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Abstract. Numerous problems in electronic imaging systems in-
volve the need to interpolate from irregularly spaced data. One ex-
ample is the calibration of color input/output devices with respect to
a common intermediate objective color space, such as XYZ or
L* a* b* . In the present report we survey some of the most impor-
tant methods of scattered data interpolation in two-dimensional and
in three-dimensional spaces. We review both single-valued cases,
where the underlying function has the form f:R2→R or f:R3→R, and
multivalued cases, where the underlying function is f:R2→R2 or
f:R3→R3. The main methods we review include linear triangular (or
tetrahedral) interpolation, cubic triangular (Clough–Tocher) interpo-
lation, triangle based blending interpolation, inverse distance
weighted methods, radial basis function methods, and natural neigh-
bor interpolation methods. We also review one method of scattered
data fitting, as an illustration to the basic differences between scat-
tered data interpolation and scattered data fitting. © 2002 SPIE and
IS&T. [DOI: 10.1117/1.1455013]

1 Introduction

The problem of scattered data interpolation consists of c
structing a continuous function of two, three, or more ind
pendent variables that interpolates data values which
only known at some scattered points in the tw
dimensional ~2D! plane @or, respectively, in the three
dimensional~3D! or ND space#. The need for interpolation
from irregularly spaced data occurs in many different fiel
such as medical imaging, meteorological or geologi
modeling, cartography, and computer aided geometric
sign. For example, in meteorology weather measurem
are available from irregularly located observation statio
and in geostatistics and geology aquifer properties
layer structures are studied from data that is only availa
at a few given locations. The data at these few locati
must be interpolated to the nodes of an underlying grid
order to allow the use of 2D or 3D scientific visualizatio
tools to illustrate the variation in the data. Interpolation
also required for the construction of isolines or conto
maps based on the available data.
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These examples concern the interpolation of sing
valued data, where the underlying function has the fo
f :R2→R or f :R3→R. But other cases may require the in
terpolation of multivalued data, where the underlying fun
tion is of the formf:R2→R2 or f:R3→R3. As an illustra-
tion to the case off:R2→R2, consider the geometric
correction of aerial or satellite views by ‘‘landmark bas
morphing.’’1 Airborne and satellite images are often di
torted because of the earth curvature and the oblique vi
ing angles. In this case we are given an original, distor
image that includes a few identifiable ground control poi
~pillars, road junctions, etc.!. For each of these scattere
control points we know both the distorted~x,y! coordinates
in the image, and the real (u,v) coordinates on a geo
graphic map. Our task is, therefore, to interpolate betw
these few known points in order to obtain the underlyi
geometric correction transformationf:R2→R2, that will al-
low us later to obtain the rectified image by resamplin
Similar cases occur also in medical imaging, where it
required to match images obtained from a patient at diff
ent times or with different imaging techniques, or to com
pare them with a standard anatomical data set. In al
these bivariate two-valued cases (f:R2→R2) we actually
need to solve two instances of the bivariate single-valu
interpolation problem (f :R2→R), one for each of the two
destination coordinates.

Another example, in the field of electronic color repr
duction systems, illustrates the case off:R3→R3. This ex-
ample concerns the calibration of color input/output d
vices ~such as a scanner and a printer! with respect to a
common intermediate objective color space~such asXYZor
L* a* b* !. In such cases the input device calibration is o
ten based on establishing a mapping between the
device-dependentRGBcolor space of the input device an
the chosen 3D objective color space~say, theXYZspace!.2

This is done by using color patches from a standard co
catalog, such as the Pantone catalog:3 each color patch is
fed to the input device to obtain its deviceRGBvalues, and
then measured by a spectrophotometer to obtain itsXYZ
values. This gives us a set of several hundred points tha
scattered within the 3D inputRGBspace, to each of which
there are associated three scalar values—the coordinat
the same patch in theXYZ color space. In this case th
value at each point of the scattered point set is itself a

;
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quantity, so that we actually need to solve three instance
the single-valued problem—one for each of theXYZcom-
ponents.

In the present survey we will mainly concentrate on t
basic problem of scattered data interpolation for sing
valued, scalar quantities@such as the geographic elevatio
over irregularly spaced points (xi ,yi) in the plane, or the
temperature at scattered points (xi ,yi ,zi) in space#. How-
ever, if an interesting vector or matrix expression is ava
able for the multivalued case, we will also mention it.

The problem of scattered data interpolation in two
more independent variables has been addressed in m
papers and book chapters that are dispersed in various
entific disciplines. And indeed, numerous methods w
many variants have been devised to solve this problem4–9

Our aim in the present paper is to briefly survey tho
methods which are most relevant for the needs of electro
imaging systems, and to provide useful references w
more detailed accounts on these methods, for the bene
the interested readers. It should be noted that the conc
involved in scattered data interpolation are largely inspi
from the fundamental concepts in the interpolation of re
larly spaced data. Readers who desire a short introduc
on classical interpolation methods in this elementary c
may consult, for example, Chap. 11 in Ref. 10 or Re
11–13.

The different approaches to the interpolation of scatte
data can be classified into global methods, in which e
interpolated value is influenced by all of the data, and lo
methods, in which the interpolated value is only influenc
by the values at ‘‘nearby’’ points from the scattered po
set. Global methods are practically limited to small da
sets due to the computational efforts they require; mo
over, an addition or deletion of a data point, or a correct
in any of the coordinates of a data point, will modify th
interpolated values throughout the entire domain of defi
tion. Local methods, on the other hand, are capable of tr
ing much larger data sets, and they are less sensitive to
modifications, but they may become quite complex, too
a smooth result is required.

The methods surveyed in the present paper will be c
sified into the following categories:

1. triangulation ~or tetrahedrization! based methods
~Sec. 2!;

2. inverse distance weighted methods~Sec. 3!;

3. radial basis function methods~Sec. 4!; and

4. natural neighbor methods~Sec. 5!.

Finally, in Sec. 6, we will review one method of sca
tered data fitting, the regression method, as an illustra
to the basic difference between scattered data interpola
methods and scattered data fitting methods: While inter
lation schemes construct functions that pass through
given data points, data fitting schemes produce functi
that maintain the nature and the trends of the input data,
only pass near the data points. The main criteria used
comparing the different methods include smoothness~de-
rivative continuity: C0, C1!, possibility of extrapolation,
local versus global technique, accuracy and fitting abil
performance~efficiency, speed!, suitability for large point
158 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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sets, extension to three or more dimensions, the need f
preprocessing step~triangulation, Voronoi tesselation, etc.!,
simplicity of use, particular artifacts known, and vario
method-family specific criteria.

Notations: Except where indicated otherwise, the fo
lowing notations will be adopted throughout this revie
We assume that we are given a set ofn distinct points
P1 ,...,Pn that are scattered in anN-dimensional Euclidean
space~usuallyN52 or 3!. Each pointPi is located at the
vector positionxi , and has a numerical valuezi . Our task
~in the single-valued case! is to find good interpolation
functions f̂ (x) such thatzi5 f̂ (xi) for all i 51,...,n.

2 Triangulation „or Tetrahedrization … Based
Methods

The interpolation methods belonging to this category op
ate in two steps: First, the scattered point set is triangula
~in the 2D case! or tetrahedrized~in the 3D case!; and then,
an interpolation scheme is used within each triangle~or
tetrahedron!. These methods are therefore always local
good source of information on triangulation, tetrahedriz
tion and their derived scattered data interpolation meth
is Chap. 20 in Ref. 10.

2.1 The Triangulation (or Tetrahedrization) of a
Scattered Point Set

Let us start first with the 2D case. Clearly, a given point
in the plane has many different triangulations. It may
therefore desirable to find among these triangulations
optimal one which avoids as much as possible poo
shaped triangles~such as thin and elongated triangles; s
Ref. 10, p. 433 and Fig. 20.19 there!. @We say ‘‘as much as
possible’’ because this is not always possible, especiall
the vicinity of the external boundaries of the given point s
~Ref. 8, p. 135!.# One of the ‘‘nicer’’ candidates is the De
launay triangulation, i.e., the triangulation obtained by co
necting all the neighboring points in the Voronoi diagram
the given point set@Ref. 14, pp. 186–187; Ref. 15, p. 28#.
@Note that the Delaunay triangulation is not necessa
unique. For example, in the case of four points forming
square either diagonal produces a valid Delaunay trian
lation. Such points are always cocircular~Ref. 15, p. 28!.#
Intuitively, we may say that a triangulation is ‘‘nice’’ if it
consists of triangles that are close to being equilate
Therefore, we may compare different triangulations of t
given point set by finding the minimal angle of each t
angle: the triangulation that has the largest minimal an
would be considered the better one~this is called the
‘‘maxmin’’ angle criterion!. And it turns out that of all pos-
sible triangulations, the Delaunay triangulation is the o
that is guaranteed to produce the largest minimal an
~Ref. 14, pp. 188–189; Ref. 15, p. 29!. @Note, however, that
it is not guaranteed that a Delaunay triangulation conta
no small angles. A simple example of a Delaunay triang
lation that necessarily contains very small angles is sho
in ~Ref. 14, p. 291!.# Furthermore, the Delaunay triangula
tion is the only one having the property that the circle c
cumscribing any of its triangles contains no other point
the scattered data set, and hence, no other triangle~Ref. 14,
p. 188; Ref. 10, pp. 444–446!. There exist several differen
techniques for constructing a Delaunay triangulation o
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Scattered data interpolation methods . . .
given scattered point set in the plane. An overview on th
algorithms is given in Ref. 10, pp. 448–453.

A similar situation exists also in the 3D case: Since th
may be many different tetrahedrizations for any scatte
point set in space, it may be desirable to find among th
an optimal tetrahedrization that avoids as much as poss
poorly shaped tetrahedra~see Ref. 10, p. 489 and Fig. 20.6
there!. Here, too, the Delaunay tetrahedrization has so
particularly nice properties. For example, only a Delaun
tetrahedrization ensures that the enclosing sphere of an
its tetrahedra contains no other point of the scattered
set ~and hence, no other tetrahedra!.16 In practice this im-
plies that most tetrahedra are neither ‘‘too flat’’ nor ‘‘to
long,’’ so that the volume on which the tetrahedral interp
lation will be performed has a reasonable shape. In the
case, too, there exist several techniques for constructing
Delaunay tetrahedrization of a given scattered point set
overview on these algorithms is given in Ref. 10, pp. 49
491. Optimal tetrahedrizations that are based on other
timization criteria than the Delaunay method are briefly
viewed in Ref. 17, pp. 12–13.

