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1. Summary
Sampling moiré effects are well known in signal processing. They
occur when a continuous periodic signal g(x) is sampled using a
sampling frequency fs that does not respect the Nyquist condition,
and the signal-frequency f folds over and gives a new, false low
frequency in the sampled signal. However, some visible beating
artefacts may also occur in the sampled signal when g(x) is
sampled using a sampling frequency fs which fully respects the
Nyquist condition. We call these phenomena sub-Nyquist artefacts.
Although these beating effects have already been reported in the
literature, their detailed mathematical behaviour is not widely
known. In this paper, we study the behaviour of these phenomena
and compare it with analogous results from the moiré theory.
We show that both sampling moirés and sub-Nyquist artefacts
obey the same basic mathematical rules, in spite of the differences
between them. This leads us to a unified approach that explains
all of these phenomena and puts them under the same roof. In
particular, it turns out that all of these phenomena occur when
the signal-frequency f and the sampling frequency fs satisfy f ≈
(m/n)fs with integer m, n, where m/n is a reduced integer ratio;
cases with n = 1 correspond to true sampling moiré effects.

2. Introduction
According to the classical sampling theorem, all the information in
a continuous signal g(x) is preserved in its sampled version g(xk) if
the sampling frequency fs respects the Nyquist condition, i.e. if fs
is at least twice the highest frequency contained in g(x).1 When
sampling a continuous periodic signal g(x) using a sampling
frequency fs that does not respect the Nyquist condition, various
moiré or aliasing artefacts may appear in the resulting sampled
signal g(xk) (e.g. figure 1c). Nevertheless, it is also known (e.g.
[1, p. 222, 225], [2, p. 642] and [3]) that some beating artefacts
(pseudo-moirés) may appear in the sampled signal g(xk) when g(x)
is sampled with a sampling frequency fs which does respect the
Nyquist condition, but is still very close to the Nyquist limit itself
(figure 1b).

Although these beating effects are not really new, they have
rarely been treated in the literature, and they still remain poorly

1Note that lower sampling frequencies may suffice for some special types of
signals, but the classical sampling theorem addresses the general case.
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Figure 1. Comparison between (a) a case with no sampling artefacts, (b) a case with a sub-Nyquist artefact, and (c) a case with a true
sampling moiré effect. Each row shows in the left-hand panel a continuous signal g(x)= cos(2π fx) having a different frequency f , as
well as its sampled version after being sampledwith a sampling frequency of fs = 8 (i.e. with a sampling interval of�x = 1/fs = 1/8).
For the sake of clarity, consecutive samples (dots) are connected by straight line segments; the original, continuous cosines are drawn
by thinner curves. The right-hand panels show the respective continuous Fourier transform (CFT) of the continuous signal g(x), along
with the discrete Fourier transform (DFT) of its sampled version, after having applied the required reorganizations and scalings. The only
difference between the rows is in the frequency f of the original signal g(x): (a) f = 0.25, (b) f = 3.75, and (c) f = 7.75. In (a), no
aliasing occurs, and the sampled signal looks similar to the original signal. In (c), the cosine frequency f already exceeds (1/2)fs, meaning
that aliasing does exist (note that the corresponding impulses in the DFT are folded over: they exceed the boundaries of the DFT spectrum,
−(1/2)fs . . . (1/2)fs, and re-enter from the opposite end). When such folded-over (aliased) impulses fall close to the spectrum origin, as
in row (c), a strong low-frequency sampling moiré becomes more prominent than the original cosine function itself. On the other hand,
the low-frequency beating effect which appears in the signal domain in row (b) is not a true moiré: it occurs when the frequency f of
the cosine signal being sampled is below the Nyquist limit (1/2)fs, so that no aliasing may occur; and unlike in row (c), no corresponding
low-frequency impulses appear in its spectrum. This beating effect is a sub-Nyquist artefact. Amore detailed explanation of cases (c) and
(b) and the differences between them is provided in figures 2 and 3, respectively, and in §3. It turns out that all these phenomena occur
when f ≈ (m/n)fs with integerm, n; cases with n= 1 correspond to true sampling moiré effects.

understood. They are sometimes considered as reconstruction artefacts, but no deeper analysis is
provided to explain their nature and properties. And sometimes they are even simply dismissed as
‘borderline artefacts’ that occur when we get too close to the limits of the sampling theorem. However,
it turns out that such beating effects are not limited to cases bordering on the Nyquist condition [4]. On
the contrary, similar phenomena may also appear in many other cases that are by far within the Nyquist
range. This happens, for example, when sampling a cosine signal g(x) = cos(2π fx) whose frequency f
is close to (1/3)fs or (1/4)fs, i.e. far below half of the sampling frequency. These beating artefacts are
clearly not aliasing effects, as they appear where the Nyquist condition is fully satisfied. As we will see
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in greater detail in §3, these beating artefacts also have several other intriguing properties. In particular,
their periods (or frequencies) are not represented in the Fourier spectrum, although they are clearly
visible in the sampled signal. But although these beating artefacts are not aliasing or moiré effects, in
many ways their behaviour is very similar to that of true sampling moirés. This explains, indeed, why
they are often called in the literature ‘pseudo-moirés’. We will call these artefacts hereinafter sub-Nyquist
artefacts.

The fact that these moiré-like artefacts are not visible by our main moiré investigation tool, the Fourier
theory, makes them more difficult to analyse, but therefore also more interesting and challenging. In this
paper, we address this challenge, and show how we can investigate these phenomena and incorporate
them, together with the classical sampling moiré effects, within a common unified framework, based on
sampling theory and on the moiré theory.

