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Abstract

We propose several methods for speeding up the processing of particle physics
data on clusters of PCs. We present a new way of indexing and retrieving data
in a high dimensional space by making use of two levels of catalogues enabling
an efficient data preselection. We propose several scheduling policies for paral-
lelizing data intensive particle physics applications on clusters of PCs. We show
that making use of intra-job parallelization, caching data on the cluster node disks
and reordering incoming jobs improves drastically the performances of a simple
batch oriented scheduling policy. In addition, we propose the concept of delayed
scheduling and adaptive delayed scheduling, where the deliberate inclusion of a
delay improves the disk cache access rate and enables a better utilisation of the
cluster.

We build theoretical models for the different scheduling policies and propose
a detailed comparison between the theoretical models and the results of the cluster
simulations. We study the improvements obtained by pipelining data I/O opera-
tions and data processing operations, both in respect to tertiary storage I/O and to
disk I/O. Pipelining improves the performances by approximately 30%.

Using the parallelization framework developed EPFL, we describe a possible
implementation of the proposed access policies, within the context of the LHCb
experiment at CERN. A first prototype is implemented and the proposed schedul-
ing policies can be easily plugged into it.

Key words
High-energy physics particle collision analysis cluster computing
two levels indexing high dimensionnality data intensive computing
data distribution cache-based job splitting delayed scheduling
adaptive delay scheduling pipelining scheduling complexity

3



4



Résumé

Nous proposons différentes méthodes pour accélérer le traitement des données is-
sues de la physique des particules sur des fermes de PCs. Nous présentons une
nouvelle technique d’indexage et d’extraction des données dans un espace com-
prenant de nombreuses dimensions. Cette technique permet, par l’utilisation de
deux niveaux de catalogues, de préselectionner les données efficacement. Nous
proposons différents algorithmes d’ordonnancement pour les applications con-
sommant de grandes quantités de données sur des fermes de PCs. Nous montrons
que la parallélisation interne des tâches, l’utilisation de caches locaux sur les dis-
ques durs des noeuds de la ferme et la modification de l’ordre d’exécution des
tâches améliorent considérablement les performances d’un algorithme classique
de système de gestion de fermes de processeurs. En outre, nous proposons le
concept ordonnancement différé et d’ordonnancement différé adaptatif où l’ajout
délibéré d’un délai améliore le taux d’accès au cache local sur disque dur et permet
une meilleure utilisation de la ferme.

Nous construisons des modèles théoriques pour les différents types d’ordon-
nancement et nous proposons une comparaison détaillée de la théorie avec les
résultats issus de simulations de fermes de processeurs. Nous étudions les amé-
liorations obtenues par un “pipelining” des opérations d’entrées sorties et des
opérations de traitement des données, aussi bien dans le cas de l’accès aux données
stockées sur bandes magnétiques que dans le cas de l’accès des données stockées
sur le disque dur local. Le “pipelining” améliore les performances d’environ 30%.

Grâce à l’utilisation des outils de parallélisation développés à l’EPFL, nous
décrivons une implémentation des différents algorithmes d’ordonnancement pro-
posés ici dans le contexte de l’expérience LHCb au CERN. Un premier prototype
a été réalisé et les différents algorithmes peuvent y être aisément intégrés.

Mots clefs
Physique des hautes énergies Analyse de collisions de particules
Fermes d’ordinateurs Indexage à deux niveaux
Dimensions élevées Traitement de grandes quantités de données
Distribution de données Parallélisation d’applications utilisant le cache
Ordonnancement différé Ordonnancement différé adaptatif
Pipelining Complexité de l’ordonnancement
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1.1.3 The LHCb experiment . . . . . . . . . . . . . . . . . . . 17

1.2 LHCb data analysis : a GRID world . . . . . . . . . . . . . . . . 19
1.2.1 The LHCb data . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2 LHCb Computing strategies . . . . . . . . . . . . . . . . 20
1.2.3 Data analysis over the Grid . . . . . . . . . . . . . . . . . 21

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Cluster computing . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Simulation of event processing on a cluster of computer

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.4 Adaptation of existing applications to cluster computing . 23

2 Indexing 25
2.1 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 A two level indexing scheme . . . . . . . . . . . . . . . . . . . . 27