Once the given scattered point set has been triangul
~or tetrahedrized!, we still need a procedure that finds
which triangle~or tetrahedron! an arbitrary new pointP is
located, in order to be able to find its value by interpolati
within that triangle~or tetrahedron!. This can be done by
the following search procedure~described here for the 3D
case!:

• Let Gi be a point belonging to a known tetrahedronT.

• P belongs to the same tetrahedron if there is no in
section between segmentGi P and any surface ofT. In
this case we have found the tetrahedron to whichP
belongs.

• If an intersection with one of the tetrahedron’s su
faces exists, a new pointGi 11 is chosen in the tetra
hedron adjacent toT, which shares withT its inter-
sected surface. The procedure is repeated until
correct tetrahedron is found.

Another possible procedure is mentioned in Ref. 18
56.

Having described how to find the triangle~or tetrahe-
dron! in which is located an arbitrary pointP, we can pro-
ceed now to the different interpolation methods inside t
triangle ~tetrahedron!.

2.2 Linear Triangular (or Tetrahedral) Interpolation

Let us start with the 2D case, where the scattered po
(xi ,yi) are located in thex,y plane; their values can b
visualized as altitudeszi over this plane. Therefore, th
triangulation of the scattered points in thex,yplane induces
a piecewise triangular surface over the plane, whose no
are the points (xi ,yi ,zi). This is a continuous surface mad
up of flat triangular pieces that are joined along edg
~which is an obvious generalization of broken line fun
tions in one dimension!. Such a surface is often called
triangulated irregular network. This surface represe
therefore, a piecewise interpolation scheme in which a
e
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variate linear interpolation* is applied within each triangle
Let points P1 , P2 , and P3 , located atx15(x1 ,y1), x2

5(x2 ,y2) andx35(x3 ,y3), be the three vertices of any o
the underlying triangles in thex,yplane, and let their values
be z1 , z2 , andz3 . Then, the valuez at any arbitrary point
P located atx5(x,y) within this triangle can be found a
follows.

Suppose that the plane which is defined by the th
points (x1 ,y1 ,z1), (x2 ,y2 ,z2), and (x3 ,y3 ,z3) is given by

z5ax1by1c. ~1!

By inserting thex,y,zvalues of each of the three know
points into this equation we obtain a linear system of eq
tions

z15ax11by11c,

z25ax21by21c,

z35ax31by31c.

The coefficientsa,b,c of the plane of Eq.~1! can be
found, therefore, by solving this system of equations. On
these coefficients are known, Eq.~1! gives us the interpo-
lated valuez for any pointP located atx5(x,y) within this
triangle.

Alternatively, the valuez at any arbitrary pointP within
the triangle can be also found bybarycentric interpolation:
Let P1 , P2 , and P3 be the three vertices of the triangle
located at x15(x1 ,y1), x25(x2 ,y2) and x35(x3 ,y3).
Then, the locationx5(x,y) of any pointP in thex,y plane
can be uniquely expressed as a weighted average of
locations of these three vertices

x5a1x11a2x21a3x3 , ~2!

wherea11a21a351. ~Note that if the pointP is situated
inside the triangle, then we also haveai.0, i 51,2,3.! The
weightsa1 , a2 , a3 are called thebarycentric coordinates
of point P ~Ref. 15, pp. 23–26!. @This term is due to the
physical interpretation of the pointP as the center of grav
ity of the triangleP1P2P3 when weightsai are attached to
its verticesPi ~barys means in Greek ‘‘heavy,’’ hence, th
term barycenter: center of gravity!.#

Now, for any linear~or affine! functiong of x5(x,y) we
clearly have from Eq.~2!:

g~x!5a1g~x1!1a2g~x2!1a3g~x3!

*We prefer to avoid the popular terms ‘‘bilinear interpolation’’ and ‘‘tr
linear interpolation’’ because of their ambiguity. In algebra, a biline
function is a function that is linear in each of its two variables separat
such as the functionf (x,y)5xy. This function is linear inx for any fixed
y0 , and linear iny for any fixedx0 ; but obviously, the surface defined b
this function isnot a plane, but a hyperbolic paraboloid~see, for ex-
ample, the section on bilinear interpolation in Ref. 15, pp. 231–23!.
Therefore, we call the 2D linear function that represents a pla
f (x,y)5ax1by, a ‘‘bivariate linear function.’’
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 159
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and in particular, since our interpolating functionz
5 f̂ (x,y) is indeed linear, we obtain that the valuez at the
point P, i.e., at the locationx5(x,y), is simply the
weighted average of the valueszi at the locations of the
verticesPi , xi5(xi ,yi):

z5a1z11a2z21a3z3 ~3!

with the sameweights a1 ,a2 ,a3 as in Eq. ~2!, and a1

1a21a351. Since the locations of the pointsP, P1 , P2 ,
P3 are known the weightsa1 ,a2 ,a3 can be found by solv-
ing the linear system of equations defined by Eq.~2! for
a1 , a2 , anda3 :

a1x11a2x21a3x35x,

a1y11a2y21a3y35y,

a11a21a351.

The solution of these equations is

S a1

a2

a3

D 5S x1 x2 x3

y1 y2 y3

1 1 1
D 21S x

y
1
D ~4!

or, more explicitly, using the Cramer rule

a15D1 /D, a25D2 /D, a35D3 /D, ~5!

where

D5Ux1 x2 x3

y1 y2 y3

1 1 1
U , D15Ux x2 x3

y y2 y3

1 1 1
U ,

D25Ux1 x x3

y1 y y3

1 1 1
U , D35Ux1 x2 x

y1 y2 y

1 1 1
U .

Note that the weightsai can be interpreted geometrically a
area ratiosai5Ai /A, whereA is the area of the triangle
P1P2P3 andAi is the area of the subtriangle obtained wh

Fig. 1 Triangle P1P2P3 and the interpolation point P inside it. By
connecting point P to each of the vertices P1 , P2 , and P3 we obtain
a subdivision of the triangle into three subtriangles, PP2P3 , P1PP3

and P1P2P. The distances hi and di are shown for i51.
160 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
the interpolation pointP is substituted for the vertexPi ~see
Fig. 1!: A5area(P1P2P3), A15area(PP2P3), A2

5area(P1PP3), A35area(P1P2P) ~Ref. 15, p. 24!. More-
over, since both of the triangles in each ratioai have the
same basis,ai equals also the ratio between the heights
these triangles. In other words, ifhi is the distance of ver-
tex Pi from the opposite triangle edge anddi is the distance
of the interpolation pointP from that edge, thenai

5di /hi .
It is important to note that in spite of the form differenc

between the results obtained by Eq.~1! and those obtained
by barycentric coordinates@Eqs. ~3! and ~5!#, in fact, the
linear interpolation values obtained by both methods
identical: since the bivariate linear polynomial passi
through three distinct given points in space isunique.

Let us proceed now to the 3D case. Here, the scatte
points (xi ,yi ,zi) are located in the 3D space, and the
values can no longer be visualized along an additional
mension. A useful intuition for illustrating this case cou
be the temperaturet i measured at each of the scatter
points (xi ,yi ,zi) in the 3D space. In this case the scatter
points (xi ,yi ,zi) are first tetrahedrized, and then a line
interpolation is applied within each tetrahedron.

Given the four verticesP1 ,P2 ,P3 ,P4 of any such tetra-
hedron, namely: the locations (xi ,yi ,zi) of its four vertices
and their valuest i , the valuet at any arbitrary pointP
located atx5(x,y,z) within this tetrahedron can be foun
by writing the trivariate linear interpolation polynomial

t5ax1by1cz1d ~6!

and finding its coefficientsa,b,c,dby solving the linear sys-
tem of equations:

t15ax11by11cz11d,

t25ax21by21cz21d,

t35ax31by31cz31d,

t45ax41by41cz41d.

Alternatively, the valuet at any pointP located atx
5(x,y,z) within the tetrahedron can be found bybarycen-
tric interpolation as a weighted average of the valuest i :

t5a1t11a2t21a3t31a4t4 , ~7!

where the weightsa1 , a2 , a3 , a4 are thebarycentric co-
ordinates of the point P in the tetrahedronP1P2P3P4

whose vertice locations arex1 , . . . ,x4 , namely

x5a1x11a2x21a3x31a4x4 ~8!

with a11a21a31a451. Like in the 2D case, it can be
shown thata1 , a2 , a3 , a4 are given by
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Scattered data interpolation methods . . .
S a1

a2

a3

a4

D 5S x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

D 21S x
y
z
1
D ~9!

or, more explicitly, by

a15D1 /D, a25D2 /D, a35D3 /D, a45D4 /D,
~10!

whereD, D1 , D2 , D3 , andD4 are straightforward gener
alizations of their 2D counterparts given in Eq.~5!.

Note that the weightsai can be interpreted geometrical
as volume ratiosai5Vi /V, where V is the volume
of the tetrahedronP1P2P3P4 and Vi is the volume of
the subtetrahedron obtained when the interpolat
point P is substituted for the vertexPi ~see Fig. 2!:
V5volume(P1P2P3P4), V15volume(PP2P3P4), V2

5volume(P1PP3P4), V35volume(P1P2PP4), and V4

5volume(P1P2P3P). Moreover, since both of the tetrahe
dra in each ratioai have the same basis,ai equals also the

Fig. 2 Tetrahedron P1P2P3P4 and the interpolation point P inside it.
By connecting point P to each of the vertices P1 , P2 , P3 , and P4
we obtain a subdivision of the tetrahedron into four subtetrahedra,
PP2P3P4 , P1PP3P4 , P1P2PP4 , and P1P2P3P. The distances hi

and di are shown for i51.
ratio between the heights of these tetrahedra. In ot
words, if hi is the distance of vertexPi from the opposite
tetrahedron face anddi is the distance of the interpolatio
point P from that face, thenai5di /hi .

Once again, in spite of the form difference between
results obtained by Eq.~6! and those obtained by barycen
tric coordinates@Eqs.~7! and~10!#, the linear interpolation
is unique, and the interpolated values obtained by the
ferent formulas are identical.