Our work is structured as follows: we start in §3 with an overview of the basic notions and terms
that will be used in the sequel. (Readers who already master parts of this material may simply skip the
paragraphs in question.) In §4, we provide the initial setting, and illustrate the nature of the phenomena
in question by means of some typical examples, using the simple case of the cosine signal g(x) = cos(2π fx).
Then, in §5, we derive a fundamental theorem which clearly explains the mathematical nature of the
sub-Nyquist artefacts, and we show that classical sampling moiré effects are in fact a particular case
of this theorem. Thus, by treating both classical sampling moirés and sub-Nyquist artefacts with the
same unified tools, we put them all under the same roof. Our theorem as presented in §5 is limited to
the particular case of the cosine signal, but then, in §6, we extend it to any general periodic signals. In
§7, we discuss the nature of the sub-Nyquist artefacts as reconstruction artefacts. In §8, we discuss the
potential impact of sub-Nyquist artefacts in signal-processing applications. And finally, our conclusions
are presented in §9. Several appendices are provided in the electronic supplementary material.

The material presented in this paper is situated on the border between sampling theory and the moiré
theory, and it benefits from both points of view, which are often dual and complementary. Because this
paper basically aims at a signal-processing audience, which is not necessarily acquainted with the moiré
theory, references are given whenever using concepts from the moiré theory. In addition, for the sake
of completeness, electronic supplementary material, Appendix A provides a brief review of the main
moiré-theory notions and terms that are being used here.

In addition to the figures which illustrate the discussions in the paper itself, two interactive
Mathematica R© applications are also provided in the electronic supplementary material, along with their
user’s guide. Readers are encouraged to use these applications while reading this paper in order to better
examine the cases under discussion, and for experimenting with any other cases they may wish to test.
By manipulating the different parameters one may obtain a vivid graphic demonstration of the various
sampling artefacts in question and of their dynamic behaviour, both in the signal domain and in the
Fourier spectral domain. The source programs of these applications (which were also used to generate the
figures of this paper) are provided, too. In addition, a glossary of the main terms which make use of these
applications for illustrating the various terms is also provided in the electronic supplementary material.

3. Background and basic notions
Let g(x) be a continuous signal, and let fmax denote its maximum frequency (finite or infinite, depending
on g(x)). As we know from the classical sampling theory, when g(x) is sampled at a frequency fs
which does not satisfy the Nyquist criterion, i.e. when fs < 2fmax (and hence fmax > (1/2)fs), the signal’s
frequencies above (1/2)fs (and below −(1/2)fs) fold-over into the frequency range −(1/2)fs . . . (1/2)fs. In
other words, the resulting sampled signal g(xk) contains new false frequencies within this range, which
do not exist in the original signal g(x). This phenomenon is known as aliasing.

3.1. Sampling moiré effects
Aliasing artefacts may occur in the sampled signal whether g(x) is periodic or not. But when g(x) is
periodic, so that its spectrum is impulsive, aliasing artefacts may become even more spectacular, due to
their periodicity. From the point of view of the moiré theory (see the electronic supplementary material,
Appendix A), the new folded-over low frequencies that we may get when sampling a periodic signal
g(x) correspond to a sampling moiré effect.

A sampling moiré effect is generated due to the interaction between the given periodic signal g(x)
and the periodic sampling process. It consists of a new false low-frequency fM which appears in the
sampled signal g(xk) and in its spectrum, although it does not exist in the original signal g(x). For
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Figure 2. The artefact that occurswhen f ≈ (1/1)fs is a true first-order samplingmoiré (figure 1c). Each row shows in the left-hand panel
the periodic signal g(x)= cos(2π fx) having frequency f , aswell as its sampled version after being sampledwith a sampling frequency of
fs = 8 (i.e. with a sampling interval of�x = 1/fs = 1/8). The right-hand panels show the respective CFT of the continuous signal g(x),
along with the DFT of its sampled version (after having applied the required reorganizations and scalings). The only difference between
the three rows is in the frequency f of the original signal g(x): (a) f = fs (the singular state), (b) f = fs − 1/16 and (c) f = fs − 1/4. The
highly visible (1/1)-order artefact is generated because the sampled points g(xk) fall along a single low-frequency curve, which is simply
a stretched version of g(x).

example, suppose that g(x) is the cosine signal cos(2π fx), whose spectrum consists of a single impulse
pair located at f and −f . When the frequency f of our given signal is close to fs, i.e. when fs − f ≈ 0,
aliasing occurs, and the folded-over frequency falls at the point fM = fs − f , i.e. very close to the spectrum
origin. The new false low-frequency fM we therefore see in the sampled signal is a sampling moiré effect.
This sampling moiré is shown in figure 2 for some values of f close to fs (note that in all our figures
we always use fs = 8). As a second example, suppose that the frequency f of our given cosine signal is
close to 2fs, i.e. that 2fs − f ≈ 0. Here, too, a false low frequency appears in the sampled signal, but this
time due to an interaction between f and 2fs. The folded-over frequency in this case is fM = 2fs − f , which
is again a very low frequency, located close to the spectrum origin. This effect is called a second-order
sampling moiré.

Similarly, a sampling moiré effect occurs in the sampled signal whenever f approaches an integer
multiple of fs, i.e. whenever mf s − f ≈ 0, m = 1, 2, . . .. In each of these cases, a new low-frequency
fM = mfs − f is generated in the spectrum of the sampled signal, close to the spectrum origin. Note that
a sampling moiré effect is clearly visible both in the signal domain (as a false low-frequency signal)
and in the spectral domain (as a folded-over false low-frequency spike), like in figure 2. This is a key
characteristic property of the moiré effects.



5

rsos.royalsocietypublishing.org
R.Soc.opensci.2:140550

................................................

