboloid surface continuous(Ref. 6, p. 192 a sum of cones, however, is

centered atx;,y;). The multiquadric surfaedefined by ~ NIy C? continuous. , ,

the sum Hardy does not conclude which class of quadratic func-
tionsh;(x,y) gives the best results, and he suggests that the
choice will depend on the nature of the underlying topog-
raphy (its smoothness, angularity, et¢Ref. 36, pp. 1907—
1908. He notes, however, that quadratics other than the
cone tend to displace the maxima and minima of the under-
is, therefore, a shifted sum of circular two-sheet hyperbo- lying topography(Ref. 36, p. 1914 This can be cured by
loids, while the multiquadric surface considering also the partial derivativesirface tangensf

we know a certain numban of points(data points or ngt
where the slope of the underlying surface is z¢eq.,
points that are hilltops or the bottom of a hollp{Ref. 36,

p. 1910. Let us illustrate this, for the sake of simplicity, in
the 1D case. In this case E@3J) is reduced to

z=,21 al(x—x)2+(y—y;)2+c?]V2 (23)

z=21 al (x—x) 2+ (y—y;)2+c?] (24)

is a shifted sum of circular paraboloids. The coefficiemts
determine the sign and the flatness of each quadratic term 2, 21/
in the sum, anc is a small constant value to be specified Z—;l [ (x—x)“+c]7
by the user. Other multiquadric surfaces consisting of hy-
perbolic paraboloids, one-sheet hyperboloids, etc., can be Adding an expression for a polynomial series we obtain
also constructed in a similar way.
Now, since we know the locatiorx{,y;) and the value n m
z; for each of then given points, we can insert them into  z= >, a;[(x—x)2+c?]¥2+ >, b;x'.
Eqg. (23 [or Eg.(24)], obtaining a set of linear equations i=1 =1
for the n unknown coefficients; :

(26)

By differentiating Eq(26) and equating the derivative to

zero we have
z1=a3[ (X3—X1)2+ (Y1~ y1) 2+ 1Y%+ 4+ a [ (X1 —X,)?

n m

-21 ai[(x—xi)2+cz]‘l/z(x—xi)+21 ibjx'~1=0.

v )24 a271/2
+(y1—yn)tc] 27)

Now, since we know the locations and the valueg;
for each of then given points, we can insert them into Eq.
(26), obtaining a set of linear equations witm+m un-
knowns,aq, ...an,bq, .. .by. Similarly, by inserting the
locationsx; of the m points at which the slope is zero into
Eq. (27), we obtain a system ah equations with the same

zn:al[(xn_xl)2+(yn_yl)2+cz]l/2+---+an[(xn_xn)2

+ (yn_yn)2+ C2]1/2

5The term multiquadric surface means a sum of quadric surfaces. A quad-n+m unknowns. We have, therefore, a systemneFf m

ric (surface is the 2D generalization of a conicurve: just as a conic
has the implicit equatiog(x,y) =0, whereq is a quadratic polynomial in
x andy, so a quadric has the implicit equatiaifx,y,z) =0, whereq is
quadratic inx,y, andz (Ref. 15, p. 298
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equations(n coordinate equations ana slope equations
with n+m unknowns. After the equations are solved for
the unique values o4, ...a,, by, ...by,, these coeffi-
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cients are inserted into E26) to form the required inter-  a good solution for the coefficients is not guaranteed, a
polation function. The resulting function is a multiquadric best fit approach can still be used to find the “best” coef-
curve (or surface, in the 2D cag®n which an additional ficientsa;, as explained in Sec. 6.

polynomial, normally of a low degree, is added to impose  Finally, the extension of radial basis function methods to
zero slopes at the desired maxima and minima. 3D or higher dimensions is rather straightforward.

