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Abstract

In the last years, three-dimensional (3D) medical imaging techniques have taken an
increasing importance in patient care and medical research. Volume images provide medical
specialists with a direct access to the interior of a patient’s body and reduce the need for
invasive exploration. The use of volume imaging modalities such as X-ray CT, PET or MRI
has therefore become essential for medical diagnosis and surgical planning.

Computer visualization techniques such as extraction of planar slices of arbitrary
orientation (Multiplanar Reprojection), surface rendering of anatomic structures, and volume
rendering provide medical users with the tools for exploiting 3D volume images.

Surface or respectively volume rendering provides information about the 3D geometry
and 3D context of the structures of interest but does not allow to directly visualize original
intensities, respectively colors located within the 3D structures. In addition, surface rendering
requires the segmentation of the volume data and volume rendering often requires a
classification of the volume image pixels. In contrast, the extraction of planar sections
provides interactivity, requires no pre-processing and the origina intensity, respectively color
of each slice element may be directly inspected. However, it does not allow the visualization
of curved anatomic structures within asingle slice. In this thesis, we propose to overcome this
limitation by generalizing the concept of planar section to the extraction of curved
Cross-sections.

In the first part, we focus on the interactive extraction of curved surfaces from volume
images. Unlike planar slices, curved cross-sections may follow the trgjectory of tubular
structures such as the Aorta or follow structures with an irregular shape such as the Pelvis. In
the second part of this work, we focus on the visualization of curved surfaces. We would like
to offer the possibility of carrying out distance measurements along a structure of interest both
for medical applications and for anatomical studies. Orthogonal or perspective projection of
curved surfaces induces angular and metric distortions as well as surface overlapping. In order
to enable measurements, we propose to use surface flattening methods, which preserve
distances along specific orientations and minimize distortions around a focus point. Flattening
of curved cross-sections enables inspecting spatially complex relationship between anatomic
structures and their neighbourhood. They also allow the visualization of a curved anatomic
structure within a single planar view and therefore to precisely inspect the origina intensity,
respectively color at each surface point. Thanks to a multi-resolution approach, surfaces are
flattened at interactive rates, allowing users to displace the focus point during the
visualization of the flattened surface. We aso propose a new efficient method for computing a
flattened surface minimizing global distortions and still preserving distances along one
orientation.

Surface extraction and flattening techniques are integrated into an interactive
visualization Java applet. This Java applet enables anyone to precisely and interactively
inspect the Visible Human anatomy. Besides medical visualization, the presented methods
may also be useful for creating new interesting views of anatomic structures for didactic
pUrposes.



Keywords: medical visualization, anatomic structures, texture extraction, curved sections,
free-form surfaces, surface flattening, differential geometry.
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Résumé

Ces dernieres années, les techniques d’imagerie médicale tridimensionnelles (3D) ont
prit de plus en plus d’importance dans les domaines du traitement et de |a recherche médicale.
Les images volumiques fournissent aux spécialistes en médecine un acces direct a I’ intérieur
du corps d’'un patient ce qui réduit le recours a des explorations invasives. L’utilisation des
procédés d'acquisition d'images volumiques comme I'Imagerie a Résonance Magnétique
(IRM), latomographie a rayon X ou la Tomographie & Emission de Positrons (TEP), est donc
devenue essentielle pour le diagnostic ou la planification d’intervention chirurgicale.

Les techniques de visualisation informatique telles que I’ extraction de coupes planes,
le rendu surfacique des structures anatomiques ou le rendu volumique, fournissent aux
spécialistes médicaux les outils d’ exploitation de ces image volumiques.

Les rendus surfaciques ou volumiques permettent aux médecins de comprendre la
géométrie et le contexte tridimensionnel des structures d'intérét mais ne permettent pas de
visualiser directement les intensités ou couleurs d’ origine a I’ intérieur des structures 3D. De
plus, le rendu surfacique nécessite la segmentation des données volumiques et le rendu
volumique nécessite une classification des pixels du volume. L’ extraction de coupes planes
dans le volume d’'images est interactive, ne nécessite pas de prétraitement et I'intensité ou
couleur d’origine de chagque point de la coupe peut étre directement inspectée. Cependant,
cette technique ne permet pas de visualiser les structures anatomiques courbes a I’ intérieur
d’une seule coupe. Dans cette thése, nous proposons de dépasser cette limitation, en étendant
le concept de sections planes al’ extraction de sections courbes.

La premiere partie porte sur |'extraction interactive de surfaces courbes dans un
volume d'images. A la différence des coupes planes, les sections courbes peuvent facilement
suivre les trgectoires de structures tubulaires comme |'aorte ou suivre des structures
possédant une forme irréguliére telle que le bassin. Dans la seconde partie, nous nous
intéressons a la visualisation des surfaces courbes. Nous voulons offrir la possibilité
d effectuer des mesures de distances sur une structure anatomique pour des applications
médicales ou pour des études anatomiques. Les projections orthogonales ou perspectives des
surfaces courbes induisent des distorsions angulaires et métriques ains que des
recouvrements. Pour permettre de réaliser des mesures de distances, nous proposons deux
méthodes d’ aplatissements qui préservent les distances le long d orientations spécifiques et
gui minimisent les distorsions autour d’un point d'intérét. L’ aplatissement de sections courbes
permet aux utilisateurs de visualiser les relations spatiales entre une structure anatomique et
son voisinage. Elle permet aussi de visualiser une structure anatomique courbe a I’ intérieur
d une seule image plane et donc d'inspecter I’intensité ou couleur d’ origine de chague point
de la surface. En utilisant une méthode de multirésolution, les surfaces sont aplaties a une
fréguence interactive, ce qui permet de déplacer le centre d'intérét tout en visualisant la
surface aplatie. Nous proposons en complément une méthode performante d’ aplatissement de
surfaces, qui minimise les distorsions globales et préserve les distances suivant une
orientation.
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Les techniques d’extraction et d aplatissement de surfaces sont intégrées dans une
applet Java de visualisation interactive. Cette applet Java permet d’inspecter précisément et
interactivement |I’anatomie du Visible Human. En plus de la visuaisation médicale, les
techniques présentées peuvent étre aussi utiles pour la création de nouvelles vues anatomiques
adesfins didactiques.

Mots-clés: visuaisation médicale, structures anatomiques, extraction de texture, sections
courbes, surfaces de formes libres, mise a plat de surfaces, géométrie différentielle.
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Notations

Let us explain the meaning of some symbols occurring in this thesis.

a,,ay,a, Cartesian coordinates in three-dimensional Euclidean space R®.

Bold-face letters a,p, etc..or &, p Vectorsin space R?; the components of these vectors
are denoted by a,,a,,a,; py, Py, P; -

Bold-face upper-case letters J, A : matrix in R".

J’ transposed matrix of the matrix J.
u,v coordinates on a surface.
P(u,v) parametric representation of a surface.
I . oP oP
P,.P, derivatives vectors of P withrespecttouandv, P, = o and P, = v
Nor N unit normal vector to asurface, N(u,Vv) = Ry VxR UY)
P, (U, V)P, (u,v)
S arc length of acurve.
t=x unit tangent vector of acurve C: x(s).
p= l unit principal normal vector of that curve.
M
k curvature of acurve.
K, normal curvature of a surface curve.
Ky geodesic curvature of a surface curve.
Ky, K, principal curvatures of a surface
K Gaussian curvature of a surface.
H mean curvature of a surface.

13



14



1 Introduction

1.1 Preface

Unlike conventional X-rays, images produced today by the vast majority of medical
imaging modalities (X-ray CT, MRI, PET...) are series of bi-dimensiona digital images
which are processed by computers for further exploitation. Stacking these 2D images forms a
three-dimensional representation of the examined region (see Fig. 1-1). Each point of the 3D
Image contains information about the corresponding point within the original body volume.
Computer imaging techniques may then be used to present medica specialists with
transformed and enhanced views of the data. Indeed, although the visualization of two
dimensional data is relatively straightforward as the medium on which the final image is
displayed (for instance, a computer screen) is also two-dimensional, with volume images, it is
necessary to consider the trandlation of a three dimensional dataset into a two dimensional
image. This issue of reducing the number of dimensions in the data while still ensuring that
the end result contains the necessary information has made volume visualization one of the
most active fields in scientific visualization over the last few years.

N\
N
N
N
N
N
N

SRR SIS

EXUESUIRSBNUISSUEN,

R NN

Voxel

Figure 1-1. Stacking 2D dlices to create a 3D volume.

1.2 Previous research on visualization of volume images

There are essentially three ways of inspecting volume images. The first method is the
extraction of planar dlices of arbitrary orientation (an operation called Multiplanar
Reprojection) from the volume image. This is the most widely used technique since it is
computationally not expensive and provides medical specialists with a way to precisely
inspect anatomic structures without modifying the original data. Fig. 1-2 presents an example
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of extraction of a planar dlice from a volume image. The two other common ways of
displaying 3D medicd data ae surface rendering and volume rendering
[Brodlie and Wood 2001]. Fig. 1-3 presents the visualization of a human skull using surface
rendering and volume rendering.

Figure 1-2. Extraction of a planar dlice from avolume image.

Surface rendering is an indirect method to obtain an image from a volume dataset. The
surfaces of anatomic structures are produced by mapping data values onto a set of geometric
primitives in a process known as isosurfacing. These isosurfaces can then be rendered into a
displayable image using standard computer graphics techniques and hardware acceleration on
most PC graphic cards. The first step for creating isosurfaces is the segmentation of the
structure that users want to display, i.e. the selection of al voxels belonging to this structure.
Segmentation is a crucial process in surface rendering, since it conditions the quality of the
resulting surface. Segmentation may be either manual, i.e. a specialist decides for each dlice of
the volume image which points are included in the structure or automatic using segmentation
algorithms. Once the segmentation has been performed, the isosurface may be computed
using the Marching Cubes algorithm [Wyvill et. a. 1986;Lorensen and Cline 1987]. While
this method works well for some data sets, it breaks down when there are small details of a
similar scale to the gridsize, and when well-defined surfaces do not exist. These issues, along
with the problem of losing the original data, led to the development of another class of
algorithms, volume rendering.

Volume rendering is a technique for directly displaying a sampled 3D scalar field
without first fitting geometric primitives to the samples. Volume rendering techniques are
often based on modelling the data as a transucent gel. The volume dataset may be then
rendered to the screen in a variety of ways using ray-casting, splatting
[Brodlie and Wood 2001] [Meifner et. al. 2000] or maximum intensity projection (MIP)
[Mroz et. al. 2000]. The common approach is to evaluate the dataset along rays at increasing
distances from the viewer, and to blend colors to derive pixel intensities. This is called ray-
casting and is very similar to ray-tracing. The color at each sample point is acquired by
extracting a density value from the dataset, working out which material is at that point, and
then looking up the color of that material using a transfer function. Therefore, a fundamental
first step isto assign material properties to correspond to the data values. Classification is the
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process by which we assign a color and an opacity value to a given data value. A quite
different technique is maximum intensity projection (MIP) which selects the maximal
intensity encountered along each ray path to construct the image. This technique is simpler
since it does not require prior classification. However, it is restricted to the visualization of
highly contrasted structures which incorporate element points with a constant intensity value
like blood vesselsin CT angiography applications [Rossnick et al. 1986] [Napel et. al. 1992].

a) Surface rendering b) Volume rendering
Figure 1-3. Surface Rendering versus Volume Rendering of a human skull.

Sometimes, medical specialists are only interested in visualizing a particular structure,
such as a vascular tree or a bone structure. In this case volume rendering techniques are not
well suited since they may display objects of less or no diagnostic interest. Therefore, a pre-
processing is required for removing those objects of less interest, which is not always
possible. Moreover, in the context of anatomical studies, medical specialists may want to
visualize the connection between an organ and its surrounding anatomic structures. In this
case, dlice extraction seems more appropriate. Slice extraction also enables professionals to
precisely inspect the density value of each point element on the slice. Planar slices also offer
the possibility to carry out distance or area measurements for medical diagnosis or anatomical
purposes, which is especialy difficult to perform using surface or volume rendering. Indeed,
one of the main advantages of a 2D image such as a planar dlice is the possibility to directly
visualize and measure the distance between two structures included in the dlice. With 3D
visualization, the distances are modified due to the projection used for displaying the 3D
scene onto a 2D screen, which may lead the user to a bad estimation. Moreover, since an
isosurface is only an approximation of the real boundary of an anatomic structure, it is not
possible to precisely carry out measurements using such a representation. In practice, every
medical visualization software using volume rendering or surface rendering also includes a
dlice extraction tool. Surface rendering and volume rendering greatly facilitate a diagnostic by
providing specialists with a 3D view of an organ. However, since these techniques modify the
original data values, slice extraction is necessary to validate and improve the diagnosis.

For these reasons, planar slice extractions are still widely used. Planar slices enable
radiologists to inspect organs for diagnostic purposes. They are aso useful for teaching
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anatomy. However, sometimes, planar views are too restrictive since anatomic structures have
often very complex shapes with a highly curved geometry. For instance, it is not possible to
visualize the continuity of tubular structures, such as the Vena Cava (Fig. 1-4a), with planar
Cross-sections.

For visualizing such structures, one may specify and extract aruled surface (Fig. 1-4b)
from the original volume. Indeed, it may be interesting to visualize the value of the original
data not only within planar cuts, but also within curved cuts which may follow an anatomic
structure. Therefore, Advanced Multiplanar Reformations have been developed in order to
allow curved cuts using the extraction of a ruled surface, a process called Curved Planar
Reformation (CPR) [Kanitsar et. a. 2002]. Curved Planar Reformation (CPR) is especially
useful for visualizing vessel structures for angiography applications [Kanitsar et. al. 2003].

Despite their usefulness, ruled surfaces have some limitations. For instance, it is not
possible to visualize a vascular tree without introducing discontinuities at the connections
between the different branches. Ruled surfaces are also too restricted for tracking anatomic
structures with irregular geometry such as the Pelvis. A solution is to extract and visualize
severa dlices passing through the structure of interest and to mentally rebuild a spatial
representation of the scene. In order to avoid such complicated and laborious methods, it may
be interesting to provide users with a continuous image of the structure. For this purpose, we
propose to extend the extraction of slices and ruled surfaces to the extraction of free-form
surfaces.

¥ R i
o5 [

a) Planar dlice with ruled surface directrix b) Flattened ruled surface

Figure 1-4. A ruled surface extracted from the Visible Human (see Section 1.4) shows the
continuity of the Vena Cava.

1.3 Contents of this work

The extraction of curved cross-sections offers a new way of visualizing and inspecting
curved anatomic structures. In addition, free-form surfaces may easily follow structures made
up of several branches such as the aortic arch with its three outgoing arteries or the Vena Cava
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crossing the atrium cavity (see Fig. 1-4 and Appendix B). Such curved surfaces may provide
anatomists with new interesting views that could not be obtained with other techniques. Such
surfaces may also track anatomic structures with highly curved geometry. The main objective
of thisthesisisto propose new methods for the visualization of medica volume images which
overcome the limitations of planar slices and existing curved planar reformation techniques,
by using interactive extraction and flattening of free-form surfaces.

A first challenge is to define geometric primitives and interactive specification tools
for extracting curved surfaces. Indeed, while the extraction of planar slicesis straightforward,
the specification and extraction of free-form surfaces within 3D volume images may be
difficult. For specifying such curved surfaces, it is necessary to define geometric primitives
which provide users with a means of controlling the shape and the location of the surface.
Moreover, appropriate visualization and interaction tools are required in order to use these
geometric primitives for following a structure of interest within a volume image.

Another challenge is to propose an appropriate display of the extracted curved
surfaces. Once the surface has been specified and the corresponding texture extracted from
the volume image, the most common way to render it onto the computer screen isto use some
projection (orthogonal, perspective). However, such projections show some surface parts and
may hide other surface parts. The inspection of the whole surface requires changing the
viewing point, which may result in missing certain surface parts. Moreover, for anatomical
teaching, aglobal view of the surface isrequired. In addition, surface projections do not allow
users to have a correct estimation of distances or to directly carry out measurements on the
textured surface. Surface flattening offers an aternative way of visualizing a surface section
[Hacker et. a. 1999] by enabling the visualization of all surface parts within a single planar
image. In the general case, surface flattening induces metric and angular distortions. For
medical imaging applications, an important objective is the ability to carry out measurements
for detecting anatomic abnormalities. Therefore, we propose new flattening algorithms which
provide a global view of the surface with a minimum of distortions, and which at the same
time enable distance measurements on the flattened surface. Moreover, the flattening
algorithms need to be fast and ssimple in order to be integrated into an application which
enables usersto interactively extract and flatten any specified surface from a volume image.

These new tools may prove useful for making medical diagnoses and for teaching
anatomy. Therefore, we also want to integrate these visuaization tools into a Java web
application which is freely accessible by medical specialists and others to test the utility and
the interest of the free-form surface extraction and flattening. For this purpose, the curved
surface extraction and flattening algorithms need to take into account the limitations in
memory space, computation times and network bandwidth usage inherent to online
applications.

The research work and the results of this thesis are presented in the following chapters.
First, Chapter 2 presents fundamental notions from differential geometry necessary to
understand our surface specification and flattening methods. In Chapter 3, we introduce an
interactive method to specify and extract surfaces following curved anatomic structures. In
Chapter 4, we present fundamental notions and existing results on the problem of surface
flattening. Then, in Chapter 5, we introduce two different distance preserving flattening
methods allowing the visualization of textured curved surfaces within a single planar image.
We aso show how these methods may be used to carry out distance measurements for
anatomical studies. In Chapter 6, we present a method for producing aleast distorted flattened
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surface based on the minimization of the overall geodesic curvature along specific curves on
the surface. Findly, the integration of the surface extraction and flattening tools into the
Visible Human Server Java applet is presented in Chapter 7.

1.4 The Visible Human dataset

In this work, we propose to develop new visualization tools allowing medical
specialists to inspect and visualize anatomic structures using medical volume images. For this
purpose, we experiment these new tools on the Visible Human dataset. The Visible Human
dataset, produced by the Nationa Library of Medicine's Visible Human Project [Ackerman
1998], provides an excellent resource for experimenting volume image visualization tools. It
consists of transverse CT, MRI, and cryosection imagery of a man. The cryosection dataset
provides high-resolution full-color photographs of transverse sections of the human body,
representing 13 GB of data. This dataset is a volume of 2048 x 1212 x 1871 voxels, each
voxel representing 0.33 x 0.33 x 1 mm. The other datasets (CT, MRI) provide lower
resolution grayscale volumes. We used this volume image to test our visualization methods
which may be applied to any medical volume image obtained by other standard medical
Imaging modalities.
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2 Fundamental notions on curves, surfaces
and differential geometry

In this chapter, we recall some definitions about curves, surfaces and
differentid geometry. Basic properties of parametric surfaces are
presented. The definitions of the geodesic and normal curvature of a
surface curve are a so presented.

2.1 Curves

Let usrecal some important definitions from the theory of curvesin differential
geometry. These definitions are presented with more detailsin [Kreyszig 1991].

t
Osculating plane

x(s)

A

Figure 2-1. Osculating plane, tangent and curvature vectors.

Tangent vector. Let C be an arbitrary curvein the space R*and let x(s) be a parametric
representation of C with arc length s as parameter.

The vector
t(s) =%:X(s) (2-1)

is called the unit tangent vector to the curve C at the point x(s) (see Fig. 2-1).
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Introducing any other parameter t we have

L_dxdt X' . dx
X = e —(x'.x') where x i
Then,
mhﬁT (2-2)

Osculating plane. Let x(t) be a parametric representation of a curve C. The plane spanned by
x'(t) and x"(t) iscalled the osculating plane of the curve C at the point x(t).

Principal normal, curvature. Let a curve C be given by a parameterization x(s) with arc
length s as parameter. The unit vector

_ie :
PO=Fi ) (29

which has the direction and the sense of t is called the unit principal normal vector to the
curve C at the point x(s) (see Fig. 2-1).

The norm of the vector t ,
k() =[i(9) (2-4)

is called the curvature of the curve C at the point x(s). The reciprocal of the curvature,

1

S (2-5)

p(s)=

is called the radius of curvature of the curve C at the point x(s). The vector k(s)=£(s) is
called the curvature vector of the curve C (see Fig. 2-1).

2.2 Parametric surfaces

Let G be adomain in the plane with parameters (u,v) with a<u<band c<v<d and
let F:G—S be a continuoudly differentiable and locally one to one mapping which
transforms each point (u,v) of G into aunique point of asurface Sin R*®. Then, each point of
S can be described by a vector function P(u,Vv) = (x(u, V), y(u,V), z(u,v)). P(u,v) is caled the
parameterization of the surface S and (u,v) are called the parameters of this representation

(see Fig. 2-2). The lines on the surface S corresponding to constant values of u or v are called
the parametric net and aline of constant valueis called an isoparametric curve.

22



w=const

u rd

Figure 2-2. Parameterization of a surface.

A parameterization is said to be regular provided that at every point of S the normal vector is
defined, i.e.

1P, (U, V) x P,(u,v)]| 20 (2-6)
In this case, the unit normal vector to Sat point P(u,Vv) is:

P,(u,v)xP,(u,v)
P, (U, V)% P, (u, V)|

N(u,v) = (2-7)

and the tangent plane at P(u,V) iswell defined as the plane spanned by P,(u,v) and P,(u,V).