(a)

(b)

(c)

spectral domainsignal domain m
n = 1

2

g(x) = cos(2p fx),
f = 4.0sampled

CFT
DFT after reorganizations
and scaling

CFT
DFT after reorganizations
and scaling

CFT
DFT after reorganizations
and scaling

folded
over

g(x) = cos(2p fx),  f = (m/n) fs – e =
= (1/2)8.0 – 1/16sampled

env1(x) = cos(2pex), e = 1/16
env2(x) = cos(2pe[x–8]), e = 1/16

g(x) = cos(2p fx),  f = (m/n) fs – e =
= (1/2)8.0 – 1/4sampled

env1(x) = cos(2pex), e = 1/4
env2(x) = cos(2pe[x–2]), e = 1/4

–4 –2 2 4 x

–1

1

2

–4 –3 –2 –1 1 2 3 4
u

–0.50

–0.25

0.25

0.50

0.75

1.00

–4 –2 2 4 x

–1

1

2

–4 –3 –2 –1 1 2 3 4
u

–0.50

–0.25

0.25

0.50

0.75

1.00

x

u

–4 –2 2 4 x

–2

–1

1

2

–4 –3 –2 –1 1 2 3 4
u

–0.50

–0.25

0.25

0.50

0.75

1.00

Figure 3. The (1/2)-order sub-Nyquist artefact; see figure 1b. This figure is similar to figure 2, except for the signal-frequency f being
used in each row: (a) f = (1/2)fs (the singular state), (b) f = (1/2)fs − 1/16 and (c) f = (1/2)fs − 1/4. The highly visible (1/2)-order sub-
Nyquist artefact is generated because consecutive points g(xk) of the sampled signal alternately jump from one of the n= 2modulating
envelopes to the other (each of the twomodulating envelopes being simply a stretched and shifted version of g(x)). These two interlaced
modulating envelopes are highlighted in the figure in different colours.

3.2. Sub-Nyquist artefacts
As we have seen above, a sampling moiré effect is generated when the frequencies f and fs satisfy f ≈ mfs
with an integer m. However, it turns out more generally that sampling artefacts may occur whenever
f ≈ (m/n)fs with integer m, n.2 When n = 1, the artefacts we obtain are simply sampling moiré effects.
But when n �= 1 a different type of artefacts occurs in the sampled signal. These are precisely the beating
artefacts on which we focus in the present work. As we can see in figures 3 and 4, these beating artefacts
are intriguing for several reasons.

(i) They may appear where the Nyquist condition is fully satisfied, so that no aliasing or sampling
moiré artefacts should be present. For example, in figure 4 the frequency of the original function
g(x) = cos(2π fx) is close to (1/3)fs, i.e. far below half of the sampling frequency.

(ii) Unlike in aliasing or moiré phenomena, the periods (or frequencies) of these beating artefacts
are not represented in the Fourier spectrum, although they are clearly visible in the sampled
signal. To see this, compare the spectra of our beating artefacts in any of figures 3 and 4 with the

2Note that by m/n we always mean a reduced integer fraction. We will tacitly use this convention throughout this paper, even when it
is not mentioned explicitly.
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Figure 4. The (1/3)-order sub-Nyquist artefact. This figure is similar to figures 2 and 3, except for the signal-frequency f being used
in each row: (a) f = (1/3)fs (the singular state), (b) f = (1/3)fs − 1/16 and (c) f = (1/3)fs − 1/4. The highly visible (1/3)-order sub-
Nyquist artefact is generated because consecutive points g(xk) of the sampled signal alternately jump from one of the n= 3modulating
envelopes to the others (each of the three modulating envelopes being simply a stretched and shifted version of g(x)). These three
interlaced modulating envelopes are highlighted in the figure in different colours.

spectra of the sampling moiré effects of figure 2: while in figure 2 the low frequency in the signal
domain is also represented in the spectral domain as a folded-over frequency, in figures 3 and 4
the low-frequency structures in the signal domain do not appear in the spectrum.3

(iii) Furthermore, in the signal domain, the beating effect in question does not really correspond to
a low-frequency signal, but rather to a highly oscillating signal that is only modulated by low-
frequency envelopes (compare the beating effect in figures 3 and 4 with the true sampling moiré
effect in figure 2). Note that this may provide a clue to the understanding of point (ii): the low
frequencies in the signal domain belong to the modulating envelopes of the sampled signal, but
they are not included in the sampled signal itself.

We call these beating effects sub-Nyquist artefacts, reflecting the fact that they may occur well below the
Nyquist frequency. But as we will see later, these artefacts may also occur above the Nyquist frequency
(see Remark 8 in electronic supplementary material, Appendix C).

3Of course, such frequencies can be made visible in the spectrum by applying to the beating signal in question a nonlinear operation
such as envelope detection (rectification possibly followed by low-pass filtering [5, p. 216]). This practical ‘trick’ can be used in
applications to bypass the problem, but it cannot help us in the theoretical explanation of these phenomena.
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Obviously, the first approach that comes to one’s mind for investigating such phenomena is based on

the Fourier theory, the main investigation tool being used in the moiré theory and in signal processing,
but the fact that our beating artefacts are not visible in the spectrum of the sampled signal (see point (ii)
above) makes them more difficult to analyse.

In order to explore these ‘hidden’ cases, we propose the following approach: we let the frequency f
of the continuous signal g(x) sweep along the frequency axis, just as we do while running from row to
row in figure 1, and we see what happens when the signal-frequency f approaches critical points such
as multiples or integer fractions of the sampling frequency fs. Some typical cases will be described in
§4, in order to develop a better understanding of these phenomena and of their properties. Based on the
insights gained in §4, we will proceed in §§5 and 6 to the mathematical analysis of these phenomena. For
the sake of simplicity, we start our exploration using the simple case of the cosine function; later on we
will generalize our results to any general periodic signals.