9



10 CONTENTS

2.3.1 Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Tag collections . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 Selection Process . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Some approximations . . . . . . . . . . . . . . . . . . . 31
2.4.2 Theoretical model . . . . . . . . . . . . . . . . . . . . . 32
2.4.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Parallelization policies 37
3.1 Issues and plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Cluster simulations . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 The framework . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Parameters of the simulation . . . . . . . . . . . . . . . . 40
3.3.3 Performance measurements . . . . . . . . . . . . . . . . 41

3.4 First come, first served scheduling policies . . . . . . . . . . . . . 43
3.4.1 Processing Farm oriented job scheduling . . . . . . . . . 43
3.4.2 Job splitting . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Cache oriented job splitting . . . . . . . . . . . . . . . . 44
3.4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . 46

3.5 Data distribution and data replication . . . . . . . . . . . . . . . 47
3.5.1 Out of order Scheduling . . . . . . . . . . . . . . . . . . 47
3.5.2 Data Replication . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Towards cluster-optimal scheduling . . . . . . . . . . . . . . . . 52
3.6.1 Delayed scheduling . . . . . . . . . . . . . . . . . . . . . 52
3.6.2 Adaptive delay scheduling . . . . . . . . . . . . . . . . . 55

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Theoretical models 61
4.1 Assumptions and notations . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Job arrivals . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.2 Service time . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.3 Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Job splitting Model . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Out of order Scheduling Model . . . . . . . . . . . . . . . . . . . 67

4.3.1 Speedup derivation based on Job Splitting case . . . . . . 67
4.3.2 Improved model . . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS 11

4.3.3 Number of subjobs per jobs . . . . . . . . . . . . . . . . 71
4.4 Delayed Scheduling Model . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Two phases . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Average waiting time . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Average speedup . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Scheduling time complexities . . . . . . . . . . . . . . . . . . . . 77
4.6 Scheduling Memory Space complexity . . . . . . . . . . . . . . . 80
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Pipelining processing and I/O operations 83
5.1 Pipelining accesses from tertiary storage . . . . . . . . . . . . . . 83

5.1.1 First come, first served scheduling policies . . . . . . . . 84
5.1.2 Out of order scheduling policy . . . . . . . . . . . . . . . 85
5.1.3 Delayed scheduling policy . . . . . . . . . . . . . . . . . 88

5.2 Pipelining of cache disk I/O . . . . . . . . . . . . . . . . . . . . 88
5.2.1 Out of order scheduling policy . . . . . . . . . . . . . . . 89
5.2.2 Delayed scheduling policy . . . . . . . . . . . . . . . . . 91

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Integration in LHCb’s framework 93
6.1 GAUDI, the LHCb framework . . . . . . . . . . . . . . . . . . . 93

6.1.1 Major design criteria . . . . . . . . . . . . . . . . . . . . 93
6.1.2 Main components . . . . . . . . . . . . . . . . . . . . . . 94
6.1.3 The event loop . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 DPS, the dynamic parallelization system . . . . . . . . . . . . . . 97
6.2.1 Split - Merge construct . . . . . . . . . . . . . . . . . . . 97
6.2.2 Flow graph representation . . . . . . . . . . . . . . . . . 97

6.3 Integration of GAUDI and DPS . . . . . . . . . . . . . . . . . . . 99
6.3.1 Parallelizing the event loop . . . . . . . . . . . . . . . . . 99
6.3.2 The LHCb DPS flow graph . . . . . . . . . . . . . . . . . 101
6.3.3 Implementing a parallel GAUDI . . . . . . . . . . . . . . 102

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Conclusion 105

Appendix 108

A Computation of A(1) and ∂A(z)
z

∣∣∣
z=1

109



12 CONTENTS

B Data utilisation distribution 111
B.1 Uniform data utilisation distribution . . . . . . . . . . . . . . . . 111
B.2 Realistic data utilisation distribution . . . . . . . . . . . . . . . . 112

List of figures 114

List of tables 119

Bibliography 121

Biography 127
publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Other References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Acronyms
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Chapter 1

Context and goals

This work has been performed at CERN [wp05b] (European Laboratory for Par-
ticle Physics) in collaboration with the LHCb [wp05d] experiment.

In this chapter, we introduce the context of particle physics experiments, their
goals and their needs. We will especially concentrate on the computing needs of
the particle physics experiments and their implications on the development of Grid
oriented models. We will finally describe the challenges, which we will address
in the rest of this thesis.