In a further generalization of these methods, the deriva-  Evaluation: Radial basis function methods are some of
tive conditions can be replaced by other constraints such a%$he most elegant schemes from a mathematical point of
polynomial precision of ordem (i.e., the ability to repro-  view, and they often work very wellRef. 8, p. 135. In
duce exactly any polynomial up to ordem, this may be  terms of fitting ability and visual smoothness, the most im-
important in some fields such as computer aided geometricpressive method in this family is the original multiquadric
design or approximation theorylf we denote byh;(x,y) method due to Hardy. Hardy’s method was verified as being
=h(d;) the basis function associated with each data pointcapable of fitting the underlying surface very accurately,
(xi,yi), and by{qi(x,y)} a basis for the bivariate polyno- and furthermore, it is quite stable with respect to the choice
mials of degreem, then the form of the interpolation Of the parametec (Ref. 6, p. 191 However, since these
function is (Ref. 8, p. 135: methods require a preprocessing stage of solving a system

of at leastn linear equations with as many unknowns, with
n m a full matrix, in order to obtain the coefficients of the in-
Z:E aihi(X,Y)'i'z bigi(X,y) terpolating function, these methods are not suitable for

i=1 i=1 large data sets with more than a few hundred pdiR&s. 8,

p. 135. Various ways have been proposed to “localize”
and then-+m coefficientsa; andb; are found by solving  these methods in order to allow the treatment of larger data

the following n equations: sets(Ref. 8, p. 136. For example, one may decompose the
domain of the scattered point set in order to solve many
n m small systems of linear equations rather _than one global
21=E aihi(xl,y1)+2 bigi(Xq,Y1) system, and subsequently blend the resulting local interpo-
=1 =1 lants. A historical review of the multiquadric method with

more than 100 references is given in Ref. 37.

5 Natural Neighbor Interpolation Methods

n The last family of scattered data interpolation methods we
2,= 2, ahi(Xy,yn)+ 2, bigi(Xn,Yn) describe here, known as natural neighbor interpolation, was
=1 =1 first introduced in Ref. 38. This interpolation approach is
local, and is based on the Voronoi tesselation of the given
scattered point set—which is the geometric dual structure
of the Delaunay triangulatiofor tetrahedrization(Ref. 21,

p. 203. The Voronoi tesselation partitions the plafm
-y space into an exhaustive and disjoint set of tilgmlygons
0=2, aida(Xi Y1) or, respectively, polytopgseach tileT; enclosing one point
x; of the given point set. The til&; is defined as the area
(or volume that is closer to the scatter poixtthan to any
other scatter point

n

along with the followingm constraints that guarantee poly-
nomial precision:

n

n = 2 < . i =
0=3, aign(Xi.y1)- Ti={xe Rd(xx) <d(xx)Vj=1,...n},

whered(a,b) denotes the Euclidean distance between the

It is interesting to note that although radial basis func- Peintsa andb. Pointx; of our point set is said to be a
tion methods were known to work well since the late hatural neighbor of poink; of the set if their respective
1960’s, until the 1980’s no mathematical theory existed for tiles T; and T; have a common edge or point of contact.
them, not even concerning the existence of a solution to theThe number of natural neighbors of poigt(that is not on
equations in all possible point configuratiofRef. 8, p. the external boundajyis at leastN+1, whereN is the
147). Only in 1986 it has been shown that the system of space dimension, and at mast 1, wheren is the number
equations is indeed nonsingular. _ of points in the set, and it varies from point to point. In the

Note that in prlnC|pIe this method could be used with 2D case the average number of natural neighﬁhgnum_
any family of functionsh;(x,y), such as polynomials or ber of edges in a Voronoi polygprloes not exceed @Ref.
trigonometric series of a certain order, whose coefficients21, p. 205.

a; would be determined by a linear system of equations like  Before interpolation can be started, a preprocessing step
Eq. (25) (see, for example, Ref. 4, pp. 208—20%he par- is required for constructing the Voronoi tesselation of the
ticularity of the multiquadric functions is that they give a given scattered point sé&tee Ref. 13, pp. 149-160; Ref. 21
system of equations that is rather well conditioned, andpp. 205-214; and Ref. 38, p. B1

which is guaranteed to be nonsingular and hence to have a Once the Voronoi tesselation of our point set has been
solution. For other function families, where the existence of constructed, all that we need in order to evaluate the inter-
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Fig. 14 The Voronoi tiles of the scattered point set {xq,..., Xg}-
When a new point x is added to the tesselation, it “craves” its own
tile by “stealing” territory from the surrounding data points. Bold
lines indicate the new tile of point x; the dotted lines inside it show
the old tile boundaries before the addition of point x. For the sake of
completeness, the Delaunay triangles associated with the Voronoi
tesselation are also shown, indicated by thin dashed lines; the tri-
angle edges are perpendicular bisectors of the tile edges.

polated value at a new poirtis simply to addx to the set
of scatter points, letting it “crave” its own tile from the
tiles of the surrounding data pointsee Fig. 14 Thus, the
new tile of pointx is

T(x)={ze RYd(z,x)<d(z,x)Vj=1, ... n}
and its intersections with the old tiles are:
Ti(X):T(X)mTi .