In the next chapters, we use the term parametric surface to refer to a surface described
in parametric form P(u,Vv) = (x(u,Vv), y(u,v), z(u,Vv)) .

2.3 Geodesic and normal curvature of a surface curve

2.3.1 Definitions

Let us briefly recall the notions of normal curvature, geodesic curvature, principal
curvatures, mean curvature and Gaussian curvature [Kreyszig 1991].
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Figure. 2-3. Normal curvature k, and geodesic curvature k, of thelocal intersection curve
between a plane and a surface at a point M.

We consider an arbitrary surface S and the local intersection curve C between surface
Sand aplane H at apoint M of S(see Fig. 2-3). Let ¥ be the angle between the unit principal
vector p of C (orthogonal to the tangent vector t within the plane H) and the unit normal
vector N to surface Sat point M. We have

p.N=cosyand O<y<r. (2-8)

Normal and geodesic curvatures

The normal curvature of curve C at point M is
k,=kcosy, (2-9)
where k is the curvature of C at M. The normal curvature vector is defined as
k,=k,N. (2-10)

We denote by C' the orthogonal projection of C onto the tangent plane T to surface S
at point M (see Fig. 2-3). The geodesic curvature k; of curve C at point M is defined as the

curvature of the projected curve C' at point M, therefore

[ky|=ksiny. (2-11)
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Let t be the tangent direction vector to curve C at point M, i.e. the direction of the
intersection between the plane H and the tangent planeto Sat M (p.t =0). The value of k,

depends only on the direction of the tangent vector t (Meusnier’s Theorem,
[Kreyszig 1991, p. 121]), i.e the normal curvature k, isindependent of the y value:

k., =kcosy = const (2-12)

Principal curvatures

When the plane H rotates around the normal vector N at point M, the normal curvature
k., of the intersection curves varies between a minimal value k; and a maximal vaue k, (see

Fig. 2-4, red and green curves).

These values of k, are called the principal normal curvatures of the surface Sat point

M. The corresponding vector directions t are called the principal directions of normal
curvature (or curvature directions) at point M (see Fig. 2-4). At any point the principal

directions are orthogonal. The arithmetic mean of principal curvatures H :% is called
the mean curvature. The product of principal curvatures K =kk, is called the Gaussian

curvature. Finally, the root mean square curvature k.. =+/kf +kZ is called the curvedness of
the surface.

I ntersection curve
corresponding to Kk, (k,>0)

Intersection curve
corresponding to Kk, (k,<0)

Intersection curve :
corresponding to k; (k; <0) Intersection curve “‘m.,h
corresponding to k; (k; <0)

a) b)

Figure 2-4. Principal curvatures at the neighborhood of (@) an hyperbolic point
(K <0) and of (b) an éliptic point (K >0).
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Let o be the angle between the tangent direction t a a point M and the principal
direction at M corresponding to k. The following relation holds (Euler's Theorem,

[Kreyszig 1991, p. 132)):
k, =k cos’ a +k,sin’ o (2-13)

Accordingly, at any point M on a surface Sthe following relation holds for the normal
curvature k,, of the intersection curve between surface Sand a certain plane H:

k <k <k, (2-14)

2.3.2 Calculation of principal curvatures

In this section, we present the calculation of principal curvatures according to
[Hoschek and Lasser 1993, pp. 48-49], as well as the calculation of the Mean, Gaussian and
root mean square curvatures.

Let P(u,v) beaparametric representation of the surface S With P, and P, being the
partial derivatives of P in respect to u and v, we denote

E=P,P,, F=P,P,, G=P,P

u*’ v? \Y

\%
L=P,N,M=P, N, N=P,.N

The mean curvatureis
Kk +k, _1EN-2FM +GL

H=<k,>= > =% Eo_p? (2-15)
the Gaussian curvature is

K=kl = =M (2-16)
and the principal curvatures are

=H-VH?-K (2-17)

K,=H + JH?-K
From which, we can derive

Ko = (k2 + K2 =/4H 2 - 2K (2-18)
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3 Curved surface extraction for exploring
anatomic structures

In this chapter, we present methods allowing the interactive extraction of
textured curved surfaces from medical volume images. The challenge resides in
offering interaction means facilitating the specification of surfaces following
curved anatomic structures within a 3D volume. To meet this chalenge, we
introduce surface specification tools which rely on interactive dicing and on the
placement of marker points inside the volume.

3.1 Previous work on curved surface extraction

In order to provide users with means of inspecting structures having curved geometry,
Advanced Multiplanar Reformations have been developed in order to allow curved cuts
within a volume image, a process caled Curved Planar Reformation (CPR). With Curved
Planar Reformation, interesting views of vascular morphology along tortuous paths may be
created [He et. al. 2001; Kanitsar et. a. 2003].

Curved Planar Reformation (CPR), i.e. a section through the volume using a ruled
surface, is now an established technique in the medical community. Kanitsar et. al. [2002]
present a survey of CPR methods for angiography applications. They compare three methods
for CPR generation: projected CPR, stretched CPR and straightened CPR. In addition, three
extensions to CPR have been proposed to overcome the most relevant clinical limitations:
thick CPR, rotating CPR and multi-path CPR. The latter provides a display of a whole
vascular tree within one image. While superimposition of bones and arteries is prevented, the
intersection of arteries itself is not avoided. In Kanitsar et al. [2003], authors present a new
method enabling the visualization of an entire vascular tree using the extraction and flattening
of multiple ruled surfaces. These multiple surfaces are flattened onto the same image by
avoiding self intersections but discontinuities are unavoidable at the connections between the
different surfaces. Further information about the clinical relevance of the CPR visuaization
technique can be found in [Achenbach et al. 1998; Kanitsar et. a. 2003; Rubin et al. 2001]. A
comparison of this technique with conventional volume visualization techniques may be
found in [Addiset. al. 2001].

Degspite their usefulness, these methods seem restricted to the extraction of ruled
surfaces passing through vessel structures. However, it may be interesting to apply this
technique to other anatomic structures. For this purpose, Figueiredo and Hersch [2002]
present a simple approach for specifying a ruled surface by allowing the user to specify a 2D
trajectory on an oblique slice and define the ruling vector perpendicular to this dlice. This
provides users with interactive means of creating a ruled surface passing through anatomic
structures. In the next section, we propose to extend this interactive specification by allowing
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users to specify a 3D trajectory defining the ruled surface within the volume image. Such an
interactive extraction may provide anatomical specialists with a way to create and extract
ruled surfaces passing through any anatomic structure.

Unfortunately, as we have seen earlier, ruled surfaces do not allow the visualization of
structures with many branches such as an arterial tree without introducing discontinuities.
Moreover, ruled surfaces are also too restricted for tracking anatomic structures with irregular
geometry such as the Pelvis. For these reasons, we propose to extend Curved Planar
Reformation to the extraction of free form surfaces [Saroul et. al. 2003]. In contrast to planar
slices and ruled surfaces, free-form surfaces may follow highly curved anatomic structures.
These curved surfaces may then be used to visualize branching structures without introducing
discontinuities, by extracting a surface passing through the different branches of a tubular
structure. We therefore present the method we developed to interactively specify and extract
free-form surfaces passing through curved anatomic structures.

First, we present in Section 3.2 and 3.3 geometric primitives that we use for extracting
ruled and free-form surfaces from volume images, together with several examples of
applications of these surface extractions. Then, we introduce in Section 3.4 interactive tools
allowing users to accurately specify surfaces following anatomic structures using these
primitives. Finally, in Section 3.5, we explain how free-form surface extractions may be used
for exploring anatomy.

3.2 Ruled surface extraction from 3D volume images

3.2.1 Specification and extraction of a ruled surface

We first consider ruled surfaces for tracking curved anatomic structures. We focus on
ruled surfaces with adirectrix «(t) and aruling vector of constant orientation p:

ot,v)=a(t)+vp (3-1

Such ruled surfaces (also called cylinders) are developable and easy to define, since
they only require the definition of the directrix «(t) and of the ruling vector p. A ruled
surface may therefore be easily specified by a 2D natural spline (see Appendix A) located in a
planar cross-section, with its ruling vector orthogonal to that cross-section (Fig. 1-4). That is
essentially the method proposed in [Figueiredo and Hersch 2002].

However, a ruled surface whose directrix is located within a plane is difficult to use
for visualizing non-planar tubular structures such as the aorta. To provide users with a means
for specifying ruled surfaces following such a structure, it is necessary to use true 3D
trajectories as directrix «a(t) .

As a ruling vector, we choose a vector orthogonal to the main orientations of the
curve. Indeed, if the ruling vector is not adequately chosen, two ruling lines o(t;,v) and
o(t,,v) may become identicdl, i.e. o(t,v)=0o(t,,v). Structures intersected by these lines

may then be present at two different locations within the resulting flattened surface, making
the image interpretation difficult. Compared with [Kanitsar et. al. 2002] where the ruling
vector has a fixed orientation within the (Oxy) plane, our method computes the most adequate
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ruling vector automatically by avoiding as much as possible cases where ruling lines become
identical. In order to offer additional freedom and improve the visualization, users are allowed
to rotate the ruling vector in the plane orthogonal to the main orientation of the 3D tragjectory.

The main orientations of the 3D trgjectory are computed using principal component
analysis. The trajectory is first represented by a polyline, i.e. a set of discretization points
S={X{, X, 00, X} -

We compute the center of gravity G (with coordinates xg) of this set, and the
covariance matrix B, taking into account G and all points of S:

B=—> (6 X} o) 32
i=1

Since covariance matrix B is definite, positive and symmetric, the normalized
eigenvectors of B form a local coordinate system (G,X,,X,,X.) With center G and axes

.- Vector x. is the vector orthogonal to the plane of principal components
x,) and is used asthe ruling vector p (Fig. 3-1)".

Xgy Xp s X
(G,x

a’

Figure 3-1. Computation of the ruling vector p =X..

We may change the orientation of the ruled surface by rotating the ruling vector p in
the plane (G, x,, X..)

p, =C0SH-X,+SN6- X, (3-3)

After discretization of the surface into rectangular facets, the texture of the surface is
extracted from the 3D volume image (see Chapter 7) and visualized (Figs. 3-2 and 3-3). Such
aruled surface enables the visualization of an entire section of the aorta and of the Vena Cava
together with their neighbourhood (see Appendix B). By rotating p, up to 180°, one may

scan the full 3D neighbourhood of the considered trajectory.

11 the user specified curveis entirely located within a plane, the system chooses a ruling vector orthogonal to
this plane.
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Figure 3-2. Extraction of ruled surfaces following the aorta, with different ruling vectors.

a)II

Figure 3-3. Extraction of ruled surfaces following the Vena Cava, with different ruling
vectors.

30



3.2.2 Flattening of a ruled surface for visualization

In order to obtain a globa view of the surface within a single image, one may flatten
the ruled surface defined by a directrix «/(t) and a constant ruling vector without introducing
angular or metrics distortions. The directrix «(t) is first approximated by a polyline, whose
segments, together with the ruling vector, define a succession of rectangular facets. These
rectangular facets are resampled according to the display grid. Corresponding voxels are
extracted from the 3D volume data using nearest-neighbour or trilinear interpolation. Facets
parts are then merged into the final display buffer (Fig. 3-4).

Figure 3-5. Flattened ruled surfaces following the aorta (with three different ruling vectors).
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Thanks to the display of the entire surface within a single image, one may quickly and
precisely inspect it without having to rotate the view and possibly miss certain parts of the
surface (Figs. 3-5 and 3-6). Fig. 3-6a shows that flattened surfaces enable the visualization of
the continuity of the Vena Cava superior, the Atrium cavity, and the Vena Cava inferior.
Moreover, by rotating the ruling vector (Fig. 3-6b and 3-6¢), one may precisely inspect the
connection between the Vena Cava and the Atrium cavity.

Since flattened ruled surfaces preserve distances, accurate distance measurements are
possible. Furthermore, since each pixel on the flattened surface can be selected precisely,
marker points can easily be placed and their 3D coordinates displayed (see Chapter 7).

Vena Cava Vena Cava

Figure 3-6. Flattened ruled surfaces following the Vena Cava
(with three different ruling vectors).

Interactive extraction of ruled surfaces is not restricted to the visualization of vessel
tubular structures. Fig. 3-7 shows the extraction of a ruled surface passing through the
innominate, the femur, the knee, the tibia and the foot. The corresponding flattened image
(Fig. 3-7c) may be of great help for teaching anatomy by enabling the visuaization of the
entire leg within a single planar image without discontinuities.

However, Fig. 3-7 shows the limitation of ruled surfaces. Due to the curvedness of the
foot, it is not possible to specify aruled surface passing through the leg bones and at the same
time passing through all the toes. We will see in the following section how the specification
and extraction of free-form surfaces may overcome such a problem.
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b)

Figure 3-7. Ruled surface passing through the right leg with superposed leg models (a),
without models (b) and flattened into the plane (c).

3.3 Free-form surface extraction from 3D volume images

Despite their usefulness, ruled surfaces do not offer enough flexibility for visualizing
irregular anatomic structures such as the pelvis or the jaw. Furthermore, with a ruled surface,
it is difficult to define a surface section that passes through complex structures such as a part
of the aorta tree, i.e. the aorta together with its outgoing tubular structures (see Appendix B).
To offer a higher degree of freedom, we propose to use free-form surfaces as visualization
means.

The main difficulty is to find a method alowing an easy and accurate placement of a
surface within a 3D volume. To solve this problem, we propose to use surfaces interpolating
user specified boundary curves following the structure of interest.

3.3.1 Specification and extraction of free-form surfaces

We propose to use Coons free-form surfaces [Hoschek and Lasser 1993] for
interpolating the user specified curves.
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Computed Boundary curve
boundary curve specified by markers

P(1,0)

Figure 3-8. Surface interpolation between curves.

Let us describe the construction of Coons surfaces. Given n boundary cubic splines
(see Appendix A) specified by the user, varying along the u parameter, two other boundary
cubic splines are constructed which pass through the extremities of these n curves (Fig. 3-8,
red curves). The resulting system of boundary curves is interpolated by Coons patches
[Hoschek and Lasser 1993, pp. 371-382]. Starting with the n curves specified by the user, we
can construct n-1 Coons patches by carrying out for each patch the following interpolation

fo(v)
f,(v)

fo(U)

P0.0) P(o,nj[fo(v)J s
f,(U)

P(u,v) =(P(u,0), P(u,J))[ PQLO P@ELD ) f,(v)

]+(P(0-V), P(lV))[ j—(fo(u), fl(U))(

where P(i,v) and P(u,i) are the parametric representations of the boundary curves for
i =0,1 and where f; are blending functions.

Since each boundary curve is a cubic spline with C? continuity, the corresponding
patch has also C? continuity.

We choose cubic Hermite polynomials as blending functions

f(t)=1-3t*+2t°
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which satisfy the continuity conditions

f.(k)=3, = {]6 ii: and f(k)=0, forik=01 (3-6)

#k
Thus, derivatives of the patch along boundaries are given by

R.(,v) =R,(1,0).fo(v) + R,(1,D.f,(v)

: : , for i =0,1. (3-7)
R (ui) =R (0,i).f,(u) + R, (Li).f,(u)

Using these functions, the tangent vectors to the curve P(u.,Vv) at the point P(u.,1)
(with u, constant) depend only on the tangent vectors P,(0,2) and R,(11) at points P(0,1)
and P(1,1). It follows from (3-7) that if the two computed boundary curves have C!
continuity at these points, the two neighbouring patches A and B join together with C!
continuity along the curve P*(u,1) = P®(u,0) (Fig. 3-8). In contrast to bi-cubic patches
[Hoschek and Lasser 1993, pp. 382-385], the presented bilinear interpolation with cubic
Hermite polynomials does not require to specify the derivatives P,(u,0), B,(u,1), P,(0,v) and
P, (1 v) along boundary curves.

a) Boundary curves specification b) Resulting Curved Surface
Figure 3-9. Curved section passing through the sternum and ribs.

As an example, a surface across the sternum and ribs (see Appendix B) is constructed
by specifying boundary curves within several dlices crossing theses structures (Fig. 3-9a). The
resulting surface passes through the sternum and all ribs in a continuous way which is not
possible to obtain with adlice or aruled surface (Fig. 3-9b).
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b)

Figure 3-10. Curved section passing through a part of the aortatree.

b)
Figure 3-11. Surface passing through the Vena Cavatree.
As a further example, we construct a surface passing through the aortic arch (see

Appendix B), the subclavian, the carotid and the brachiocephalic arteries (Fig. 3-10a). This
surface is then extracted and displayed together with a 3D view of the aorta and the
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corresponding arteries (Fig. 3-10b) or aone (Fig. 3-10c). This illustrates the connections
between the aortic arch and the outgoing arteries.

Finally, we construct a surface passing through the Vena Cava tree (Fig. 3-11a, see
Appendix B). Unlike a ruled surface which only reveals the continuity of the Vena Cava
Superior, the Atrium cavity, and the Vena Cava Superior, this surface enables in addition the
visualization of the connections between the Vena Cava and several non coplanar outgoing
veins (Fig. 3-11b).

3.3.3 Visualizing free-form textured surfaces using a flattened view

In the previous figures, free-form surfaces are displayed using orthogonal projection
on the display screen. In order to facilitate the inspection of the anatomic structures included
in such free-form surfaces, we would like to flatten them into the plane. However, Coons
surfaces are not developable, i.e. it is not possible to unfold them without distortions. We
therefore present in Chapter 5 two different distance flattening methods which try to minimize
distortions near a focus point specified by the user.

Fig. 3-12a shows the flattening of a surface passing through the aorta tree and
Fig. 3-12b the flattening of the surface passing through sternum and ribs. The flattened
surface of Fig. 3-12b provides a global view of the curved section within a single image,
without introducing discontinuities and without the need to rotate the view which may lead to
miss certain parts of the surface (Fig. 3-9b).

a) Aortatree b) Sternum and ribs

Figure 3-12. Flattening of the surface passing trough the aortatree (a) and of the surface
passing through the sternum and ribs (b).

The flattened image of Fig. 3-12a enables the visualization of the connections between
the aortic arch and the three arteries within a single image. Since the three arteries are not
coplanar, it would not have been possible to create a similar image with planar cross-sections
or asingle ruled surface.

Fig. 3-13 shows how the interactive specification of surfaces overcomes the problem
with the leg as mentioned in Section 3.2. Unlike the ruled surface, the Coons surface passes
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through all the leg bones as well as all the foot bones. The corresponding flattened image
(Fig. 3-13c) provides users with a more complete view of the right leg at the expense of some
distortions.

Figure 3-13. Surface passing through the right leg within a 3D view (a and b) and within a
flattened view (c).

The flattening of curved surfaces for anatomical visualization is treated with more
detailsin the following chapters.

3.4 Interactive specification of surfaces

In order to interactively specify in 3D space the boundary curves or tragectories
defining a surface of interest, we use both interactive dlicing across the volume image and the
3D display of anatomic structure surfaces and dices. Interactive dlicing
[Gerlach and Hersch 2002] enables users to navigate within the Visible Human volume image
[Ackerman 1998] by continuously extracting slices at a speed of several sices per second,
according to the displacement of the mouse (backward and forward trandation, rotation,
zoom). The 3D visudization interface [Evesque et al. 2002] allows users to construct 3D
anatomical scenes by combining planar slices and 3D anatomical structures which may be
selected and automatically loaded from the Visible Human server. Users may zoom in and
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out, rotate and trandate the scene as well as displace and rotate the planar slices located
within the scene.

To accurately place points within the 3D volume, one should preferably use the
interactive real time navigator for slicing through the volume data and halt on the slices on
which marker points are to be specified. Each set of successive marker points defines a
surface boundary curve using cubic spline interpolation. To understand the 3D context, the
current dlice is displayed both in the real time navigator and in the 3D visualization interface,
together with surrounding organ surface models (Fig. 3-14). At any time, both views may be
synchronized. This facilitates interactive and dynamic positioning of dlices by mouse
displacements.

Figure 3-14. Synchronization between views.

Users may also modify the position of the slice in the 3D view by dragging it to the
desired location and simultaneously see the corresponding movement in the slice navigator.

The presented approach relying on the synchronization between the dice navigator
interface and the 3D viewer is similar to most existing medical visualization approaches, for
instance the approach of [Gering et al. 1999], used in surgical planning applications.

I nteractive specification of trajectoriesand boundary curves

By combining the real time dlice navigation and the 3D visualization interface, users
may specify trajectories or boundary curves within the 3D volume by using markers. Markers
are thick 3D cubic spline curves defined by several user-specified control points (marker
points). Marker points may be freely placed by clicking with the mouse at the desired position
on the selected dice. The markers are extruded as thick cylinders in order to compute and
display their intersection with the current slice (Fig. 3-15b).
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However, the real time navigator does not provide a global view of the curve. The 3D
visualization interface displays the marker as a 3D cylinder along the curve (Fig. 3-15a). By
making organ models appear as partly transparent surfaces, the 3D curvilinear marker and its
surrounding anatomic structures can be displayed simultaneously. In the example of Fig 3-15,
the aortamodel is displayed in transparency and reveals the 3D marker curve located inside it.
Since both views are synchronized, the current marker shape is displayed in 3D while it is
being specified by placing control points with the real time dlice navigator. This ensures an
optimal interactivity and an accurate placement of the marker splines. Users may also choose
the display size of the control points and of the marker curves.

