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Mathematical moiré models and their limitations
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In a previous recent paper we discussed the limitations of the Fourier-based model in the prediction of visible
moiré effects. Here, we extend the discussion to other mathematical models that are also being used in the moiré
theory: the classical indicial equations method for modelling the moiré fringes between periodic or curvilinear
gratings, and two methods that are used to model different facets of the moiré effects between correlated
aperiodic layers. We discuss the limitations of each model, explain their significance, and suggest possible ways to
overcome them.
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1. Introduction

Moiré theory deals with the mathematical modelling of
the phenomena that occur in the superposition of two
or more structures (line gratings, dot screens, etc.),
either periodic or not.

Although modern moiré theory is largely based on
the Fourier approach, the Fourier-based model is not
always the best tool for dealing with questions related
to moiré effects. For example, the Fourier theory is
very well suited to dealing with global or macrostruc-
ture effects in the layer superposition, but it is not
adapted to the explanation of local, microstructure
effects such as rosette shapes in the periodic case
([1], Chapter 8) or dot trajectories in the aperiodic case
([2], Chapter 4).1 The detailed study of microstructures
requires therefore, other mathematical tools.

Moreover, in many real-world applications the
Fourier approach may prove to be impractical even for
the study of macroscopic moiré effects, due to the
complexity of the calculations involved. In such cases,
moiré analysis or synthesis can be done using
simplified models that operate directly in the image
domain, such as the indicial equations method. Indeed,
moiré theory is not limited to the Fourier-based model
alone, and it offers several possible alternatives, some
of which are complementary to the Fourier-based
model, while others come to simplify it for practical use
in applications.

However, when using a mathematical model to
explain physical or experimental phenomena, it often
happens that although the model being used is well
adapted to the situation at hand, in some particular
circumstances it gives unexpected results, or

simply fails. In some cases this may indeed indicate
that we have reached the limits of the present mathe-
matical model, and that a new refinement of the model
or even a new theoretical breakthrough may be needed.
In other cases, the reason may be more prosaic, such as
some misunderstood or disregarded conditions, an
unadapted hypothesis, or simply an error.

In the following, we discuss this question in the
context of the moiré theory. We describe points in
which the mathematical models being used seem to
deviate from our real observations, and we try to
provide some plausible explanations. Issues that are
related to the Fourier theory have already been treated
separately in our previous paper [3], so in the present
contribution we will focus on other models being used
in the moiré theory. We discuss in Section 2 issues that
are related to the indicial equations model for moiré
effects between periodic or repetitive, curvilinear
layers; then, in Section 3 we proceed to the fixed
points model for Glass patterns between correlated
aperiodic layers; and finally, in Section 4 we discuss
issues related to the vector field model for the
microstructures (dot trajectories) that are generated
between correlated aperiodic layers.

It is interesting to note that the moiré theory is,
indeed, a good test case for studying the limitations of
a mathematical model, since in this case no approx-
imations (such as least square fits or statistical
considerations) are explicitly being used and, in prin-
ciple, the model should be able to describe precisely the
phenomena in question, without any approximation
errors or other inherent error sources. Of course, the
use of any mathematical model to describe the reality
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implicitly implies some assumptions, simplifications or
approximations. For example, we may simplify things
a lot by assuming that our structures in the superposed
layers (gratings etc.) are perfect, or that they extend to
infinity in all directions (in order not to be distracted
by border considerations). But this ‘idealisation’ of the
real world does not introduce into the model explicit
error considerations or uncertainties as in models that
are based on best fit or statistical approaches.

2. The indicial equations model

The indicial (or parametric) equations model (see, for
example, [4], ([5], pp. 64–78) or ([6], pp. 14–91)) is
probably the simplest and the most widely used

method for predicting the geometric shape of moiré

patterns in the superposition of curvilinear gratings.

The origins of this model can be traced back to the

beginning of the twentieth century with pioneering

works such as [7,8]. This model, which involves only

the image domain, is based on the curve equations of

the original curvilinear gratings: if each of the original

layers is regarded as an indexed family of lines (or

curves), the moiré pattern that results from their

interaction forms a new indexed family of lines (or

curves), whose equations can be deduced from the

equations of the original layers.
For example, assume that we are given a periodic

grating of vertical lines with period T1, and a second

periodic line grating with period T2 which is rotated by
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Figure 2. Schematic illustration of a (1,�1)-moiré (a) between two straight periodic gratings; and (b) between two curvilinear
gratings. The two line families enumerated by the indices m and n, respectively, represent the centrelines of the superposed
gratings, and the family of thin lines enumerated by the index p indicates the centrelines of the bright bands of the resulting
(1,�1)-moiré. Similarly, the family of dotted lines enumerated by the index q indicates the centrelines of the bright bands of the
(2,�1)-moiré. (For the sake of clarity the respective dotted lines have not been drawn in case (b).)

← Bright
← Dark

← Bright
← Dark

(b)(a)

Figure 1. (a) Alternating dark and bright areas which form a (1,�1)-moiré effect in the superposition of two identical, mutually
rotated line-gratings. (b) Enlarged view.
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angle � (as in Figures 1 and 2(a)). For the sake of

simplicity we may assume that both gratings are centred

on the origin. We consider each of the gratings as a

family of lines, and we focus our attention on their

centrelines, ignoring their real linewidths or their

intensity profiles. If we enumerate the lines of the first

grating by m¼ . . . ,�2,�1 , 0, 1, 2, . . . then the equa-

tions of their centrelines in the x,y plane are given by:

x ¼ mT1, m 2 Z: ð1Þ

Similarly, the equations of the centrelines of the

rotated grating are:

x cos � þ y sin � ¼ nT2, n 2 Z: ð2Þ

As shown in Figure 1, moiré bands occur in a grating

superposition since areas where black lines of the two

gratings cross each other contain less black than areas

where the grating lines fall between each other.