Note that the intersection$;(x) are nonempty only for
neighboring tilesT; from which the new tileT(x) has “sto-
len” territory. The actual calculation of the are&w vol-
umes of the subtilesT;(x) for each neighboring poirg; is

a complicated but reasonably efficient geometrical compu-
tation (Ref. 38, p. 3L The detailed procedure for the 2D
case can be found in Ref. 34, p. 82; for higher dimensions

see Ref. 39, p. 658.

Now, denoting the aretor the volume of a tile T by
area(l), the natural neighbor interpolant at the pobnt
could be defined as

f0=2> h(xz, (28)
where

aredTi(x)]
hi(x):m O<h;(x)<1, 2. hi(x)=1.
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[Note thath;(x) varies smoothly between 1 at the poiqt
itself and 0 where the interpolation poirtceases to be a
natural neighbor ok; ; h;(x) is a continuous function of,

and furthermoreZ;h;(x)x;=x (Ref. 38, p. 28] This inter-
polation method is, therefore, a weighted average of the
subset of data pointg which are natural neighbors of the
interpolated locatiorx.

This method results in a surface which consists of cone-
like peaks or pits at the data poings(Ref. 34, p. 155 This
means that the interpolant E8) is only C° continuous,
since its derivatives are discontinuous at the poigtsin
order to obtain aC*-continuous interpolant we must take
into account also the gradient at each of the points; as we
have already seen in the previous sections there exist sev-
eral methods for estimating the gradients at the given data
points. Once we have estimated the gradién(x) of the
underlying functionz(x) at the pointx;, we replace the
valuesz; in Eq. (28) by the first degree polynomiaj;(x)
that passes through with the calculated slope
gi(X) =2+ Vz(x)(x=x), (29
whereT denotes the vector transpose. This will blend, us-
ing the natural neighbor weights, not only the valagbut
also their corresponding gradients. In order to guarantee the
correct slopes at the poinks we also replace the weights
h;(x) in Eqg. (28) by the weights

hi(x)d(x,x;) "t
Wi0= 2 S E o) T

so that we finally obtairfRef. 7, p. 13; Ref. 38, p. 30

2 hi()d(x,x) ™"
0= wa00=3 g1 00

(30

The fact thath;(x) is nonzero only for the neighboring
points ofx; causes this method to be local. As we can see,
the weights used in natural neighbor interpolation define
the amount of influence any neighboring scatter point will
have on the computed value at the interpolation point. The
weight depends on the area of influerfce., the area of the
Voronoi polygon$ of the surrounding scatter points: a
larger area results in a larger weight or influence of the
corresponding scatter point on the interpolated value.

This natural neighbor interpolant has some remarkable
properties(Ref. 7, p. 13; among others, it can be shown
(although the proof is rather involvgthat it is indeedC!
continuous, and that its values depend continuously on the
data points; .

Evaluation: Natural neighbor interpolation methods
share with triangulation-based methods the unhappy burden
of requiring a preprocessing stage that partitions the given
scattered point set into a network of exhaustive and disjoint
cells, but also the happy consequence of béiegl. How-
ever, all their other properties are sufficiently different to
justify their classification in separate method families.