2.3 Linear Multivalued Triangular (or Tetrahedral)
Interpolation

Equations~6! or ~7! represent asingle-valuedtetrahedral
interpolation. For a three-valued case such as theRGB to
XYZconversion, where to each point in the scattered po
set within theRGBspace there correspond three values
the XYZspace, one may use Eq.~7! three times—once for
each of theXYZ coordinates~using each time the sam
weightsai!.

However, the linear three-valued tetrahedral interpo
tion can be performed also in a different way, which is n
based on barycentric coordinates, and which can be
pressed in an elegant and compact matrix form. Let us
present this method in the 2D case, i.e., for the interpola
of a 2D mappingf:R2→R2 from the x,y plane into the
destinationu, v plane.

Suppose that the pointP for which we want to estimate
the value of the mapping is situated atx5(x,y) inside the
triangle formed by the pointsP1 , P2 , andP3 of our known
data set, that are located, respectively, atx15(x1 ,y1), x2

5(x2 ,y2), andx35(x3 ,y3) ~see Fig. 3; note that through
out this discussion we do not distinguish between pointsPi

and the corresponding vectorsxi that emanate from the
origin and point toPi!. Let us express pointx in terms of
the affine coordinate system that is generated by the vec
x2–x1 andx3–x1 , the vectors which define the two triang
edges emanating from pointx1 . We have, therefore~see
Fig. 3!:

x5x11~x22x1!a21~x32x1!a3 , ~11!

where a2 ,a3 are the coordinates of pointx in this new
Fig. 3 Triangle P1P2P3 in the x,y plane is mapped by the 2D transformation f:R2→R2 into triangle
Q1Q2Q3 in the u,v plane. The point P is mapped by linear triangular interpolation into the destination
point Q. The coordinates of points P1 , P2 , P3 and P are x15(x1 ,y1), x25(x2 ,y2), x35(x3 ,y3), and
x5(x,y), and the coordinates of points Q1 , Q2 , Q3 and Q are u15(u1 ,v1), u25(u2 ,v2), u3

5(u3 ,v3), and u5(u,v).
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 161
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Fig. 4 Tetrahedron P1P2P3P4 in the x,y,z space is mapped by the 3D transformation f:R3→R3 into
tetrahedron Q1Q2Q3Q4 in the u,v,w space. The point P is mapped by linear tetrahedral interpolation
into the destination point Q The coordinates of points P1 , P2 , P3 , P4 , and P are x15(x1 ,y1 ,z1),
x25(x2 ,y2 ,z2), x35(x3 ,y3 ,z3), x45(x4 ,y4 ,z4), and x5(x,y,z), and the coordinates of points Q1 ,
Q2 , Q3 , Q4 , and Q are u15(u1 ,v1 ,w1), u25(u2 ,v2 ,w2), u35(u3 ,v3 ,w3), u45(u4 ,v4 ,w4), and u
5(u,v,w).
in
la-

he

ng

se,
by a

the
of

the
-

coordinate system~note that 0<a2 ,a3<1 anda21a3<1,
since pointx is situated inside the triangle!. In other words:

S x
yD5S x1

y1
D1S x22x1

y22y1
Da21S x32x1

y32y1
Da3

or

x5x11~x22x1!a21~x32x1!a3 ,

y5y11~y22y1!a21~y32y1!a3 .

This can be reformulated as

S x
yD5S x1

y1
D1S x22x1 x32x1

y22y1 y32y1
D S a2

a3
D ,

and hence, we obtain

S a2

a3
D5S x22x1 x32x1

y22y1 y32y1
D 21S x2x1

y2y1
D . ~12!

Let now u15(u1 ,v1), u25(u2 ,v2), and u35(u3 ,v3)
be the known images under the mappingf of points x1

5(x1 ,y1), x25(x2 ,y2), andx35(x3 ,y3) in the destination
u, v plane. These points define the image of our triangle
the destination plane. Using linear triangulation interpo
tion, our interpolation pointx5(x,y) is mapped to the
point u5(u,v), inside the destination triangle, that has t
same relative coordinatesa2 ,a3 with respect to the new
coordinate system defined by the destination triangle~see
Fig. 3!. We have, therefore, in analogy with Eq.~11!:

u5u11~u22u1!a21~u32u1!a3 ~13!

or

u5u11~u22u1!a21~u32u1!a3 ,

v5v11~v22v1!a21~v32v1!a3 .
ctronic Imaging / April 2002 / Vol. 11(2)
This can be reformulated as

S u
v D5S u1

v1
D1S u22u1 u32u1

v22v1 v32v1
D S a2

a3
D .

Inserting here the values ofa2 anda3 from Eq. ~12! we
obtain, therefore

S u
v D5S u1

v1
D1S u22u1 u32u1

v22v1 v32v1
D

3S x22x1 x32x1

y22y1 y32y1
D 21S x2x1

y2y1
D . ~14!

This is the interpolated imageu of our point x in the
destinationu, v plane.

The 3D case, i.e., the interpolation of a 3D mappi
f:R3→R3 from thex,y,zspace into the destinationu, v, w
space, is a straightforward generalization of the 2D ca
where the source and destination triangles are replaced
source and a destination tetrahedra~see Fig. 4!. The 3D
tetrahedral linear interpolation is defined, therefore, by
following pair of equations, which are the 3D analogs
Eqs.~11! and ~13!:

x5x11~x22x1!a21~x32x1!a31~x42x1!a4 , ~15!

u5u11~u22u1!a21~u32u1!a31~u42u1!a4 , ~16!

wherexi are four points of the given data set that define
tetrahedron in the sourcex,y,zspace in which the interpo
lation point x is located, andui are their known images
under the mappingf in the destinationu, v, w space~see
Fig. 4!. The interpolated imageu5(u,v,w) of the pointx
5(x,y,z) is given, therefore, by the 3D analog of Eq.~14!:
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Scattered data interpolation methods . . .
S u
v
w
D 5S u1

v1

w1

D 1S u22u1 u32u1 u42u1

v22v1 v32v1 v42v1

w22w1 w32w1 w42w1

D
3S x22x1 x32x1 x42x1

y22y1 y32y1 y42y1

z22z1 z32z1 z42z2

D 21S x2x1

y2y1

z2z1

D . ~17!

This is the requested interpolated valueu in the destina-
tion space.

This three-valued variant of tetrahedral linear interpo
tion method can be found in literature in Refs. 18 and 1

Evaluation: The linear interpolation methods we hav
seen earlier are relatively simple to implement~provided
that good triangulation or tetrahedrization routines
available!, and they run quite quickly. However, they suff
from a few considerable drawbacks.

~1! Although piecewise linear interpolation guarantee
continuous result, it introduces derivative discontinuities
the boundaries between adjacent triangles~or tetrahedra!.
In other words, the resulting piecewise interpolating fun
tion is C0 continuous but notC1 continuous~smooth!. This
may lead to some objectionable, clearly visible artifa
such as a faceted appearance~Ref. 20, p. 735!.

~2! Since a triangulation~or tetrahedrization! only cov-
ers the convex hull of the scattered point set, extrapola
beyond the convex hull—whenever required—is not p
sible with the linear interpolation scheme@see an illustrated
example in~Ref. 19, pp. 319–320!#.

~3! Since triangulation~or tetrahedrization! of a scat-
tered point set is not unique, a different triangulation w
result in different interpolated values at each intermed
point.

~4! The use of the Delaunay method guarantees an o
mal triangulation~or tetrahedrization! in the sense that we
have seen earlier. However, this triangulation~tetrahedriza-
tion! is not necessarily best suited for all applications.
some cases it is desired that the triangulation uses a
defined set of edges; in such particular cases aconstrained
triangulation may be desirable~Ref. 21, pp. 230–234!. In
other cases, in order to best suit some known characteri
or requirements of the underlying phenomenon, the b
suited triangulation~or tetrahedrization! may depend on the
actual values of the data set points, and not only on th
locations. Overviews ondata-dependent triangulationsor
data-dependent tetrahedrizationscan be found, respec
tively, in Ref. 10, pp. 453–467; Ref. 14, p. 205; or in Re
10, pp. 494–502.

~5! Finally, as already mentioned, the triangulation~or
tetrahedrization! of a scattered point set gives theconvex
hull of the given data set. In cases where the domain is
convex ~for example, the color gamut of certain device!
the triangulation may yield, therefore, triangles~or tetrahe-
dra! that are completely or partially outside the doma
where interpolations may give meaningless results. In s
cases it may be desired to only triangulate the interior
the data set boundary, and not its full convex hull. Reci
for doing so are given in Ref. 22, p. 168; Ref. 17, p.
Note, however, that the important relationship between
‘‘maxmin’’ angle criterion and the Delaunay triangulatio
~see Sec. 2.1! is only guaranteed for the convex case~Ref.
i-

-

s
t

r

t

h

10, p. 444!; also, the search algorithm presented at the e
of Sec. 2.1 may not work in nonconvex cases.

2.4 The Clough–Tocher Method: A Cubic Triangular
Interpolation

As we have seen earlier, one of the main drawbacks
piecewise linear interpolation schemes is that they are o
C0 continuous but notC1 continuous~i.e., they are not
smooth across the boundaries between triangles or tetr
dra!. C1 continuity obviously requires piecewise interpol
tion schemes based on polynomials of higher order tha
For example, in the 2D case the planar triangular surfa
of the linear interpolation should be replaced by curv
triangular surfaces, whose slopes to both sides of e
boundary can be adjusted and made equal.

In order to guaranteeC1 continuity across boundaries
we need to have more information at each of the trian
vertices or edges. Typically, we need to know at each po
in addition to its location and its value, its gradient~i.e., in
the case of a 2D scattered point set, thex- and y-partial
derivatives, or the tangent plane, or equivalently, its norm
vector!. However, since the assumption of given gradie
is not always realistic, in most cases they will have to
estimated from the given point values~Ref. 15, p. 301!.
This can be done by considering the known values not o
in the vertices of the triangle in question, but also in
neighbors; a few possible methods for estimating the g
dients, both local and global methods, are discussed
compared in Ref. 23; Ref. 22, pp. 173–176; and Ref.
pp. 8–9. Some of these gradient estimation methods ca
considered as an additional preprocessing step, to be
formed immediately after the triangulation step.

Several different interpolation methods have been
vised along these lines~see, for example, the minimum
norm network method in Ref. 10, p. 475 and Ref. 22,
170; the Powell–Sabin method, Ref. 15, p. 305; and a s
vey of several methods in Ref. 24, pp. 50–52!. We will
describe here one of the most popular and widely u
methods, the Clough–Tocher method. This method w
originally designed for the 2D case, as a tool for the fin
element method~Ref. 25, p. 84; Ref. 26, p. 19!, but it was
later extended also to the generalND case.27 We will de-
scribe it here for the basic 2D case.