Figure 3-15. Simultaneous display of amarker curvein the dice navigator (b) and
within the partly transparent aorta shown in the 3D view (a).

3.5 Exploration of anatomic structures with surfaces and 3D models

b)

Figure 3-16. Curved surface passing through the left hand with (a) and without (b) left hand
3D model.
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Let us summarize how users may use our interactive application to inspect some
anatomic structures of interest. In a first step, organ models surrounding the structures of
interest are loaded and displayed in the 3D visualization interface. Then, using interactive
dlicing and thanks to the synchronized 3D display of the scene, marker points are positioned
within the volume image. After specifying several boundary curves (markers), the application
computes the resulting free-form surface and extracts the corresponding surface texture
elements from the volume image (see Chapter 7). Then, the textured surface may be displayed
within the 3D view together with organ models. The boundary curves may be modified in
order to adjust the shape or the location of the surface.

a) 3D view b) Flattened view
Figure 3-17. Curved surface passing through the jaw.

Figure 3-18. Surface section following the pelvis aone (a) and
with surrounding structures (b).

Compared with conventional curved sections, free form surfaces following non tubular
structures such as the left hand (Fig. 3-16) may be specified. Fig. 3-17a shows a surface
following the jaw together with the skull model. The flattened image (Fig. 3-17b) reveals all
teeth within a single image. The simultaneous display of textured curved surfaces and
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anatomic structure models grestly facilitates the understanding and the interpretation of the
flattened image. Another relevant example is a surface following the pelvis (Fig. 3-18a, see
Appendix B), which can be displayed together with the semi-transparent pelvis model
(Fig. 3-18b).

These examples show that thanks to the interactive free-form surface specification
method, surfaces passing through winded anatomic structures may be accurately defined.
Moreover, these examples also show that curved surface extraction is not restricted to vessel
tubular structures, free-form surfaces passing through any organs or anatomic structures may
be specified.

3.6 Conclusion

In the present chapter, we generalized the concept of planar slices, which are widely
used in medical imaging, to curved cross-sections. Curved cross-sections such as ruled
surfaces or free-form surfaces extracted from 3D volume images enable an accurate
visualization of curved anatomic structures,

We integrated the curved cross-section extraction into an interactive slicing
application allowing both the current dice and its representation within the surrounding
anatomic scene to be visualized. Combining the 2D dlice view and the 3D scene view allows
users to accurately position in 3D the control points determining the location and properties of
the desired curved section. Free-form surface boundaries as well as ruled surface trajectories
are displayed as thick 3D cylindrical curves, visible both at their intersection with the current
dlice and within the 3D view.

Finally, users may create 3D anatomical scenes by combining free-form surfaces,
dlices and 3D anatomical structure models. Such scenes offer new means of learning anatomy
and they complement the traditional anatomical atlases. Anatomy teachers may use them for
illustrating anatomy lessons, for carrying out virtual laboratory exercises or for improving
their knowledge.

The flattening of free-form surfaces may be used to precisely inspect curved surfaces,
to carry out measurements on the surface, or to illustrate properties of curved anatomic
structures. Since free-form surfaces are not developable, appropriate surface flattening
methods have to be used. In Chapter 5, we present two different distance preserving flattening
methods which allow the visualization of free-form surfaces within a single planar image as
well as the possibility of carrying out distance measurements on the flattened surfaces.
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4 Introduction to surface flattening

In this chapter we recall the concept of surface flattening and present the
specific requirements in the context of anatomical curved surface
visualization. We review previous research works on surface
parameterization, and explain their l[imitations for our application. We finally
describe in detail an existing flattening algorithm which is used in the next
chapters.

4.1 Introduction

The surface flattening problem is linked to the more general problem of finding a
parameterization of a surface. Indeed, as surface flattening, a parameterization of a surface
consists of finding a one-to-one mapping from the surface to a planar domain (see Chapter 2).
Parameterizations have many applications in various fields of science and engineering. The
main application of parameterization in computer graphics is texture mapping which is used
to map a planar image onto polygonal models.

Parameterizations, mapping, or flattening of 3D surfaces amost aways induce
distortions in either angles, lengths or areas. To evaluate the quality of a mapping in an
application, it is necessary to first decide which kind of distortions have to be minimized or
what properties need to be preserved. A good mapping for a given application is the one
which meets these requirements.

For our anatomical surface visualization application, the first requirement is to
produce a flattened surface without cuts in order to provide users with a continuous view of
the whole surface. In order to precisely inspect a region of interest with high precision, the
distortions have to be minimized near a user specified focus point on the surface. Then, users
may move this focus point and successively inspect each surface part. We also want to
provide users with the means of carrying out measurements on the surface. For this purpose,
distances should be preserved along user specified orientations. Finally, the surface flattening
algorithm needs to be fast and simple in order to be integrated into a software allowing users
to interactively visualize flattened curved surfaces.

We first recall the general surface parameterization problem (Section 4.2) in
complement of the definitions from differential geometry presented in Chapter 2. Then, we
present previous research works on this topic and show that a new flattening algorithm needs
to be proposed (Section 4.3). For this purpose, we present in detail an existing flattening
algorithm incorporating interesting techniques which is used in our algorithm (Section 4.4).
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4.2 Surface parameterization concept

Let us briefly recall the general concept of surface parameterization, i.e. one-to-one
mapping from a surface to a planar domain. The theory of mapping is a vast mathematical
problem. In this section, we only recall some important definitions necessary to understand
the rest of this work. Please refer to [Cohn 1980], [Kreiszig et. a. 1991] and [Floater and
Hormann 2004] for more detailed explanations on the mathematical concept.

4.2.1 Mapping definition

Let Sand S* be two set of points in three-dimensional Euclidean space. If arule T is
stated which associates a point P’ of S* to every point P of S we say that a transformation of
the set Sinto S isgiven. P’ is called the image point of P, and P is called an inverse image
point of P’'. The set of the image points of al points of Sis called the image of S If every
point of S* is an image point of at least one point of S the transformation T is called a
mapping of Sonto S*.

A mapping T of Sonto S is caled one-to-one if the image points of any pair of
different points of S are different points of St. Then there exists the inverse mapping of T,
denoted by T™*. T~ map S onto Ssuch that every point P* of S* is mapped onto a point P
of Swhich istheinverseimage of to P’ under the mapping T.

The mappings that we consider in the following are surface plane mappings, i.e. one-

to-one continuous mappings which map every point of a surface onto a unique point within a
planar domain (see Fig. 4-1).

S*

\

T~1

- X

Y

Figure 4-1. One-to-one mapping from a surface to a planar domain.

4.2.2 Isometric, conformal, harmonic and equiareal mappings

Having presented the general concept of mapping, let us now consider a few specia
kinds of mappings.

I sometric mapping. A mapping from Sto S* isisometric or length-preserving if the length of
any arc on S is the same as that of its inverse image on S Such a mapping is called an



isometry. For example, the mapping of a cylinder into the plane that transforms cylindrical
coordinates into cartesian coordinates is isometric.

Conformal mapping. A mapping from Sto S* is conformal or angle-preserving if the angle
of intersection of every pair of intersecting arcs on St is the same as that of the corresponding
inverse images on S at the corresponding point. For instance, the stereographic and Mercator
projections are conformal maps from the sphere to the plane (see Fig. 4-5).

Conformal projections of general surfaces are of special interest due to their close connection
to the Riemann Mapping Theorem [Cohn 1980]. This theorem states that any simply-
connected region of the complex plane can be mapped conformally into any other simply-
connected region, such as the unit disk. It therefore implies that any disk-like surface can be
mapped conformally into any simply-connected region of the plane. However, there is no
method for computing such a mapping in the general case.

Harmonic mapping. A mapping from Sto St which satisfies the two Laplace equations from
complex function theory [Cohn 1980] is harmonic. Any conformal mapping is harmonic but
the inverse statement is false. The main advantage of harmonic maps compared with
conformal maps is that they can be computed, a least approximately
[Floater and Hormann 2004]. Moreover such mappings minimize deformation in the sense
that they minimize the Dirichlet Energy [Cohn 1980]. Please refer to [Cohn 1980] and
[Floater and Hormann 2004] for more information about conformal and harmonic mappings.

Equiareal mapping. A mapping from Sto St isequiareal if every part of Sis mapped onto a
part of S¢ with the same area. For example, the Lambert projection is an equiareal mapping
from the sphere to the plane (see Fig. 4-5).

Every isometric mapping is conformal and equiareal, and every conformal and
equiareal mapping isisometric, i.e.

isometric < conformal + equiareal.

4.2.3 Definitions of surface parameterization, surface flattening and
texture mapping.

In differential geometry, the surface parameterization problem consists in associating
each point (x,y,z) of a surface to a unique point (u,v) in the parameter space. A
parameterization P(u,V) = (x(u,Vv), y(u,V), z(u,V)) of a surface as presented in Section 2.2 can
then be viewed as a one-to-one mapping from a rectangular planar domain to the surface.

In computer graphics, surface parameterization refers to the more general problem of
finding a one to one mapping between a planar domain and the surface.

The surface flattening problem consists in unfolding a surface into the plane. If the
surface is unfolded without self-intersections, each point (x,y,z) of the original surface may

be associated with a unique point (X,Y) of the flattened surface. A surface parameterization
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is obtained since a rule T which maps every point (X, y,z) of the surface into a unique point
(X,y) of a planar domain may be defined. Surface flattening is therefore equivalent to
determining a surface parameterization.

Surface flattening may be used for visualizing within the plane a texture image
located on a surface (see Fig. 4-2). The surface S is first sampled into a set of elementary

regions {§}. Given a surface region § having a color C; and the corresponding image
region § under the transformation T, the color C. may be used as the color of the image
region S within the flattened surface S’ (see Fig. 4-2). Using this process for all elementary
surface regions of Sleads to aflattened textured surface.

(§.C)
S*

'y

Y
bt

a) Origina surface b) Flattened surface

Figure 4-2. Surface flattening.

Inversely, we can use surface parameterization for texturing a surface with a planar
image, a process called texture mapping. Texture mapping is the main application of surface
parameterization. In the case of texture mapping, we often want to find a rule T which maps
each point (x,y) of a planar domain into a unique point (X,Y,Z) of the surface. Then, an

image texture generally included within a rectangular domain of the plane may be mapped
into the surface using the inverse rule of surface flattening. Generally, agrid of pixels {p} is
associated with the texture image. This grid is first mapped onto the surface using the rule T.
Each mapped grid element p' is then associated with the corresponding initial grid element
color (see Fig. 4-3).

Surface flattening may also be used for texture mapping. A rule T is used to flatten the
surface, then the flattened surface is filled with the texture colors and finaly the inverse rule

T is used to map the flattened texture image into the original surface.
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a) Textureimage b) Textured surface

Figure 4-3. Texture mapping.

We have presented the general continuous parameterization concept. However, in
computer graphics applications the surface is in general a 3D mesh, i.e. a collection of
triangles or a collection of discrete points. Therefore, a discrete surface parameterization is
needed, i.e. a mapping rule which maps each vertex or discrete point of the surface onto the
planar domain (see Fig. 4-4). Then, using this discrete surface parameterization, the triangle
texture of the original surface may be used to fill the triangle image in the plane or inversely
for texture mapping.

a) 3D mesh b) Flattened mesh

Figure 4-4. 3D mesh parameterization.
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Surface flattening and texture mapping are special cases of the general surface
parameterization problem. In the following, we often use the general term of surface
parameterization to refer to the different mapping techniques.

For surface parameterization applications such as texture mapping, the quality of the
result depends on the amount of deformation caused by the parameterization. An ideal
parameterization is an isometric mapping, in the sense that it preserves angles, areas, and
lengths. However, isometric mappings only exist in very special cases. When mapping onto
the plane, the surface would have to be developable, such as a cylinder. As we have seen in
Section 4.2, mappings almost always induce distortions in either angles, lengths or areas.
Therefore, in all surface parameterization applications, the problem consists in finding a
mapping which is either:

1. conformal, i.e., preserves angles,
2. equiaredl, i.e., preserves areas,

or 3. minimizes some combination of angle, area or length distortions.

4.2.4 Cartographic projections

It is not possible to explain mapping problems without mentioning cartographic
projections. Indeed, it is the oldest and the most famous problem of surface flattening: finding
amapping of the sphere onto the plane for constructing maps of the Earth. The sphere cannot
be projected onto the plane without distortions and therefore certain compromises must be
made. Fig. 4-5 shows some examples of Earth projections used in cartography.

a) Stereographic projection b) Mercator projection c) Lambert projection
Figure 4-5. Cartographic projections of the Earth.

One of the most widely used projections is the stereographic projection (Fig. 4-59)
which is usually attributed to Hipparchus (190-120 B.C.). It is a conformal projection, i.e., it
preserves angles (at the expense of areas). It also maps circles to circles but a loxodrome is
plotted as a spiral (a loxodrome is a line of constant bearing (direction) and is of vital
importance in navigation). Gerardus Mercator (1512-1594), whose goal was to produce a map
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which navigators could use to determine courses, created in 1569 the conformal cylindrical
Mercator projection (Fig. 4-5b) which draws every loxodrome as a straight line. However, the
stereographic and Mercator projections do not preserve areas. Johann Heinrich Lambert
(1728-1777) found the first equiarea projection (Fig. 4-5¢) in 1772. This projection does not
preserve angles.

All these projections can be seen as functions that map a part of the surface of the
sphere to a planar domain and the inverse of this mapping is usualy called a parameterization.

4.3 Previous work on surface parameterization

As we have seen in the previous sections, surface parameterization always induces
some distortions. Therefore, before using a surface parameterization method, one needs to
define the desired properties of the mapping according to its application. In Section 4.1, we
presented the requirements for our anatomical visualization flattening. Therefore, we present
an overview of previous work on this topic in order to find a method which meets these
requirements.

Significant research efforts have been made to produce a least distorted flattened
surface in the context of texture mapping applications or visualization of textured surfaces
extracted from medical volume image. We briefly review the major techniques proposed for
surface parameterization. We refer the reader to Floater and Hormann [2004] for a more
detailed discussion of the numerous techniques available.

In the context of Magnetic Resonance Images (MRI), Haker et. al. [1999] proposed a
technique for flattening the brain surface. They create a quasi-conformal mapping between the
surface of interest and a disc. The method has also been applied to the 3D visuaization of
colon CT images [Haker et. al. 2000]. This method is based on the computation of a harmonic
map by minimizing the Dirichlet energy on the flattened surface. To approximate the
harmonic map they use the finite elements method. This method of resolution was first
introduced to the computer graphics community by Eck et al. [1995] and called smply a
discrete harmonic map, athough a similar technique had earlier been used by
[Pinkall and Polthier 1993]. The main advantage of this method over earlier approaches is that
this is a quadratic minimization problem and it reduces to solving a linear system of
equations. While this technique minimizes angular distortions, it creates unpredictable metric
distortions and therefore may not be used for our application.

Other researchers addressed the problem of surface flattening in the context of texture
mapping [Bennis et. a. 1991; Levy and Mallet 1998; Levy et. a. 2002
Sheffer and de Sturler 2001], or in the more general context of parameterization of 3D meshes
[Floater 1997; Lee et. a. 1998]. In many approaches the surface is divided into a collection of
patches that can be unfolded with little stretch [Sander et. al. 2001; Alliez et. a. 2002,
Levy et. a. 2002; Sorkine et. a. 2002]. While stretch is minimized, these approaches create
seams between patches and therefore discontinuities. For anatomic surface visualization,
surface cuts are problematic, since continuous surface sections are needed in order to provide
an understanding of the relationships between the different anatomic structure elements.
These methods may be generally adapted to the visualization of flattened surfaces by applying
unfolding techniques to the whole surface.
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There exist many patch unfolding techniques. The classical approach treats the surface
unfolding problem as finding the minimum of some functional that measures the difference
between the current parameterization and an ideal isometric parameterization [Eck et a. 1995;
Floater 1997]. First, the boundary vertices are assigned initial positions (usually on acircle or
a square). Then the parameterization for the interior vertices is determined by solving a large
linear system or through a nonlinear optimization process. Zigelman et. al. [2001] present a
method for globally minimizing distortions based of the preservation of geodesic distances.
They compute geodesic distances between each pair of mesh vertices and applying
multidimensional scaling in order to optimally preserve these distances on the flattened
surface. Levy and Mallet [1998] apply an iterative method for constructing a parameterization
of the surface which globally minimizes distortions. This method tries to preserve as much as
possible orthogonality and constant spacing between isoparametric curves of the new
parameterization. Compared with other global optimization techniques, this method allows
the user to gpecify the region where distortions should be minimized.
Sheffer and de Sturler [2001] proposed to use an angle based flattening approach for surface
unfolding. This approach measures stretch in term of the angles deficits between the triangles
on the surface and their textural images. In [Sheffer et. al. 2005], the authors presented a
modified algorithm which ensures the validity of the flattened map and improves computation
time. They also showed that the method creates fl attened surfaces with low area distortions.

Other stretch metrics have been used for minimizing distortions. Maillot et. al. [1993]
have used the Green-Lagrange deformation tensor as stretch measure. Sander et. al. [2001]
defined a geometric stretch metric that is based on the average and maximal stretch in all
directions of a triangle. Sorkine et. al. [2002] and Khodakovsky et. al. [2003] have devised
stretch metrics based on the maximum and minimum eigenvalues of the stretch tensor.

While these methods are efficient in term of global distortions minimization, most of
these texture mapping or surface parameterization methods do not provide users with a mean
of controlling the distribution of distortions. Moreover, with such techniquesit is not possible
to specify where distances have to be preserved. In addition, global optimization techniques
such as [Eck et. al. 1995; Floater 1997; Sheffer and de Sturler 2001; Levy and Mallet 1998;
Zigelman et. al. 2001] require memory and time consuming algorithms in order to solve large
linear systems or to carry out an iterative optimization process.

Some works remove the need for a global optimization process or large system solving
by using iterative techniques. Bennis et. al. [1991] proposed a simple piecewise surface
flattening method for parametric surfaces which iteratively flattens isoparametric curves by
preserving their lengths and their geodesic curvature starting from a central reference curve
which is flattened without distortions. The geodesic curvature preservation method decreases
distortions aong flattened curves and distortions are minimized near a central point. A
distortion threshold is fixed and cuts on the surface are introduced when this threshold is
reached. The cuts are necessary to ensure the validity of the flattening map since self
intersections between flattened curves may occur when this algorithm is applied to the whole
surface. In a similar approach, Sorkine et. a. [2002] presented a method which iteratively
flattens triangles with the minimum of distortion starting from a focus point of interest. As
Bennis et. al., cuts are introduced during the process, in order to respect a fixed geometric
stretch metric threshold. Therefore, distortions are minimized near the focus point, distortions
increase with increasing distance from the focus point and global distortions are under the
specified threshold. Mlginek et. al. [2004] have applied this method to the interactive
thickness visualization of articular cartilages with a different stretch metric. The method
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iteratively flattens triangles starting from a focus point while trying to minimize area
distortions.

The agorithms of [Sorkine et. al. 2002] and of [Bennis et. al. 1991] are interesting for
our application since these methods meet the requirement of minimizing distortions around a
focus point. Moreover, these processes are computationally efficient since the flattening and
distortion minimization process is carried out a the same time. However,
Sorkine et. al. [2002] do not preserve distances on the surface. In [Sorkine et. a. 2002] or
[Mlgineck et. al. 2004] only a focus point where distortions are minimized may be specified
but no controls are given on the distortions distribution on the surrounding surface parts. In
[Bennis et. a. 1991], distances are preserved along specific curves located on the surface.
However, it is not possible to choose the location of these curves. In addition, these unfolding
techniques automatically create cuts during the flattening process.

These algorithms may not be used directly in our application. However, we propose to
use some of the techniques proposed by Bennis et. a. and the general approach of the two
algorithms. First, we propose to use geodesic curvature and distance preservation on a central
curve. This provides a simple and fast way to minimize distortions around a band of interest.
Second, asin the Bennis et. al. agorithm, we propose to flatten specific curves on the surface
with length preservation. In addition, we want to provide users with the possibility to control
the location of these curves.

In Chapters 5 and 6, we present the different flattening methods we develop in this
work, in order to visualize curved texture surfaces extracted from medical volume images.
They are inspired by the agorithm from Bennis et. a.; in particular, they use the geodesic
curvature preservation method. Therefore the original algorithm is presented in detail in the
following section.

4.4 Bennis et. al. Algorithm and Geodesic Curvature preservation

Let us present the Bennis et. a. parametric surface flattening. The idea of geodesic
curvature preservation on which the algorithm is based will be later used in our flattening
algorithm. Therefore it seems necessary to recall the main steps of this algorithm.