Natural neighbor interpolation is a weighted average
method where the weights are area-based, as opposed to
other methodgsuch as inverse distance methpdgere
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Fig. 15 The difference between interpolation (top figures) and best fit (bottom figures). In all figures
the same seven data points are used. (a) Linear interpolation. (b) Fourth-order polynomial interpola-
tion. (c) Linear best fit. (d) Best fit using polynomials up to order 4.

distance-based weights are used. Area-based weights ammethods find an approximating curt@ surface, etg.that
superior to distance-based weights because they comperbest fits the known data points according to some specified
sate for data density variation—whereas distance-based ineriteria. This means that the approximating function will
terpolation is only sensitive to the distance and hence maypasscloseto the known values, but not necessarily exactly
overweight data cluste(®ef. 34, p. 82 Also, as compared  through them. This does not mean, however, that the qual-
to triangular-based interpolation methods, each pgirs ity of approximations calculated between the known points
situatedwithin its region of influencéVoronoi tile), and not by data fitting is worse than in the case of interpolation:
on a vertex between regiorfriangles. The fact that the  best fit methods have the advantage of being able to specify
tiles correspond to an area of influence about the giventhe range of the overall error, and their main concern is to
points is intuitively more appealing. All this makes the minimize it. Furthermore, although data fitting misses the
natural neighbor approach a robust method of scatteredyiven points, it usually gives a smoother function than in-
point interpolation, which performs equally well in clus- terpolation(see Figs. 15 and 16The choice between in-
tered and in sparse areas of the given pointRef. 34, pp.  terpolation and best fit approaches depends, therefore, on
155-16). the nature and the specific needs of each particular applica-
This approach also avoids another pitfall of other meth- tion.
ods, namely: the arbitrary definition of the interpolation In general, interpolation through the data points is desir-
subset[such as the radiu® in Eq. (22) and in similar able if the values of the data points are highly accurate and
localization schemds It may be interesting to note that reliable (e.g., if they are based on precise measurements
even the simpleiC®-continuous variant of this approach and if their number and density are not too higlee Fig.
[Eq. (28)] gives better results than it€%-continuous  15). However, when we are given a dense “cloud” of data
triangulation-based counterpdBec. 2.2—since the natu-  points with relatively high nois¢such as statistical data
ral neighbor method has derivative discontinuities only at the natural approach would be to fit the data by a smooth
the pointsx;, whereas the linear triangulation-based inter- approximating curve(or surface, et¢.that passes in the
polation method has derivative discontinuities along all the center of the “data cloud” like a skeleton, and shows the
triangle borders, and not only at the poinis average tendenme_s of_the data._ In such_ cases interpolation
However, in spite of its advantages, this approach isf[hroggh all Qata} points is not desuablg, since it would result
more computationally intensive and, hence, slower than high oscillations and poor approximation between the

other approaches, and all the more so in higher dimensionsP0iNts, as shown in Fig. 16. Best fit approximation also
appears in a natural way in overdetermined situations, i.e.,

. when we have more data points than free parameters in the

6 Scattered Data Interpolation Versus Scattered curve equation, so that we obtain a linear system with more

Data Fitting equations than variables. This situation will be illustrated
Data fitting is an alternative approach to interpolation in later.
finding intermediate values of an underlying function Data fitting methods have been largely discussed in lit-
whose values are only known at a limited number of points. erature; see, for example, Ref. 4 where both global and
The approach of data fitting significantly differs from that local methods are reviewed. As an example of scattered
of interpolation: While interpolation methods approximate data fitting we will describe here the regression method. We
the underlying function by finding a curv@r a surface,  will explain this method by showing how it is used to es-
etc) that passethroughthe known data points, data fitting tablish a transformation that conveR&Binput values of a
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Fig. 16 Same as Fig. 14, when we are given a dense cloud of data points with relatively high noise
(such as statistical data). In such cases interpolation through all points gives high oscillations (top),
and the natural approach would be to fit the data by an approximating curve (bottom).

scanner into the correspondiiXyZvalues, based on a set t=f, 2 (X,Y,2)

of irregularly spaced pointée.g., Pantone color patches pe 6

for which the input value®,G,Bas well as the target val- =a;x+a,y+azz+asxy+asyz+agzx, (3D

uesX,Y,Zare known by measureme(Ref. 40, Chap. B
Assume that our scattered data set consists of eighl‘i

sample points, whose coordinates in the inR@B space

and their correspondingYZvalues are known to be

.e., a family of second-order polynomials ¥y, and z

This family has six free coefficients,,...,as; the aim of

the method is, therefore, to find the specific values of these

: i parameters for which the best fit occurs. It is important to

Point 1: Ri,G1.B1 X1 Y12 note that the number of sample points must be higher than
the number of parameters; in our case we have, indeed, 8
>6. Inserting the known values of our eight sample points