1.1 LHCb, a CERN experiment of HEP

1.1.1 High Energy Physics (HEP) goals and tools

High energy physicists try to understand the fundamental constituents of matter,
what they are and how they interact with each other. Since Einstein and its famous
equation E = m c2, scientists know that matter and energy are equivalent and that
a high concentration of energy can turn into matter under the form of elementary
particles. For common levels of energies, common particles are generated. These
are well known and studied.

The particles of interest are those that existed in very early ages after the big
bang [Sin05]. At that time, a huge amount of energy was available, allowing
heavier particles to exist. The particle physicists try to recreate these conditions
by colliding particle beams, that are previously brought to high energies using a
particle accelerator. The particles created from the collisions are then detected and
studied in particle detectors. Particle detectors and accelerators are amongst the

15



16 CHAPTER 1. CONTEXT AND GOALS

world’s largest and most complex scientific instruments. For example, the CERN
accelerator is 27 km long and the LHCb detector issues 950000 values per particle
collision.

1.1.2 CERN : Centre Européen pour la Recherche Nucléaire

CERN is the European Organisation for Nuclear Research, the world’s largest
particle physics centre. CERN exists primarily to provide physicists with the
necessary tools, i.e. with particle accelerators able to reach the highest energy
possible.

CERN is currently building a new particle accelerator called LHC (Large
Hadron Collider) that will enable to carry out research deeper into matter than
ever before. LHC occupies a 27km long tunnel, located 100m beneath the Swiss-
French border, near Geneva. It is from many points of view one of the largest and
most complex scientific instruments ever built.

Figure 1.1: The LHC accelerator
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LHC will be able to accelerate either two proton beams or two ion beams. The
beams will collide every 25 ns, i.e. at a frequency of 40 MHz. Each collision
(called event) will create many particles (few thousands). Four main experiments
will analyse these particles : Alice, Atlas, CMS and LHCb. Two of them (Atlas
and CMS) are general purpose experiments, aiming at studying a wide range of
particles. The two others are concentrating on a specific physics question.

• Alice’s aim is to study the formation of a new phase of matter at extreme
energy densities, the quark-gluon plasma.

• LHCb studies the physics of the B meson and its implication in CP viola-
tion [wp05c] (see Section 1.1.3).

Each of the four experiments is building currently a dedicated particle detector.

1.1.3 The LHCb experiment
LHCb [wp05d] is the name of one of the future LHC experiments. Its primary
goal is the study of the so called CP Violation [wp05c]. This physical theory
suggests that, in the world of subatomic particles, the image of a particle in a
mirror does not behave like the particle itself [wp05a]. In other words, matter and
antimatter may have a slightly asymmetric behaviour. One of the fundamental
reasons of this effect is the existence of the bottom-quark and its cousin the top-
quark. It is precisely this bottom-quark, under the form of the B-meson that the
LHCb experiment intends to study.

B-mesons are produced by the collisions of the high energy proton beams of
the LHC. Each of the forty millions collisions that will take place every second
will produce thousands of new particles in which the LHCb physicists will try to
detect B-mesons and to measure their parameters and behaviour (especially the
way they decay).

The different sub-detectors constituting the LHCb detector are able to detect
all created particles and to specify their energy and momentum. Figure 1.2 gives
an overview of the detector setup :

• the vertex detector provides precise measurements of track coordinates
close to the interaction region. See [Col01b].

• the RICHs are Ring Imaging Cherenkov devices, able to measure the en-
ergy of particles using their cherenkov radiation in a specific medium. See
[Col00b].
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Figure 1.2: The LHCb detector at CERN

• the trackers locate particles and provide data for deducing their trajectories.
Together with the magnet that bends the trajectories, they also provide a
measure of the momentum of particles. See [Col02] and [Col01a].

• the calorimeters (Electromagnetic for ECAL and Hadronic for HCAL) stop
the particles and measure their energy. See [Col00a].

The global output of the LHCb detector is about 1 MB of data per event at a
rate of 40MHz, across 950000 channels. This yields 40 TB of data every second.