4. Sampling a continuous cosinusoidal signal
Suppose we are given the continuous signal g(x) = cos(2π fx), i.e. a cosine function with frequency f ,
and that we sample it using the sampling frequency fs. We denote the resulting sampled signal by
g(xk) = cos(2π fxk), where xk = k�x, and �x = 1/fs is the sampling step. How does the sampled signal
behave when we gradually vary the cosine frequency f or the sampling frequency fs? Obviously, both
approaches (varying f or varying fs) are in fact equivalent, but for the sake of simplicity (technical
considerations when applying discrete Fourier transform (DFT) to our sampled signal), we prefer to
keep the sampling frequency fs fixed, and to study what happens when we gradually vary the frequency
f of our given continuous function (as in figure 1). Note that in all our figures we always use the fixed
sampling frequency fs = 8; this choice is convenient for the DFT being used in our figures, but in principle,
any other fs value could also be chosen, be it integer or not.

Let us now start varying the frequency f along the frequency axis, and stop to explore a few typical
examples of artefacts that we encounter on our way. Interested readers may do this exercise on their
own using the provided interactive applications, and dynamically watch the various artefacts as they
gradually appear and disappear while f is slowly being varied.4

Example 4.1 (sampling moiré effect). Let us first explore what happens in the frequency range around
f ≈ fs. This is shown in figure 1c, and in greater detail in figure 2. In this case, we have

f = fs − ε, (4.1)

where ε denotes a small positive value.5 As this case does not respect the Nyquist condition
f ≤ (1/2)fs (or fs ≥ 2f ) required by the sampling theorem, aliasing occurs here. Indeed, looking at
figure 2 we see that our sampled points fall on a low-frequency cosinusoidal curve whose frequency is
precisely ε:

m(x) = cos(2πεx). (4.2)

This is, in fact, a one-dimensional sampling moiré effect, which simply obeys the basic rules of the moiré
theory (e.g. [6, §4.2]):

(i) its frequency is ε = fs − f ; and
(ii) its intensity profile m(x) is an expanded version of the original continuous function g(x), that is

simply stretched (or magnified) along the x axis by an expansion (magnification) rate of f /ε, in
order to satisfy (i):6

m(x) = g
(

ε

f
x
)

.

4To slow down the movement of the ‘f ’ slider in the applications, hold down the Alt or Option key while dragging the slider with the
mouse. The movement can be further slowed down by also holding down the Shift or Ctrl key, or both (see the user’s guide of the
applications in the electronic supplementary material).
5The results obtained when taking f = fs + ε are similar, so we only need to consider one of the two cases; we will return to this point
in greater detail in Remark 3 of electronic supplementary material, Appendix C.
6According to a moiré theory result (e.g. [6, §4.2 or §10.9]), the profile of this moiré is determined by the cyclic convolution of the profiles
of the two periodic structures involved, the sampling comb III(x) and the original continuous function g(x), both being normalized to
the same period. The profile of the resulting moiré is therefore equal to that of g(x), as a cyclic convolution of g(x) with an impulse
comb gives back g(x). This resulting profile is then stretched according to point (i).
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As we can see in figure 2a, when f precisely equals fs (i.e. when ε = 0) we get the singular state of the
sampling moiré effect, where the moiré period 1/ε is infinitely large and therefore invisible. But when f
slightly moves away from the frequency fs (to either direction) the moiré ‘comes back from infinity’, as
shown in figure 2b, and becomes again visible with a long period 1/ε (small frequency ε). As f moves
farther away from the singular state f = fs, i.e. as |ε| gradually increases (see figure 2c), the period of the
moiré effect becomes smaller and smaller, until it can no longer be detected.7

Note that in terms of the sampling theory, this moiré effect is simply a fold-over artefact due to aliasing
(see, for instance, example 5.4 in [7, §5.3]).

Similar results are also obtained when we let f explore the frequency range around f ≈ mfs for any
integer m > 1, giving an m-th-order sampling moiré. And indeed, when

f = mfs − ε, (4.3)

our sampled points g(xk) will reside, once again, on the same low-frequency cosinusoidal curve (4.2)
having the frequency ε.

So far we have seen what happens when the frequency f of our continuous cosine g(x) approaches
integer multiples of the sampling frequency fs. Let us now continue varying the frequency f , and study
what happens when we arrive to fractional multiples of fs.

Example 4.2 (sub-Nyquist artefact). Let us focus on the frequency range around f ≈ (1/2)fs (i.e.
2f ≈ fs), as shown in figure 1b or in greater detail in figure 3, i.e. when

f = 1
2

fs − ε. (4.4)

The above equation implies that we are located here in the ‘safe’ side of the Nyquist frequency (1/2)fs,
meaning that the sampling condition stipulated by the sampling theorem, f ≤ (1/2)fs (or fs ≥ 2f ), is fully
satisfied, and no aliasing or moiré effects should be present. Yet, looking at figure 3, we see that a low-
frequency beating effect is visible in the sampled signal, due to a low-frequency cosinusoidal modulation.
At the singular frequency itself, f = (1/2)fs (figure 3a), the modulating envelope of the beating effect has
an infinitely long period, and is therefore invisible, but as f moves away from this singular frequency,
i.e. as |ε| gradually increases (figure 3b,c), the period of the beating effect becomes smaller and smaller,
until it finally disappears. As we have seen above, this behaviour is typical to a moiré effect. However,
our present beating effect is not a true sampling moiré but rather a pseudo-moiré effect [8], or using our
present terminology, a sub-Nyquist artefact: as we can see in figure 3, in our case no corresponding
low-frequency impulses exist in the respective spectra (compare the low-frequency zone around the
origin in the DFT spectra of figure 3 with the same zone in figure 2, where a true aliased sampling
moiré does exist). Furthermore, even in terms of the signal domain, the beating effect in question does
not really represent a low-frequency signal (as in figure 2), but rather a highly oscillating signal that is
only modulated by two interlaced low-frequency cosinusoidal envelopes. These two envelopes, which
are highlighted in figure 3 by different colours, have the envelope frequency ε = (1/2)fs − f . Because
the frequency ε is much lower than the frequency f of the original cosine function g(x) being sampled,
this artefact may become quite conspicuous and distort our perception of the true nature of the original
signal.