Like piecewise linear interpolation, the Clough–Toch
interpolation method, too, is based on a triangulation of
given scattered point set. However, it significantly im
proves on the linear triangular interpolation methods in t
it uses acubic interpolation scheme within each triang
using bivariate cubic polynomials.

In order to create a piecewiseC1-continuous interpola-
tion surface, the Clough–Tocher method requires for e
triangle the value and the gradient~i.e., two partial deriva-
tives! at each of the three vertices, as well as the norm
derivative at the midpoint of each of the three edges
order to ensure that the normal slope matches across
angle boundaries~Ref. 25, p. 84!. The aim is to impose
these 12 given or estimated constraints~three per vertex
1one per edge! on the cubic polynomial defined on ou
triangle. However, this is not possible since a bivariate
bic polynomial is determined by only ten coefficients
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 163
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Amidror
p~x,y!5a1x31a2x2y1a3xy21a4y31a5x2

1a6xy1a7y21a8x1a9y1a10

and can therefore only satisfy ten constraints.
Nevertheless, it turns out that we can still achieve o

goal by splitting each triangle of the original triangulatio
into threeminitrianglesby joining each of the three vertice
to the centroid~see Fig. 5!,† and defining a bivariate cubi
polynomial on each of the three minitriangles. This co
struction gives us more degrees of freedom for satisfy
our constraints; we will see later how our constraints c
now be imposed, and what is their geometric significan

The key idea behind the Clough–Tocher method
therefore, to split each cubic polynomial patch into thr
cubic polynomial subpatches in order to satisfy t
C1-continuity constraints with neighbors. Specifically,
cubic Bézier patchis defined over each minitriangle.

The triangular Be´zier patch is a 2D generalization of th
Bézier curve. While the most straightforward 2D genera
zation of the Be´zier curve consists of rectangular Be´zier
patches~see Chap. 15 in Ref. 15!, a more useful form for
our needs is the generalization of the Be´zier curve into
triangular Bézier patches~Ref. 28; Ref. 15, Chap. 17!.
These patches are defined over a triangle with known
tices using barycentric coordinates; the generalization
Bézier tetrahedra in the 3D case is straightforward. T
triangular Bézier patch is defined in terms of Bernste
polynomials ~Ref. 15, pp. 44, 283!, hence, the name
Bernstein–Be´zier polynomial. Anmth degree Bernstein–
Bézier polynomial defined over a triangle is of the for
~Ref. 26, p. 19!††

p~u,v,w!5 (
0< i , j ,k<m
i 1 j 1k5m

m!

i ! j !k!
bi , j ,ku

iv jwk,

where u, v, w are the barycentric coordinates within th
triangle P1P2P3 ; the coefficientsbi , j ,k are called the
Bézier ordinatesof p. We will be interested here only in
cubic Bernstein–Be´zier polynomials ~i.e., with m53!,
whose form is therefore

†Note that any other interior point other than the centroid would also
the centroid is only chosen for symmetry reasons~Ref. 28, p. 108!.

††Note that although the polynomialp~u,v,w! looks trivariate, it is in fact
only bivariate, since barycentric coordinates impose thatu1v1w51.

Fig. 5 In the Clough–Tocher method each triangle P1P2P3 from the
original triangulation is split into three minitriangles.
164 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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p~u,v,w!5b3,0,0u
313b2,1,0u

2v13b1,2,0uv21b0,3,0v
3

13b0,2,1v
2w13b0,1,2vw21b0,0,3w

3

13b1,0,2uw213b2,0,1u
2w16b1,1,1uvw ~18!

~see Fig. 6!. Note that these cubic polynomials have exac
ten coefficientsbi , j ,k : b3,0,0, b0,3,0, and b0,0,3 are the
known values at the triangle vertices, and the seven o
Bézier ordinates are the 2D analogs of the control points
a Bézier curve@see the one-dimensional~1D! Bézier curve
over each of the three triangle boundaries in the figur#.
Although the control points are not included in our give
scattered point set, and their valuesbi , j ,k are not knowna
priori , we will give them values by imposing constraints o
the cross-boundary derivatives—just as we do in piecew
Bézier curves in order to impose a smooth behavior acr
their segment boundaries. As we have seen above, it t
out that the ten coefficientsbi , j ,k are not sufficient in order
to ensureC1 continuity across the three boundaries of t
triangleP1P2P3 since they do not give us enough degre
of freedom as we would wish. Hence the idea of splitti
each of the original triangles of our triangulation into thr
minitriangles, and defining a cubic Be´zier patch over each
of these minitriangles. In order to avoid confusion betwe
triangles and minitriangles we will use for minitriangles
notation with primes, e.g.,P18P28P38 .

Let us see now the geometric interpretation of the c
straints that we need to impose in order to ensureC1 con-
tinuity everywhere on the piecewise interpolating surfa
As we can see in Figs. 6–8, the Be´zier ordinates form
within each minitriangle a triangular net, that divides ea
minitriangle edge into three equal segments; this triangu
net is known as thecontrol net. We will call the nine small
triangles that are defined by the control net within ea
minitriangle microtriangles. Note that the microtriangles
are not part of the Be´zier patch itself, and they only belon
to its control net. The curved Be´zier patch itself is located
beneath the triangulated surface defined by the control
~see Fig. 6!, just as a 1D Be´zier curve lies below its contro
polygon. Now, the constraints we impose in order to ens

Fig. 6 A cubic Bézier patch over minitriangle P18P28P38 . The curved
surface of the patch lies beneath the triangulated surface defined by
the control points bi,j,k . The partition of the floor triangle P18P28P38 is
the orthogonal projection of the triangulated surface onto the x,y
plane. (Adapted from Ref. 26, p. 20, with permission from Elsevier
Science.)
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Fig. 7 The constraint imposed by the Clough–Tocher method in order to ensure C1 continuity: every
two neighboring microtriangles (shown shaded) that lie to both sides of a minitriangle edge must be
coplanar. (Adapted from Ref. 26, p. 20, with permission from Elsevier Science.)
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C1 continuity can be geometrically interpreted as a 2D g
eralization of the constraints used in the 1D case to imp
a smooth behavior across segment boundaries in a p
wise Bézier curve: Just as in the 1D case the two cont
line segments to both sides of each boundary must be
linear, so in our 2D case every two neighboring microt
angles that lie to both sides of a minitriangle edge must
coplanar~note that there are three pairs of such copla
microtriangles along each minitriangle edge!. This imposes
also that all neighboring microtriangles that surround a v

Fig. 8 Top view of one triangle of the original triangulation, showing
its three minitriangles and its 19 Bézier ordinates (control points).
Each of the three minitriangles consists of nine microtriangles;
crossboundary coplanar microtriangles are shown shaded. Note
that all neighboring microtriangles that surround a common vertex of
a minitriangle are coplanar: If the vertex in question is not a point of
the triangulation (as in the center of this figure) the number of micro-
triangles surrounding it is 3, but if the vertex is a point of the trian-
gulation, the number of surrounding triangles may be larger.
(Adapted from Ref. 26, p. 21, with permission from Elsevier Sci-
ence.)
e
e-

l-

r

tex of a minitriangle are coplanar. This is illustrated in Fig
7–9, where each shaded pair of microtriangles is copla

The planes on which lie the microtriangles are det
mined by the values of the Be´zier ordinates in the three
minitriangles that make up the triangleP1P2P3 ~see Fig.
9!. The locations of the ten Be´zier ordinates within each
minitriangle are fully determined by the control net: the
are located at the minitriangle vertices, at the 1/3 and
points of each edge, and at the center of the minitrian
The valuesof these Be´zier ordinates are determined from
our given~or estimated! constraints—the value and grad
ent at each vertexPi and the normal slope at the edg
midpoints, as follows~Ref. 28, p. 108!: The values of the
Bézier ordinates denoted in Fig. 8 by ‘‘d’’ are determined
from the data~value and gradient! at the triangle vertices
P1 , P2 , and P3 ; for example, the values of the Be´zier
ordinates located at the13 and 2

3 points of the edgeP1P2 are
determined by the tangent planes atP1 and P2 , respec-
tively. The three ordinates denoted by ‘‘m’’ can be then
determined from the estimated crossboundary deriva
~the normal derivative at the midpoint of each of the thr
edges of the triangleP1P2P3!: each of them is located on
the plane defined by a microtriangle ‘‘d,d,m’’ that is de-
termined by two already known ordinatesd and by the
cross-boundary derivative. Then, the ordinates denoted

Fig. 9 A 3D view of Fig. 8. (Adapted from Ref. 24, p. 51, with per-
mission from Elsevier Science.)
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 165
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Amidror
‘‘ s’’ can be determined by the three adjacent ordinatesd
and m that have already been calculated~since the two
adjacent ‘‘m, d, s’’ microtriangles must be coplanar!. And
finally, the Bézier ordinate at the central point ‘‘j’’ is de-
termined by its three surroundings points so that the three
central microtriangles be coplanar. Note that the fact t
makes this construction possible is that we do not nee
impose restrictions at the third vertex of each minitrian
~the center point!: as we have just seen, the value and
slope there are automatically derived from the vertex a
edge-midpoint data of the triangleP1P2P3 . Hence, the
subdivided surface now has enough degrees of freedo
allow C1 continuity of the overall interpolant~Ref. 29, p.
53; Ref. 26, p. 22!.

Once we have understood the logic behind the Cloug
Tocher interpolation method, we can proceed to pract
computation issues. The precise formulas for calculat
the Bézier ordinatesbi , j ,k that satisfy our constraints ar
given in Ref. 15, pp. 305–306; Ref. 26, pp. 22–23; Ref.
pp. 108–109; and Ref. 29, pp. 52–54. Once the val
bi , j ,k are known, we can insert them back into Eq.~18! in
order to obtain the specific triangular Be´zier subpatch over
the minitriangle in question; three such subpatches
needed to cover the triangleP1P2P3 of our original trian-
gulation. By proceeding in a similar way for all the oth
triangles, we obtain aC1-continuous piecewise interpola
ing surface that is defined over the triangulation of o
given scattered point set.