Most of this data will not be stored since more than 99,9999% of it is not
of interest. Actually, the detector has a four level trigger system that allows a
reduction of the data rate from 40 TB/s to 120 MB/s per second (three hundred
thousand times less). This factor is obtained by both a reduction of the event size
to the order of 600 KB and by a reduction of the event rate to 200 Hz. Assuming
that the LHC will run 24 hours a day and 7 days a week, LHCb will produce an
order of 1010 events per year, which is six petabytes of data (1 PB = 1015 bytes).

Table 1.1 summarises the figures concerning the data being saved, indexed and
later retrieved by physicists for analysis.
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Size of a data item associated
600 KB

to a collision event
Nb of collision events 109 to 1010 per year
Global size of the data ∼ 6 1015 bytes = 6 PB per year

Data items input rate 200 Hz
RAW data input rate 120 MB/s

Table 1.1: Figures concerning LHCb data

1.2 LHCb data analysis : a GRID world

The data Grid projects [Dat05, EGE05, Eur05] represent the newest developments
in the area of distributed computing. This evolution was essentially pushed by the
ever increasing computing needs of the simulation and analysis tools developed
for different scientific communities such as biologists, meteorologists and particle
physicists.

The analysis of the huge amount of data generated by LHCb requires the use
of such a distributed, high performance computing grid.

1.2.1 The LHCb data

LHCb data can be categorised in 2 ways : by their type (RAW, DST and AOD)
and by their origin (real or simulated data).

Real data come from the particle detector under the form of RAW data. These
data items are the direct output from the different parts of the sub-detectors. They
contain mostly positions and amounts of energy loss. The particle trajectories,
mass and momenta are then reconstructed using dedicated software and stored as
DST (Data Summary Tape). These data items are finally analysed by the physi-
cists and the analysis results are stored as AOD (Analysis Object Data) data ob-
jects.

Besides real data, the analysis jobs require large amounts of simulated data
items (see Section 1.2.3). Simulated RAW data are computed from a simulation
of the full particle detector. Reconstruction of the simulated data is carried out
using the same tools as for the real data. Creating AOD data objects do not make
sense for simulated data.
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1.2.2 LHCb Computing strategies
The analysis of the LHCb data will be performed among 47 different physics in-
stitutes around the world. The real data generated at CERN will thus be replicated
at several places. Simulated data are produced among all the collaborating insti-
tutes around the world. Figure 1.3 shows the hierarchy of the institutes as well as
the type of data stored in each of them and the expected data transfer rates.

CPU for reconstruction
and analysis
Mass Storage for
RAW, DST, AOD

Institute

Selected User Analyses
Institute

Selected User Analyses

Regional Center

User analysis

Production Center
Generate raw data
Reconstruction
Production analysis
User analysis

Regional Center

User analysis
Regional Center

User analysis

Institute

Selected User Analyses

Regional Center

User analysis

Institute

Selected User Analyses

CPU for analysis
Mass storage for
DST, AOD

CPU and
data servers

  DST, AOD
400TB/yr

  DST, AOD
10−30 TB/yr

TIER 2

TIER 1

TIER 0

Figure 1.3: The LHCb computing model

The hierarchy has three levels :

• Tier 0, Production centre : this is the only centre producing real data, i.e.
CERN. These data are reconstructed and partially analysed in situ. The
production centre has to provide mass storage for all the data produced, i.e.
RAW, DST and AOD. It also provides processing power (CPUs) for the
reconstruction, the analysis and the production of the simulated data.

• Tier 1, Regional centres : these centres held a partial copy of the data, i.e.
a full copy of the AOD and a partial copy of the DST. They provide the
mass storage systems accordingly as well as the processing power for the
analysis. Besides that, they provide processing power and mass storage
systems for the production of simulated data.
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• Tier 2, Institutes : they mostly provide processing power for analysis and
simulation and use the data of their regional centre. If needed, they can copy
a selected part of these data items onto their own data servers.

Regional centres and possibly institutes are producers of simulated data. In the
case where an institute is a data producer and has no data archiving capability, the
corresponding regional centre will store the data and fulfil the role of production
centre for the distribution of these data items.

1.2.3 Data analysis over the Grid

Analysis of LHCb data consists in collecting statistics on many physical events
and comparing it to simulation results in order to see whether the theory behind
the simulated data explains reality.

As a consequence, each analysis job requires the scanning of huge quantities
of data items which are usually stored in third level storage systems, on tape or on
optical disks, at the level of the production or regional centres. These storage sys-
tems usually have disk pools acting as caches and excellent network connectivity
but their third level storage systems offer only slow access to the data items.