The beating effect we have described in example 4.2 occurs when the frequency f of the cosine function
being sampled is located slightly below half of the sampling frequency, i.e. almost at the border of the
‘safe’ frequency zone stipulated by the sampling theorem. This case could be therefore dismissed as a
‘borderline’ artefact that occurs when we get too close to the limits of the theorem. However, it turns out
that such sub-Nyquist artefacts may also appear when the cosine frequency f is well below (1/2)fs, as
clearly illustrated by the following example.

Example 4.3 (sub-Nyquist artefact). Consider figure 4, which shows what happens when we arrive at
the frequency range around f ≈ (1/3)fs (i.e. 3f ≈ fs), and in particular when

f = 1
3

fs − ε. (4.5)

Figure 4a shows the situation when the cosine frequency is exactly f = (1/3)fs = 2.66, and figure 4b,c
shows what happens when the cosine frequency f gradually moves away from this singular frequency,
i.e. when |ε| is gradually increased. As we can see, the resulting visual effect in the signal domain

7Theoretically, a moiré effect ‘exists’ even when its frequency gets far away from the spectrum origin; but practically, we may (and do)
ignore it when it is no longer visible and pertinent.
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resembles the modulation effect we obtained in figure 3, where the cosine frequency f was close to
(1/2)fs = 4, except that in figure 4 the beating effect corresponds to three interlaced cosinusoidal envelopes
rather than two. The three interlaced envelopes obtained in this case, which are highlighted in figure 4 by
different colours, have the envelope frequency ε = (1/3)fs − f . Note that in this case, too, as the frequency
ε is much lower than the frequency f of the original signal g(x) being sampled, this artefact may become
quite conspicuous. But once again, this beating effect in the sampled signal is misleading, as it is only
a sampling artefact and it does not reflect the true behaviour of our original continuous-world signal
g(x). Furthermore, its low frequency is not represented in the DFT spectra, meaning that it is not a true
sampling moiré effect.

Pursuing our sweep along the frequency axis, it turns out that similar sub-Nyquist artefacts may occur
in many other cases too, even well below the Nyquist frequency limit set-up by the sampling theorem. In
general, sampling artefacts occur whenever our cosine frequency f is located around a rational fraction
m/n of the sampling frequency fs, i.e. whenever f ≈ (m/n)fs. As we have seen above, when n = 1 the
resulting artefact is simply a sampling moiré effect. But when n > 1 we obtain a beating artefact that is
not a moiré effect but rather a sub-Nyquist artefact; we denote it as a (m/n)-order sub-Nyquist artefact.
This artefact manifests itself in a curious way—it forces all the sampled points g(xk) of our given
continuous signal g(x) to fall on n interlaced modulating envelopes:

env1(x) = cos(2πεx),
env2(x) = cos(2πε[x + a]),
· · ·
envn(x) = cos(2πε[x + (n − 1)a]),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)

where the frequency of each envelope is ε = (m/n)fs − f , and the shift a between adjacent envelopes
equals m/n-th of the cosinusoidal envelope’s period 1/ε, i.e. a = m/(nε). We will see the formal derivation
of these expressions in §5.

Interestingly, the true moiré cases (like in figure 2) also obey the very same rule, but this time with
n = 1 envelopes, so that no interlacing occurs. This confirms, once again, the common nature of sampling
moiré effects and sub-Nyquist artefacts.

Obviously, the most interesting (m/n)-order sub-Nyquist artefacts are those with m < n/2, for which
(m/n)fs is lower than (1/2)fs, i.e. below half of the sampling frequency (like the (1/3)-order, (2/5)-order,
etc.), but other cases such as the (2/3)-order, (3/2)-order, (3/5)-order, etc., may also be considered; see
Remark 8 in the electronic supplementary material, Appendix C.

So how can we explain these artefacts that are ‘hidden’ to the Fourier spectra? Why do these visible
phenomena occur even when f is located in the ‘safe’ side of the Nyquist frequency (1/2)fs, meaning that
the sampling condition stipulated by the sampling theorem, f ≤ (1/2)fs, is fully satisfied? We will see the
answer in the following sections, first for the particular case of the cosine function g(x) = cos(2π fx), in §5,
and then for the general case with any periodic function g(x), in §6.

5. Derivation of the interlaced modulation envelopes
Let us first explain the phenomena which occur in the (m/n)-order sub-Nyquist artefact in the simplest
case, when we are sampling a cosine function g(x) with frequency f and period p = 1/f :

g(x) = cos(2π fx). (5.1)

When we sample g(x) at the sampling frequency fs, i.e. using a sampling step of �x = 1/fs, we obtain the
sampled signal:

g(xk) = cos(2π fxk) (5.2)

with xk = k�x = k/fs.
Suppose, first, that the frequency of the original continuous cosine g(x) is exactly

f = m
n

fs. (5.3)

In this case p = (n/m)�x, meaning that we have exactly n/m samples in each period p of the given cosine,
and the sampling step �x is m/n of the cosine period p. The sampled signal we obtain in this case is

g(xk) = cos(2π fxk) = cos
(

2π
[m

n
fs
] k

fs

)
= cos

(
2πk

m
n

)
. (5.4)
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This corresponds, indeed, to the singular state of the (m/n)-order sub-Nyquist artefact, which is
systematically plotted in figures 2–4 in row (a).