Therefore, the bright bands of the most visible moiré

run along the lines that connect closest crossing points

in the superposition. This is illustrated in Figure 2 by the

thin lines, which correspond here to the (1,�1)-moiré

shown in Figure 1.2 Note that, in general, the eye

automatically selects as the most prominent moiré in the

superposition the locus of intersection points in which

the density of crossing points is the greatest; in the case

of Figure 1 this corresponds to the (1,�1)-moiré, while

in Figure 3 this corresponds to the (2,�1)-moiré.
Let us find the line equations of the most prom-

inent moiré shown in Figure 2(a), i.e. the subtractive,

(1,�1)-moiré.3 In this case, the 0th line of the moiré

line family (i.e. the centreline of the 0th bright band of

the moiré) joins all the intersection points where

m� n¼ 0, namely, the intersection points

(m, n)¼ . . . , (�1,�1), (0, 0), (1, 1), . . . . But since the

moiré bands are continuous, the 0th line of the moiré

also contains all the intermediate points between these

intersection points; clearly, it contains all the (x, y)

points in the plane for which Equations (1) and (2)

satisfy m� n¼ 0.
Similarly, the pth line of the (1,�1)-moiré

consists of all the (x, y) points in the plane for which

Equations (1) and (2) satisfy the condition:

m� n ¼ p, where p 2 Z: ð3Þ

In order to find the equation of the pth line of the

moiré, i.e. the locus of all the (x, y) points that satisfy

Equations (1)–(3), we have to solve these three

simultaneous equations for x, y and p. This can be

done by solving for m in Equation (1) and for n in

Equation (2), and inserting these results into the

indicial Equation (3). We obtain, therefore:

x

T1
�
x cos � þ y sin �

T2
¼ p

or after rearrangement:

xðT2 � T1 cos �Þ � yT1 sin � ¼ T1T2p:

This is the equation of the centreline of the pth

bright moiré band. If we let the index p vary through

all integers, p¼ . . . ,�2,�1, 0, 1, 2, . . . , this equation

represents the line family of the centrelines of the

subtractive (1,�1)-moiré bands.4

More generally, the line equations of any (k1, k2)-

moiré between two superposed gratings can be obtained

in the same way, but this time instead of using

condition (3) the more general indicial equation is used:

k1mþ k2n ¼ p, p 2 Z ð4Þ

where k1 and k2 are constant integers, and m, n and p

are the indexing parameters of the three line families

(the two original gratings and the (k1, k2)-moiré

bands).5

← Bright
← Dark

← Bright
← Dark

(a) (b)

Figure 3. Same as Figure 1, but with the second grating having a double period. In this case the alternating dark and bright areas
form a (2,�1)-moiré effect. This second order moiré has the same angle and period as the (1,�1)-moiré of Figure 1, and only its
intensity is weaker.

Journal of Modern Optics 25

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
P
F
L
 
L
a
u
s
a
n
n
e
]
 
A
t
:
 
0
9
:
5
6
 
4
 
F
e
b
r
u
a
r
y
 
2
0
1
0



In the most general case of a (k1, . . . , ks)-moiré

between s superposed gratings we will have s equa-
tions, one for each layer, plus the condition formulated

by the general indicial equation:

k1n1 þ � � � þ ksns ¼ p, p 2 Z: ð5Þ

The line equations of the (k1, . . . , ks)-moiré bands can
be found again, by replacing the indices n1, . . . , ns in
Equation (5) with the expressions deduced from the

line equations of the s original gratings, i.e. by solving
the set of sþ 1 equations for x, y and p.

These considerations can also be used when the
superposed layers are curvilinear, as illustrated in

Figure 2(b). For example, assume we want to find the
curve equations of the moiré between two identical
shifted circular gratings (see Figure 4). In this case,

derivations in the spectral domain become quite
complicated (see Remark 10.7 in ([1], Sec. 10.7.6)).
However, the derivation of the moiré shapes using the

indicial equations method remains straightforward: the
curve equations of the two horizontally shifted circular
gratings in the x,y plane are given by

ðx� x0Þ
2
þ y2 ¼ ðmT Þ2, m ¼ 1, 2, . . .

ðxþ x0Þ
2
þ y2 ¼ ðnT Þ2, n ¼ 1, 2, . . .

where x0 and �x0 are the respective horizontal shifts of
the two circular gratings, and T is their radial period

(i.e. the radial spacing between the centrelines of two
consecutive circles in each circular grating). The
equations of the curve families of the (1,�1)-moiré

and of the (1,1)-moiré are obtained by solving the
above equations for m and n and inserting the resulting

expressions into the indicial equation m� n¼ p in
order to eliminate m and n. After some rearrangements
one obtains ([6], p. 17):

x2

ðpT=2Þ2
�

y2

x20 � ð pT=2Þ
2
¼ 1, p ¼ 1, 2 . . . : ð6Þ

This means that the curves of the additive (1,1)-
moiré form a family of ellipses, while the curves
of the subtractive (1,�1)-moiré form a family of
hyperbolas.