Analysis jobs are also very CPU intensive and a single analysis job would last
months on a single standard computer. Thus, all institutes are equipped with large
clusters of computers on which analysis jobs can be parallelized.

All the storage facilities and CPU clusters are made available to physicists
through a computing grid. The end user provides to this grid an analysis code
and a list of data items to analyse. The analysis job is split and run on any of the
computer centres depending on the availability of their respective CPUs and of
the corresponding data items.

1.3 Challenges

1.3.1 Indexing

When an analysis job aims at verifying a given aspect of theory, it needs to scan
events that deal with the corresponding phenomenon. Selecting the right events is
thus essential to reduce the size of the input data. However, the selection has to
be done in a high dimensional space over tens of billions of items. Moreover, the
selection is an iterative process that needs to be refined several times according to
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the result of analysis. It is thus mandatory to be able to select large sets of events
in a reasonable time.

In order to achieve this, usual indexing techniques are not sufficient. For this
type of usage, standard indexes would be extremely large due the high number of
items. Because of the very high dimensionality of the data, a simple sequential
scan may outperform best known general purpose algorithms, as shown by Weber
et al [WSB98]. We propose a two level indexing scheme to circumvent these
problems. It improves the sequential scan by replacing it by a scan of a preselected
subset.

1.3.2 Cluster computing

Distribution and partitioning of analysis jobs over the grid is carried out with the
help of grid job scheduling software [FK97]. Some tools like the Grid-Brick Event
Processing Framework (GEPS) [APF+03] were developed to take into account the
data locality in the Grid context so as to optimize the job scheduling. However
local parallelization within the cluster of a given institute or within a grid location
relies on simple computer farm approaches. Data-intensive parallel processing
is different from conventional parallel processing [NEO03] an existing computer
farm approaches do generally not take into account the locality of data.

Due to the specificity of the LHCb software, i.e. its large set of input data
items, its small set of output data items, its very high parallelization potential and
the very low dependencies between subjobs, we propose to study and implement
a dedicated parallelization facility that makes use of these specificities and tries to
maximise the performances. In particular, we propose to make use of the storage
capabilities of each computing node (i.e. the local hard disk) to cache data and to
schedule subsequent jobs based on the cache content. We also present scheduling
algorithms that improve performance of data retrieval by reshuffling the requests
and by scheduling requests at fixed time intervals.

1.3.3 Simulation of event processing on a cluster of computer
nodes

The parallelization and scheduling algorithms described in the previous section
cannot be tested in a real environment since the computing grid is not yet ready
and the institutes don’t have their clusters ready either.

A compromise is to simulate the behaviour of the clusters via a dedicated
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simulation engine. However, available simulation engines are not adapted to the
specificity of the LHCb analysis. They simulate communications between nodes
and are therefore too slow to simulate days or weeks of particle collision event
processing. For this reason, a dedicated, event based simulation software was
developed that does not deal with the details of inter node communications.

1.3.4 Adaptation of existing applications to cluster computing
Most of the reconstruction and analysis software of the LHCb experiment was not
developed with cluster computing in mind but as an isolated process running on a
single machine. Adapting it to run on computing clusters would thus be a complex
task.

However the LHCb applications are based on a very modular and easily ex-
tensible framework called GAUDI [cg05], which facilitates this adaptation. The
parallelization can be carried out by providing parallel services to the GAUDI
framework that replace the original services. In our case, parallelization of any
GAUDI based software can be carried out by replacing a single core service called
“Event Loop Manager” by its parallel counterpart. This requires rewriting a few
hundred lines of code.

We implemented a first parallel version of the “Event Loop Manager” which
brings cluster parallelization to any application based on the GAUDI framework.
In order to handle the parallelization, the new component uses internally the DPS
(Dynamic Parallel schedules) software [GH03] from EPFL.

This parallel implementation of the “Event Loop Manager” can reuse the
scheduling algorithms developed in the rest of the thesis within a simulation con-
text. The expected gains and limitations are thus given by the simulation results.
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Chapter 2

Indexing

We present here a new way of indexing and retrieving data in huge datasets having
a high dimensionality. The proposed method speeds up the selection process by
replacing scans of the whole data by scans of matching data. It makes use of two
levels of catalogues that allow efficient data preselections. First level catalogues
only contain a small subset of the data items selected according to given criteria.
The first level catalogues allow to carry out queries and to preselect items. Then,
a refined query can be carried out on the preselected data items within the full
dataset. A second level catalogue maintains the list of existing first level cata-
logues and the type and kind of data items they are storing.