Point 8 ReGs,Bs Xs,Ys,Zs. into Eq.(31). we obtain, th_erefore, an overdetegnined set of
eight equations for the six unknowas, .. . ,ag

The basic assumption of the regression method is that
the conversion between the two color spa¢B&B and ty=a,X;+a,y; +aszy +aXiy; +asy 1z, +agziXg
XY2) can be approximated by three equations of the form

where the independent variablegy,zstand for our input . —a o+ a,yg+ aszg+ 84X, Vs + asysZs+ AsZaXs,
R,G,Bvalues and the dependent variableepresents the
resulting value ofX (or Y or 2) in the destination color
space. wherex;, y;, z stand forR;, G;, B;, andt; stands, for
Note thatf, ..(X,y,2) represents here aequation example, forX;. This can be expressed in the matrix form
ERREE. K [P A

family with several free parametews,, ...,a,. We are as follows:

free to select the equation family according to our best

judgment; it will be the task of the regression to give us the —

parameters of thene equation from this family that gives ** Note that if the number of sample points were equal to the number of

the best least square fit for the known sample points For parameters we would obtain here a linear system efjuations witm
’ unknowns; this system could be directly solved for the coefficiants

example, in cases where _the _Unde”ying relationship seems o \which Eq. (31) becomes an interpolating function that passes
to be exponentialor logarithmig, it would be reasonable through all the given points. However, as we have already seen in the

to select an exponentie(br respectively a Iogarithmjc previous section, it is not generally guaranteed that this system of equa-
! ! tions is nonsingular and has a solution, and even if it is nonsingular, it

equation family. In our present example we assume that the may be very ill-conditioned with an unstable solution. As we have seen,

equation family consists of polynomials, since the solution  this method does work for some particular function families, like in the
for this case is simpler case of Hardy’s multiquadric functions, but in the general case where a
pler. . . good solution is not guaranteed, it is best to have an overdetermined set
Suppose that we have chosen the following equation ot equations and to find the best coefficieatsusing the best fit ap-

family: proach described here.
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X1 Y1 Z3 XiY1 YiZi Z1Xq with the 12 free coefficients; ; andk; (1<i,j<3). Note
ty Xo Yo Zp Xa¥a VaZs ZoX that.in this example the regressior) will giye as an approxi-
t, 2 Jz t2 M2z Jeta TRz g mation to the underlying 3D mapping a trivariate linéar
ts X3 Yz Z3 X3Y3 Y3Z3 Z3X3 a, ratheraffine mapping. _
¢ Xa Va Za XaYa VaZs ZaX a As an altgr.natlve to the approach of regression _for scat-
a7 74 T Tada Jata Sata 3 tered data fitting, one may formulate the problem in terms
ts Xs Ys Zs XsYs5 Ys5Zs ZsXs ay of the optimization approach, where the cost function is the
te X6 Ve Zs XeYs VYeZs ZoXe as total error (in terms of Euclidian distangeover all the
ty ag samples, and the optimal coefficiematsare those that mini-
tg X7 Y7 Z7 Xi¥7 YiZr Z7%7 mize this cost function.

Xg Ys Zg Xg¥s YsZg ZgXg .

7 Conclusion

or in short In this paper we survey some of the most important meth-
ods of scattered data interpolation in 2D and 3D that can be
of interest in electronic imaging systems. The methods re-

t=Ma. viewed include triangulation(or tetrahedrization based
methods, inverse distance weighed methods, radial basis

Now, it has been shown in literatuteee, for example, function methods, natural neighbor methods, as well as one
Ref. 41, p. 1049that the coefficients: that yield the best ~ data fitting method for the sake of comparison.