Further examples using the indicial equations
method can be found, for instance, in the references
mentioned in the beginning of the section. Interesting
examples can be also found in [9] and [10], which
analyse in depth the various (k1, k2)-moirés obtained
between circular zone gratings or between a circular
zone grating and a periodic straight grating; their
indicial equations even include the phases of the
different gratings and of the resulting moirés.

The indicial equations method can be summarised,
therefore, as follows: if the centrelines of the s
superposed curvilinear gratings are given by the curve
families6

g1ðx, yÞ ¼ n1, n1 2 Z

�

�

�

gsðx, yÞ ¼ ns, ns 2 Z ð7Þ

(where the line spacing Ti of each layer is already
incorporated into gi(x, y)) then the centrelines of the
(k1, . . . , ks)-moiré curves can be obtained from the
indicial Equation (5) by eliminating the indices
n1, . . . , ns using Equations (7). We obtain, therefore:

k1g1ðx, yÞ þ � � � þ ksgsðx, yÞ ¼ p, p 2 Z: ð8Þ

This is the relationship between x and y that
describes the curve family of the (k1, . . . , ks)-moiré:

gk1,..., ksðx, yÞ ¼ p, p 2 Z:

We see therefore, that the geometric layout of the
(k1, . . . , ks)-moiré is determined by:7

gk1,..., ksðx, yÞ ¼ k1g1ðx, yÞ þ � � � þ ksgsðx, yÞ: ð9Þ

Figure 4. Two identical circular gratings, which have been horizontally shifted from the origin to the points (a) x¼ x0 and
(b) x¼�x0, and their superposition (c). The resulting hyperbolic fringes in the superposition (c) correspond to the subtractive
(1,�1)-moiré, while the elliptical fringes correspond to the additive (1,1)-moiré.
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For example, in the case of the (1,�1)-moiré

between two line gratings the geometric layout of the

moiré is determined by:

g1,�1ðx, yÞ ¼ g1ðx, yÞ � g2ðx, yÞ: ð10Þ

It is interesting to note that the indicial equations

method can also be given a more visual interpretation,

by regarding the indexed family of curves that

describes a given layer as the level lines of a curved

surface that are perpendicularly projected onto the x,y

plane, as in a topographic map. According to this

interpretation, if the ith indexed family of curves

represents level lines of the surface z¼ gi(x, y), then the

indexed curve family of the s-layers (k1, . . . , ks)-moiré

consists of the level lines of the surface:

z ¼ k1g1ðx, yÞ þ � � � þ ksgsðx, yÞ: ð11Þ

In particular, the indexed curve family of the

(1,�1)-moiré between two curvilinear gratings consists

of the level lines of the difference surface z¼

g1(x, y)� g2(x, y); the level line z¼ p corresponds

therefore to the projection onto the x,y plane of the

intersection curve between the two surfaces z¼ g1(x, y)

and z¼ g2(x, y)þ p, namely: g1(x, y)¼ g2(x, y)þ p (see

[11], p. 25).
Finally, the indicial equations model can also be

used in a different (1,�1)-moiré variant, in which one

of the two superposed gratings, called the revealing

layer, consists of thin line slits on a dark back-

ground, and samples the first line grating (see

Figure 5). This moiré variant is very useful in

applications of the moiré effect in the field of

document security [12].

2.1. Limitations of the indicial equations model

In the indicial equations model the original gratings, as

well as the resulting moiré bands in the superposition,

are expressed by indexed families of curves that

represent the centrelines of the curvilinear gratings

and of the moiré bands. Therefore, unlike the Fourier-

based model, the indicial equations model takes into
account only the geometric layout of the centrelines of

the curvilinear gratings and of the resulting moirés, but

it totally ignores their intensity profiles (i.e. the real

linewidths of the original gratings and the intensity or

grey-level variations of the moiré). In fact, as shown in

([1], Section 11.2.2), the indicial equations that

represent the curve families of the original layers and

of the resulting moirés are already incorporated within

their respective Fourier series representations. This

shows that the indicial equations model is indeed fully
encompassed by the Fourier-based model; in fact,

Equation (9) corresponds to the second part of the

main Fourier-based result, the fundamental moiré

theorem for curvilinear gratings (see ([1], Section

10.9.1)). Clearly, since it only uses a part of the full

information included in the Fourier expressions (the

geometric layout of the layers, but not their intensity

profiles), it is not surprising that the indicial equations

model can only provide partial information about the

moirés: it only gives the geometric layout of the
resulting moiré, but not its intensity profile. Note,

however, that in the particular moiré case mentioned

above, where the revealing layer samples the other line

grating, the intensity profile of the resulting moiré is

essentially a larger version of the intensity profile of the

grating being sampled (see Figure 5). This means that,

Figure 5. An example illustrating the particular case of (1,�1)-moiré in which one of the two superposed layers (called the
revealing layer) consists of narrow slits on a black background and samples the other line grating (the base layer).
The superposition (b) gives moiré bands whose intensity profile is essentially a larger version of the intensity profile of the base
layer (a).
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in this particular case, the intensity profile of the moiré
is known when using the indicial equations model,
although this knowledge is not directly provided by the
indicial equations themselves but rather by
Fourier-based considerations such as profile convolu-
tions (see [1], Section C.14).