There exist several variants and generalizations of
Clough–Tocher method. A 3D~or ratherND! version of the
method is described in Ref. 27; Ref. 28, pp. 116–117
variant of the Clough–Tocher method which is closer toC2

continuity has been proposed in Ref. 26. Another varian
the Clough–Tocher method has been proposed for cas
which it is known that the underlying function has disco
tinuities ~or discontinuous derivatives! along certain
boundaries.30

Evaluation: Since the Clough–Tocher interpolatio
method is local, it has the advantage of speed: even l
scatter point sets can be interpolated quite rapidly. A
like in the linear triangulation-based interpolation metho
a correction in any of the given data points only influenc
the interpolated values within the triangles~or tetrahedra!
that have this data point as a vertex@see Fig. 5~a! in Ref.
26#. The Clough–Tocher method gives a smooth~C1 con-
tinuous! interpolation surface~or volume!, which brings out
local trends in the data set quite accurately. However, it
depends on the quality of the underlying triangulation~or
tetrahedrization!: see points~4!–~5! at the end of Sec. 2.3

2.5 Triangle Based Blending

The last triangulation-based method for scattered data
terpolation that we describe here is the triangle ba
blending technique.31 Once again, we need first to obtain
triangulation of our given scattered point set. Then,
each point (xi ,yi) of the scattered point set we calculate
corresponding quadratic polynomial interpolant

z5 f̂ ~x,y!5a1x21a2xy1a3y21a4x1a5y1a6

that passes through the point (xi ,yi) itself and its five near-
166 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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est neighbors within the scattered point set.@As we have
seen following Eq.~1!, this can be simply done by insertin
thex,y,zvalues of each of the six points into the polynom
equation, in order to obtain a linear system of six equatio
for the six coefficientsa1 , . . . ,a6 .#

Now, in order to find the interpolated valuez at an arbi-
trary point ~x,y! we have to find first in which triangle o
the triangulation this point is located. Then, the valuez is
determined as the weighted average of the values at
point ~x,y! of the three interpolating polynomials that co
respond to the three triangle vertices~Ref. 31, p. 180!:

z5w1 f̂ 1~x,y!1w2 f̂ 2~x,y!1w3 f̂ 3~x,y!.

To ensure a continuous transition from one triangle
the next we need only ensure that each weightwi is iden-
tically zero along the edge of the triangle opposite to thei th
vertex. This can be achieved by makingwi proportional to
the kth power of the distancedi of the point ~x,y! to the
edge, for somek, typically 3. The weightswi are then
scaled to makedi51 at the vertexi. We have, therefore

wi5di
k/~d1

k1d2
k1d3

k!.

Other variants of this method can also guaranteeC1 con-
tinuity across triangle boundaries~Ref. 31, p. 384; Ref. 6,
pp. 187–188!. The extension of such methods to 3D
obtained by considering tetrahedra instead of triangles.

Evaluation: Triangle based blending methods are ve
fast, since they are local. Another advantage of these m
ods is that they allow also extrapolation beyond the con
hull of the given data points, i.e., outside the region cove
by the triangles. To do this one can partition the exterior
this region by extending lines outwards from the da
points on the boundary, for example by bisecting the ex
rior angles at the corners. The extrapolated values in e
such semi-infinite quadrilateral region may be then fou
as a weighted average of the functionsf̂ i(x,y) of the two
boundary points~see Fig. 4 in Ref. 31, p. 179!.

The main disadvantage of triangle based blending me
ods, like in all triangulation based methods, is the need
triangulate~or to tetrahedrize! the given scattered point se
as a preprocessing step before interpolation can be sta

3 Inverse Distance Weighted Methods

One of the most commonly used techniques for interpo
tion of scattered points is inverse distance weighted in
polation. Inverse distance weighted methods are a
known as ‘‘Shepard methods’’ after the name of the fi
contributor in this field.32 These methods are basically glo
bal, i.e., they use all of the data points to calculate e
interpolated value. Their basic assumption is that the in
polated values should be influenced more by nearby po
and less by the more distant points. The interpolation va
at each new pointP is a weighted average of the values
the scattered points, and the weight assigned to each sc
point diminishes as the distance from the interpolat
point to the scatter point increases. As we will see, ma
different ways exist for choosing these weights.

Let us start, as usual, with the 2D case. Suppose we
given irregularly distributed pointsPi in the plane, whose
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Scattered data interpolation methods . . .
locations and values are, respectively, (xi ,yi) and zi . We
wish to construct an interpolating functionf̂ (x,y) with
f̂ (xi ,yi)5zi for all i, where the influence of pointPi de-
creases with increasing distance between~x,y! and (xi ,yi).
Shepard’s original proposal can be formulated as
weighted average of the valueszi :

f̂ ~x,y!5(
i 51

n

wi~x,y!zi5(
i 51

n
hi~x,y!

( i 51
n hi~x,y!

zi ~19!

with weights:

wi~x,y!5
hi~x,y!

( i 51
n hi~x,y!

0<wi~x,y!<1, (
i 51

n

wi~x,y!51

where, hi~x,y!5
1

@di~x,y!#k ~20!

and wheredi(x,y) is the Euclidean distance between t
points ~x,y! and (xi ,yi): di(x,y)5A(x2xi)

21(y2yi)
2,

and k>1 is a chosen exponent. Note thathi(x,y) is infi-
nitely large at the data point (xi ,yi) itself. However, it can
be shown that when~x,y! approaches a data point (xi ,yi),
f̂ (x,y) tends to the valuezi ; therefore, by choosing
f̂ (xi ,yi)5zi for all the given data points it is guarantee
that the interpolating functionf̂ (x,y) is continuous~Ref.
32, p. 518!. Another favorable property off̂ (x,y) is that it
is bounded above by maxzi and below by minzi ~Ref. 33,
pp. 255, 257!.

It is interesting to note that for any fixed pointP located
at (x,y), the denominator in Eq.~19! can be considered a
a normalization constant so that the magnitude off̂ (x,y) is
directly proportional to the valuezi and inversely propor-
tional to thekth power of the distance fromP to Pi . In this
sense, the formula is analogous to a ‘‘1/r k gravitation
law’’ ~Ref. 33, p. 256!.

The simplest interpolation functionf̂ (x,y) is obtained
by choosing in Eq.~20! k51, i.e.,

hi~x,y!5
1

A~x2xi !
21~y2yi !

2
.

However, a disadvantage of this function is that
though it is continuous, it has slope discontinuities in t
form of a cone at each of the data points (xi ,yi) @see Fig.
10~a! for the equivalent 1D case#. This can be cured by
taking k52, i.e., the square of the distances

hi~x,y!5
1

~x2xi !
21~y2yi !

2 .

However, this allows too much influence by far aw
points~Ref. 6, p. 186!. Furthermore, it turns out that such
surface becomes flat near each of the data points (xi ,yi),
since its partial derivatives there vanish~Ref. 33, pp. 258–
260!. In fact, as shown in Figs. 10–11, the higher the va
of the exponentk, the more pronounced this flatness b
comes, yielding an effect of ‘‘terracing;’’ and ask→`, the
interpolating function f̂ (x,y) approaches a step functio
~similar to a 2D histogram! with the valuesf (xi ,yi)5zi .
This means that for large values ofk the practical influence
of the i th point is essentially limited to a certain ‘‘region o
influence’’ around it. Moreover, as clearly shown by Fi
11~c!, whenk→` the regions of influence of the pointsPi
are clearly bounded by straight line segments. Note tha
individual point Pi may be given a larger region of influ
ence than the others by simply choosing a higher valuek
for its hi(x,y) in Eq. ~20!. This is graphically illustrated for
the 1D case in Fig. 10~d!, and for the 2D case in Fig. 11~b!.

The objectionable artifact due to the flatness off (x,y)
around the data points (xi ,yi) can be cured by imposing a
each data point its real partial derivatives instead of
zero partial derivatives inherent to the original metho
This can be done by replacing the valueszi in Eq. ~19! by
tangent planes

g~x,y!5zi1ai~x2xi !1bi~y2yi !, ~21!

whereai and bi are thex-and y-partial derivatives of the
underlying functionz(x,y) at the point (xi ,yi). The influ-
ence of this correction on the resulting interpolation fun
tion f̂ (x,y) is graphically illustrated in Fig. 12. Note, how
ever, that in most cases the partial derivatives at the d
points are not given, and they have to be estimated. W
for estimating them are given in Ref. 33, pp. 263–264; R

Fig. 10 A simple illustration of the behavior of a univariate Shepard
interpolation function based on the 1D counterparts of Eqs. (19) and
(20), for various values of the exponent k. (Adapted from Ref. 33, p.
259, with permission from the American Mathematical Society.) The
values of k used in figures (a), (b), (c), and (d) are as follows (from
left to right in each figure):
Figure k1 k2 k3 k4 k5

~a! 1 1 1 1 1
~b! 2 2 2 2 2
~c! 10 10 10 10 10
~d! 2 1 0.5 15 2
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 167



Amidror

168 / Journal of Ele
Fig. 11 A simple illustration of the behavior of a bivariate Shepard interpolation function based on Eqs.
(19) and (20) for various values of the exponent k. (Adapted from Ref. 33, p. 260, with permission from
the American Mathematical Society.) The values of k used in figures (a), (b), and (c) are as follows:
Figure k1 k2 k3 k4 k5

~a! 2 2 2 2 2
~b! 10 1 5 2 3
~c! 20 20 20 20 20
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32, pp. 520–521; Ref. 7, Sec. 11; and Ref. 34, Sec. 2.4;
also the derivative estimation problem in the Cloug
Tocher method~Sec. 2.4 earlier!.

More generally, in order to increase the continuity of t
resulting function one may replace the valueszi in Eq. ~19!
by Liz(x,y), whereLiz(x,y) is a local approximation to
the underlying functionz(x,y) at the ‘‘node’’ (xi ,yi), such
thatLiz(xi ,yi)5zi ~Ref. 35, pp. 140–141; Ref. 6, pp. 185
186!. SuchLiz(x,y) are called nodal functions. Other ge
eralizations of the Shepard methods can be found in Re
p. 186.