least square fifi.e., that minimize the global square error ~ 1riangulation based methods are local and, hence, ca-
on the sample pointsare given by pable of treating efficiently large data sets. They are com-

putationally simplgonce the prerequisite task of triangula-
T g T tion or tetrahedrization has been accomplighexhd

a=(M'M) (M), relatively accurate. Their serious drawback is the necessity

of triangulating(or tetrahedrizingthe given data set prior
whereMT is the transpose of matrid. By inserting these {0 the actual interpolation step. We have presented several
values ofay, . .. @ into equation family(31) above we linear variants and one cubic variant of this famlly of meth-
obtain, therefore, the specific equation from this equation©ds; the Iattero has the advantage of bemjg continuous
family that gives the best least-square approximation for@nd not onlyC™ continuous as the simpler linear variants.

the componerX of the target color space. This polynomial  Inverse distance weighting methods are usually less ef-

regression method should be repeated two more times, foficient and less accurate than good triangulation-based

the Y and for theZ components. methods, and they suffer from some well-known artifacts.
Evaluation: Clearly, since the coefficienta; are ob- ~ However, due to their simplicity they are among the most

tained by a global least square error minimization, the poly- commonly used techniques, in 2D as well as in higher di-
nomial obtained may not map the sam@®&B points to ~ Mensions. , , , o
their original XYZ values. And yet, the data fit obtained by ~ Radial basis functions, and in particular Hardy’s original
this method is normally good. The quality of this method Multiquadric interpolation method, are among the more
depends on the relationship between the source and targdifomissing methods in terms of fitting ability and visual
spaces(i.e., the complexity of the underlying, unknown smoothness. However, they require the solution of a linear
function), the number and location of the known sample €quation system with at least as many equations and un-
points, the number of terms in the polynomial and its order, Knowns as the number of data points.

and the measurement errors. This method is ideal for trans- Natural neighbor interpolation methods are robust and
formations with linear relationship. For nonlinear color Perform equally wellin clustered and in sparse areas of the
space conversion, this method does not guarantee uniforn@iven point set. However, in spite of their advantages, they
accuracy across the entire space, and some re(gonk as ~ are more computationally intensive and, hence, _slower than
dark color$ may have larger errors than other areas. In Other methods. They also require a preprocessing step that
general, the accuracy improves as the number of terms irconstructs the Voronoi tesselation of_ the given point set.
the equation increases, the trade-offs being the higher com- Finally, although not really passing through the data

putation cost and lower processing spéRef. 40, p. 62 points, data fitting methods usually give smoother functions
Finally, this method isylobal, and hence, it suffers from than interpolation, and they minimize the overall error.
the drawbacks mentioned in Sec. 1. They should typically be used when we are given a

Note that instead of repeating the regression method cloud” of data points with relatively high noise, or in
three times, for theX, Y, andZ components, it is also pos- Overdetermined situations. _
sible to apply the method directly to the full 3D mapping This review is certainly not complete, and it does not

RGB-XYZ For example, we may choose the equation include all the existing methods. Just as one example, we
family as follows: ’ did not mention here the family of stochastic process meth-

ods(such as “kriging”) which is often used in the mining
and geology communityRef. 8, pp. 148—149 Such meth-
a;; a2 a13\ /R Ky ods are less attractive for applications in electronic imaging
—| ayy Ay as|| G|+ ks systems since they necessitate the stationarity of input data,
' ' ' B K and their overall performance has been shown to be inferior
3 to other methods such as Hardy's multiquadric method

N < X

dz1 QAz2 Aazg
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(Ref. 37, pp. 198-199, 205Readers who are interested in 19
a wider spectrum of methods for scattered data interpola-

tion may consult references such as Ref. 34, Sec. 2.5, opg.

Refs. 4-8.
Clearly, none of the existing methods is universally sat-
isfactory, and understanding their limitations is an impor-

tant key in applying them successfully. It remains, there- 22.

fore, the task of the designer or the engineer to select
among all the different available methods the one that best,,
suits his specific application. Several general guidelines can

be found, for example, in Ref. 12, Chap. 6. Typical criteria 24.

for such a choice may include the type, the density, the
amount and the particular properties of the date Sec. 3

in Ref. 8); the availability of working algorithms, software
packages and computer prografese Sec. 4 in Ref.)8the
computing environment availabléncluding parameters
such as speed, memory, étadhe smoothnes$C® or C?
continuity) and the precision desired; the computational
cost; and the programing efforts required. We hope the
present review will be of help in the evaluation of the dif-

ferent possibilities and in taking a more founded decision. 30
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