A second limitation of the indicial equations
method resides in the ambiguity concerning the phase
of the resulting moiré curves. As we have seen in the
examples above and in Figure 2, the equations of the
original gratings represent the centreline of the black
curves, but the resulting equations of the moiré curves
represent the centrelines of the bright moiré bands
(which correspond to the intersection points between
the black lines of the two original gratings). This kind of
phase ambiguity is inherent in the indicial equations
model. Although one can include in the indicial
equations the phase of the original gratings and of the
resulting moiré (for example by allowing the addition of
a fractional part to each of the integer indices m, n, p,
etc.), it turns out that unlike in the Fourier-based
approach, the analysis of the phase in the indicial
equations method is rather limited; for example, it fails
to discriminate between black and white zones of a zone
grating moiré (see [9], p. 40 and [10], p. 596).

This limitation is even more evident in the super-
position of three or more gratings. In such cases, the
geometric interpretation of intersection points between
the different gratings becomes much more complex
than in the case of two gratings shown in Figure 2, and
the geometric connection with the phase of the
resulting moiré bands is no longer obvious (see, for
example, Figure 6 and compare with Figures 1 or 2).

A further limitation of the indicial equations model
is that although it can provide the equation family for
any desired (k1, . . . , ks)-moiré in the given superposition
(depending on the values of k1, . . . , ks that we insert in
Equation (5) or (8)), it does not tell us which of them is
indeed visible in the given superposition, or which of
them is the most prominent. This depends, of course, on
the grating periods, on their superposition angles, and
also on the grating profiles.8 This kind of information
can be obtained in the Fourier-based model from the
locations and the amplitudes of the elements (impulses
etc.) in the spectrum of the superposition. Note,
however, that this limitation of the indicial equations
model can sometimes be overcome using the following
rule of thumb, which may be helpful for the case of two
gratings: in general, the human eye automatically
selects as the most prominent moiré in the super-
position the locus of intersection points in which the
density of crossing points is the greatest. In the case of
Figure 1 this corresponds to the (1,�1)-moiré; but in
the case of Figure 3 this corresponds to the (2,�1)-
moiré, so we should model here the visible moiré using,

in Equation (4), k1¼ 2 and k2¼�1. Using instead
k1¼ 1 and k2¼�1 (namely, Equation (3)) would
simply give the equations of the (1,�1)-moiré, which
is not the most prominent moiré that we see in our
superposition.

3. The fixed points model for Glass patterns

In this section we discuss the fixed points model that is
used to explain the macroscopic phenomena (grey level
variations) that occur in the superposition of aperiodic,
correlated layers; the microstructure phenomena (dot
trajectories) that appear in such superpositions will be
considered later, in Section 4.

Suppose we are given an aperiodic layer such as a
random dot screen, and that we superpose on top of it
a second copy of the same structure that has undergone
a small rotation, scaling, or both. As shown in
Figure 7, we obtain in the superposition a new
structure resembling a top-viewed funnel or a distant
galaxy in the night sky, consisting of a usually brighter
area that is surrounded by a microstructure of circular,
radial or spiral dot trajectories. This phenomenon is
known in literature as a Glass pattern, after Leon Glass
who described it in the late 1960s [13,14].

A

(a)

(b)

B

C

Figure 6. (a) A superposition of three line gratings that gives
a visible moiré effect. (b) Enlarged view, showing in detail the
microstructure of the superposition. Note that the geometric
interpretation of the moiré bands in terms of intersection
points between the original gratings is no longer obvious as
in Figures 1–3.
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Depending on the geometric transformations being
applied to one or both of the originally identical
aperiodic layers, we may obtain in the superposition
Glass patterns of various different shapes (see
Figure 8). Obviously, however, no Glass patterns can
be expected in the superposition unless the superposed

layers are sufficiently correlated.
Glass patterns are, in fact, the aperiodic counter-

part of the moiré patterns, and indeed, as shown in
([2], Chapter 7), both of these phenomena are fully
explained by the same Fourier-based model. But here,
too, just as in the periodic case, there also exists a
simplified image-domain model, which is partial to the
Fourier-based model and is therefore more limited, but
has the advantage of being much simpler to use. This
model, known as the fixed-points model, has been

reported for the first time in 1995 in the context of an

application to stereo matching [15]. This model is

based on the fact that the brighter zone in the centre of

a Glass pattern is precisely the area where individual

elements (dots) of the two superposed layers coincide

(or almost coincide) on top of each other. This happens

around the points (x, y) for which the transformations

g1(x, y) and g2(x, y), which have been applied to the

two originally identical layers, satisfy:9

g1ðx, yÞ � g2ðx, yÞ ¼ ð0, 0Þ: ð12Þ

The points that satisfy this condition are precisely

the mutual fixed points of the transformations g1(x, y)

and g2(x, y).
10 Note that if only one of the two layers

(say, the first one) has been transformed this condition

becomes:

g1ðx, yÞ � ðx, yÞ ¼ ð0, 0Þ: ð13Þ

(a) (b)

(c) (d )

Figure 7. Glass patterns between aperiodic dot screens. (a) The original aperiodic dot screen being used for generating all the
superpositions shown in this figure. (b) The superposition of two identical copies of aperiodic dot screen (a) with a small angle
difference gives a Glass pattern about the centre of rotation. Note its typical microstructure consisting of concentric circular dot
trajectories. (c) The superposition of two identical copies of aperiodic dot screen (a), one of which is slightly scaled up, gives a
Glass pattern about the centre, which is surrounded by radial dot trajectories. (d ) The superposition of two identical copies of
aperiodic dot screen (a) one of which is slightly scaled up and rotated, gives a Glass pattern about the centre, which is surrounded
by spiral dot trajectories.
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The points that satisfy this condition are the fixed
points of the transformation g1(x, y).