Now, suppose that the frequency of the given cosine g(x) is not exactly f = (m/n)fs, but rather

f = m
n

fs + ε, (5.5)

where ε may be either negative, as we did so far, or positive. The sampling frequency fs remains
unchanged, so that we still have xk = k�x = k/fs. The sampled signal is, in this case

g(xk) = cos(2π fxk) = cos
(

2π
[m

n
fs + ε

] k
fs

)

= cos
(

2πk
m
n

+ 2πε
k
fs

)

= cos(2πxkε + 2πφ) with φ = k
m
n

= cos
(

2πε

[
xk + φ

ε

])
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

As we can see, this is a sampled cosine having frequency ε (i.e. period 1/ε) and a nominal shift of φ/ε,
i.e. a relative shift of φ periods (see the definition of the various phase-related terms and notations in the
electronic supplementary material, Appendix B).

This means that:

(1) for integer φ = k(m/n), namely for k = 0, n, 2n, 3n, . . . we have

g(xk) = cos(2πxkε + 0) = cos(2πε[xk + 0]).

This cosine has the phase ϕ = 0, i.e. a shift of 0 or of an integer multiple of its period 1/ε.
(2) For k = 1, n + 1, 2n + 1, 3n + 1, . . . we have

g(xk) = cos
(

2πxkε + m
n

2π
)

= cos
(

2πε

[
xk + m

n
1
ε

])
.

This cosine has the phase ϕ = (m/n)2π , i.e. a shift of m/n times the period 1/ε.
(3) For k = 2, n + 2, 2n + 2, 3n + 2, . . . we have

g(xk) = cos
(

2πxkε + 2
m
n

2π
)

= cos
(

2πε

[
xk + 2

m
n

1
ε

])
.

This cosine has the phase ϕ = 2(m/n) 2π , i.e. a shift of 2(m/n) times the period 1/ε.
. . .

(n) For k = n − 1, 2n − 1, 3n − 1, 4n − 1, . . . we have

g(xk) = cos
(

2πxkε + (n − 1)
m
n

2π
)

= cos
(

2πε

[
xk + (n − 1)

m
n

1
ε

])
.

This cosine has the phase ϕ = (n − 1)(m/n) 2π , i.e. a shift of (n − 1)(m/n) times the period 1/ε.

This means that the successive sampled points of our original cosine function, g(xk) = cos(2π fxk),
k = 0, 1, 2, . . . fall intermittently on one of n cosinusoidal curves (that we call envelopes), which have all the
same frequency ε and period 1/ε, and which only differ from each other in their phase. More precisely,
these n envelopes only differ from each other by successive relative shifts of m/n periods 1/ε, i.e. by
successive shifts of a = m/(nε). This corresponds, indeed, to the situation in figures 2b,c, 3b,c and 4b,c.

We have proved, therefore, the following result.

Theorem 5.1. Suppose we are given a continuous cosine function g(x) = cos(2π fx) having frequency f and
period p = 1/f, and that we sample this function at the sampling frequency fs, i.e. with a sampling step of �x = 1/fs.
If the frequency f of our given cosine g(x) differs by ε from the singular frequency m/n fs for some integers m and n:

f = m
n

fs + ε,

(where ε may be positive or negative), then the successive sampled points of our original cosine function, g(xk) =
cos(2π fxk), k = 0, 1, 2, . . . fall intermittently on one of n interlaced cosinusoidal envelopes, which have all the same
frequency fenv = ε and period penv = 1/ε, and which only differ from each other in their phase. Any two successive
envelopes are simply displaced from each other by m/n of their period penv, i.e. by a shift of a = m/(nε).
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This theorem explains the (m/n)-order sub-Nyquist artefacts in the case of a cosinusoidal function.

It is interesting to note that this theorem remains valid even in cases with n = 1. In such cases, all the
sampled points g(xk) fall on a single envelope, which corresponds to a true moiré effect: there are no
interlaced envelopes, and the sampled points no longer jump intermittently from one curve to another
as they do in a pseudo-moiré effect.

6. Sub-Nyquist artefacts in general periodic functions
In the previous sections, we have only considered sub-Nyquist artefacts which occur when sampling a
cosinusoidal function.

However, the same results can be also demonstrated, exactly in the same manner, for any periodic
function g(x), by considering the Fourier series development of g(x). The detailed demonstration
is provided in the electronic supplementary material, Appendix D. We thus obtain the following
generalization of theorem 5.1.8

Theorem 6.1. Suppose we are given a continuous periodic function g(x) having frequency f and period p = 1/f ,
and that we sample this function at the sampling frequency fs, i.e. with a sampling step of �x = 1/fs. If the frequency
f of our given function g(x) differs by ε from the singular frequency (m/n)fs for some integers m and n:

f = m
n

fs + ε,

(where ε may be positive or negative), then the successive sampled points of our original function, g(xk),
k = 0, 1, 2, . . . fall intermittently on one of n interlaced low-frequency envelopes, which are simply expanded
(stretched) versions of g(x) having the frequency fenv = ε and period penv = 1/ε, and which only differ from each
other in their phase. Any two successive envelopes are displaced from each other by m/n of their period penv, i.e. by
a shift of a = m/(nε).

Once again, this theorem remains valid in cases with n = 1, too; in such cases all the sampled points
g(xk) fall on a single envelope, which corresponds to a true moiré effect.