4.4.1 Outline of the approach.

The surfaces considered here are given by a piecewise parametric representation:

x(u,Vv)
M(U!V): y(U,V) ’ (U,V)G [0’ umax]x[o’vmax] (4'1)
Z(u,Vv)

The surface isfirst regularly sampled into agrid of 3-D points, along the isoparametric
curves (in parameters space). The sampling must be refined enough to approximate the arc
length between two successive sample points along an isoparametric curve by their Euclidean
distance. The main idea of the technique is to map isoparametric curves of the surface onto
curves of the plane, with geodesic curvature preservation at sample points and with arc length
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(i.e. chord length) preservation. Geodesic curves, i.e. curves having null geodesic curvature at
each point, behave like straight lines when mapped onto the plane. Instead of mapping onto
the plane unknown surface curves which may be difficult to compute such as geodesics,
Bennis et a. use already available isoparametric curves and take into account their topological
properties in the mapping process.

4.4.2 Curve flattening with arc length and geodesic curvature
preservation

In this part we develop the method of geodesic curvature preservation along a surface
curve according to the original presentation by [Benniset. al. 1991].

Let us recall that surface curves are approximated by polylines. A curve C that isto
be mapped onto the plane contains n+1 sample points M,, i =0..n. Let usdenote by N, and

T, , respectively, the normal vector and the tangent plane to the surface at point M;. The
curve flattening algorithm runs as follows:

1. Map the first curve segment M M, onto a segment PR in the plane (Oxy) such that
d(M,M,)=d(R,R), where d designates the Euclidean distance function.

2.Foreach j, 2<j<n, P isiteratively computed in the plane as follows:

a) Project M; and M,_, onto the tangent plane to the surfaceat M ;_; (see Fig. 4-6).
This provides two pointsin T, , called M;and M _, given by the formulas:

M; =M, +((Mj_1_Mj)‘Nj-1)Nj-1

- (4-2)

b) Use a dilatation in T, , in order to transform I\7Ij into a point M7 such that
d(M;;,M;)=d(M,_;,M/) (seeFig. 4-6).

M/ =M+ H ‘1H (M, ~M,,) (4-3)

Myl

c) As P_, and P, are already computed, the desired point P, is the point of (Oxy)
that preserves simultaneously the angle 6,_; between M oM, and M; M7, and
the distance d(M; ;,M?) .
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Figure 4-6. Geodesic curvature preservation.

This curve flattening algorithm preserves the geodesic curvature at each sample point
and the arc length between sample points. To measure the distortion of a flattened curve,
Bennis et. al. used the following metric:

18 [dM; - M) -d(R - Py
PO=N2 M, 9

0
This distortion metric measures the mean of the length errors induced on each chord segment.

4.4.3 Bennis et. al. Algorithm

Let us now present the flattening algorithm itself. First, an initial isoparametric curve
Is chosen by the user depending on where he wants the flattened surface to be less distorted.

Let the curve be C, {u=u,0<v<v,,}, this curve divides the surface into two set of
transversal isoparametric curves Cvj {upsu<lv=v}and Cvj {0<u<ugv=v}.

The algorithm of Benniset. al. [1991] comprises the following steps (see Fig. 4-7):
1. The centra reference curve Co {u=u,0<sv<v_,} is mapped onto the plane

with arc length and geodesic curvature preservation using the algorithm described
in the previous section
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2. Each isoparametric transversal curve C\,j {uy<u<lv=v;} ismapped step by step

onto the plane. At each step i, a point (u,v;) of each curve is mapped with arc

length and geodesic curvature preservation as well as cross-angle preservation
between the reference flattened curve and the current isoparametric transversal

flattened curve. The process is stopped when the distortion measure D(C;i) of the
current flattened curve C, exceeds the specified threshold or when this curve
belongs to an already developed region (see Fig. 4.7)

3. Each isoparametric transversa curve CVJ_ {0<u<uyv=v;} is mapped using the
same process.

The flattening process is then repeated on the remaining parts of the surface.

To improve the result of their method, Bennis et. al. introduced a relaxation technique
after the above flattening step. The relaxation is based on the computation of the ideal
position of each point according to the position of its neighbouring points. The ideal position
is computed by trying to preserve geodesic curvature in al directions around the point. This
computation isiterated over al points of the surface until convergence.

a) Original surface b) Flattened surface

Figure 4-7. Bennis et. a. surface flattening a gorithm.

We just recalled the mains steps of the algorithm in order to understand the algorithms
presented in the next chapter. Further details on the algorithm such as the explanation of the
relaxation technique may be found in [Bennis et. al. 1991].



4.6 Conclusion

In this chapter, we described the surface flattening problem and reviewed the principal
research worksin this domain. We showed that, in the general case, it is not possible to flatten
a surface without distortions in terms of angles, lengths or area. Therefore, it is important to
decide first which surface properties need to be preserved after the flattening. For our
anatomical surface visualization application, we proposed to minimize distortions around a
focus point and to provide users with the possibility to carry out distance measurements on
the flattened surface. Existing surface parameterization algorithms do not meet these
requirements. Therefore, new algorithms need to be proposed. For this purpose, we described
an existing algorithm that shows interesting properties which is used in our flattening
methods.

The first application of surface parameterization has been cartographic projections.
The goal of such projections is to visualize the Earth within a plane and provide the
possibility of carrying out measurements on the flattened map. Therefore, several cartographic
projections have been proposed, each having its specific properties depending on the kind of
application.

We propose to use the same approach in our surface flattening methods. Asin the case
of cartographic projection, we propose different flattening methods allowing to measure
different kinds of distances on the surface. Users may then choose the most adequate method
for their application or use both flattening methods for studying the surface.
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5 Distance preserving flattening of surface
sections: parallel planes and radial planes
flattening

In this chapter we present two different distance preserving flattening
algorithms which minimize distortions around a focus point and preserves
distances along user specified orientations. The resulting flattened views allow
users to carry out measurements on the surface. Thanks to a multiresolution
technique, the curved surfaces may be instantly flattened providing user with the
possibility to interactively move the focus point and therefore to make a
thorough inspection of the surface.

5.1 Introduction

Flattening of ruled and free-form surfaces alows users to precisely inspect curved
anatomic structures. While the flattening of a ruled surface is straightforward, flattening of a
free-form surface needs to be intuitive, i.e. the user should be able to specify the regions of
the surface which should be reproduced with a high fidelity. Moreover, most of the existing
surface flattening methods which globally minimize a distortion criterion are computationally
expensive. They could not be integrated in an interactive surface extraction and flattening
application. For such an application, a fast and simple flattening agorithm is required for
ensuring interactivity.

Therefore, in this chapter, we present two different distance preserving surface
flattening methods which preserve distances according to user-specified orientations and
minimize distortions around a user specified focus point [Saroul et. al. 2006]. For a thorough
inspection of a surface, the user may therefore successively select different focus points. The
surface flattening methods presented here have similar goals to the methods for cartographic
projections. They try to preserve distances along certain orientations and minimize distortions
around a point or a curve of interest. They can therefore be seen as an extension of
cartographic projections from the sphere to more general curved surfaces.

The first flattening method (Section 5.2) preserves distances along curves located at
the intersection between the surface and planes of constant orientation specified by the user.
The second algorithm (Section 5.3) preserves distances along curves located within radial
planes crossing a center of interest (focus point). These flattening algorithms also minimize
the metric and angular distortions in the proximity of the focus point.

We discuss the respective advantages and drawbacks of the two surface flattening

methods by comparing their distortion maps (Section 5.4). We also introduce a
multiresolution flattening method (Section 5.5) enabling surfaces to be instantly flattened.
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Users may therefore interactively move the focus point within the surface section and observe
the resulting changes in the flattened image. Finally, we show that flattened surface sections
may be used to carry out measurements for medical purposes (Section 5.6).

5.2 Parallel planes flattening

Parallel planes flattening preserves distances along tragectories located at the
intersection between planes of a specified orientation and the surface. Thanks to parallel
planes flattening, medical specialists can easily measure a distance within a structure or
between two structures along a trajectory located within a plane of constant orientation.

In the case of an interactive application, the user selects a point
P, = P(Uy, Vo) = (X(Ug, V), Y(Ug, V), Z(Uy, V) ON @ parametric surface S as the center of his

region of interest. Then, a plane orientation H is chosen by the user according to the desired
orientation along which distances should be preserved. The system then chooses the

parametric curve Co {u=u,0<sv<sv_} (or Co depending on the plane orientation)? on

surface S as the reference curve along which angular distortions are to be minimized
(Fig. 5-14a).

——-—'\\

=9
I
<
> —
)

C,
0
a) Origina 3D surface b) Flattened surface

Figure 5-1. Parall€ flattening of a curved surface.

By discretizing the surface for equally spaced values of u (separated by a constant step
size Au, see Section 5.5), we obtain a set of curves C,, with u=const. For each sample

point M; of the initial curve Co the plane H; of orientation H passing through M; is

2 To avoid degenerate cases where a part of an isoparametric curve is parallel to the plane, we choose
the set of isoparametric curves whose main orientation makes the smallest angle with the plane's
normal vector.
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computed. The intersection points between H; and the family of curves C, (Fig. 5-1a)
provide a discrete representation of the intersection of the surface S and the plane H;,

[Hoschek and Lasser 1993, pp. 507-508]. The intersection between the plane and the family
of curves C, is computed iteratively. In case of double intersection between the plane and a

curve C,, the system chooses the intersection point closest to the previously computed
intersection point. By iterating over al sample points M; of C, we obtain a family of
discrete curves C, . Each discrete curve C; islocated at the intersection of plane H; and the
family of curves C, .

With the new parameterization defined by the family of curves C, and the family of
curves C, , the flattening a gorithm comprises the following steps:

1. Map the initid curve C, onto a plane by preserving the geodesic curvature

[Hoschek and Lasser 1993, pp. 46-47)° at each sample point and by preserving the
distance between points®, according to [Bennis et. al. 1991].

2. Map acurve C; into a straight line C]O with cross angle preservation between Ci,
and C, and distance preservation between consecutive sample pointsof C; ,

3. Map each curve C; into astraight line parallel to C]O and passing through M, with

distance preservation between consecutive sample pointsof C; .

By construction, this method preserves both the distances on the reference curve C, ,
and on the transversal lines C} (Fig. 5-1b). The cross angle between C, and C; is aso
preserved. The geodesic curvature is preserved along the reference curve C;O. Therefore
metric distortions are minimized along a band of interest near the curve C;O and both angular
and metric distortions are minimized in the proximity of the focus point.

Each facet of the resulting flattened surface is sampled according to the display grid.
The corresponding color texture is then extracted from the 3D volume image by nearest
neighbour or trilinear interpolation.

Fig. 5-2 presents the flattened surface passing through the jaw for two different
orientations of distance preservation. Fig. 5-7 presents the flattened surface passing through
the aortic arch and its three outgoing arteries for two different points of reference. This
flattened surface shows the connections between the aortic arch and the three outgoing
arteries within a single planar image. Users may interactively drag the focus point to new
positions (see Section 5.5). They may also rotate the distance preservation orientation by

® The geodesic curvature kg of acurve C(s) belonging to asurface S at apoint X, isthe norm of the

projection of its curvature vector at X onto the tangent plane.
* Preserving the geodesic curvature along a curve C(S) consists in creating a planar curve C’(S)

having a curvature equal to the geodesic curvature of the original curve at each sample point.
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rotating it within the flattened view (see Section 7.4). Measurements along the orientation
represented by the blue straight lines (Figs. 5-2 and 5-7) may then be directly carried out on
the flattened image (see Section 7.4).

Figure 5-2. Fattening of a surface passing trough the jaw with parallel planes flattening and
two different orientations of distance preservation.

5.3 Radial planes flattening

When analyzing anatomic structures, one may need to measure the distance between
organ extremities and a point of reference. This may help, for instance, in detecting possible
abnormalities. Therefore, we propose a flattening algorithm, which preserves distances along
trajectories located within all radial planes around a point of reference and which minimizes
angular and metric distortions in the proximity of the focus point. We define a polar
coordinate system on the curved surface centered at the point of reference
Ry = P(Ug, V) = (X(Ug, Vo), Y(Ugs Vo), Z(Ug, V) - Given the surface’s tangential plane at the
reference point, and a perpendicular plane through the reference point, we construct a
trgectory on the curved surface located at the intersection with this perpendicular plane. This
trajectory is mapped into a straight line on the flattened surface by preserving its length.

With the surface S defined by its parametric equation P(u,V), and a point of reference
R =P(,Vv,) on the surface, we first compute the normal vector a R,
N, = P,(Uy, Vo) X P,(Uy,V,) . We choose a reference vector V, on the tangential plane and
compute V, = Ny xV, . We establish a local coordinate system given by vectors V, , V, and
the reference point P,. For each V,=V,cos@+V,sind, we denote H, the plane
perpendicular to the tangentia plane, spanned by \79 and WO . The intersection between the

plane H, and the surface Sis computed. In the same way as for parallel planes flattening, the
resulting discrete curve is computed by intersecting the plane with a series of isoparametric
curves C, {u=u,0sv<v,,} or respectively C, {Osu<u v=vi}1 Separated by a
constant step size Au or respectively Av [Hoschek and Lasser 1993, pp. 507-508]. By
iterating along each angular orientation 6 separated by a constant angular step A6 , we
obtain a family of discrete curves C, (Fig. 5-3a). Each point of the surface may then be

max?

represented by the polar coordinates P(r,8), wherer is the length of the portion of the curve
C, between R, and P.
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a) Original 3D surface b) Flattened surface

Figure 5-3. The polar coordinate system on the original 3D surface and the flattened polar
map.

With the polar system defined by the family of curves C, , the radial planes flattening
algorithm comprises the following steps (see Fig. 5-3b):

1. The point of reference P, is mapped onto apoint P, =(x,,Y,) on the plane.

2. An initia curve Cay IS mapped into a straight line by preserving the distance
between sampled points.

3. Each curve C, is mapped into a straight line by preserving the distance between

sampled points and by preserving the angle A& between each consecutive curve
Cs -
We take an angle step A@ sufficiently small (half a degree) to ensure that the surface
may be linearly interpolated between two consecutive curves C, and C, .

Asin the case of parallel planes flattening, each facet of the resulting flattened surface
is sampled according to the display grid and the corresponding color texture is extracted from
the 3D volume image.

This resulting radial planes polar map is different from a geodesic polar map
[Polthier and Schmies 1999; Welch and Witkin 1994] where distances are preserved aong
geodesic curves originating at the focus point. The geodesic polar map has the limitation of
being applicable only within a smal neighborhood of a given point
[Kreyszig 1991, pp. 165-168], due to possible mutual intersections of geodesics.
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Fig. 5-4 shows the surface passing through the jaw flattened according to radial planes
flattening. Fig. 5-8 shows the surface passing through the aorta tree flattened according to two
different reference points. Radial planes flattening minimizes the distortions around the focus
point. It also allows users to directly carry out measurements along the orientations of the
radial lines on the flattened image (blue lines, Figs. 5-4 and 5-8).

Figure 5-4. Radial planes flattening of a surface passing through the jaw.

5.4 Evaluation of the flattening methods by distortion
measurements

In order to evaluate the advantages and drawbacks of the two flattening methods and
to provide feedback about distortion magnitude and orientation, let us describe metrics of
distortion.

We rely on the distortion metrics described by Sander et. a. [2001] and
Sorkine et. al. [2002]. Given atriangle of the discretized surface, the distortion caused to this
triangle is measured by the singular values of the Jacobian of the affine transformation

G,(st)
G(s,t) =| G,(st) (5-1)

G,(s )

between the mapped triangle T’ located on the flattened surface and the corresponding
original triangle T of R*®, where (st) are the coordinates of the plane. The singular values

Venin @Nd 7., Of the Jacobian matrix

66, 56, ]
os ' ot
5, 56,
os = ot
oG, 4G,

os ' ot

(5-2)
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are the eigenvalues of the matrix JxJ". The singular values correspond to the largest and
smallest scaling factors of the affine transformation S. Sander et. al. [2001] take the root-

mean-square of the two values as the L® metric and y,, as the L~ metric.
Sorkine et. al. [2002] define the distortion factor

D(T,T) = Max(Jipme—) (5-3)

min

since stretching and shrinking may be considered the same for the purpose of measuring
geometric distortions. If the distortion factor D(T,T ") is one, the triangles are isometric and

there are no distortions. We adopt this distortion factor for our distortion measurements. We
also calculate its mean value over the whole flattened surface. In addition to the distortion

factor, we calculate the eigenvectors Vmin, Vmax Of the matrix JxJ7 corresponding to the
singular values ¥.n, 7ma- 1 NESE Vectors define the orientations of the smallest and largest
scaling, i.e. the main orientations of distortions. In order to visualize distortions, we aso

compute and display (Figs. 5-7 and 5-8, red lines) vectors V corresponding to the main
distortion orientations, i.e

\7min if ymax <i

— . 1
Vv it ¥ >
e mex ymi n

To illustrate the distortions induced by the two flattening methods, we apply them to a
sphere (Fig. 5-6a). For the parallel planes flattening method (Fig. 5-6b), the central meridian
of the sphere is taken as the curve of reference and the intersection of the central meridian and
the equator as the reference point. The planes passing through the parallels of latitude of the
sphere define the orientation of distance preservation. For radia planes flattening (Fig. 5-6¢),
we take the north pole as the reference point. For both flattening methods, only one half of the
sphere is flattened. Fig. 5-6 presents the distortions maps for the two techniques with
grayscale (Fig. 5-5) representing distortion factors. Black represents no distortions and white
represents maximal distortion.

D=1 D=1.625 D=2.25
Figure 5-5. Grayscale distortion factors.
With the parallel planes flattening method, distances are preserved along each parallel
of latitude of the half sphere as well as on the central meridian. The parallels of latitude and

the central meridian (Fig. 5-6a) become straight lines (blue horizontal lines and the blue
vertical line, Fig. 5-6b). Distortions increase with increasing distances from the central
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meridian and from the equator. These properties are exactly those of the Sanson cartographic
projection [Kreyszig 1991, pp. 211-212; Pearson et. a. 1990]. For the presented reference
curve and parallel planes layout, the Sanson projection and the parallel planes flattening
method are equivalent.

With the radial planes flattening method, distances are preserved along each meridian
of the sphere. The images of meridians (Fig. 5-6a, red lines) are straight lines (Fig. 5-6c¢, blue
lines) while the images of the sphere’s parallels of latitude are circles. The distances along
paralels of latitude are preserved near the reference point and are stretched proportionally to
the distance from the reference point. These properties are exactly those of the azimuthal
equidistant projection used in cartography [Pearson et. a. 1990]. With respect to the
hemisphere, the azimuthal equidistant projection and the radial planes flattening method are
therefore equivalent.

Morth pole

Equator

Parallels ul/

latitude 'y

Central
mericdian

Reference point

Mean distortion factor = 1.18 Mean distortion factor = 1.24
Figure 5-6. Pardlel planes (b) and radia planes (c) flattening of a hemisphere (a).
Let us analyze the proposed distance preserving flattening methods on a real curved

surface. Fig. 5-7 shows that for parallel planes flattening, the main orientation of distortions
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(red segments) is orthogonal to the direction of distance preservation. The distortions are
minimal close to the reference point. With the radial planes flattening method (Fig. 5-8), the
main orientation (red segments) of distortions is also orthogonal to the lines of distance
preservation (orthoradial). Near the reference point the resulting deformations are negligible.
They increase with increasing distance from the reference point.

Mean distortion factor = 1.08, maximal distortion factor = 1.38

Figure 5-7. Distortion map for parallel planes flattening.

With both flattening methods, the distortions are minimal close to the reference point.
However, with parallel planes flattening, distances are preserved along one orientation and
both distance and geodesic curvature are preserved along the reference curve. Distortions are
therefore small in the proximity of the reference curve.
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Mean distortion factor= 1.19, maximal distortion factor = 2.18

Figure 5-8. Distortion map for radia planes flattening.

Since the distortions increase continuously with the radial planes method, in case of a
very large surface such as a surface passing through the sternum and ribs (Fig. 5-9) high
distortions may occur (Fig. 5-9b). In the case of large surfaces, parallel planes flattening
seems to be more appropriate (Fig. 5-9a). However, within a small neighbourhood around the
point of interest, radial planes flattening yields generally a locally less distorted flattened
image than parallel planes flattening.
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b)

Figure 5-9. Flattening of a curved surface passing through the sternum and the ribs with the
paralel planes flattening method (a) and the radial planes flattening method (b).

By construction, with the radial flattening method, a higher curvature around the point
of interest yields higher distortions on other parts of the surface. Flattening of the hand is
shown in Figs. 5-10a and 5-10b with the focus point located within a local flat region, and
respectively in Figs. 5-10c and 5-10d with the focus point located within a region of high
curvature. Clearly, the hand flattened using the radial planes method (Fig. 5-10d) shows an
elliptical deformation which yields higher distortions than the hand flattened using the parallel
planes method (Fig. 5-10c). In both cases, when the focus point is located on alow curvature
surface part, distortions remain small near the focus point (Figs. 5-10a and 5-10b).
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Mean distortion factor = 1.13

Mean distortion factor = 1.23  Mean distortion factor = 1.36

Figure 5-10. Flattening of the same curved surface passing through the left hand with (a) and
(c) the pardle and (b) and (d) the radia planes flattening methods with two different focus

points.