Thus, in order to find the location of the Glass
pattern, it is sufficient to solve Equations (12) or (13),
depending on the case. And indeed, the fixed points
model explains the various Glass patterns that appear in
superpositions such as in Figures 7 and 8; the mathe-
matical derivations of such cases can be found, for
example, in ([2], Chapter 3). However, this model, too,
suffers from some limitations, as will be shown below.

3.1. Limitations of the fixed points model

Just like the indicial equations model, the fixed points
model operates in the image domain alone, and it only
gives the ‘skeleton’ (centre point or centreline) of the
resulting Glass patterns, i.e. the locus in the x,y plane

(point, curve, etc.) where Equations (12) or (13) are
satisfied. But it says nothing on the intensity profile
of the Glass pattern, not even whether it is brighter or
darker than the surrounding areas in the
superposition.11

This is explained, once again, by the fact that the
fixed points model is only partial to the Fourier-based
model; in fact, Equation (12), which represents the
skeleton of the resulting Glass pattern, follows from the
second part of the main Fourier-based result, the
fundamental moiré theorem for aperiodic screens (see
([2], p. 269)).12 Hence, since it only uses a part of the full
information included in the Fourier expressions (the
geometric layout of the layers, but not their intensity
profiles), it is not surprising that the fixed points method
can only provide partial information about the resulting
Glass patterns: it only gives the geometric layout of their
skeleton, but not their intensity profile.

(a) (b)

(c) (d)

Figure 8. Glass patterns between aperiodic dot screens. (a) The aperiodic dot screen of Figure 7(a) after having undergone the
parabolic transformation g(x, y)¼ (x�ay2, y). (b) The superposition of two identical aperiodic dot screens, one of which has
undergone the parabolic transformation g(x, y). Since this transformation does not involve layer shifts, the two layers clearly
coincide along the x axis. (c) Same as in (b), but here the untransformed screen has been slightly shifted by x0¼T to the right.
(d ) An example with four mutual fixed points: the superposition of two identical aperiodic dot screens, one of which has
undergone a vertical parabolic transformation plus a slight vertical shift of y0¼�T, while the other has undergone a horizontal
parabolic transformation plus a slight horizontal shift of x0¼�T. Note the two circular and the two hyperbolic Glass patterns,
which are clearly visible about the fixed points in the superposition.
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A second limitation of the fixed points model

resides in the fact that although fixed points or mutual

fixed points exist in a wide range of transformations,

Glass patterns are only visible in the superposition

when the transformations being applied are sufficiently

weak. The reason is that Glass patterns are only visible

between highly correlated layers, but when applying

strong transformations the correlation between the

layers becomes too low, and no Glass patterns can be

seen in the superposition, even when mathematically

fixed points do exist.
Note, however, that this limitation of the fixed

points model can often be overcome by ‘softening’ the

layer transformations being used. For example, instead

of using transformations of the form g(x, y)¼ (x, y)þ

k(x, y), one may try to use their softened versions

g(x, y)¼ (x, y)þ "k(x, y), where " is a small positive

fraction, as they are closer to the identity transforma-

tion g(x, y)¼ (x, y) and thus softer.
A third limitation of the fixed points model can be

considered, in a way, as the converse of the previous

limitation: it turns out that Glass patterns may still be

visible in the superposition even if the transformations

being used have no fixed points at all (namely, if there

exist no points (x, y) that satisfy Equations (12) or

(13)). This situation may occur if the transformations

being used have almost fixed points rather than fixed

points, i.e. points where g1(x, y) is not fully identical to

g2(x, y) but only very close to it. If several such points

exist, they form together an almost fixed locus.

Although in almost fixed points there is no perfect

coincidence between the two superposed layers, the

elements of both layers around such points still fall

very close to each other, while farther away the

correlation gradually decreases. This generates

around the almost fixed point (or locus) a visible

Glass pattern whose centre is just slightly darker than

in the case of perfect fixed point. A few such examples

can be found in ([2], Section 3.7).
Mathematically speaking, although in this case no

points (x, y) satisfy g1(x, y)� g2(x, y)¼ (0,0), we can

still extend the fixed points model to find those points

for which the difference k(x, y)¼ g1(x, y)� g2(x, y) is

almost zero, or, more precisely, the points (x, y) for

which we obtain the minimum of this difference.

Hence, if we denote the components of the difference

k(x, y) by k1(x, y) and k2(x, y):

kðx, yÞ ¼ ðk1ðx, yÞ, k2ðx, yÞÞ

then what we are looking for is the loci of the minima

of the function

kðx, yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðx, yÞ

2
þ k2ðx, yÞ

2

q
ð14Þ

which gives the length of the vector k(x, y) (or, in other

words, the distance of k(x, y) from (0,0)). Alternatively,
for the sake of simplicity, we may prefer to find the loci
of the minima of its squared version, n(x, y):

nðx, yÞ ¼ k1ðx, yÞ
2
þ k2ðx, yÞ

2:

This kind of reasoning may help one overcome the
third limitation of the fixed points model.

4. The vector field model for dot trajectories

The last model we discuss here concerns the dot

trajectories, i.e. the microstructure dot arrangements
that are usually visible around the Glass pattern in the
superposition of aperiodic layers. These dot trajec-

tories may have various different geometric shapes
depending on the transformations that have been
applied to the initially identical layers (see Figures 7
and 8).