Finally, because the inverse distance weighted meth
are global, and hence, their computation is too slow
large point sets, several ways have been suggested to
calize’’ them. For example, it has been suggested~Ref. 6, p.
185! to use

hi~x,y!5H @R2di~x,y!#1

Rdi~x,y! J 2

, ~22!
ctronic Imaging / April 2002 / Vol. 11(2)
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-

where

@R2di~x,y!#15H R2di~x,y! if di~x,y!,R

0 if di~x,y!>R

and wheredi(x,y) denotes the Euclidean distance betwe
~x,y! and (xi ,yi), andR is a radius of influence about th
node (xi ,yi). This means that data at (xi ,yi) only influ-
ences interpolated values at points within this radius. It c
be shown that the resulting interpolantf̂ (x,y) has continu-
ous first partial derivatives~Ref. 35, pp. 140–141!, so that
it is C1 continuous.

Evaluation: Shepard methods suffer from some pro
lems inherent to distance-based schemes. In partic
since they are only sensitive to the distance they tend
overweight data clusters. Moreover, because they
distance-based schemes each data point has a radially
metric influence and, hence, data features such as pla
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Fig. 12 (a) The Shepard interpolation function f̂(x,y) of Eqs. (19) and (20) with k52 for all five points.
The ‘‘flat spots’’ artifact caused by vanishing first partial derivatives is quite evident. (b) The result of
imposing the estimated partial derivatives at each of the five given points. The improvement obtained
by this method with respect to (a) is clearly visible. (Adapted from Ref. 33, p. 263, with permission from
the American Mathematical Society.)
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ridges, and valleys are obscured by this enforced isotr
around sample points~Ref. 34, p. 116!. But although Shep-
ard methods are less efficient and less accurate than s
triangulation-based methods, they are among most via
candidates for extension to three or more independent v
ables, because the triangulation-based methods have gr
complexity and storage requirements associated with t
extension~Ref. 35, p. 140!. Also, Shepard methods hav
the ability to extrapolate naturally outside the convex h
of the given data points~Ref. 32, p. 521!. In fact, it has
been shown that for any choice of equal exponentsn>1
for the hi(x,y) in Eq. ~19!, as the interpolation pointP
recedes infinitely from the cluster of the given pointsPi ,
f̂ (x,y) approaches the average of the valueszi ~Ref. 33, pp.
257; 261–262!. This is clearly illustrated in Fig. 13.

The performance of Shepard methods is very depen
on an appropriate weight functionwi(x,y) ~Ref. 6, p. 186!.
It is instructive to see the list of shortcomings of pure
verse distance weighting as mentioned in Shepard’s o
nal paper~Ref. 32, pp. 518–519!, and the remedies he sug
gests for each of them in his weight functions~Ref. 32, pp.
519–521!. The weight function of Eq.~22! is reported to
have an accuracy comparable to other local methods~Ref.
35, p. 139! and is therefore a good starting point, provid
that the parameterR can be well chosen for the given sca
tered point set. See Ref. 8, Sec. 4.1 for an available im
mentation of a modified Shepard method, including b
2D and 3D versions.

4 Radial Basis Function Methods

Radial basis function methods are another example of
bal interpolation methods for scattered points. The ini
ideas, dating from the late 1960’s, are due to Hardy.36 Ba-
sically, these methods can be characterized as follows:
each point (xi ,yi) of the data set simply choose some fun
y
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-

r

Fig. 13 An illustration of the behavior of a bivariate Shepard inter-
polation function based on Eqs. (19) and (20) for various values of
the exponent k. (Adapted from Ref. 33, p. 262, with permission from
the American Mathematical Society.) This figure clearly illustrates
that the partial derivatives at each point Pi are zero. Since the figure
is plotted with large margins around the given points, it also shows
the asymptotic behavior of the interpolating function f̂(x,y) away
from the given points: clearly, f̂(x,y) tends in all directions to the
average of the values zi . The point locations (xi ,yi), their corre-
sponding values zi and the values of k used for each of them are as
follows:

i 1 2 3 4 5

(xi ,yi) ~0,0! ~1,1! ~1.2,0.2! ~0,0.5! ~1,0.5!

zi 4 0 3 1 1

ki 2.2 2.5 3 4 4
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 169
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tion hi(x,y), and then determine coefficientsai so that
f̂ (x,y)5S iaihi(x,y) interpolates the data. However, as w
will see later, appropriate choices of functionshi(x,y) are
not easy to make. For example, polynomial functions giv
very bad interpolating surface with many overshoots a
ripples between the given data points; and even those f
tions that are known to work well are not always easy
justify mathematically. The most useful functionshi(x,y)
are radial functions of one variable,h(r ), so that the basis
function associated with each data point (xi ,yi) is of the
form hi(x,y)5h(di), where di is the distance betwee
~x,y! to (xi ,yi). This explains the name of this metho
family.

In Hardy’s original method, each data point (xi ,yi) is
associated with a quadratic functionhi(x,y)5@(x2xi)

2

1(y2yi)
21c2#1/2, which represents a circular two-she

hyperboloid~or, whenc50, a conic surface! centered at
(xi ,yi). Alternatively, one may associate with each da
point (xi ,yi) a quadratic functionhi(x,y)5@(x2xi)

21(y
2yi)

21c2#, which represents a circular paraboloid surfa
centered at (xi ,yi). The multiquadric surface§ defined by
the sum

z5(
i 51

n

ai@~x2xi !
21~y2yi !

21c2#1/2 ~23!

is, therefore, a shifted sum of circular two-sheet hyper
loids, while the multiquadric surface

z5(
i 51

n

ai@~x2xi !
21~y2yi !

21c2# ~24!

is a shifted sum of circular paraboloids. The coefficientsai
determine the sign and the flatness of each quadratic
in the sum, andc is a small constant value to be specifi
by the user. Other multiquadric surfaces consisting of
perbolic paraboloids, one-sheet hyperboloids, etc., can
also constructed in a similar way.

Now, since we know the location (xi ,yi) and the value
zi for each of then given points, we can insert them int
Eq. ~23! @or Eq. ~24!#, obtaining a set ofn linear equations
for the n unknown coefficientsai :

z15a1@~x12x1!21~y12y1!21c2#1/21...1an@~x12xn!2

1~y12yn!21c2#1/2

]

zn5a1@~xn2x1!21~yn2y1!21c2#1/21...1an@~xn2xn!2

1~yn2yn!21c2#1/2

§The term multiquadric surface means a sum of quadric surfaces. A q
ric ~surface! is the 2D generalization of a conic~curve!: just as a conic
has the implicit equationq(x,y)50, whereq is a quadratic polynomial in
x and y, so a quadric has the implicit equationq(x,y,z)50, whereq is
quadratic inx,y, andz ~Ref. 15, p. 298!.
170 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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or in matrix notation

z5Ma. ~25!

The solution of these equations is given by

a5M 21z.

This calculation may be considered as a preinterpola
stage ~much like the triangulation step in triangulation
based methods!. Once the coefficientsa1 , . . . ,an are
known, Eq. ~23! @or, respectively, Eq.~24!# becomes a
smooth interpolating surface, that gives us the interpola
valuez for any point~x,y!.

This multiquadric surface can be understood geome
cally as a weighted sum of ‘‘hills’’ or ‘‘hollows’’ that are
centered at the point locations (xi ,yi), and whose steepnes
is determined by the weightsai ~see, for example, Fig. 1 in
Ref. 37, p. 165!. Clearly, a weighted sum of such quadra
terms ~two-sheet hyperboloids, paraboloids, etc.! is C`

continuous~Ref. 6, p. 192!; a sum of cones, however, i
only C0 continuous.

Hardy does not conclude which class of quadratic fu
tionshi(x,y) gives the best results, and he suggests that
choice will depend on the nature of the underlying topo
raphy~its smoothness, angularity, etc.! ~Ref. 36, pp. 1907–
1908!. He notes, however, that quadratics other than
cone tend to displace the maxima and minima of the und
lying topography~Ref. 36, p. 1914!. This can be cured by
considering also the partial derivatives~surface tangents! if
we know a certain numberm of points~data points or not!
where the slope of the underlying surface is zero~e.g.,
points that are hilltops or the bottom of a hollow! ~Ref. 36,
p. 1910!. Let us illustrate this, for the sake of simplicity, i
the 1D case. In this case Eq.~23! is reduced to

z5(
i 51

n

ai@~x2xi !
21c2#1/2.

Adding an expression for a polynomial series we obt

z5(
i 51

n

ai@~x2xi !
21c2#1/21(

i 51

m

bix
i . ~26!

By differentiating Eq.~26! and equating the derivative t
zero we have

(
i 51

n

ai@~x2xi !
21c2#21/2~x2xi !1(

i 51

m

ibix
i 2150. ~27!

Now, since we know the locationsxi and the valueszi
for each of then given points, we can insert them into E
~26!, obtaining a set ofn linear equations withn1m un-
knowns,a1 , . . .an ,b1 , . . .bm . Similarly, by inserting the
locationsxi of the m points at which the slope is zero int
Eq. ~27!, we obtain a system ofm equations with the same
n1m unknowns. We have, therefore, a system ofn1m
equations~n coordinate equations andm slope equations!
with n1m unknowns. After the equations are solved f
the unique values ofa1 , . . .an , b1 , . . .bm , these coeffi-

-
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Scattered data interpolation methods . . .
cients are inserted into Eq.~26! to form the required inter-
polation function. The resulting function is a multiquadr
curve ~or surface, in the 2D case! on which an additional
polynomial, normally of a low degree, is added to impo
zero slopes at the desired maxima and minima.

In a further generalization of these methods, the deri
tive conditions can be replaced by other constraints suc
polynomial precision of orderm ~i.e., the ability to repro-
duce exactly any polynomial up to orderm; this may be
important in some fields such as computer aided geome
design or approximation theory!: If we denote byhi(x,y)
5h(di) the basis function associated with each data po
(xi ,yi), and by$qi(x,y)% a basis for the bivariate polyno
mials of degree,m, then the form of the interpolation
function is ~Ref. 8, p. 135!:

z5(
i 51

n

aihi~x,y!1(
i 51

m

biqi~x,y!

and then1m coefficientsai and bi are found by solving
the following n equations:

z15(
i 51

n

aihi~x1 ,y1!1(
i 51

m

biqi~x1 ,y1!

]

zn5(
i 51

n

aihi~xn ,yn!1(
i 51

m

biqi~xn ,yn!

along with the followingm constraints that guarantee pol
nomial precision:

05(
i 51

n

aiq1~xi ,yi !

]

05(
i 51

n

aiqm~xi ,yi !.

It is interesting to note that although radial basis fun
tion methods were known to work well since the la
1960’s, until the 1980’s no mathematical theory existed
them, not even concerning the existence of a solution to
equations in all possible point configurations~Ref. 8, p.
147!. Only in 1986 it has been shown that the system
equations is indeed nonsingular.