As a further illustration of the two methods, Fig. 5-11 shows the flattened surface
section passing through the Vena Cavatree.
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Figure 5-11. Flattening of the same curved surface passing through the vena cava tree with (a)
the paralel and (b) the radial planes flattening methods.

5.5 Interactive Flattening

We integrated the flattening algorithms into a client-server Web application (Java
applet, see Chapter 7), which offers interactive tools for inspecting the anatomy of the Visible
Human dataset [Ackerman 1998]. The client applet displays flattened curved surfaces
extracted from the dataset located on the server. Flattened surface parts are inspected by
interactively moving the focus point on the flattened image. Thanks to a multiresolution
approach, flattened surface images are displayed at interactive rates within the online
application. We first compute the flattened surface at a coarse discretization step when the
focus point is moved. When the focus point stops moving, the flattened surface description is
refined by decreasing the discretization step down to the optimal discretization. The
computation of the flattened surface comprises two time consuming steps (see Section 7.3.4):
the computation of flattened surface points and the computation of the flattened texture, i.e.
the extraction of texture from the volume image. With the multiresolution approach, we
reduce the first step computation time. We also further reduce the time to produce the coarse
resolution flattened surface by reusing the texture of the surface computed during the previous
flattening step and by extracting the final texture from the volume data set located on the
server only when the final high resolution flattened surface is to be displayed. This
considerably reduces the second step computation time during interactive flattening (a
complete explanation of this choice is presented in Section 7.3.4).

The considered multiresolution discretization step ams a speeding up the
computation of the intersections between the surface and the family of, respectively, parallel
planes H; and polar planes H, (Sections 5.2 and 5.3). The surface Sis given in parametric

form P(u,v) =(x(u,v), y(u,v), z(u,v)) and the plane in implicit form f(x,y,z)=0. Ther
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intersection leads to the equation f (x(u,V), y(u,v), z(u,v)) =0. To solve this equation, we set
u=u (or respectively v=v;) and find the solutions v=v, (respectively u=u,). We repeat
this for a series of equally spaced u values (respectively v values), resulting in a set of
intersection points P(u,v,) (or respectively P(u,,V)) [Hoschek and Lasser 1993,
pp. 507-508]. This is equivalent to the computation of the intersection between the plane and
a set of isoparametric curves C, {u=u, 0sv<v,} or respectively C, {0<SuU<Up,,V=V}

max?
separated by a constant step size Au or respectively Av (Sections 5.2 and 5.3). If the set of
curves is sufficiently dense, i.e. the step size is sufficiently small, the resulting set of
intersection points R, (or R, ) provides a piecewise linear approximation of the intersection

between the plane and the surface. In order to reduce computation times during the
displacement of the focus point, the multiresolution approach consists in modifying the step
size providing the discrete intersection between one plane and the surface as well as the step
size controlling the number of intersecting planes. For radia planes flattening, the number of
planes depends on the angular discretization step size A6 . For parallel planes flattening, the
number of planes depends on the discretization step Av aong the reference curve
C,, (seeFig. 5-1).

Figs. 512 and 5-13 give the flattening times (Java executable code, Pentium 4
1.7 GHz, 512 MBytes Ram) for three different surfaces, with the left hand (Fig. 5-10)
incorporating 8 patches, the aorta tree (Fig. 5-7 and 5-8) comprising 4 patches, and the
sternum and costal cartilages surface (Figs 5-15 and 5-16) comprising 6 patches.

Time (ms)
N
<000 ¢ —&— Left hand (8 patches) Av=0.054
Sternum (6 patches) _»

1500 [ —&— Aorta Tree (4 patches) T K= 00454

i _ 042
//k// ._z
" =
1000 } s
P o Av=0.04
500 | / /_'/ = ,
:].:i *ﬂ,,fff
gi%ka/T/’ 1 1 1 L 1 L= l

20 40 60 80 100 120 140 160 Au

Figure 5-12. Parallel planes flattening time as afunction of the number of discretization steps
1/Au per plane intersection for parallel planes flattening.

For both flattening methods, the flattening time is proportional to the number of
discretization steps used for computing the discrete intersections between the plane and the
surface. The radial planes flattening time is also proportional to the number of planes per unit
of angle. By construction, the parallel planes flattening timeis aso proportional to the number
of planes per unit length. The difference between the different evolution curvesin Fig. 5-12 is
due to the different number of patches and the different step sizes.
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Since the Coons surface is defined by interpolating the boundary curves, we compute
the optimal step size Au,, (respectively Av,, ) by recursive subdivision of the step sizes of
each boundary spline curve P(u,i) (respectively P(k,v)) until the height of each triangle
formed by three consecutive sample points of the spline curve is smaller than the dataset pixel
size (see Appendix A). The smallest step size from al surface patches becomes Au,

opt

(respectively Av,, ). Regarding the angular step size A¢, experience shows that a step size
Ay, =0.5° resultsin ahigh quality flattened surface.

Time (ms)
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Figure 5-13. Radia planes flattening time as a function of (a) the number of discretization
steps per plane intersection 1/Au (respectively 1/Av), and (b) the number of plane
intersections per degree 1/A6.

Experience shows that in order to provide interactivity when moving the reference
point, it is necessary to display at least five flattened images per second. With the optimal step
SIZes AUy, ; AV, (and A6, for radial planes flattening), we measure the time t,,, to flatten

the surface. For parallel planes flattening, we derive the step sizes Au,;, and Av,,, yielding

opt opt
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the desired interactive flattening time. Regarding radial planes flattening, experience also
shows that the angular step size A@ must be less than six degrees in order to ensure a
sufficiently good quality for the low resolution surface discretization. Therefore, we first
compute the minimal step sizes A6, and Au;, (resp. Av,;,). If the upper bound of A8 is

reached, we take A6, =6 and derive the step sizes Au,,;,, (or respectively Av,;,) yielding

the desired interactive computation time t. , =200ms. Examples of step sizes,

corresponding number of mesh triangles and measured computation times are given in
Table 5-1.

Surfaces A”n;:f s A\i}ﬂf "n,rir A"‘_\nfl’min s Avmin l'min Frame
) . rate
(nb triang.) (nb triang.)

Left Hand | 0,0119/0,054 | 1125 ms | 0,02822/0,128 | 188 ms | 5,31

(8 paches) | 20676 T) (3264 T)

Sternum | 0,022/0,0454 | 470 ms | 0,03373/0,0696 | 204 ms | 4.9

(6patches) | (11234 7) (4528 T)

Aortatree | 0,0166/0,04 | 375ms | 0,0228/0,0548 | 189 ms | 529

(4 patches) | 9958 1) (5098 T)

Table 5-1. Examples of step sizes, number of mesh triangles and computation times for
parallel planes flattening.

When the center of interest reaches its final position, we flatten the surface according
to the optimal discretization steps and fill the flattened image with the localy available
texture. Then, we request the final texture from the server and generate the final high
resolution flattened image.

The differences between the low resolution flattened surface and the final flattened
surface are only significant at a large distance from the center of interest. Therefore, during
interaction, image quality remains generally high for most surfaces. However, in the case of
large and highly curved surfaces, the computation time may be too important to ensure both
interactivity and high quality.

Multiresolution surface flattening enables the system to compute severa flattened

images per second and therefore provides a progressive and continuous deformation of the
flattened surface according to the displacement of the focus point.

5.6 Carrying out measurements along flattened surfaces

Let us compare different anatomies by measuring distances on flattened curved
surfaces laid out across the same anatomic reference points. We consider two different
volume datasets. The first data set is the Visible Human cryosection data set, a 13 GB true
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color 3D volume [Ackerman 1998] sampled at a resolution of 3x3x1 voxels per mm?® on
respectively the x, y and z axis. The second dataset isa 100 MB computer tomography volume
dataset (courtesy University Hospital of Lausanne, Dr Reto Meuli) sampled at a resolution of
1x1x1/3 voxels per mm?® on respectively the x, y and z axis. We extract from both data sets a
similar surface defined by the same anatomic reference points and compare the two resulting
flattened images.

Figure 5-14. Curve control points at the extremities of the costal cartilages.

We extract a surface from each dataset passing through the sternum and the costa
cartilages. Each surface is constructed by specifying curve control points at the two
extremities of the intersection between axial dlices and the costal cartilages (Fig. 5-14). For
each costal cartilage pair, we choose the axial slice which passes through the external
extremities of the costal cartilages.

Figure 5-15. Comparing the sternum and costal cartilages of the Visible Human and of aCT
data set thanks to surfaces flattened according to parallel planes flattening.

Parallel planes flattening (Fig. 5-15) is carried out by preserving distances along
intersections between the surface and axial planes. With both flattening techniques, the
flattened surfaces obtained from the Visible Human and from the CT images are similar. With
parallel planes flattening (Fig. 5-15), distances measured along the horizontal orientation
(green lines orientations) may be compared. With radia planes flattening (Fig. 5-16), the
distances between the reference point and another structure within a radial direction (green
lines) may be compared. These measurements may help specialists in characterizing possible
anatomic abnormalities provided that the corresponding anatomic structures have clearly
identifiable anatomic reference points.
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A curved surface defined by control points located on anatomic reference points
provides a stable reference frame for measurements. This may prove to be particularly useful
for following the evolution of dynamically growing structures such as tumours.

Figure 5-16. Comparing the sternum and costal cartilages of the Visible Human and of aCT
data set thanks to surfaces flattened according to radial planes flattening.

To characterize such an evolution, besides distance measurements on the flattened
surface, medical specialists may want to measure the perimeter or the area of a structure
intersected by the curved surface. The flattened view may therefore provide users with a
simple means of approximately performing such measurements. Once a curve following the
boundary of the structure of interest on the flattened surface has been specified, the
corresponding 3D discrete curve on the original surface may be easily tracked and its length
approximately computed. In the case of a closed curve, the corresponding enclosed surface
area may also be approximately computed by finding the discrete facets of the surface
included in the curve.

5.7 Conclusion

In this chapter, we introduced two interactive surface flattening methods for
visualizing curved cross-sections extracted from medica volume images. These methods
enable the interactive visuaization of a flattened curved surface and therefore provide the
means for athorough inspection of anatomic structures.

Parallel planes flattening preserves distances along the intersection between paralle
planes of constant orientation and the surface. Radial planes flattening preserves distances
along trgectories located at the intersection between the surface and radial planes passing
through the center of a region of interest. These distance preserving flattening methods may
enable specialists to establish the differences between different anatomic morphologies.

We illustrated the properties of the flattening methods by using distortions maps
displaying the intensity and main orientation of distortions within the flattened surfaces. By
applying the flattening methods to the hemisphere, we showed that they are equivalent to well
known cartographic projections.
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The two proposed flattening methods minimize geometric distortions around the
center of aregion of interest located on the surface. In addition, parallel planes flattening also
minimizes distortions along a reference curve interpolating between surface patch boundary
curves. Thanks to a multiresolution approach, surfaces are flattened at interactive rates,
thereby enabling the real time displacement of the center of interest. Users may inspect the
different surface parts without noticeable local distortions by displacing the reference point
and observe the continuous deformation of the flattened surface.

The presented methods may provide medical specialists with new tools for visualizing
and analyzing anatomic structures. They may use them for comparing morphologies or to
ingpect anatomic structures of patients. Distance measurements carried out on flattened
surfaces may also help in detecting anatomic abnormalities.
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6 Optimal parallel planes flattening

In this chapter we extend paralel planes flattening by computing the
optimal plane orientation minimizing the resulting distortions on the flattened
surface. The method relies on the minimization of the cumulated geodesic
curvature along intersections curves. We show that this optimal plane orientation
can be computed using a principa component analysis. After studying the
efficiency of this algorithm, we apply it to the interactive visudization of
anatomic structures.

6.1 Introduction

The parallel planes flattening algorithm presented in the last chapter gives the user the
freedom to choose the orientation of the planes intersecting the surface, i.e. the orientation
along which distances are preserved. However, the different orientations do not produce the
same amount of global distortions on the resulting flattened surface. If the user isinterested in
getting the least distorted view, it is necessary to determine the planes orientation that
produces the smallest distortions on the flattened surface. In the present chapter, we propose a
fast and simple algorithm which produces a flattened surface with low distortions and at the
same time allows interactive flattening. The method relies on the calculation of an optimal
plane orientation which minimizes the cumulated geodesic curvature along intersections
between parallel planes and the surface. Finding the optimal plane orientation leading to the
least cumulated geodesic curvature along intersection curves can be reduced to a principa
component analysis problem. We verify the quality of the method by applying it to
representative curved surfaces and by qualitatively and quantitatively comparing the results
with those obtained with an existing surface flattening method. Optimal orientation for
parallel planes flattening is aso applied to the interactive visualization of anatomic structures.

In Section 6.2, we present the concept of geodesic curvature minimization. In
Section 6.3, we show that the plane orientation which minimizes the geodesic curvature can
be determined through a principal component analysis. In Section 6.4, we apply the method to
representative curved surfaces and compare flattened surfaces and their distortion maps to
those produced by the parametric surface flattening method introduced by
Benniset. al. [1991]. In Section 6.5, we apply optimal parallel planes flattening for the
visualization of curved anatomic surfaces and in Section 6.6, we extend the method for the
interactive visualization of aregion of interest.
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6.2 Optimal plane orientation minimizing the geodesic curvature

With parallel planes flattening, the overall distortions on the flattened surface depend
on the orientation of the paralel planes. In order to minimize distortions, we look for the
optimal plane orientation which yields the least distorted flattened surface. The algorithm we
propose for solving this problem is based on the minimization of the geodesic curvature along
the transversal lines. When mapping a devel opabl e surface onto the plane, only geodesics, i.e.
curves having zero geodesic curvature at each point, are mapped into straight lines. Thus, the
higher the geodesic curvature along the intersections curves on a curved surface, the higher
the distortions that occur when mapping these curves into straight lines (with distance
preservation). We therefore propose to compute the optimal orientation of parallel planes
which produces transversal intersections curves having the least cumulative geodesic
curvature, yielding to the least distorted flattened surface.

Figure 6-1. Intersection curve between a plane H and a surface S

Let us find the plane orientation which minimizes the cumulated geodesic curvature
aong the intersections between a plane and a given surface. Fig. 6-1 shows the local
intersection curve C between a plane H and a surface Sat a surface point M.

We denote by (see Fig. 6-1):

e N the unit normal vector to surface Sat point M and by N, the unit normal vector
to the intersecting plane H.

e y the angle between the unit principal vector p of curve C and the unit normal vector
N to Sat M. We have p.N=cosy and 0<y <z (see Section 2.3).

o 9:%—7/ the acute angle between the tangent plane to Sat M and the plane H. We

have ‘N.N cosé@ and —%Sag%.

p‘:

78



According to formula (2.14) in Section 2.3, for any plane H and any point M,
k,<k,=kcosy<k, (6-1)

Then,
0<|kcosy| < max(|ky].|,|) (6-2)

And finaly, considering the absolute value of the geodesic curvature‘kg‘ =ksiny, we have
0<|ky| < max(ky],|k;)[tan # (6-3)

Therefore, by minimizing |tan ;/| a M, we minimize the geodesic curvature of the
intersection curve C at point M. Minimizing |tan | is equivalent to minimizing|sin 7| =|cosé)|.

Thus, by minimizing ‘N.N p‘ = |cos¢9| at point M, we minimize the geodesic curvature at M.

In order to decrease the overal geodesic curvature along all intersection curves C,

(see Section 5.2), we look for a plane orientation which minimizes the sum of the geodesic
curvatures. We solve this problem numerically, by discretizing the surface into a set of points

{Mi}:lsiSn and minimizing the scalar product ‘N.Np‘ in the least sgquare sense, i.e. by

n
minimizing F:Z(Ni.Np)z, where N, is the normal vector at M, . This minimization
i=1
method gives the same weight to all normal vectors independently of the local geometry of
the surface at point M; and independently of the values of the principal curvatures k; and K, .

If k, and k, are null a a point M, , the surface is locally planar. In this case the geodesic
curvature of the intersection curve between the surface and the plane at M, is null whatever
the value of [N;.N ,|. Moreover, given avalue of [N;.N | a apoint M, the larger [k| and [k,|
are at this point (region of high curvature), the larger the geodesic curvature k, will be at this

point. It therefore makes sense to give more weight to the more curved surface regions in
order to decrease the overall geodesic curvature. In order to take these considerations into
account, we introduce a weighting factor to the normal vector N; a M, , which depends on

the principal curvature values k; and K, .

The mean curvature H :% and the Gaussian curvature K =kk, cannot be used

as weighting factors since their values may be null when the surface is not planar®. According
to our experiments, the weighting factor that seems the most appropriate is

P=Ks=1/ kZ+kZ , the root mean square curvature, called curvedness of the surface at point
M (introduced in Section 2.3). The curvedness of the surface, also used in [Koenderink and

*H isnull when k <0, k,>0 and |k| = |k,|; K is null when one of the principal curvatures
isnull.
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Van Doorn 1992] and [Wang et. a. 2003], describes the flatness of the surface independently
of its shape (hyperbolic or dliptic region). Planar regions have zero curvedness while highly
curved regions have alarge curvedness. When introducing the curvedness as weighting factor,
the plane orientation optimization problem consists in finding the plane normal vector N,

M

which minimizes F =" p*(N;.N)?. We present in Section 6.4 examples where curvedness
i=1

weighting factors improve the results.

6.3 Minimizing the overall geodesic curvature by principal
component analysis

In this section, we develop the equations for calculating the plane normal vector
minimizing the overall geodesic curvature over a given surface.

In order to find the optimal normal vector, we discretize the surface S into a set of
points {M,} and search for the normal vector N, which minimizes the sum
A CANRGACAD)
”Pu(ui V)X P (Y ’Vi)”

I<i<n

F =Z(Ni.Np)2, with N; =N(u,,v;) = being the normal vector to the
i=1

surface Sat M, =P(u,,V,) .

The minimization of F is equivalent to a principal component anaysis problem.
Indeed, minimizing F according to N ; is equivalent to finding a projection axis such that the

sum of the square norms of the projected vectors N; is minimal.

Let {N;}__ be the set of normal vectors seen as points in R°. Let H; be the
projection of a point N; onto an axis spanned by unit vector u. Let u=N, be the vector
which  minimizes F. u is the orientation of the axis where the sum

F=Y OH?=> (UON)*=>"(uN;)* isminimal.

Nll N12 Nl3
Let A=| N " | be the nx3 matrix containing the coordinates of points
i1 i2 i3
an Nn2 Nn3
a

N} and u=|b| beaunit vector. We denote by A" the transposed matrix of A and by
1J1<i<n

c

u' the transposed vector of u. The element i of the matrix product Au is equal

to aN;, +bN, +cN, =N,.u and the product u'A’Au =||Au|* is equal to the sum of the

M
square norms of the projections of points N, onto theu axis F = Z OH iz .
i=1
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Therefore, we need to find the vector u minimizing the function

F =u"ATAu under the constraint u'u =1 (6-4)

With the method of Lagrange multipliers [Spiegel 1963], we obtain the Lagrangian fi(u) of
the system (7)

f(u)= uTATAU-A(u"u-1).

J fy(u)
ou

By solving the equation =0, weobtain

2ATAU-24u=0,
which is equivalent to

ATAu=Au. (6-5)
Since [ATA —ﬂl]u =0, u is an eigenvector of the matrix ATA . The multiplication of (6-5)
by u' gives

u"ATAu=Au'u,
and therefore,

u"ATAu=241. (6-6)

The expected minimal sum F is therefore an eigenvalue of ATA and u is the
eigenvector associated with the smallest eigenvalue A, of the symmetric matrix ATA .

In the above derivation, al the normal vectors have the same unit weight. When

M

considering different weighting factors p; , the sum to minimize becomes F = Z p,Z(N p.Ni)2 .
i=1

We simply haveto replace in the matrix A the vectors N; by the vectors pN; .

Obtaining the smallest eigenvalue A4, of ATA requires finding the root of the

characteristic polynomial of ATA of degree 3, i.e. det(ATA—A1)=0, where | is the 3x3
identity matrix [Ralston and Rabinowitz 1978]. Solving Eq. (6-5) for the eigenvector u,
having the smallest eigenvalue 4, yieldsthe optimal plane normal vector N, =u, .
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6.4 Optimal parallel planes flattening of curved surfaces

6.4.1 Distortions of optimally flattened surfaces

In this section, we evaluate the proposed optimal parallel planes flattening by applying
it to several representative surfaces (Fig. 6-2). Let (u,u,,u;) be the unit eigenvectors of the

matrix ATA with the corresponding eigenvalues 4,4, 4, with 4 <A, <4, ° We show the
evolution of the distortions by considering plane orientations whose normal vector orientation
Np varies within the (u,,u,) plane and within the (u;,u;) plane.

We still rely on the distortion metric presented in Section 5.4. For the sake of
completeness, let us briefly recall it. Given atriangle of the discretized surface, the distortion
caused to thistriangle is measured by the distortion factor

D(T,T) = Max(Jppme—) (67)

min

where y,,, and 7. are the singular values of the Jacobian of the affine transformation

which maps triangle T’ located on the flattened surface onto the corresponding original
triangle T .