As already mentioned, such microstructure effects

cannot be taken care of by the Fourier-based model;
and indeed, the model used to describe these phenom-
ena, the vector field model [16], is not encompassed by
the Fourier-based model, and the results it provides

cannot be obtained by the Fourier approach.
This model is therefore complementary to the
Fourier-based model. Let us now briefly review the
vector field model.

Suppose we are given an aperiodic layer such as a

random dot screen, and that we superpose on top of it
a second copy of the same structure, which has
undergone a direct transformation (x, y)� �gðx, yÞ.13

Thus, the dot trajectories in our superposition consist

of pairs of dots, which represent the location of a
screen dot before and after the layer transformation
�gðx, yÞ has been applied. These dot pairs can be

represented, therefore, as a vector field, which assigns
to each point (x, y)2R2 a vector that connects (x, y) to
its new location �gðx, yÞ 2 R2 under the transformation
�g.14 It is important to note, however, that the vector

field of the transformation �gðx, yÞ itself does not have
this property; that is, the vector it assigns to (x, y) does
not connect (x, y) to its destination �gðx, yÞ, but rather
to the point (x, y)þ �gðx, yÞ. For instance, if we consider

the identity transformation �gðx, yÞ¼ (x, y), it is clear
that in this case the vector attached to each point (x, y)
is the vector (x, y) itself, which points, therefore, to the

point (2x, 2y) and not to the destination point under �g,
which is the point (x, y).

Therefore, in order to obtain a vector field that
correctly represents our dot trajectories, we must
consider, instead of the transformation �gðx, yÞ itself

(the transformation that has been applied to one of the
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superposed layers), the relative transformation
between the two layers, which is given by:

�hðx, yÞ ¼ �gðx, yÞ � ðx, yÞ: ð15Þ

If we draw the vector field representation of this
transformation, we obtain exactly what we have
desired: the vector field of �h(x, y) assigns to each
point (x, y) the vector �gðx, yÞ � (x, y) which connects
the original point (x, y) to its destination under the
layer transformation �g, the point �gðx, yÞ (see Figure 9).
Indeed, as we can see in Figures 10(a)–(c), the vector
fields obtained by Equation (15) agree with the dot
trajectories in the corresponding superpositions
(Figures 7(b)–(d)).

It should be noted, however, that the dot trajec-
tories in our layer superposition can be represented by
either of the vector fields �h(x, y) or ��h(x, y). This is
because the two dots that compose each dot pair in the
layer superposition are identical, so that the dot pairs
(and hence the dot trajectories in the superposition)
remain unchanged when we interchange the two layers.
This means that the dot trajectories in the super-
position do not show the direction (the positive or
negative sense) of the difference vector.

Suppose now that we take one step further and
allow both of the superposed layers to be transformed,
one by a mapping �g1ðx, yÞ and the other by a mapping
�g2ðx, yÞ. As a straightforward generalisation of
Equation (15), one would expect the dot trajectories
in this case to be represented by the vector field of the
relative transformation between the two layers,
namely:

�hðx, yÞ ¼ �g1ðx, yÞ � �g2ðx, yÞ: ð16Þ

Note, however, that in this case the dot pairs that

make up the dot trajectories in the superposition no

longer represent a dot’s location before and after

the layer transformation has been applied, but rather

the new locations of the same original dot under the

transformation �g1ðx, yÞ and under the transformation
�g2ðx, yÞ. Indeed, unlike the vector field (15), which

perfectly corresponds to the dot trajectories that are

obtained when one of the superposed layers is trans-

formed, it turns out that in cases where both layers are

transformed the vector field (16) only provides an

approximation to the dot trajectories that are gener-

ated in the superposition. This is explained as follows.
Suppose we are given two identical aperiodic dot

screens that are superposed on top of each other in full

coincidence, dot on dot. Clearly, if we apply to both

layers the same transformation �f(x, y), we still remain

with two identical aperiodic screens that are super-

posed in full coincidence. Therefore, if we now apply

transformations �g1ðx, yÞ and �g2ðx, yÞ to the two trans-

formed layers, the resulting dot trajectories will have

the same shapes as the dot trajectories that would be

obtained by applying �g1ðx, yÞ and �g2ðx, yÞ to the

original, untransformed layers. In other words, we

have the following result.

Proposition: The dot trajectories obtained by applying

the transformations �g1ðx, yÞ and �g2ðx, yÞ to two identical

aperiodic dot screens are equivalent to the dot trajec-

tories that are obtained by applying to the same original

dot screens the transformations �g01ðx, yÞ ¼ �g1ð
�fðx, yÞÞ and

�g02ðx, yÞ ¼ �g2ð
�fðx, yÞÞ, where �fðx, yÞ is any arbitrary

transformation.

Now, since �fðx, yÞ stands here for any arbitrary

transformation, it is clear that this proposition also

remains true in the particular case where �f is the inverse

of the transformation �g2ðx, yÞ, namely, �fðx, yÞ ¼

g2(x, y). This means that the dot trajectories obtained

by applying the transformations �g1ðx, yÞ and �g2ðx, yÞ to

our original screens are equivalent to the dot trajec-

tories that are obtained by applying to our original

screens the transformations �g01ðx, yÞ ¼ �g1ðg2ðx, yÞÞ and
�g02ðx, yÞ ¼ ðx, yÞ, where g2 is the inverse of the direct

transformation �g2. Now, this last superposition has

the particularity that only one of its two layers has

been transformed. Therefore, we see by virtue of

Equation (15) that the vector field that accurately

represents the dot trajectories of this superposition,

and hence also the dot trajectories obtained by

applying the transformations �g1ðx, yÞ and �g2ðx, yÞ to

our original screens, is given by:

�h1ðx, yÞ ¼ �g1ðg2ðx, yÞÞ � ðx, yÞ ð17Þ

•

•

x

y

(x,y)

g(x,y) – (x,y)

g(x,y)

Figure 9. Point (x, y) in the x, y plane and its image �gðx, yÞ
under the transformation �g: R2

!R2. The vector connecting
the original point (x, y) to its destination �gðx, yÞ under
transformation �g is given by �gðx, yÞ � ðx, yÞ.
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(or equivalently, by ��h1(x, y)) rather than by
Equation (16).