Note that in principle this method could be used w
any family of functionshi(x,y), such as polynomials o
trigonometric series of a certain order, whose coefficie
ai would be determined by a linear system of equations
Eq. ~25! ~see, for example, Ref. 4, pp. 208–209!. The par-
ticularity of the multiquadric functions is that they give
system of equations that is rather well conditioned, a
which is guaranteed to be nonsingular and hence to ha
solution. For other function families, where the existence
-
s

c

t

e

a

a good solution for the coefficientsai is not guaranteed, a
best fit approach can still be used to find the ‘‘best’’ coe
ficientsai , as explained in Sec. 6.

Finally, the extension of radial basis function methods
3D or higher dimensions is rather straightforward.

Evaluation: Radial basis function methods are some
the most elegant schemes from a mathematical poin
view, and they often work very well~Ref. 8, p. 135!. In
terms of fitting ability and visual smoothness, the most i
pressive method in this family is the original multiquadr
method due to Hardy. Hardy’s method was verified as be
capable of fitting the underlying surface very accurate
and furthermore, it is quite stable with respect to the cho
of the parameterc ~Ref. 6, p. 191!. However, since these
methods require a preprocessing stage of solving a sys
of at leastn linear equations with as many unknowns, wi
a full matrix, in order to obtain the coefficients of the in
terpolating function, these methods are not suitable
large data sets with more than a few hundred points~Ref. 8,
p. 135!. Various ways have been proposed to ‘‘localiz
these methods in order to allow the treatment of larger d
sets~Ref. 8, p. 136!. For example, one may decompose t
domain of the scattered point set in order to solve ma
small systems of linear equations rather than one glo
system, and subsequently blend the resulting local inter
lants. A historical review of the multiquadric method wit
more than 100 references is given in Ref. 37.

5 Natural Neighbor Interpolation Methods

The last family of scattered data interpolation methods
describe here, known as natural neighbor interpolation,
first introduced in Ref. 38. This interpolation approach
local, and is based on the Voronoi tesselation of the giv
scattered point set—which is the geometric dual struct
of the Delaunay triangulation~or tetrahedrization! ~Ref. 21,
p. 203!. The Voronoi tesselation partitions the plane~or
space! into an exhaustive and disjoint set of tiles~polygons
or, respectively, polytopes!, each tileTi enclosing one point
xi of the given point set. The tileTi is defined as the are
~or volume! that is closer to the scatter pointxi than to any
other scatter point

Ti5$xPR2ud~x,xi !<d~x,xj !; j 51, . . .n%,

whered(a,b) denotes the Euclidean distance between
points a and b. Point xi of our point set is said to be a
natural neighbor of pointxj of the set if their respective
tiles Ti and Tj have a common edge or point of contac
The number of natural neighbors of pointxi ~that is not on
the external boundary! is at leastN11, whereN is the
space dimension, and at mostn21, wheren is the number
of points in the set, and it varies from point to point. In th
2D case the average number of natural neighbors~the num-
ber of edges in a Voronoi polygon! does not exceed 6~Ref.
21, p. 205!.

Before interpolation can be started, a preprocessing
is required for constructing the Voronoi tesselation of t
given scattered point set~see Ref. 13, pp. 149–160; Ref. 2
pp. 205–214; and Ref. 38, p. 31!.

Once the Voronoi tesselation of our point set has be
constructed, all that we need in order to evaluate the in
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 171
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polated value at a new pointx is simply to addx to the set
of scatter points, letting it ‘‘crave’’ its own tile from the
tiles of the surrounding data points~see Fig. 14!. Thus, the
new tile of pointx is

T~x!5$zPR2ud~z,x!<d~z,xj !; j 51, . . . ,n%

and its intersections with the old tiles are:

Ti~x!5T~x!ùTi .

Note that the intersectionsTi(x) are nonempty only for
neighboring tilesTi from which the new tileT(x) has ‘‘sto-
len’’ territory. The actual calculation of the areas~or vol-
umes! of the subtilesTi(x) for each neighboring pointxi is
a complicated but reasonably efficient geometrical com
tation ~Ref. 38, p. 31!. The detailed procedure for the 2
case can be found in Ref. 34, p. 82; for higher dimensi
see Ref. 39, p. 658.

Now, denoting the area~or the volume! of a tile T by
area(T), the natural neighbor interpolant at the pointx
could be defined as

f̂ ~x!5(
i

hi~x!zi , ~28!

where

hi~x!5
area@Ti~x!#

area@T~x!#
0<hi~x!<1, (

i
hi~x!51.

Fig. 14 The Voronoi tiles of the scattered point set $x1 ,...,x9%.
When a new point x is added to the tesselation, it ‘‘craves’’ its own
tile by ‘‘stealing’’ territory from the surrounding data points. Bold
lines indicate the new tile of point x; the dotted lines inside it show
the old tile boundaries before the addition of point x. For the sake of
completeness, the Delaunay triangles associated with the Voronoi
tesselation are also shown, indicated by thin dashed lines; the tri-
angle edges are perpendicular bisectors of the tile edges.
172 / Journal of Electronic Imaging / April 2002 / Vol. 11(2)
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@Note thathi(x) varies smoothly between 1 at the pointxi
itself and 0 where the interpolation pointx ceases to be a
natural neighbor ofxi ; hi(x) is a continuous function ofx,
and furthermore,( ihi(x)xi5x ~Ref. 38, p. 28!.# This inter-
polation method is, therefore, a weighted average of
subset of data pointsxi which are natural neighbors of th
interpolated locationx.

This method results in a surface which consists of co
like peaks or pits at the data pointsxi ~Ref. 34, p. 155!. This
means that the interpolant Eq.~28! is only C0 continuous,
since its derivatives are discontinuous at the pointsxi . In
order to obtain aC1-continuous interpolant we must tak
into account also the gradient at each of the points; as
have already seen in the previous sections there exist
eral methods for estimating the gradients at the given d
points. Once we have estimated the gradient¹z(x) of the
underlying functionz(x) at the pointxi , we replace the
valueszi in Eq. ~28! by the first degree polynomialgi(x)
that passes throughzi with the calculated slope

gi~x!5zi1¹z~xi !
T~x2xi !, ~29!

whereT denotes the vector transpose. This will blend, u
ing the natural neighbor weights, not only the valueszi but
also their corresponding gradients. In order to guarantee
correct slopes at the pointsxi we also replace the weight
hi(x) in Eq. ~28! by the weights

wi~x!5(
i

hi~x!d~x,xi !
21

( ihi~x!d~x,xi !
21

so that we finally obtain~Ref. 7, p. 13; Ref. 38, p. 30!:

f̂ ~x!5(
i

wi~x!gi~x!5(
i

hi~x!d~x,xi !
21

( ihi~x!d~x,xi !
21 gi~x!. ~30!

The fact thathi(x) is nonzero only for the neighboring
points ofxi causes this method to be local. As we can s
the weights used in natural neighbor interpolation defi
the amount of influence any neighboring scatter point w
have on the computed value at the interpolation point. T
weight depends on the area of influence~i.e., the area of the
Voronoi polygons! of the surrounding scatter points:
larger area results in a larger weight or influence of
corresponding scatter point on the interpolated value.

This natural neighbor interpolant has some remarka
properties~Ref. 7, p. 13!; among others, it can be show
~although the proof is rather involved! that it is indeedC1

continuous, and that its values depend continuously on
data pointsxi .

Evaluation: Natural neighbor interpolation method
share with triangulation-based methods the unhappy bur
of requiring a preprocessing stage that partitions the gi
scattered point set into a network of exhaustive and disjo
cells, but also the happy consequence of beinglocal. How-
ever, all their other properties are sufficiently different
justify their classification in separate method families.

Natural neighbor interpolation is a weighted avera
method where the weights are area-based, as oppose
other methods~such as inverse distance methods! where
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Fig. 15 The difference between interpolation (top figures) and best fit (bottom figures). In all figures
the same seven data points are used. (a) Linear interpolation. (b) Fourth-order polynomial interpola-
tion. (c) Linear best fit. (d) Best fit using polynomials up to order 4.
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distance-based weights are used. Area-based weights
superior to distance-based weights because they com
sate for data density variation—whereas distance-base
terpolation is only sensitive to the distance and hence m
overweight data clusters~Ref. 34, p. 82!. Also, as compared
to triangular-based interpolation methods, each pointxi is
situatedwithin its region of influence~Voronoi tile!, and not
on a vertex between regions~triangles!. The fact that the
tiles correspond to an area of influence about the gi
points is intuitively more appealing. All this makes th
natural neighbor approach a robust method of scatte
point interpolation, which performs equally well in clus
tered and in sparse areas of the given point set~Ref. 34, pp.
155–161!.

This approach also avoids another pitfall of other me
ods, namely: the arbitrary definition of the interpolatio
subset@such as the radiusR in Eq. ~22! and in similar
localization schemes#. It may be interesting to note tha
even the simplerC0-continuous variant of this approac
@Eq. ~28!# gives better results than itsC0-continuous
triangulation-based counterpart~Sec. 2.2!—since the natu-
ral neighbor method has derivative discontinuities only
the pointsxi , whereas the linear triangulation-based int
polation method has derivative discontinuities along all
triangle borders, and not only at the pointsxi .

However, in spite of its advantages, this approach
more computationally intensive and, hence, slower th
other approaches, and all the more so in higher dimensi

6 Scattered Data Interpolation Versus Scattered
Data Fitting

Data fitting is an alternative approach to interpolation
finding intermediate values of an underlying functio
whose values are only known at a limited number of poin
The approach of data fitting significantly differs from th
of interpolation: While interpolation methods approxima
the underlying function by finding a curve~or a surface,
etc.! that passesthroughthe known data points, data fittin
re
n-
-

y

d

s.

.

methods find an approximating curve~or surface, etc.! that
best fits the known data points according to some speci
criteria. This means that the approximating function w
passcloseto the known values, but not necessarily exac
through them. This does not mean, however, that the q
ity of approximations calculated between the known poi
by data fitting is worse than in the case of interpolatio
best fit methods have the advantage of being able to spe
the range of the overall error, and their main concern is
minimize it. Furthermore, although data fitting misses t
given points, it usually gives a smoother function than
terpolation~see Figs. 15 and 16!. The choice between in
terpolation and best fit approaches depends, therefore
the nature and the specific needs of each particular app
tion.