To illustrate this generalized theorem graphically, consider figures 5 and 6. These figures are similar
to figures 2 and 3, except that the original continuous function being sampled here is a square wave with
frequency f rather than a cosine function with frequency f . In figure 5 (just like in its cosine counterpart
figure 2), which corresponds to the (1/1)-order case, the sampled points g(xk) fall on exactly one envelope.
However, in figure 6 (just like in figure 2, its cosine counterpart), which corresponds to the (1/2)-order
case, the sampled points g(xk) fall on two interlaced envelopes, that are highlighted in our figure by two
different colours. In all figures 2–6, each of the envelopes we obtain is simply an expanded (stretched)
version of the original continuous function g(x) being sampled, having the frequency ε (and period 1/ε)
rather than f (and p = 1/f ) as in the original function g(x) itself. The magnification rate is, therefore,
(1/ε)/(1/f ) = f /ε along the x axis. Furthermore, whenever n > 1 so that interlacing does occur, successive
interlaced envelopes are displaced from each other by m/n of their period 1/ε, i.e. by a shift of a = m/nε.9

Finally, it should be noted that theorem 6.1 only holds when we are sampling a periodic function g(x).
Nevertheless, this theorem may be of interest even when the function g(x) is aperiodic but still contains
a strong periodic component (which manifests itself as a spike in the spectrum of g(x)).

7. Discussion: sampling and reconstruction considerations
As we have mentioned in §2, although sub-Nyquist artefacts are generated during the sampling process,
they are often considered as reconstruction artefacts (meaning that they appear as a result of poor
reconstruction). Let us explain this in some more detail.

Sampling is the process that converts a continuous signal to a discrete one, while reconstruction is the
process that recreates a continuous signal from its samples ([2, §14.10.5], [1]). Note that theoretically,
a sampled signal consists of zero-width impulses (of varying strengths), and it is precisely the
reconstruction process that brings back the ‘flesh’ around each of the sampled ‘bones’. Now, according to
the classical sampling theorem (see, e.g. [9, §5.4], [10, §8–7], [11, p. 115] or [12, p. 1593]), all the information

8Interestingly, the fact that g(x) may also contain higher harmonics of its basic frequency f, and that these harmonics may cause aliasing,
does not affect the validity of the result. This point is explained by Remark 9 in the electronic supplementary material, Appendix C.
9It is interesting to note that unlike the cosine function, the square wave is not band limited (its spectrum contains infinitely many
harmonics of f ). This means that unlike in the cosinusoidal case, aliasing cannot be avoided here (unless the signal is low-pass filtered
before being sampled). See also Remark 9 in the electronic supplementary material, Appendix C.
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Figure 5. (a–c) This figure is similar to figure 2, except that the original continuous function being sampled is the periodic square wave
g(x)= wave(fx) with frequency f (and an opening ratio of τ/p= 1/5, meaning that the 1-valued part of the wave occupies 1/5 of its
period p= 1/f ). The highly visible (1/1)-order artefact is generated because the sampled points g(xk) fall along a single low-frequency
curve, which is simply a stretched version of g(x).

in the original continuous signal g(x) is preserved in its sampled version g(xk), if the sampling frequency
is at least twice the highest frequency contained in g(x). Under this condition, the theorem guarantees that
the original continuous signal can be perfectly reconstructed by sinc interpolation, i.e. by convolving the
sampled signal g(xk) with a specified narrow sinc function (that is precisely the inverse Fourier transform
of the rectangular window function in the spectral domain that cuts off all the frequencies beyond half
of the sampling frequency; see [9, p. 83]). This result remains true even if the sampling process itself
introduces into the sampled signal g(xk) new modulation or beating effects (sub-Nyquist artefacts) that
did not exist in the original continuous signal g(x), as it happens, for instance, in figure 3. In other words,
if reconstruction is done as stipulated by the sampling theorem, the theorem indeed guarantees that these
artefacts will disappear in the reconstruction process.

However, in practice, the reconstruction of a sampled signal can never be done by a sinc
interpolation as stipulated by the sampling theorem, because the sinc function extends ad infinitum
to both directions. Instead, reconstruction is very often performed by means of a linear interpolation,
meaning that successive sample points are simply connected by straight line segments, just as on
the display of an oscilloscope. This is, indeed, what we are also doing in our figures. Now, because
the reconstruction process is not performed as stipulated by the sampling theorem, it is clear that the
original continuous signal g(x) cannot be perfectly reconstructed from the sampled signal g(xk). Indeed,
if perfect reconstruction by sinc interpolation could be performed, the sub-Nyquist artefacts would
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Figure 6. (a–c) This figure is similar to figure 3, except that the original continuous function being sampled is the periodic square wave
g(x)= wave(fx) (with frequency f and an opening ratio of τ/p= 1/5). The highly visible (1/2)-order sub-Nyquist artefact is generated
because consecutive points g(xk) of the sampled signal alternately jump from one of the n= 2 modulating envelopes to the other (each
of the two modulating envelopes being simply a stretched and shifted version of g(x)). These two interlaced modulating envelopes are
highlighted in the figure in different colours.

have been eliminated in the reconstruction (interpolation) process, and we would obtain a continuous
signal that is perfectly identical to g(x). However, when the reconstruction is performed by a non-ideal
reconstruction method such as linear interpolation, the sub-Nyquist artefacts are not eliminated during
the reconstruction process, and they remain visible in our resulting signal. Obviously, the closer we
approach sinc interpolation the better are the results, but in the real world we can never reach the ideal
conditions set by the sampling theorem.

Note, however, that true aliasing moiré effects, those that occur when the Nyquist condition is not
satisfied, like in figure 2, would not be eliminated even by an ideal reconstruction: these artefacts, which
are indeed represented by low frequencies in the spectrum, are embedded in the sampled signal and
remain visible in the reconstructed signal too, whichever reconstruction method we may choose.