It should be noted, however, that although the
vector field (16) only approximates our dot trajec-
tories, it often turns out to be more practical to use
than the accurate vector field (17). The reason is that
the explicit form of vector field (17) may be quite
complex, because it includes transformation composi-
tions; furthermore, in many cases it may not even be
available, since we do not always have the explicit
forms of both of the direct and inverse transformations
required. Therefore, in cases where the use of the
precise vector field (17) is not practical, one can often
use instead the approximated vector field (16). This
approximation is valid under the assumption that both
�g1 and �g2 are weak transformations (see Proposition
D.11 in ([2], p. 410)). But this assumption is fully
justified here since in any case, as explained in the

following subsection, dot trajectories are only visible in
the superposition if the layer transformations �g1ðx, yÞ
and �g2ðx, yÞ are not too ‘violent’. See, for example,
Figure 10(d ) which models the dot trajectories of
Figure 8(d ) using the approximation (16).

4.1. Limitations of the vector field model

Just like the fixed points model, the vector field model
only works well when the transformations being
applied are sufficiently weak. Although, mathemati-
cally speaking, the vector field �hðx, yÞ connecting the
departure and destination points of each screen
element can always be plotted for any layer transfor-
mation, dot trajectories can only be visible in the
superposition (and correspond to the vector field
�hðx, yÞ) if the layer transformations being used are

(b)(a)

(d )(c)

Figure 10. Vector field representation of the relative transformation �hðx, yÞ ¼ �gðx, yÞ � ðx, yÞ where �gðx, yÞ (the transformation
undergone by one of the layers) is: (a) a small rotation; (b) a small expansion; (c) both a small rotation and a small expansion.
(d ) Vector field representation of the relative transformation �hðx, yÞ ¼ �g1ðx, yÞ � �g2ðx, yÞ where one layer has undergone a vertical
parabolic transformation plus a slight vertical shift of y0¼�T, and the other layer has undergone a horizontal parabolic
transformation plus a slight horizontal shift of x0¼�T. Compare with Figures 7(b)–(d ) and 8(d ).
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not too ‘violent’. Otherwise, the correlation between
the superposed layers is strongly reduced, and our eyes

can no longer trace the departure/destination pairs in
the layer superposition, so that the visual effect of the

dot trajectories may be lost and no longer agree with
the vector field plot.

Note, however, that here, too, this limitation can

often be overcome by ‘softening’ the layer transforma-
tions being used. Thus, instead of using transforma-
tions of the form �gðx, yÞ ¼ ðx, yÞ þ �hðx, yÞ, one may try

to use their softened versions �gðx, yÞ ¼ ðx, yÞ þ "�hðx, yÞ
– where " is a small positive fraction – which are closer

to the identity transformation g(x, y)¼ (x, y) and thus
softer. For example, if the transformations �g1ðx, yÞ ¼

ðx, yÞ þ 1
2

�hðx, yÞ and �g2ðx, yÞ ¼ ðx, yÞ �
1
2

�hðx, yÞ that one
wishes to apply by virtue of Equation (16) to synthesise
dot trajectories having a desired shape �hðx, yÞ are not

sufficiently weak for generating visible dot trajectories,
one can try to use, instead, their softened versions
�g1ðx, yÞ ¼ ðx, yÞ þ

1
2 "

�hðx, yÞ and �g2ðx, yÞ ¼
ðx, yÞ � 1

2 "
�hðx, yÞ.

A second, closely related limitation of the present

model is that even when the layer transformations do
provide visible dot trajectories, the vector field �hðx, yÞ
only matches them in areas of the superposition where

the corresponding dots of both layers remain close to
each other (i.e. in areas where the arrow lengths in
�hðx, yÞ are small). In areas where the dots get farther
apart (and the arrow lengths in �hðx, yÞ increase) the

correlation between the layers is reduced, and the dot
trajectories are no longer visible. Note, however,

that in such areas field lines still do exist in the

vector field – in fact, the vectors in these areas are even
longer, since the distance between the corresponding
dots in the two layers is bigger. Thus, a visual
agreement between the dot trajectories and the vector
field is only possible in areas where the correlation
between the superposed layers is sufficiently high
(meaning that the vectors in the vector field are not
too long). For example, by comparing Figures 7(b) and
10(a) we see that the vector field model corresponds
here to the visible dot trajectories only up to a certain
distance from the centre of the Glass pattern.

A further limitation of the vector field model is that
it only can describe the dot trajectories that are
obtained in the superposition of two aperiodic layers
having the same element type (such as black dots on a
white background). If the two superposed layers
consist of elements of different shapes, or if the
superposition rule being used is different from the
classical one, this model may fail to describe correctly
the shapes of the resulting dot trajectories. This
limitation is illustrated in Figure 11.