In general, interpolation through the data points is de
able if the values of the data points are highly accurate
reliable ~e.g., if they are based on precise measuremen!,
and if their number and density are not too high~see Fig.
15!. However, when we are given a dense ‘‘cloud’’ of da
points with relatively high noise~such as statistical data!,
the natural approach would be to fit the data by a smo
approximating curve~or surface, etc.! that passes in the
center of the ‘‘data cloud’’ like a skeleton, and shows t
average tendencies of the data. In such cases interpola
through all data points is not desirable, since it would res
in high oscillations and poor approximation between t
points, as shown in Fig. 16. Best fit approximation al
appears in a natural way in overdetermined situations,
when we have more data points than free parameters in
curve equation, so that we obtain a linear system with m
equations than variables. This situation will be illustrat
later.

Data fitting methods have been largely discussed in
erature; see, for example, Ref. 4 where both global a
local methods are reviewed. As an example of scatte
data fitting we will describe here the regression method.
will explain this method by showing how it is used to e
tablish a transformation that convertsRGBinput values of a
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 173
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Fig. 16 Same as Fig. 14, when we are given a dense cloud of data points with relatively high noise
(such as statistical data). In such cases interpolation through all points gives high oscillations (top),
and the natural approach would be to fit the data by an approximating curve (bottom).
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scanner into the correspondingXYZvalues, based on a se
of irregularly spaced points~e.g., Pantone color patche!
for which the input valuesR,G,Bas well as the target val
uesX,Y,Zare known by measurement~Ref. 40, Chap. 3!.

Assume that our scattered data set consists of e
sample points, whose coordinates in the inputRGB space
and their correspondingXYZvalues are known to be

Point 1: R1 ,G1 ,B1 X1 ,Y1 ,Z1

] ] ]

Point 8: R8G8 ,B8 X8 ,Y8 ,Z8 .

The basic assumption of the regression method is
the conversion between the two color spaces~RGB and
XYZ! can be approximated by three equations of the fo

t5 f a1 , . . . ,ak
~x,y,z!,

where the independent variablesx,y,z stand for our input
R,G,B values and the dependent variablet represents the
resulting value ofX ~or Y or Z! in the destination color
space.

Note that f a1 , . . . ,ak
(x,y,z) represents here anequation

family with several free parametersa1 , . . . ,ak . We are
free to select the equation family according to our b
judgment; it will be the task of the regression to give us
parameters of theoneequation from this family that gives
the best least square fit for the known sample points.
example, in cases where the underlying relationship se
to be exponential~or logarithmic!, it would be reasonable
to select an exponential~or, respectively, a logarithmic!
equation family. In our present example we assume that
equation family consists of polynomials, since the solut
for this case is simpler.

Suppose that we have chosen the following equa
family:
ctronic Imaging / April 2002 / Vol. 11(2)
t

t

r
s

e

t5 f a1 , . . . ,a6
~x,y,z!

5a1x1a2y1a3z1a4xy1a5yz1a6zx, ~31!

i.e., a family of second-order polynomials inx, y, and z.
This family has six free coefficients,a1 ,...,a6 ; the aim of
the method is, therefore, to find the specific values of th
parameters for which the best fit occurs. It is important
note that the number of sample points must be higher t
the number of parameters; in our case we have, indee
.6. Inserting the known values of our eight sample poi
into Eq.~31! we obtain, therefore, an overdetermined set
eight equations for the six unknownsa1 , . . . ,a6**

t15a1x11a2y11a3z11a4x1y11a5y1z11a6z1x1

]

t85a1x81a2y81a3z81a4x1y81a5y8z81a6z8x8 ,

wherexi , yi , zi stand forRi , Gi , Bi , and t i stands, for
example, forXi . This can be expressed in the matrix for
as follows:

** Note that if the number of sample points were equal to the numbe
parameters we would obtain here a linear system ofn equations withn
unknowns; this system could be directly solved for the coefficientsai
for which Eq. ~31! becomes an interpolating function that pass
through all the given points. However, as we have already seen in
previous section, it is not generally guaranteed that this system of e
tions is nonsingular and has a solution, and even if it is nonsingula
may be very ill-conditioned with an unstable solution. As we have se
this method does work for some particular function families, like in t
case of Hardy’s multiquadric functions, but in the general case whe
good solution is not guaranteed, it is best to have an overdetermine
of equations and to find the best coefficientsai using the best fit ap-
proach described here.
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Scattered data interpolation methods . . .
S t1

t2

t3

t4

t5

t6

t7

t8

D 51
x1 y1 z1 x1y1 y1z1 z1x1

x2 y2 z2 x2y2 y2z2 z2x2

x3 y3 z3 x3y3 y3z3 z3x3

x4 y4 z4 x4y4 y4z4 z4x4

x5 y5 z5 x5y5 y5z5 z5x5

x6 y6 z6 x6y6 y6z6 z6x6

x7 y7 z7 x7y7 y7z7 z7x7

x8 y8 z8 x8y8 y8z8 z8x8

2 S a1

a2

a3

a4

a5

a6

D
or in short

t5Ma.

Now, it has been shown in literature~see, for example
Ref. 41, p. 1049! that the coefficientsa that yield the best
least square fit~i.e., that minimize the global square err
on the sample points! are given by

a5~MTM !21~MTt!,

whereMT is the transpose of matrixM . By inserting these
values ofa1 , . . . ,a6 into equation family~31! above we
obtain, therefore, the specific equation from this equat
family that gives the best least-square approximation
the componentX of the target color space. This polynomi
regression method should be repeated two more times
the Y and for theZ components.

Evaluation: Clearly, since the coefficientsai are ob-
tained by a global least square error minimization, the po
nomial obtained may not map the sampleRGB points to
their originalXYZvalues. And yet, the data fit obtained b
this method is normally good. The quality of this meth
depends on the relationship between the source and ta
spaces~i.e., the complexity of the underlying, unknow
function!, the number and location of the known samp
points, the number of terms in the polynomial and its ord
and the measurement errors. This method is ideal for tra
formations with linear relationship. For nonlinear col
space conversion, this method does not guarantee uni
accuracy across the entire space, and some regions~such as
dark colors! may have larger errors than other areas.
general, the accuracy improves as the number of term
the equation increases, the trade-offs being the higher c
putation cost and lower processing speed~Ref. 40, p. 62!.

Finally, this method isglobal, and hence, it suffers from
the drawbacks mentioned in Sec. 1.

Note that instead of repeating the regression met
three times, for theX, Y, andZ components, it is also pos
sible to apply the method directly to the full 3D mappin
RGB→XYZ. For example, we may choose the equat
family as follows:

S X
Y
Z
D 5S a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

D S R
G
B
D 1S k1

k2

k3

D

r

et

-

m

n
-

with the 12 free coefficientsai , j andki (1< i , j <3). Note
that in this example the regression will give as an appro
mation to the underlying 3D mapping a trivariate linear~or
ratheraffine! mapping.

As an alternative to the approach of regression for sc
tered data fitting, one may formulate the problem in ter
of the optimization approach, where the cost function is
total error ~in terms of Euclidian distance! over all the
samples, and the optimal coefficientsai are those that mini-
mize this cost function.

7 Conclusion

In this paper we survey some of the most important me
ods of scattered data interpolation in 2D and 3D that can
of interest in electronic imaging systems. The methods
viewed include triangulation~or tetrahedrization! based
methods, inverse distance weighed methods, radial b
function methods, natural neighbor methods, as well as
data fitting method for the sake of comparison.

Triangulation based methods are local and, hence,
pable of treating efficiently large data sets. They are co
putationally simple~once the prerequisite task of triangul
tion or tetrahedrization has been accomplished! and
relatively accurate. Their serious drawback is the neces
of triangulating~or tetrahedrizing! the given data set prio
to the actual interpolation step. We have presented sev
linear variants and one cubic variant of this family of met
ods; the latter has the advantage of beingC1 continuous
and not onlyC0 continuous as the simpler linear variant

Inverse distance weighting methods are usually less
ficient and less accurate than good triangulation-ba
methods, and they suffer from some well-known artifac
However, due to their simplicity they are among the mo
commonly used techniques, in 2D as well as in higher
mensions.

Radial basis functions, and in particular Hardy’s origin
multiquadric interpolation method, are among the mo
promissing methods in terms of fitting ability and visu
smoothness. However, they require the solution of a lin
equation system with at least as many equations and
knowns as the number of data points.

Natural neighbor interpolation methods are robust a
perform equally well in clustered and in sparse areas of
given point set. However, in spite of their advantages, th
are more computationally intensive and, hence, slower t
other methods. They also require a preprocessing step
constructs the Voronoi tesselation of the given point set

Finally, although not really passing through the da
points, data fitting methods usually give smoother functio
than interpolation, and they minimize the overall err
They should typically be used when we are given
‘‘cloud’’ of data points with relatively high noise, or in
overdetermined situations.

This review is certainly not complete, and it does n
include all the existing methods. Just as one example,
did not mention here the family of stochastic process me
ods ~such as ‘‘kriging’’! which is often used in the mining
and geology community~Ref. 8, pp. 148–149!. Such meth-
ods are less attractive for applications in electronic imag
systems since they necessitate the stationarity of input d
and their overall performance has been shown to be infe
to other methods such as Hardy’s multiquadric meth
Journal of Electronic Imaging / April 2002 / Vol. 11(2) / 175
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~Ref. 37, pp. 198–199, 205!. Readers who are interested
a wider spectrum of methods for scattered data interp
tion may consult references such as Ref. 34, Sec. 2.5
Refs. 4–8.

Clearly, none of the existing methods is universally s
isfactory, and understanding their limitations is an imp
tant key in applying them successfully. It remains, the
fore, the task of the designer or the engineer to se
among all the different available methods the one that b
suits his specific application. Several general guidelines
be found, for example, in Ref. 12, Chap. 6. Typical crite
for such a choice may include the type, the density,
amount and the particular properties of the data~see Sec. 3
in Ref. 8!; the availability of working algorithms, softwar
packages and computer programs~see Sec. 4 in Ref. 8!; the
computing environment available~including parameters
such as speed, memory, etc.!; the smoothness~C0 or C1

continuity! and the precision desired; the computation
cost; and the programing efforts required. We hope
present review will be of help in the evaluation of the d
ferent possibilities and in taking a more founded decisio
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