Having understood the origin and the nature of sub-Nyquist artefacts, an obvious question may
now arise: as these artefacts cannot be eliminated in the reconstruction stage, is it possible to avoid
them by judiciously choosing our sampling frequency? As one could guess, avoiding such ‘dangerous
frequency zones’ is difficult, as they may lurk anywhere along the frequency axis, including in zones
that fully respect the frequency condition required by the sampling theorem. A possible rule of thumb
[4, p. 15] consists of taking fs > 10f (i.e. fs ≈ (n/m)f > 10f and hence n/m > 10) rather than the Nyquist
requirement of fs > 2f (i.e. fs ≈ (n/m)f > 2f and hence n/m > 2). The reasoning behind this rule of thumb
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is that for high values of n the artefacts in question become rather negligible (see Remarks 2 and 4 in the
electronic supplementary material, Appendix C). Nevertheless, a good practice when sampling a given
signal having a strong periodic component of frequency f would be to avoid sampling-frequencies fs
in the close neighbourhood of (n/m)f for relatively small integers n and m. If these ‘dangerous zones’
are carefully avoided, one may choose even lower values of fs, which are often more practical to use. It
should be mentioned that in some particular cases signals can be correctly reconstructed even when using
a sampling rate much lower than the Nyquist requirement. This subject is being studied in the field of
compressive sampling, which continues gaining interest since the work of Donoho [13] and Candès [14]
first appeared in 2006. In the present contribution, we only address the general case, in which the classical
sampling theorem applies, but possible extensions of this subject within other sampling frameworks
could also be studied in future works.

8. Significance in applications
Sub-Nyquist artefacts may occur in various signal-processing applications, and one should be aware
of their existence and of their correct interpretation. Each application involving analogue to digital
conversion of continuous periodic signals, including simple sinusoidal waves, may give rise to such
artefacts in the resulting digital signal, even if the original signal is band limited and the Nyquist
condition is respected.

In many cases such phenomena (with n > 1) are harmless, as they do not truly introduce new
false frequencies into the system, as aliasing phenomena do. But in other cases a misunderstanding of
these phenomena may lead to undesirable results even when n > 1. This may happen, for example, in
applications that rely on amplitude peak detection in the sampled signal. In such cases, false peaks may
be detected in the sampled signal, even though they do not exist in the original continuous signal (e.g.
figures 3 and 4).

Care should be taken in particular when the resulting signal has to undergo in subsequent processing
steps any nonlinear operation (rectification, amplitude truncation, nonlinear amplification, etc.).
A nonlinear operation may truly insert the envelope frequencies in question into the signal and its
spectral representation [15], and hence flaw the processing results. This may happen, for example, when
applying to the beating signal a nonlinear operation such as envelope detection; see also footnote 3 in
§3.2. Other examples in the field of image processing include nonlinear operations such as quantization
or halftoning [2, §13.1.2].

It should also be noted that when further processing of the sampled signal is required, one should
always use the sampled signal itself, and not its reconstructed version (which is necessarily based on
non-ideal reconstruction, as we have seen above). The reconstructed version of the sampled signal can
be used for plotting or displaying purposes, but not for any further processing steps.

9. Conclusion
We show in this paper that sub-Nyquist artefacts and sampling moiré effects are, indeed, particular
cases of the same phenomenon: whenever the frequency f of our given continuous periodic function
g(x) is close to a critical point (m/n)fs where fs is the sampling frequency and m and n are integers,
a visible artefact is generated in the resulting sampled signal. This artefact is explained by our main
theorems: it occurs as, under these circumstances, the successive sampled points of our original function,
g(xk), k = 0, 1, 2, . . . fall intermittently on one of n interlaced low-frequency envelopes, which are simply
expanded (stretched) versions of g(x) having the frequency ε and period 1/ε, and which only differ
from each other in their phase. If n = 1 then all the sampled points fall on a single envelope, and the
resulting effect is simply a sampling moiré effect, which indeed behaves exactly as predicted in the moiré
theory. However, when n > 1, the successive sampling points g(xk) alternately jump from one modulating
envelope to another, and the resulting effect is a sub-Nyquist artefact. If g(x) does not possess the n-th
harmonic of its frequency f , as in the cosinusoidal case, this is a pure modulation phenomenon and it
is not accompanied by a corresponding low-frequency impulse in the spectrum. Yet, as we have seen
throughout this paper, in spite of this difference between true moiré effects and sub-Nyquist artefacts,
they all behave in a very similar way. Let us mention, for example, their similar behaviour at the singular
point or around it, their mirror-inversion depending on the sign of ε (i.e. depending on which side of the
singular point they are located; see the electronic supplementary material, Remark 3 in Appendix C), etc.
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This striking similarity between true moirés and sub-Nyquist artefacts is indeed explained by the fact
that they are both particular cases of the same phenomenon, as shown by our theorems.

Finally, as we have seen in §7, sub-Nyquist artefacts are really generated during the sampling process,
but they remain visible due to imperfect reconstruction. Our analysis of the sub-Nyquist artefacts would
be of interest even if these phenomena only existed in the sampled signal, and then disappeared during
the reconstruction process, but because perfect reconstruction does not exist in the real world, so that sub-
Nyquist artefacts cannot be completely eliminated from the reconstructed signal, the analysis provided
here becomes all the more valuable and pertinent. Our results may be of interest to people working in a
wide range of applications, where such artefacts may occur and should be therefore well understood.

Data accessibility. Appendices A–D, as well as the two interactive Mathematica R© applications, their user’s guide and
a glossary of the main terms have been uploaded as the electronic supplementary material. This paper has been
significantly shortened in accordance with the reviewers’ remarks. Interested readers can find the full original version
of this paper, including more detailed figures and examples, in the tutorial [16].
Competing interests. We declare we do not have competing interests.
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