For each triangle of the flattened surface this distortion factor is calculated. The
average distortion is calculated over the whole surface by weighting triangle distortion factors
by the corresponding triangle area. For all flattened surfaces, the focus point is chosen at the
center of the surface, i.e. By =P(u,=0.5,v,=0.5).

First, we test optima parale planes flattening on a ruled surface
P(u,v) = s(u)+100 vg defined by acurve s(u) located in the (xy) plane and a ruling vector g

paralel to the zaxis (Fig. 6-2a). A ruled surface is a developable surface, i.e. it can be mapped
onto the plane without distortions.

When applying parallel planes flattening to this surface, the optimal plane should be a
plane orthogonal to its ruling vector or a plane which contains its ruling vector. The optimal
plane computation for this surface gives A4 =0.0 as the smallest eigenvalue and the

corresponding eigenvector u, =(0,0,-1.0) . This means that the optimal plane’s normal vector
N, =u, is parallel to the ruling vector q. Since the corresponding eigenvalue 4, is null, the

sum F is also null, i.e. the scalar product [N.N | is null for each point of the surface. By
applying pardlel planes flattening to this ruled surface, with the optimal plane
orientationN ; =u,, we verify that, as expected, the average distortion is equal to one, i.e. the

surface is mapped on to the plane without distortions. In the special case of a ruled surface,
there are other plane orientations for which the distortions are null but these orientations do
not minimize F *,

o\t ﬂ,l = /?2 , the system chooses the first computed eigenvector as the optimal eigenvector.

" For example, any sectional plane containing the ruling vector induces a null geodesic curvature along
al intersection curves.
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a) Ruled surface b) Gaussian surface
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x=100u
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¢) Saddle surface d) Saddle-Gaussian surface

Figure 6-2. Four representative curved surfaces used for evaluating the optimal parallel planes
flattening method.

Let us now compute the optimal plane orientation for the “Gaussian surface’
(Fig. 6-2b). We obtain the eigenvalues (4, =293.14, A,=875.77, 1,=3283.58), and the

corresponding eigenvectors (u; = (0,-1,0), u,=(-1,0,0), u;=(0,0,1)). For this Gaussian
surface, the optimal planeis perpendicular to the y-axis.

In order to better understand the benefit of the computation of the optima plane
orientation, we carry out parallel planes flattening with different plane orientations given by
their normal vectors N,. We first consder N,=cos(¢)u;+sin(¢)u; and then

N, =cos(¢,) u;+sin(g,) u,, i.e. normal vectors located within the (u;,u,) plane and within
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the (u,,u;) plane. Fig. 6-3 presents the evolution of the average flattened surface distortion
factor D asafunction of ¢, (bluecurve) and asafunction of ¢, (red curve).
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Figure 6-3. Evolution of the mean distortion factor and of the sum of square geodesic
curvature along intersection curves as a function of ¢, (blue and green curves) and as a

function of ¢, (red and black curves) for the “Gaussian surface” (Fig. 6-2b).

These distortion evolution curves show that the minimal average distortion is obtained
for avector N, equal to u,. The closer N isto u; (¢, > 0,9, — 0, F decreases), the less

distorted the surface is. Fig. 6-3 aso shows the evolution of the sum of square geodesic
curvatures along intersections curves® as a function of @, (green dashed curve) and as a

function of ¢, (black dashed curve). These evolution curves are very similar to the distortion

evolution curves. This confirms that minimizing the overall geodesic curvature leads to the
minimization of the distortions on the flattened surface.

The optimal plane computation for a “saddle surface” (Fig. 6-2c) yields the
eigenvalues (A4, =476.79,1,=518.24,1,=1664.96) and the corresponding eigenvectors

(u; =(-10,0), u,=(0,1,0)), uz=(0,0,-1)). Here, the optimal plane is perpendicular to the
x-axis. The corresponding evolution of the average distortion as a function of ¢, and as a
function of ¢, (Fig. 6-4) is similar to the one obtained when flattening the Gaussian surface.
The average distortion is also minimal for avector N, exactly equal to u; .

8 The square geodesic curvature is calculated for each discretized point of the intersection curves.
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Figure 6-4. Evolution of the mean distortion factor and of the sum of square geodesic
curvature along intersection curves as a function of ¢, (blue and green curves) and as a

function of ¢, (red and black curves) for the “saddle surface” (Fig. 6-2c).

We finally apply the optimal plane computation to the surface of Fig. 6-2d which isa
combination of a saddle surface and a gaussian surface. The optimal plane computation yields
the eigenvalues (A4, =548.15, A4,=1284.06, A,=1489.27) and the corresponding
eigenvectors (u; = (-1,0,0), u, = (0,1,0), u;=(0,0,1)). For this Saddle-Gaussian surface, the
optimal plane is perpendicular to the x-axis. Fig. 6-5 shows the evolution of the mean
distortion factor D on the flattened surface, as a function of ¢, (blue curve) and as a function

of ¢, (red curve).

The minimal value of the mean distortion D,,, is obtained for a plane orientation
vector N, =(-0.958,0,-0.284) which is clearly different from u,. Fig. 6-5 (black and

green dashed curves) also shows that the overall geodesic curvature is not minimized with u,

as plane orientation vector. The Saddle-Gaussian surface incorporates two regions of high
curvature, i.e. the Gaussian and the Saddle region and a region of lower curvature between
these two regions. Without curvedness weighting factors, regions of lower curvature influence
the computation of the optimal plane orientation as much as regions of high curvature. As
explained in Section 3.2, independently of the orientation of the plane, the geodesic curvature
within low curvature regions is low. Thus, the computation of the optimal plane needs to be
less influenced by those regions. Therefore, we introduce curvedness weighting factors in the
optimal plane computation. Fig. 6-6 presents the evolution of the average distortion when

M
minimizing F =Y p?(N,N;)?, with p=kZ+k5 .
i=1
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Figure 6-5. Evolution of the mean distortion factor and of the sum of square geodesic
curvature along intersection curves as a function of ¢, (blue and green curves) and as a

function of ¢, (red and black curves) for the “ Saddle-Gaussian surface” (Fig. 6-2d).

The new eigenvalues are (4,=1.26, 4,=3.42, 4,=8.84) and the corresponding
eigenvectors are (U, = (0.96,0,0.28) ,u, = (0,1,0) ,u; = (-0.28,0,0.96) ).

Fig. 6-6 shows that curvedness weighting factors improve the results. The computed
optimal vector u, is close to the vector N, =(-0.9580,-0.284) which minimizes the

mean distortion factor. Fig. 6-6 shows that with weighting factors the overall square geodesic
curvature is minimized for the optimal vector u;. The new optima plane orientation

minimizes the scalar product ‘N p.Ni‘ within the saddle region where curvature is high. The

average distortion for a plane normal vector N, =u, is 1.324 when applying curvedness

weighting factors while its value is 1.417 without curvedness weighting factors. Introducing
weighting factors therefore improves the optimal plane computation by balancing the relative
importance of high and low curvature regions. Applying curvedness weighting factors to the
ruled, Gaussian and saddle surfaces does not change the results.

These concrete examples show that finding the optimal plane orientation minimizing
the cumulated geodesic curvatures along the intersection curves minimizes the global
distortions on the flattened surface. The use of curvedness weighting factors seems necessary
when there are large non symmetric differences of curvature values between different regions
of the surface. Since in the other cases, curvedness weighting factors have no impact, we use
them for flattening all surfaces.

86



Do s

h A

225 ' | L 5,172
215 4 .. L 4,772
2,05 4 L 4,372
1,85 4 L 3,972
1,85 - L 3,572
1,756 1 L 3,172
1,65 A L 2,772
1,55 4 L 2,372
1,45 - L 1,972
1,35 - L 1,572
1.25 > P

Figure 6-6. Evolution of the mean distortion factor and of the sum of square geodesic
curvature along intersection curves as a function of ¢, (blue and green curves) and as a
function of ¢, (red and black curves) for the “Saddle-Gaussian surface” (Fig. 6-2d) with
curvedness weighting factors.

6.4.2 Comparison with Bennis et. al. surface flattening

Let us compare the results of our algorithm with those of the original Bennis et. al.
algorithm presented in the Section 4.4. For that comparison, we test the two flattening
methods on the surfaces of Figs. 6-2b, 6-2c and 6-2d and examine the resulting mean
distortion factors and the resulting distortion map.

Surfaces Benniset. a. flattening Optimal parallel planes
mean distortion flattening mean distortion
Gaussian Surface D=115 D=1.149
Saddle Surface D =1.1452 D=1117
Saddle-Gaussian Surface D=213 D=1324

Table 6-1. Flattened surfaces mean distortion factor using optimal parallel planes flattening
and Bennis et. al. flattening.

In contrast with parallel planes flattening where the transversal curves are computed as

intersections between the surface and parallel planes of constant orientation, Bennis et. al. use
the original parameterization of the surface for defining the transversal curves. To improve
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the results of their method, Bennis et. al. introduce a relaxation technique after the flattening
step. Thisrelaxation is based on the computation of the ideal position of each point according
to the position of its neighboring points. This computation is iterated over al points of the
surface until convergence of the positions of the points. Table 6-1 presents the results
obtained with the two algorithms on the representative surfaces of Section 6.4.1.
Figs. 6-7, 6-8 and 6-9 also present the distortion maps for these surfaces flattened according
to the two flattening methods, with grayscale representing the distortion factors (Fig. 6-6).

D=1 D=1.625 D=225

Figure 6-6. Grayscale distortion factors, with black for low distortion and white for high
distortion.

Thered curvesin Figs. 6-7a, 6-8a and 6-9a correspond to the isoparametric transversal
curves flattened with the Bennis et. a. algorithm. In Figs. 6-7b, 6-8b and 6-9b the red lines
correspond to the flattened intersection curves between the surface and parallel planes of
optimal orientation.

a) Benniset. d.: b) Our method:
Average distortion: D = 1.15 Average distortion: D = 1.149

Figure 6-7. Flattened Gaussian surface (Fig. 6-2b) according to (&) the Bennis et. al. algorithm
(without relaxation) and according to (b) the optimal parallel planes flattening.

Table 6-1 and Fig. 6-7 show that the Gaussian surface flattened according to our
method and flattened according to the Bennis et. a. agorithm have the same average
distortion value. This is due to the fact that the initial isoparametric curves of the Gaussian
surface have already the optimal orientation, i.e. they are parallel respectively to the x and y
axis. However, distortions are better distributed with optimal parallel planes flattening.

For the “Saddle surface” and “ Saddle-Gaussian surface”, Table 6-1, Figs. 6-8 and 6-9
show that our method yields less distorted flattened surfaces. In both cases, with optimal
parallel planes flattening, the average distortion is lower and distortions are spread out in a
more uniform manner on the flattened surface regions. Fig. 6-9a aso shows the main
limitation of the Bennis et. al. algorithm, i.e. regions incorporating self intersections due to
the intersection between isoparametric unfolded curves. To avoid this problem, Bennis et. al.
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cut the surface into severa parts and apply their algorithm to every surface part, yielding a
piecewise flattened surface.

LAuEL

a) Benniset. a. b) Our method:
Average distortion: D = 1.1452 Average distortion: D = 1.117

Figure 6-8. Flattened Saddle surface (Fig. 6-2c) according to (a) the Bennis et. al. algorithm
(without relaxation) and according to (b) the optimal parallel planes flattening.
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a) Benniset. a: b) Our method:
Average distortion: D = 2.13 Average distortion: D = 1.324

Figure 6-9. Flattened Saddle-Gaussian surface (Fig. 6-2d) according to (a) the Bennis et. al.
algorithm (without relaxation) and according to (b) optimal parallel planes flattening.

The relaxation technique proposed by Bennis et. al. does not improve the average
distortion when it is applied to the Gaussian surface. When applied to the Saddle surface, the
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mean distortion factor slightly decreases, but remains higher than the average distortion
obtained with optimal parallel planes flattening. When applied to the Saddle-Gaussian
surface, the relaxation technique does not converge due to the self-intersections.

The proposed optimal parallel planes flattening provides directly the low distorted
flattened surfaces without the need for a time consuming relaxation technique. In addition, it
does not induce self-intersections between flattened intersection lines and therefore produces
a continuous flattened image of the surface.

6.4.3 Computation times

The computation of the optimal plane orientation needs to be carried out only once for
each surface independently of the position of the focus point on the surface. Table 6-2 gives
the number of discretization points used for the calculation and the corresponding
computation times for each of the surfaces presented in Section 6.4.1.

Surfaces Number of Optimal plane Tota surface
discretization points orientation flattening time
computation time

Ruled Surface (Fig. 6-2a) 4953 12 ms 261 ms
Gaussian Surface (Fig. 6-2b) 8905 20ms 482 ms
Saddle Surface (Fig. 6-2¢) 5320 14 ms 286 ms
Saddle-Gaussian Surface (Fig. 6-2d) 9639 24 ms 538 ms

Table 6-2. Optimal plane orientation and total surface flattening computation times for
different surfaces on a 3.2 Ghz Pentium 4 Personal Computer.

The results show that, although the number of discretization pointsis large, computing
the optimal plane orientation takes only a few tens of milliseconds which is essentially the

computation time of the matrix multiplication ATA .

Indeed, computing the optimal planes orientation requires the multiplication of AT by
A, i.e.a 3xn matrix by a nx3 matrix (where n is the number of discretization point) which
is linear in respect to n. It also requires the computation of the eigenvalues of the 3x3 matrix

ATA , which isimmediate and does not depend on n.

6.5 Flattening of anatomical surfaces

Let us apply the proposed algorithm to curved textured surfaces extracted from
medical images. Optimal paralel planes flattening provides users with a less distorted
flattened view of the surface of interest. Users may then modify the orientation of the plane
for preserving distances along a different orientation while keeping the least distorted
flattened view as a reference image. Thanks to its algorithmic simplicity and its low
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computation time, we are able to integrate optimal paralel planes flattening into the
interactive Java Applet allowing users to freely extract and flatten surfaces from the Visible
Human dataset (see Chapter 7).

a) 3Dview b) Flattened surface with non optimal  ¢) Flattened view with optimal plane
plane orientation orientation
Average distortion factor: D =1.35 Average distortion factor: D = 1.1

Figure 6-10. Parallel planes flattening of a curved surface passing through the left hand.
(number of points = 9605, total flattening time = 536 ms)

b) Flattened surface with non optimal plane orientation c) Flattened view with optimal plane orientation
Average distortion factor: D = 1.475 Average distortion factor: D = 1.356

Figure 6-11. Parallel planes flattening of a curved surface passing through the pelvis.
(number of points = 18247 , total flattening time= 1125 ms)
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Figs. 6-10, 6-11 and 6-12 present flattened surfaces extracted from the Visible Human
dataset, with and without optimal plane orientation computation. In all cases, the flattened
texture images appear much less distorted when computing the optimal plane orientation. This
is particulary visible in areas of high curvature such as the fingers of the left hand (Fig. 6-10).

Medical specialists may want to inspect a specific region of interest on the surface.
Therefore distorsions have to be minimized in that particular region. Given a first flattened
view of the surface, one may specify on the flattened surface a curve enclosing the region of
interest. This curve is discretized into a closed polygonal line and transposed into the (u,v)
parametric space. The optimal plane orientation is then computed by only considering the
discretized points of the surface included within this polygon. Finally, the system computes
the centroid of the polygon in the (u,v) parametric space and takes the corresponding surface
point as the focus point for parallel planes flattening (see Section 7.4.3 for a more detailed
description).

a) 3Dview

b) Flattened surface with non optimal plane orientation ¢) Flattened view with optimal plane orientation

Average distortion factor: D = 1.32 Average distortion factor: D = 1.25

Figure 6-12. Parallel planes flattening of a curved surface passing through the jaw.
(number of points = 3485, total flattening time =185 ms)

In order to evaluate the benefits of this method, the mean distortion factor of the
region of interest is calculated both with an optimal plane computed over the entire surface
and with an optimal plane computed over a certain region of interest. Fig. 6-13 presents the
result for the Gaussian surface (Fig. 6-2b) and Fig. 6-14 presents the result for the surface
passing through the jaw. The region of interest corresponds to the surface area enclosed by the
green curve. By computing the optima plane orientation for the region of interest, the
corresponding average distortion decreases while the average distortion for the whole surface
increases. In Fig. 6-14 the region of interest comprises the bottom jaw. In the resulting surface
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(Fig. 6-14b), the bottom jaw is less distorted at the expense of a higher mean distortion factor
for the whole surface.

a) Optimal plane orientation on whole surface b) Optimal plane orientation on region of interest
Average distortion (whole surface): D = 1.161 Average distortion (whole surface): D = 1.253
Average distortion (region of interest): D = 1.12 Average distortion (region of interest): D = 1.01

Figure 6-13. Flattening of the “ Gaussian surface” (Fig. 6-2b) with an optimal plane computed
(@) for the whole surface and (b) for the region of interest.

a) Optimal plane orientation on whole surface b) Optimal plane orientation on region of interest
Average distortion (whole surface): D = 1.2506 Average distortion (whole surface): D = 1.293
Average distortion (region of interest): D = 1.213 Average distortion (region of interest): D = 1.09

Figure 6-14. Flattening of the surface passing through the jaw with an optimal plane
computed (a) for the whole surface and (b) for the region of interest.
(number of points = 3485, total flattening time = 185 ms)

These results show that optimal parallel planes flattening enables the interactive
inspection of a particular region of interest. The display of the low distorted flattened surfaces
within the Java applet requires only a few hundreds of milliseconds for surfaces including
thousands of points and few seconds for a surface including ten thousands of points.

These low computation times together with the application of the multiresolution

paralel planes flattening technique, enables the system to compute several flattened images
per second without significant loss of quality even in the case of a large surface such as the
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pelvis surface (Fig. 6-11). Multiresolution paralel planes flattening provides a progressive
and continuous deformation of the flattened surface according to the displacement of the
focus point.

6.6 Conclusion

In this chapter, we have extended parallel planes flattening which preserves distances
along one orientation by computing the optimal plane orientation which minimizes the surface
flattening distortions. Minimizing the distortions is equivalent to the minimization of the
cumulated geodesic curvature along intersection curves between the surface and the parallel
planes. Relying on differential geometry, we showed that the reduction of the geodesic
curvature at a specific point of the surface is equivalent to the minimization of the scalar
product between the plane normal vector and the surface normal at this point. Finding the
optimal plane orientation which minimizes in the least square sense this scalar product for the
sample points of the considered surface region becomes a principal component analysis
problem. The solution is calculated in linear time with respect to the number of sample points.

Unlike most global optimization surface flattening methods, parallel planes surface
flattening with optimal surface orientation is therefore fast and seems especially well suited
for interactive visualization applications.

Computing an optimal plane orientation yielding intersecting surface curves with the
least cumulated geodesic curvature may be useful in other surface flattening methods
[Benniset. a. 1991], for example in order to create a new set of parametric curves having
orientations inducing lower distortions. Curvedness weighting factors may also be useful for
improving global optimization methods [Levy and Mallet 1998] when applied to triangul ated
parametric surfaces, by giving less weight to low curvature surface areas.
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7 Integration of surface extraction and
flattening into the Visible Human server
project

In this chapter we present the Visible Human server Java applet which
provides users with the means of exploring online the Visible Human dataset by
using the curved surface extraction and flattening tools presented in this work.
We present the framework of the Visble Human server and the different
visualization tools integrated in the Java applet.

7.1 Introduction

EPFL’s Visible Human Web server, created by the Peripheral System Laboratory,
offers a number of visualization services to researchers and speciaists in anatomy
(http://visiblehuman.epfl.ch). These services rely on the Visible Human data sets licensed by
the National Library of Medicine [Ackerman 1998] as well as on the Segmented and
Classified Visible Human licensed by Gold Standard Multimedia (http://www.gsm.com).

Anatomic structures are often visualized by cross-sections similar to the ones printed
in an anatomic atlas. The Visible Human dataset, produced by the National Library of
Medicine's Visible Human Project [Ackerman 1998], provides an excellent resource for
generating digital cross-sections. It consists of transverse CT, MRI, and cryosection imagery
of aman and a woman. However, working with the full dataset (13 GB for the Visible Man)
on a workstation is cumbersome and requires advanced programming skills. By offering
access services to the Visible Human data on the Web, a much larger public of students,
professionals and researchers can benefit from this instructive anatomical resource.

The first Web application providing users with the possibility to extract slices
perpendicular to the main axes was the NPAC Visible Human viewer applet [North et. al.
1996]. The more recent Visible Human Slice and Surface Server [Hersch et. a. 2000]
provides access to arbitrarily oriented and positioned dlices, as well as to dlice sequence
animations. These applications require that the user first defines the position and orientation
of the dlice he wishes to view before getting the resulting cross-section or animation a few
seconds later. A first approach for enabling real-time interactive slicing on the web was
presented by Gerlach and Hersch [2002]. This Java application alows users to navigate
within the Visible Human dataset by continuously extracting slices at a speed of several dlices
per second. Another applet allows users to construct anatomical 3D scenes comprising slices
and anatomical 3D models reconstructed from the labeled dataset [Evesque et. al. 2002]. In
this chapter, we present the applet developed within the present thesis, made available to the
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public on the Visible Human server [Saroul et. al. 2004]. This applet combines real time dlice
extraction and a 3D anatomical viewer together with the extraction and flattening of curved
surfaces. This chapter explains how the surface extraction and flattening tools are integrated
into the Java applet and within the Visible Human server.