5. Conclusions

Because the Fourier-based approach for modelling the
moiré phenomenon is not always well adapted for
real-world applications, other simpler models that only
involve image-domain considerations are sometimes
used instead. We briefly review three of these alterna-
tive models: the indicial equations model for moirés
between curvilinear gratings; the fixed points model for
Glass patterns in the superposition of correlated

(a) (b)

Figure 11. Cases where the vector field model does not predict correctly the dot trajectories. (a) Same as in Figure 7(b), but here
one layer consists of tiny ‘1’-shaped dots while the second layer consists of tiny holes on a black background. (b) Same as in
Figure 7(b), but here the unrotated layer has been replaced by its own negative, the black background of the resulting negative
layer being replaced by an intermediate grey level. In both (a) and (b) the vector field model would predict circular dot
trajectories as in Figure 7(b), since it only takes into account the geometric transformations undergone by the layers (in this case:
rotation in one of the layers).
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aperiodic layers; and the vector field approach for the
modelling of the dot trajectories in such aperiodic layer
superpositions. We describe the limitations of each of
these models, explain their significance, and suggest
possible ways to overcome them. This should help one
in choosing the most appropriate mathematical model
for his needs, while fully understanding its advantages
and its limitations.

Notes

1. Since the Fourier transform is a global operation that is
applied to the entire spatial image domain, local
microstructure effects are averaged together and buried
in the global spectrum of the entire image. And even if
we apply the Fourier transform (or a localised version
thereof such as a wavelet transform) to different local
areas of the entire image, it will only help us to
distinguish between the different local microstructures
and to identify and analyse their particular spectral
properties; but this will not yet explain the various
geometric shapes of the microstructure elements
(rosettes etc.).

2. The (1,�1)-moiré between two superposed gratings is
the moiré effect that is generated by the difference
between the two original grating frequencies, f1� f2.
More generally, the (k1, k2)-moiré between two super-
posed gratings is generated by the sum of the k1 and k2
harmonics of the original grating frequencies, namely,
k1 f1þ k2 f2. For a more detailed discussion see, for
example ([1], Chapter 2).

3. The classical terms subtractive moiré and additive moiré
designate moirés which correspond, respectively, to
frequency differences or frequency sums. For example,
the (1,�1)-moiré that is generated by the frequency
difference f1� f2 is subtractive, while the (1, 1)-moiré
that is generated by the frequency sum f1þ f2 is additive.

4. It can be shown that this equation leads indeed, to the
classical formulas that give the period and the angle of
the (1,�1)-moiré between two superposed line gratings
(see [4], p. 170).

5. Note that a moiré of order41, too, is the locus of points
of intersection (see, for example, the dotted lines of the
(2,�1)-moiré in Figure 2(a) or in Figure 3). Usually the
density of points of intersection along such loci is lower
than in a first-order moiré, so higher-order moirés are
usually less clearly visible. But when this density is
higher than the others, as in Figure 3, a higher-order
moiré becomes dominant.

6. As shown in the examples above, in some cases Z should
be replaced by Zþ (non-negative integers), etc.

7. Although the indicial equations model only considers
integer values of p, we know from Fourier theory that
this equality is not only limited to p2Z, but actually
holds for all real values of p.

8. Note that in the first example in Section 2 we tacitly used
k1¼ 1 and k2¼�1 (see paragraph starting from
Equation (3)), while in the second example we tacitly
used k1¼ 1 and k2¼ � 1 (see before Equation (6)). These
values give, indeed, the most visible moirés in these
examples – but this knowledge is not provided by the
indicial equations model itself.

9. Note that gi(x, y) are mappings of R2 onto R2; we denote
them by a boldface letter since the values they return,
(u, v)¼ gi(x, y), are vectors.

10. We use the term mutual fixed point of g1 and g2 to
designate a point (xF,yF) for which g1(xF, yF)¼
g2(xF, yF). Similarly, a mutual fixed locus of g1 and g2
is a locus in the plane that consists of all the mutual fixed
points of g1 and g2. Note that the term common fixed
point of g1 and g2 is already used in the mathematical
literature for a point (xF,yF) that satisfies g1(xF, yF)¼
(xF, yF)¼ g2(xF, yF), but this definition is too restrictive
for our needs.

11. Depending on the aperiodic layers being
superposed, Glass patterns can sometimes be darker
in their centre; see, for example, Figure 11. The
explanation is provided by the Fourier-based model
([2], Chapter 7).

12. The first part of this theorem provides the intensity
profile of the Glass pattern, while its second part
provides the geometric transformation undergone by
the glass pattern: g(x, y)¼ g1(x, y)� g2(x, y).

13. We use the upper bar notation to clearly indicate that
the transformation in question is used here as a direct
transformation. Note that in the previous sections the
transformations gi(x, y) were always applied to the given
layers pi(x, y) as domain transformations giving
pi(gi(x, y)), and thus their effect was inversed.
For example, when the transformation (u, v)¼ (2x, 2y)
is used as a direct transformation, (x, y)� (2x, 2y), its
effect is a two-fold expansion of the affected layer; but
when it is applied to the same layer pi(x, y) as a
domain transformation, as was the case in the previous
sections, the result is pi(2x, 2y), which is a two-fold
shrinked version of the original layer. Note that the
transformations �g and g are indeed the inverse of each
other.

14. Any 2D transformation �gðx, yÞ can be also interpreted as
a vector field that assigns to each point (x, y) in the x,y
plane the vector �gðx, yÞ. This vector field can be
illustrated visually by drawing, starting from each
point (x, y), an arrow having the length and the
orientation of the vector �gðx, yÞ.
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