In Section 7.2, we present the Visible Human server project and describe its
framework. In Section 7.3, we explain how glices and surfaces are extracted from the visible
Human data |ocated on the server and displayed on the Java applet. Finally, in Section 7.4, we
describe the main functionalities of the applet.

7.2 The Visible Human Server project

7.2.1 Previous works

Severa related projects am at making 3D anatomy accessible to students and
professionals as well asto alarger public. The Voxel Man system distributed on CD-ROM by
Springer Verlag allows users to interact and explore anatomy structures via pre-computed
“Intelligent QuickTime Movies’ [Schubert et. al. 1999]. The Brain Browser, a system for
visualizing the brain, relies on the server side computation of 3D brain structure images and
their visualization in the client's applet [Poliakov et. a. 2001]. In the Anatomy Browser, 3D
projections aong the main orientations as well as axial, coronal and sagittal slices, including
labelling information is made available to the client applet [Golland et. al. 1999]. In another
project, a VRML interface is used as a tool for visualizing a combination of 3D structures
reconstructed from MRI images and planar slices [Warrick and Funnell 1998].

7.2.2 History

The main goa of the EPFL’s Visible Human server project is to offer professionals,
researchers and the general public a set of comprehensive services for exploring the Human
anatomy. Let us briefly describe the different generations of services developed for the
Visible Human server.

Slices, surfaces and animation extraction

First generation services were limited to the extraction of oblique dlices
[Hersch et. al. 2000], slice animations [Bessaud and Hersch 2000] and ruled surfaces
[Figueiredo and Hersch 2002]. Slice extraction was extended to provide support for
identifying and highlighting anatomic structures pointed by the user.

Users may specify a dlice position and orientation by using a small 3D View of the

Visible Human (see Fig. 7-1a). The dlice texture is then extracted from the Visible Human
dataset and displayed in the Java applet (Fig. 7-1Db).
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a) Slice specification b) Extracted slice
Figure 7-1. First generation services: Slice extraction.

Real-time dslice navigation

Figure 7-2. Second generation services. Real-time slice navigation.

Second generation services include a Real-time Navigator [Gerlach and Hersch 2002].
The navigator applet allows users to browse in real-time across the human body by
continuously extracting and displaying slices at a speed of several dices per second according
to the displacement of the mouse (Fig. 7-2). Thanks to the real-time interaction, one may
easily orient dlices so as to obtain the most suitable view of a given anatomic structure
(Fig. 7-2). For enabling rea time navigation on the Web, the application is partitioned
between the client (Java Applet) and the Web server.

3D anatomical scene constructor

In order to provide users with more realism, third generation services alow the
visualization of the Visible Human within 3D anatomical scenes. The labeled dataset enabled
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the reconstruction of a high quality collection of 3D anatomical models. The 3D scene viewer
applet alows users to construct anatomical scenes, combining 3D organ models and planar
dlices (see Fig. 7-3). The collection of models resides on the server. By using the server
database, a user can load any organ and add it to his scene. Trangdlations, rotations and
zooming operations can be applied to virtual scenes. In this project, the client applet provides
extensive interaction capabilities for constructing anatomic scenes, is capable of displaying
3D structuresin real time, offers both transparent and opaque display modes and allows users
to record interactions in order to produce high-quality video sequences. A teacher may create
an animation by rotating and zooming and by temporarily discarding certain structures in
order to reveal other structures.
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Figure 7-3. Third generation services: 3D anatomical structures viewer.
Curved surface extraction and flattening

The last generation services integrate the curved surface extraction and flattening tools
presented in this work. The new applet includes a real time navigator and a 3D anatomical
structures viewer in order to provide users with a complete set of visualization tools for
exploring and studying the Visible Human and for constructing surfaces following curved
anatomic structures (see Chapter 3).

7.2.3 Visible Human server framework

Let us now present the Visible Human server framework which is an extension of the
one developed by [Evesgue et a. 2002]. Due to the large size of the Visible Human dataset
(13 GB), it is not possible to transfer it into the client PC. Therefore, a Client-Server
framework is used for providing users with access to the data.

The Visible Human dataset is located on a server PC and a communication protocol is
used to transfer data to the client application. For instance, the extraction of a dice or a
surface is performed on the server PC and the resulting texture image is sent to the client PC
for display. Fig. 7-4 shows the framework of the server as well as the distribution of the
different tasks between the server and the client.
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Figure 7-4. Framework of the Visible Human server.
The extraction of a textured surface from the Visible Human dataset is divided into the
following tasks:
1. Client PC: Specification of the surface within the Java applet. Computation of a

list of control points defining the surface.

2. Client PC: Request for the extraction of textured surface and sending the surface
data points to the server PC.

3. Server PC: Reception of the extraction request and reception of the surface data.

4. Server PC: Computation of the surface and extraction of the corresponding surface
texture from the Visible Human dataset.

5. Server PC: Replying to the client PC and transmission of the texture data.

6. Client PC: Reception of the texture data.

7. Client PC: Display of the resulting textured surface.

This communication protocol alows users to extract and display textured surfaces
from the Visible Human data without having to transfer a large amount of data into the client
PC. The server PC also includes a database which contains alist of 3D models which can be
loaded within the client Java applet. A 3D model is stored as a file which contains the list of

surface triangle vertices. When the user wants to display a 3D model, the client Java applet
transfers the corresponding file from the server PC.
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7.3 Surface texture extraction

All Visible Human servicesrely on the extraction of textured surfaces from the Visible
Human dataset. In this section, we explain how texture extraction is performed for different
kinds of surfaces. We first present the simplest case, i.e. dice extraction, and explain how the
method is extended to the extraction of ruled and Coons surfaces used by the new
visualization applet. The main objective is to perform the surface texture extraction by
avoiding as much as possible successive resampling operations degrading the quality of image
while minimizing the computation time.

7.3.1 Basic principles

When extracting a surface, it is not possible to load the whole dataset (13 GB of data)
in memory. One solution is to successively read each color required for the texture extraction
from the dataset files. However, the large number of file access operations will increase
considerably the computation time. For solving this problem, the volume image is partitioned
into small sub-volumes called extents. Prior to texture extraction, the system computes the list
of extents intersected by the surface and loads them into memory. Then, the surface texture
can be extracted from these extents without file access. If the total size of the extentsis larger
than the available memory size, only a part of the extents is loaded. The corresponding
surface parts are extracted from these extents. The process is then repeated for the remaining
extents. The data subdivision is selected in order to ensure that a constant amount of data is
loaded for a given slice or surface independently of its orientation. By minimizing the number
of file access operations, this strategy decreases considerably the extraction computation time.
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Figure 7-5. Subdivision of a volume imagesinto extents.

For any kind of surface, the principle of the extraction is the following:
1. Client PC application sendsto the visible human server the data defining the surface.

2. Using the surface equation, the surface is discretized and the server extraction
application computes the list of extents intersected by the surface.
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3. The server PC application loads extents in memory and extracts the surface texture by
computing the intersection points between each loaded extent and the discrete surface.

4. Textured surface parts are merged into a single surface texture buffer and sent to the
client PC for display.

In the following subsections, we explain the texture extraction for each kind of surface.

7.3.2 Slice extraction

We begin with the fundamental and easiest surface extraction, i.e. planar texture
extraction. The dlice extraction algorithm must be able to produce an arbitrarily oriented and
positioned dice from the dataset. The dlice to be extracted is defined by a point and two
vectors as illustrated in Fig. 7-6b.

p=(%.¥%.%)

a) Intersection plane\extent. b) Slice resampling.

Figure 7-6. Slice extraction

Once the point and the two vectors are defined by the user within the Java applet, they
are sent to the server. The server application computes the bounding box of the plane. For
each extent included in the bounding box, a test of intersection with the plane is performed
(see Fig. 7-6a). The intersected extents are then loaded in memory. Slice resampling is carried
out using an incremental fixed-point algorithm. The rendering starts at the top-left corner of
the dlice, and the 3D coordinates of the corresponding point in the dataset are evaluated. The
nearest voxel color (nearest neighbour interpolation) or surrounding voxels colors (trilinear
interpolation) are retrieved from the corresponding extent. The current coordinates are then
incremented using the two vectors of the current slice and a spatial discretion step size
(according to the desired resolution) in order to fully traverse the requested dlice
(see Fig. 7-6b). The resulting texture image is then sent to the client for display.
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7.3.3 Ruled surface texture extraction

In this section we explain how the ruled surface texture is extracted from the 3D
volume image. As we have seen in Section 3.2, ruled surfaces are specified by several control
points and aruling vector. Once the ruled surface has been specified by the user, the client PC
sends the control points coordinates and the ruling vector coordinates to the server PC.

The 3D spline is discretized into a polyline using de Casteljau subdivision until the
distance between each Bézier control polygon and the chord length between two discretized
points is smaller than the dataset resolution (see Appendix A). Then, between each couple of
sampled points we construct the rectangular facet defined by the segment between the two
points and the ruling vector of the surface (see Fig. 7-7). For each rectangular plane, the
intersected extents may be computed and loaded in memory (see Section 7.3.2 and Fig. 7-7).
Two approaches are then used depending if the ruled surface is visualized within a 3D view or
if itisflattened.

3D ruled surface

p=0%%2)

|
i

Figure 7-7. Extraction of aruled surface texture.

For the 3D visualization of a discretized ruled surface, each planar facet is sampled
according to a constant spatial discretization step. Each facet texture is then extracted with the
dlice extraction method presented in Section 7.3.2. All texture parts are then merged into a
single buffer which is sent to the client PC for display. Each facet may be displayed within the
3D viewer by using its corresponding texture.

In order to visualize aflattened ruled surface, the facets are flattened into the plane and
sampled according to the display grid. For each pixel of a flattened facet, the corresponding
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3D point is computed and its color retrieved from the 3D volume. The whole texture image is
then sent to the client PC for display.

7.3.4 Curved surface texture extraction

In order to display curved surfaces into the Java applet, the texture extraction method
needs to be extended to Coons surfaces (see Fig. 7-8).

a) Surface control curves b) Surface extraction from the ¢) Visualization of the
volume image surface within the 3D view

Figure 7-8. Extraction of a Coons surface.

As we have seen before (Section 3.3.1), a Coons surface is defined by a certain
number of spline curves (Fig. 7-8a) themselves defined by several control points. Once the
surface has been specified, the Java applet sends to the server the number of splines and for
each spline, the corresponding control points coordinates. Using these splines, the server
application computes the parametric equation P(u,v) of the surface (see Section 3.3). In order
to extract the texture of the curved surface, as before two approaches are used depending if
the surfaceis visualized within a 3D view or as a flattened surface.

Facet
P =(%,¥2)

a) b) c)

Figure 7-9. Curved surface discretization (a), facet/extent intersections (b) and triangular facet
resampling (c).
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The texture extraction for the 3D visualization is performed in severa steps. First of
al, the surface is discretized using constant optimal step sizes Au,, and Av,, (see

Section 5.5) yielding a set of quadrilateral facets representing the surface (Fig. 7.9a). Each
guadrilateral facet is subdivided into two triangular facets. The server application computes
the extents intersected by these triangular facets and loads these extents in memory
(Fig. 7-9b). Each triangular facet is then sampled using a constant number of discretization
points (Fig. 7-9c). The color of each element point of the facet is retrieved from the volume.
All facet texture parts are merged into a single buffer yielding a discrete surface texture which
is sent to the client for display. When displayed within a 3D view, the surface triangles are
resampled according to the current viewing plane and filled using their corresponding discrete
texture parts. In this case, successive resampling is used in order to avoid the need for a
texture extraction each time the viewing plane is modified.

The texture of the flattened surface is computed by using a different method in order to
avoid successive facets discretization. The surface is first flattened using parallel or radial
planes flattening depending on the client request. Each quadrilateral facet of the flattened
surface is mapped onto a planar display grid (see Fig. 7-10) according to the flattening
algorithms presented in Chapters 6 and 7 and subdivided into two triangular facets. For each
triangular flattened facet, the corresponding 3D surface element is computed and the
intersected extents are loaded in memory. Each triangular flattened facet is then sampled into
a set of pixels according to the display grid. The 3D coordinates of each pixel of the flattened
facet is computed by linear interpolation using the 3D coordinates of the facet vertices
(see Fig. 7-10). Then, the color of the corresponding volume data point is extracted and
associated with this pixel. By applying this method to each pixel of afacet and each facet of
the flattened surface, we obtain the flattened texture which is sent to the client for display.

Flattened surface P =(X,Y)

v\
- x'

Figure 7-10. Extraction of flattened curved surface texture.

Display grid
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Fig. 7-11 presents the computation times of the texture extraction process for three
different surfaces when using parallel planes flattening with a display grid having a resolution
of 3 pixels per mm (C++ executable code, Pentium 4 PC 1,7 Ghz, 512 Mo RAM).

Fig. 7-11 shows that the extraction time is proportional to the number of discretization
steps. However, while flattening time tends towards zero when the number of steps decreases
(see Section 5.5), the extraction time tends towards a non zero limit. The texture extraction
process comprises two steps: the computation of the facet/extents intersections and the color
extraction of each pixel. The computation time for the first step decreases when the number of
discretization steps decreases. The computation time of the second step is nearly constant
since the number of pixels on the flattened surface does not depend on the number of
discretization steps. Therefore, the non zero limit corresponds to the computation time of the
second step.

It is therefore not possible to decrease the computation time below this limit when
decreasing the number of discretization steps. For alarge surface such as the sternum and ribs
(Fig. 7-11, green curve), this limit is incompatible with interactive flattening which requires
computing at least five flattened images per seconds (see Section 5.5). In addition, the
communication time for transferring the texture image between the server and the client is not
negligible. The evolution of computation times for the texture extraction of surfaces flattened
with radia planes flattening is similar since the computation time in this method is also
proportional to the number of discretization steps.

Extraction time (ms)
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5 per plane intersection
8 16 24 32 40 48 56 64 72 AU (resp AV)

Figure 7-11. Extraction computation time as a function of the number of discretization steps
per plane intersection for three different flattened surfaces.

In order to overcome this problem, we do not extract the texture on the server PC
during interactive flattening. This extraction is performed only when a high quality flattened
surface is needed. During interactive flattening, all computations take place within the client
applet. When the surface is first flattened, the texture of the flattened surface is extracted from
the server. Then, when the focus point is moved, multiresolution flattening is used within the
Java applet. The previously computed texture is used for rendering the new flattened surface.
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When interactive flattening stops, the final texture is extracted from the server. Therefore,
during interactive flattening, the computation time comprises only the flattening computation
time which may be reduced to the desired value by decreasing the number of discretization
steps.

7.4 Java applet functionalities

In this section, we describe the main applet functionalities related to the extraction and
flattening of curved surfaces. A detailed description of the applet interface and of the other
functionalities may also be found in Appendix C.

7.4.1 Curved surface flattening

The Java applet provides users with advanced tools for specifying curved surfaces
following anatomic structures. The surface may then be displayed within a 3D viewer or
within a flattened view. For visualizing and studying the surface, the Java applet allows users
to flatten it using parallel or radial planes flattening (see Chapter 5). When using parallel
planes flattening, the system computes the optimal paralel plane orientation and uses it to
flatten the surface.
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Figure 7-12. Display of element point properties.
Once the surface has been flattened, the Java applet allows users to select a point of

the flattened surface for displaying related information. When selecting a point, its
corresponding facet is retrieved. Then, using linear interpolation between the facets vertices,
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the corresponding 3D point coordinates are computed (Fig. 7-12). Different point properties
may then be displayed:

1. The 3D coordinates of the point and the corresponding color within the Visible Human
dataset.

2. Thelocal label: the name of the anatomic structure including that point.

3. The local distortion factor of the corresponding facet using the distortion measure
presented in Section 5.4. The mean distortion factor of the flattened surface is also

displayed.

In addition, the distortion map of the flattened surface may be displayed using a
grayscale image, as presented in Section 5.4 (see Fig. 5-6).

This set of properties provides users with the possibility of precisely inspect each
surface elements for anatomic or diagnosis purposes.

7.4.2 Interactive rotation of the distance-preservation orientation

When using parallel planes flattening, the surface is first flattened using the optimal
plane orientation (see Chapter 6). A user may then measure distances along the corresponding
orientation of distance preservation. In order to measure distances along another orientation,

users may rotate the orientation of distance preservation within the (u;,u,) plane

(see Chapter 6). Within the flattened view, the local intersection between the surface and the
plane is displayed near the focus point using a line segment (Fig. 7-13a). By rotating the line
segment (Fig. 7-13b), the user rotates the parallel planes within the (u;,u,) plane. The new

flattened surface may then be computed and displayed (Fig. 7-13c).

a) Original flattened surface b) Plane rotation c) New flattened surface

Figure 7-13. Rotation of parallel planes.
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7.4.3 Specification of aregion of interest for parallel planes flattening

As presented in Chapter 5, multiresolution flattening alows users to interactively
move the focus point. In addition, optimal parallel planes flattening may be carried out for a
particular region of interest on a surface (see Chapter 6). Distortions are minimized within this

region.
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Figure 7-14. Specification of aregion of interest.

Figure 7-15. Specification of aregion of interest using an dliptic curve.

For this purpose, the Java applet allows users to specify with the mouse an dlliptic
region of the flattened surface as his region of interest (Figs. 7-14a and 7-15a). This curve is
discretized into a closed polygon. The coordinates in the (u,v) parametric space of each
polygon point are computed by interpolation between the vertices of the facet including this
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point. We obtain the corresponding polygon within the (u,v) parametric space (Fig. 7-14b).
Then, for each discretized point of the surface (sampled using optimal discretization step sizes
AUy, and Av,, ), the system verifies that this point is included in the above polygon. Only

opt (0]
the points included in the polygon are used for the optimal plane computation. The system
computes the centroid of the polygon in the (u,v) parametric space and takes the
corresponding surface point as the focus point for paralel planes flattening (Fig. 7-14b).
Then, the corresponding optimal flattened surface is computed and displayed within a
flattened view (Fig. 7-15b).

7.4.4 Measurements on flattened surfaces

Once a surface has been flattened according to paralel or radial planes flattening
(section 7.4.2), users may carry out distance measurements on the flattened surface
(see Chapter 5). For surfaces flattened according to the parallel planes method, the user may
specify a straight line segment oriented according to the orientation of distance preservation
(Fig. 7-16a). The length of this line segment is computed and displayed.

For surfaces flattened according to radial planes, the user may specify a circle centered
on the focus point (Fig. 7-16b). The radius of the circle corresponds to the distance between
the focus point and the intersection of the circle with the radial lines issued from the focus
point.

Figure 7-16. M easurements on flattened surfaces.

7.5 Conclusion

In this chapter, we have presented the integration of curved surface extraction and
flattening tools into a Java applet allowing users to enhance interactive exploration and
visualization of the Visible Human dataset.
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In order to provide users with an online access to the Visible Human, the extraction
and flattening tools are distributed between the Java applet and the Visible Human server. The
specification and display of curved surfaces take place within the Java applet, while the
texture extraction is performed on the Visible Human server. A communication protocol
allows the Java appl et to request surface texture extraction and to receive the resulting texture
image from the server.

Moreover, this applet allows the users to precisely visualize and study surface
properties. For each point of the flattened surface, its 3D coordinates, color, label and
distortion factor may be displayed. In addition to interactive flattening, users may select a
region of interest where distortions are to be minimized. Tools for measuring distances along
curved surface is provided thanks to the distance preserving flattening methods presented in
Chapter 6. The Java applet therefore provides a means of precisely and interactively
inspecting the Visible Human data.
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8 Conclusion

Medical volume imaging techniques such as CT or MRI have an ever increasing
importance in patient care. Thereis a need for new volume visualization techniques exploiting
accurately and efficiently these volume images. Medical volume visualization, i.e. the way of
presenting and interacting with 3D volume image using computer processing, is still a young
research field. In the last few years, significant research efforts have been carried out, in
respect to Volume and Surface rendering techniques. In this thesis, we have presented new
approaches based on the extraction of textured curved surfaces from volume images.

After studying existing approaches such as curved planar reformation, we presented a
new volume visualization method based on the extraction of user specified non-developable
curved surfaces from volume images. By using surface interpolation between spline curves
and the combination of a 3D viewer and a slice viewer, surfaces following anatomic structures
having a curved geometry may be easily specified. Such a technique yields original views of
the anatomy where a user may observe for instance a cross-section of the aortic arch together
with cross-sections of its outgoing arteries, or visualize a cross-section of the Vena Cava tree.
Despite of the usefulness of the display of curved surfaces within a 3D view together with the
surrounding 3D anatomic models for understanding the 3D context and the spatial
connections with other structures, such a display suffers of several disadvantages. Among
them, we denoted the difficulty in carrying out distance measurements and the possible
overlapping between surface parts. In order to overcome these limitations, we proposed to use
surface flattening for creating appropriate views of textured surfaces.

In the second part of this work, we therefore focused on the surface flattening
problem. After the presentation of theoretical aspects related to the general problem of surface
parameterization, we gave an overview of prior research on surface flattening. None of the
previous methods, generally used for texture mapping, meet exactly our requirements. We
require the preservation of certain distances on the flattened surfaces and the possibility of
choosing the part of the surface where distortions have to be minimized. We therefore
proposed two new flattening methods inspired by cartographic projections and by a previous
parametric surface flattening method [Bennis et.al. 1991]. These radial and parallel planes
flattening methods provide users with a flattened image of a whole curved surface, where
distances are preserved along a specific orientation and distortions are minimized near a focus
point. Theses methods may therefore be seen as an extension of classical cartographic
projections of the Earth to more general surfaces. In away similar to cartographic projections,
users may directly measure distances on the surface for application such as anatomical study,
surgical planning or morphology comparison. With parallel planes flattening, the orientation
along which distances are preserved may aso chosen by the user. In addition to distance
preservation, these flattening methods minimize distortions near a focus point specified by the
user. By using a multiresolution method, each surface part may be interactively and precisely
inspected without noticeable local distortions. In order to provide users with a reference
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flattened image of the surface, parallel planes flattening was extended by computing the
paralel planes orientation minimizing the global distortions. The method is based on the
minimization of geodesic curvature via a principal component analysis. It yields low surface
distortions at a very low computation effort. Such a method seems therefore appropriate for
interactive flattening applications, where computation timeis limited.

Finaly, we presented the integration of the curved surface extraction and flattening
tools into the Visible Human server project. These tools are fully integrated into a Java
client-server web application providing users with access to the Visible Human. This
application also integrates several functionalities allowing users to explore the Visible Human
volume image and to test the visualization tools presented in this work.

Our attempt to provide users with new visualization tools for exploring volume images
was very successful. We have demonstrated that it is possible to easily specify and extract
surfaces following highly curved anatomic structures. We have also shown the usefulness of
such curved surface extraction for revealing the connections between anatomic structures and,
more generally, for providing users with new interesting views of the anatomy. In addition,
surface flattening alows users to precisely inspect curved surfaces, to carry out distance
measurements, and to illustrate properties of curved anatomic structures. Such flattened
images also provide students with new interesting views for learning anatomy which may
complement the traditional anatomical atlases. By using the interactive Java visualization
applet, teachers of anatomy may create their own flattened surfaces and may use them for
illustrating anatomical lessons.

From atheoretical and technical point of view, we created a new simple and efficient
flattening method providing excellent results in terms of distortion minimization. The method
of geodesic curvature minimization used in this algorithm also represents an original
theoretical contribution to computer graphics. We have aso shown that curved surface
extraction and flattening may be carried out interactively despite of the large size of the
volume image by using a client-server architecture and time efficient algorithms.

The research on extraction and flattening of curved surfaces started with this thesis
may be pursued in several directions. For instance, the method of geodesic curvature
minimization developed for the parallel planes flattening may be used in texture mapping or
other computer graphics applications requiring the computation of surface curves having a
minimal cumulated geodesic curvature. Another research track is the medical application of
these tools, which needs to be experimented in collaboration with medical specidists, for
instance for medical diagnosis or surgical planning purposes. Another possible application is
the use of curved surface extraction and flattening for carrying out geometric morphometric
measurements, i.e. the measurements of biological shapes in anatomic morphology studies
[Richtsmeier et. al. 2002]. The distance preserving flattening methods may provide specialists
with a way of carrying out distance measurements between landmarks located on curved
surfaces for the study and the characterisation of the geometric properties of curved anatomic
structures.

Most medical visualization applications integrate many visualization approaches.
Curved surface extraction may become one visualization component. Surface rendering and
volume rendering provide users with an understanding of the 3D context while curved surface
extraction may be used in complement to enhance or validate diagnosis. For instance, once a
tumor has been depicted using surface or volume rendering, medical specialists may extract
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curved surfaces to track the curved geometry of the corresponding anatomic structure, in
order to reveal the mass of the tumor and its involvement in surrounding organs.
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Appendices

A. Cubic spline interpolation

In this thesis, C? cubic spline are used for carrying out interpolation, i.e. the task of
finding a sufficiently smooth curve passing through a set of pointsin the plane or in 3D space.
Therefore, we present the formulation of this interpolation scheme using some definitions
from [Farin 1990].

Assume we are given a set of data points Xg,......,X, and corresponding parameter
values U, <y, <....<u,. An interpolatory C® piecewise cubic spline may be written in

piecewise cubic Hermite form:

for ue (U, U.y) . X(U) =X HIO+mAHAM+mAHS) +x,H3E), (A

i+1
where H 13 are cubic Hermite polynomials:

HI(r)=2r3-3r+1, HX(r)=r®-2r%+r,

(A-2)
H3(r)=r>-r?, H3(r)=-2r%+3r?,

and r=(u-u)/A; with A; =(u,—U), isthe local parameter of the interva (u;,u,,,). We

take A; =||AX;| =[x, —X;||- Thisform is called chord length parameterization.

i+1

In (A-1), the x; arethe known data points, while the m;, =X, (u;) are unknown tangent
vectors at these points where the interpolation should be C?:

X, ()—X_(u)=0. (A-3)

Using (A-3) and (A-1), we obtain

AAX N A AX; )
Aiy A

Amy g +2(A +A)M; + A M, =3( (A-4)
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Together with the two “natural” end conditions X(u,) = X(u, ) =0, (A-4) gives alinear system
for the computation of the unknown tangent vectors m; =x;(u,):

2 1 mg l'o
o By m, ry
=| (A-5)
a1 B Nal||Mu Mg
i 1 2__mL_ |
where
o =4,
Bi=2A+4,), (i=L...,L-1) (A-6)
Yi=A
and
_ 3AX,
0 AO '
A AX: A AX .
r=3(——L =Ty =1 L-1 A-7
=3 Sy = (A7)
3AX, 4
r =—-=L
AL—l

This system being diagonally dominant, it has a unique solution yielding the piecewise
parametric function x(u) of the C? cubic spline interpolating the given control points. The
spline curve may be discretized by evaluating this function for a set of parameter values
u; = JAu, where Au designates a constant or adaptive discretization step size.
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B. Glossary of medical terms

Aorta: The largest artery in the body, the aorta arises from the left ventricle of the heart
(see Fig. B-1), dightly ascends, bends over, and then descends through the chest and the
abdomen. Then, it is divided into two arteries called the common iliac arteries that go to the
legs. Anatomists traditionally divide the aorta into three parts. the ascending aorta, the aortic
arch, and the descending aorta.

Aortic arch: The second section of the aorta (see Fig. B-1). The aorta first ascends, then
bends, and then descends. The bending part is the aortic arch. The brachiocephalic trunk, the
left common carotid artery, and the left subclavian artery start from the aortic arch. In this
thesis, the aortic arch with the three outgoing arteries is sometimes called aorta tree.

Atrium Cavity: One of the upper chambers of the heart taking blood from the veins and
pumping it into a ventricle. In this thesis, the Atrium Cavity designates the right atrium of the
heart at the junction between the Vena Cava superior and the Vena Cava inferior
(seeFig. B-1).

Costal cartilages: Bars of hyaline cartilage which serve to prolong the ribs forward and
contribute to the elasticity of the walls of the thorax (see Fig. B-2). The first seven pairs are
connected with the sternum; the next three are articulated with the lower border of the
cartilage of the preceding rib; the last two have sharp extremities ending in the wall of the
abdomen.

Cryosection: A medical imaging technique which uses photographic digital images of a
frozen body. The body is cut into many slices which are digitally photographed for
constituting a 3D volume image of the body.

CT or Computed Tomography: The main medical imaging method where a thin X-ray
beam rotates around the patient. Detectors measure the amount of X-rays passing through the
patient or particular area of interest. Geometric processing is then used to reconstruct axial
two-dimensional X-ray image. The series of axial images enable the reconstruction of a 3D
volume image. The word "tomography" is derived from the Greek tomos (dice) and graphia
(describing).

MRI or Magnetic Resonance Imaging: A medical imaging technique in which a strong
magnetic field controlled by computer is used for modifying the spin of protons of water
molecules. The spin relaxation is then analized for generating detailed pictures of areas inside
the body. MRI makes better images of organs and soft tissue than other scanning techniques,
such as X-ray CT. MRI is especialy useful for imaging the brain, spine, the soft tissue of
joints, and the inside of bones.

Pelvis: A basin-shaped structure of the vertebrate skeleton, composed of the innominate bones
on the sides, the pubis in front, and the sacrum and coccyx behind, that rests on the lower
limbs and supports the spinal column (see Fig. B-3).

PET or Positron Emission Tomography: A medica imaging technique based on the
fixation of short-lived radioactive substances on active sites such as tumoural sites to produce
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three-dimensional images of those substances functioning within the body. These images are
called PET scans and the technique is termed PET scanning. Unlike CT or MRI, techniques
that look at anatomy or body form, PET provides information about metabolic activity.

Rib: One of the 12 paired arches of bone which form the skeletal structure of the chest wall
(the rib cage). The ribs attach to the building blocks of the spine (vertebrae) in the back
(see Fig. B-3).

Sternum: Anatomic name for the long flat bone in the upper middle of the front of the chest.
The sternum articulates with the cartilages of the first seven ribs and with the clavicle
(collar bone) on either side (see Fig. B-2).

Vascular tree: A tree in anatomy designates an anatomical system or structure having many
branches. A vascular tree designates a set of veins or arteries constituted by a main vein or
artery together with their branches, i.e. the set of veins or arteries attached to them. In this
thesis, the Vena Cava tree designates the Vena Cava with all or a part of its outgoing veins
while the Aortatree designates the aortic arch with its three outgoing arteries.

Vena Cava: Either one of the two large veins that drain blood from the upper body and from
the lower body and empty into the right atrium of the heart (see Fig. B-1). The superior vena
cava is the large vein which returns blood to the heart from the head, neck and both upper
limbs. The inferior vena cava returns blood to the heart from the lower part of the body.

Vena Cava superior

Pulmonary
valve

Right
atrium

I.k_" : I :
\ L . 1

Tricuspid
valve

.M \\J valve
ey

‘Vena Cava inferior

Right ventricle

Figure B-1. Section of the heart showing the Vena Cava superior, the right atrium, the Vena
Cavainferior, and the aortic arch.
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Figure B-2. Sternum, costal cartilages and ribs.
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C. Java applet user interface

Let us present the interface enabling the creation of anatomical scenes comprising
organ models, dlices and free form surfaces extracted from the Visible Human dataset
[Saroul et. al. 2004].

Translation
Rotation
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Tab Panel .
Slice movement

Toolbar
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Figure C-1. Java Applet user interface.

Fig. C-1 shows the applet user interface. It is divided into five parts. At the top, a
toolbar contains buttons for loading and saving 3D scenes and buttons for changing the
current mouse mode (animation recording, trandation, camera rotation, zoom, dlice
movements and slice extraction). The Display Panel is made up of two views, the 3D viewer
for displaying anatomic models, slices and free form surfaces and the dlice navigator for
navigating in real time within the volume image. On the left side, a Tab Panel contains five
tabs for interacting with the current scene. The 3D View tab allows users to modify the camera
position and other global parameters. The 2D View tab displays a miniature 3D model of the
Visible Human together with a view of the currently extracted dlice (Fig. C-1, left part). The
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Edit tab is used for editing the different anatomic components of the 3D scene. The Search
and Load tab is used to load 3D anatomic models. The Surfaces tab allows to create marker
curves and free form surfaces. Finally, the message panels display information related to the
corresponding viewers.

The user interface provides an extensive set of facilities for the creation of anatomical

scenes including organ models, planar slices and free form surfaces. Let us review its main
functionalities.

Navigating within the views

Users may navigate within the two views by using the mouse. Users may select a
mouse mode by clicking on the corresponding button on the Toolbar. Once a mouse mode has
been selected, the 3D scene or the dlice view may be modified by clicking and dragging the
mouse within the views. The different available mouse navigation modes are:

e Trandation: this mode allows users to change the display position of the 3D scene
within the 3D view or of the current slice within the slice navigator.

e Zoom: this mode allows users to zoom in and out within the 3D or the Slice view.

e Rotation: this mode allows users to rotate the 3D scene within the 3D view. Within the
dlice navigator, the current extracted dliceis rotated.

e Slice movement: this mode allows users to modify the position of an extracted slice
within the 3D view or the slice view by trandating it along its normal vector.

L oading and displaying 3D models

3D View / Slice View

30 View

Label containing the word :

|Iung Search |
|F|espilat0r_l,l jlﬂ.ll parts jl.ﬁ.ll sidez =
Seanch results
= Load |Lung L] |rf4 [loney quaality] j
I~ Load |Lung [R] | rf4 (low quality] -
— Load |Lung, Infer :Fé [!'ﬁgd?uurﬁliﬂalit Bty = |
— Load |Lung, Inferg AR OA0N=) -
~ Load |Lung, Middle Lobe [R] |rf4 [l quiality)] j
= Load |Lung, Superior Lobe [L] |rf4 [l quiality] j
— Load |Lung, Superior Lobe [R] |rf4 [l quiality) j

Figure C-2. Loading and displaying lung 3D models.
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The user interface applet interacts with a database located on the server, which stores
more than thousand anatomic models reconstructed from the classified and labeled Visible
Human dataset (provided by Gold Standard Multimedia). Users may load a specific
anatomical structure by querying the database with the Search and load tab. Several models
may be loaded and displayed within the 3D viewer. To load a new 3D model, user may go to
the Search and load tab (Fig. C-2, left view), type the name of an anatomic structure (or a part
of it) and click on the button "Search". The user may refine his search by specifying the
system, the part, or the side of the body (left, right) he isinterested in. Then, among the search
results proposed, he may choose the desired quality and click on the button "Load" of the
model for displaying it within the 3D view (Fig. C-2, right view).

Once a 3D model is loaded, the user may change its parameters such as its visihility,
color, opacity or name within the Edit tab (Fig. C-3) which contains the list of loaded models
with their attributes.

View  Edit 1"-‘_ Search and load 1&_ ;+J

m—— e e

30 models loaded Select Al J=idl
Fernur (R] [rF4)
—k = Fibula [R] [rF3)
& color zet color |
zet DDEEM apacity ;1005 —_—

[Enanne deletel
iH Tibia [R] (3]

I3l

Figure C-3. Edition of anatomic model parameters.

Extracting and displaying slices both in the 3D view and in the slice navigator

Generaly, users navigate in real time across the body using the slice navigator and
stop on a dlice of interest. The position and orientation of the current slice is displayed within
the miniature 3D model of the Visible Human (2D view tab). When clicking on the
“Synchronization” button (Fig. C-4), the current slice shown in the dlice navigator is
displayed in the 3D view together with the previously loaded surrounding anatomic structures.
In addition, one may load a planar slice from within the 3D viewer by entering the slice
extraction mode, by clicking on a 3D model surface position and by choosing in the pop-up
window the desired slice orientation (axial, sagital or coronal).

Slicerotations and trandationsin both views

All slice movements may be carried out with the mouse. In the slice translation mouse
mode, the user may trandate a slice along its normal by dragging it into the desired location
both from within the 3D viewer or from within the slice navigator. One may aso rotate the
dice in the dlice navigator by choosing the “Rotation” mouse mode. If the two views are
synchronized, the current slice in the 3D viewer moves according to the displacements in the
dlice navigator. Inversely, if the current slice moves in the 3D viewer (Fig. C-44), its position
in the slice navigator is automatically updated (Fig. C-4b).
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Figure C-4. Slice extraction and synchronization between views.
Creating Ruled Surfaces

The application provides the possibility to create and extract ruled surfaces from the
Visible Human dataset. These ruled surfaces are defined by a marker curve (spline curve). A
ruled surface may be created by selecting and clicking on “New Ruled Surface” within the
Surfaces tab. In order to add and place a new point for the marker curve which defines the
surface, the user may click on the slice view with the left mouse button while holding down
the Alt key (Fig. C-5, right view). Several control points may be added and their locations
adjusted by dragging it to the desired position with the mouse. Once the marker curve has
been specified, the ruled surface is extracted and displayed within the 3D viewer
(Fig. C-5, left view) by clicking on the “Create Surface Model” button within the Surfaces
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tab. Once aruled surface has been created, it is also possible to rotate the surface ruling vector
by dragging the “rotation slider” within the Surfaces tab (Fig. C-6). When the dlider is
released, the ruled surface is automaticaly updated (Fig. C-6b). In addition, the user may
choose the width and the resolution of the ruled surface and save it into its persona entry
within the server database.
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Figure C-6. Ruling vector rotation.
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Creating curved surfaces

Each curved surface is organized as a collection of individual marker curves
specifying surface boundary curves (Fig. C-7a). A curved Coons surface may be created by
selecting and clicking on “New Coons Surface” within the Surfaces tab. When creating a new
surface, a new marker curve collection is created. Users may add marker curves to that
collection and change the relative order of the marker curves. When a marker curve is
selected, the user may add control points to it (see Creating Ruled Surface) or edit its display
properties (width, color) aswell asits name.
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Figure C-7. Creation and visualization of a Coons surface.

After specification of all marker curves, the user may extract the corresponding Coons
surface and display it within the 3D viewer (Fig. C-7b) by clicking on the “Create Surface
Model” button. Then, the user may adjust the shape of the surface by modifying the marker
curves, add anatomic models to the scene or save the surface into its personal entry within the
server database.

Flattening of a Ruled Surface

The user may flatten a Ruled Surface by selecting it within the Surfaces tab, and
clicking on the “Flattening” button. The flattened surface is then displayed within a new
Flattened view (Fig. C-8). Then, the system allows users to:

o Digsplay the trgectory defining the ruled surface by using the “Spline Display” check
box.

e Display the name of each organ on the flattened image by selecting a point with the
mouse.

e Display the 3D coordinates of each point of the flattened surface by selecting it with
the mouse.

e Trandate the image and zoom in and out by using the corresponding mouse mode on
the toolbar.
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B Combined 2D and 3D Anatomical Visualization
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Figure C-8. Ruled surface flattening.

In addition, the user may carry out measurements within the Flattened view by

specifying two points on the flattened surface. For specifying a point, he may left click with
the mouse on the desired location and repeat it for the second point. The distance between the
two points on the original ruled surface is then displayed within the message panel.

Flattening of a Coons Surface

The user may flatten a Coons Surface by selecting it within the Surfaces tab, and by

pressing on the “radial” or “parallel” flattening button depending on the desired flattening
method. The flattened surface is displayed within a new Flattened view (Fig. C-9). Then, the
system allows users to:

Display the curves along which distances are preserved by using the “Grid Display”
check box.

Display the flattened surface distortion map by using the “Distortions Display” check
box.

Display the name of each organ on the flattened image by selecting a point with the
mouse.

Display the 3D coordinates of each point of the flattened surface by selecting it with
the mouse.

Trandate, rotate the image and zoom in and out by using the corresponding mouse
mode on the toolbar.
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Figure C-9. Coons surface flattening.

In addition, the user may carry out measurements on the flattened surface as described
in Section 7.4.4. The user may place a line segment point for parallel planes flattening or
specify a circle for radial planes flattening by left clicking with the mouse on the flattened
surface. The measured distance is then displayed within the message panel.

When clicking on the “parallel plane settings’ button within the Surfaces tab, a pop up
window appears which allows user to specify the parallel planes orientation. When clicking
on the “Region of interest” button within the Surfaces tab, the user may specify with the
mouse aregion of interest where distortions are to be minimized (see Section 7.4.3).

Finally, the user may interactively modify the focus point by clicking on it with the | eft
mouse button and dragging it to the desired location. The flattened surface is interactively
updated using the multiresolution method presented in Section 5.5, until the mouse button is
released.

L oading and saving surfaces and 3D scenes

A surface or a complete 3D scene may be saved under a user’s personal entry into the
server database. Users may at any time load and view a previously created scene or surface.
The parameters of the scene (background color, camera position), of the surfaces and of each
anatomic model (color, visibility, name, opacity) will be recorded in the database under the
user’s persona entry. For saving a scene, he may press the “Save 3D scene” button within the
toolbar. A popup window appears for specifying a name and a comment for the scene. When
clicking on the “Load 3D scene” button, a list of all the user saved scenes is displayed. The
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user may then load the scene of its choice. For saving a surface, he may press the “Save
surface” button within the Surfaces tab. As for a 3D scene, a popup window appears for
specifying a name and a comment for the surface. When clicking on the “Load surface”
button, a list of all the user saved surfaces is also displayed. The user may then load the
surface of its choice.

Recording an animation

The applet alows a user to record a succession of actions within the 3D viewer such as
navigation (rotation, zooming, translation), slice trandlation, display of curved surfaces or
modification of the parameters of the anatomic models. This succession of actions enables
then the creation of a corresponding video file. To record the actions, he may click on the
“Video” button within the toolbar. The animation starts to be recorded immediately. Then, he
may carry out his animation actions (maximum time : 3 minutes) and click again on the
“Video” button to end recording the animation. A new window appears where he can write a
name and a comment for the recorded animation.

To create the corresponding video animation, the user must go on the Visible Human
web site and click on the item “Saved markers, 3D scenes and 3D animations’. In the folder
“Your 3D scenes’ he may locate the animation that has been saved and click on the button
“Create”. The animation will be created in AV format and will be available for downloading
from the website.
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