We establish a model of our indexing technique and show that it considerably
speeds up the access to LHCb experiment event data.

Section 1.1 presents the issues raised by the LHCb experiment in terms of data
indexing and retrieval. Section 2.2 presents search results in the domain of data
indexing and emphasises their respective strengths and weaknesses. Section 2.3
presents the proposed indexing scheme and shows how it can be used efficiently
for data retrieval. Section 2.4 evaluates the performance of the new indexing
method compared to sequential scan1. Section 2.5 draws the conclusions.

1Our method seems to be the only method which, according to our knowledge, overperforms
sequential scan for the access of data items in a very high dimension space, according to a large
number of criteria
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2.1 Issues
The LHCb data types are described in Section 1.1.3 and a summary is available
in Table 1.1 on page 19. These data items are analysed off-line by physicists in a
rather specific way : the analysis is mainly based on an iterative process consisting
in selecting some data items (typically of the order of 106) with rather complicated
selection criteria, downloading the items, running some computations on them
and modifying the selection criteria. A criterion may for example make use of
the energy of the event, of the types of the particles involved or of the number
of decays. The number of iterations is rather small (in the order of 10) but the
selection of the data still appears to be the key of the analysis.

Another issue is the number of indexes that a given criterion uses. It typically
uses 10 to 30 parameters with a mixture of numeric, boolean and strings data.
These indexes are not always the same for all criteria but a few criterion types can
be defined (less than 10) for which the set of parameters is fixed. Due to the high
dimensionality of the event data (10 to 30 indexes), up to now, at CERN, the only
data selection algorithm was a linear scan of the whole dataset.

2.2 Related Work
There are not many research approaches addressing the issue of indexing data in
a high dimension space. Weber et al [WSB98] show that there exists a dimension
over which any algorithm is outperformed by a sequential scan. Experiments
show that the sequential scan outperforms the best known algorithms such as X-
Trees [BKK96] and SR-Trees [KS97] for even a moderate dimensionality (i.e.
∼ 10).

The X-Trees and SR-Trees algorithms are based on data partitioning meth-
ods. The ancestor of the data partitioning method is the R-tree method [Gut84]
which was further developed under the form of R∗-Trees [NB90]. However, these
data partitioning methods perform poorly as dimensionality increases due to large
overlaps in the partitions they define. This is due to an exponential increase of the
volume of a partition when the number of dimensions grows.

The SR-Tree [KS97] method tries to overcome this problem by defining a new
partitioning scheme, where regions are defined as an intersection of a sphere and a
rectangle. The X-Tree [BKK96] method, on the other side tries to introduce a new
organisation of the partition tree which uses a split-algorithm minimising overlaps.
The results are good at low and moderate dimensions but are outperformed by a
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sequential scan for dimensions larger than 10.
However, the variety of useful selection criteria on a given set of data is far

from being infinite. They can usually be reduced to a small number of indexes,
say 20 to 30 maximum (which is already a very high dimension). Thus, from all
values contained in a data item (tens of thousands in some cases), only this very
reduced subset of 20 to 30 values is relevant for the selection criteria.

This property is used to define a new indexing method based on two levels
of catalogues. This method greatly speeds up the linear selection process by re-
placing scans of the whole data by scans of matching data. Data is efficiently
selected using both server side and client side preselections and the power of the
SQL query language.

2.3 A two level indexing scheme
The aim of the proposed scheme is to allow most of the selection to be carried
out using catalogues (tag collections) that contain only a part of the data items
and, for each item, only a subset of its values (a tag). Several catalogues are built,
each one for a different type of query. This enables performing a very efficient
preselection of the items before accessing the real data items.

2.3.1 Tags
A tag is a subset of a data item comprising several parameters plus a pointer on
this data item. A pointer is simply the information needed to find and retrieve
the data item, be it a regular pointer (memory address), a file name, an URL or
another information.

A tag contains few values (also called parameters) of the data item that are
used as selection criteria. For a given criterion, or even a given type of criterion,
the number of tag values is small (10 to 30) which results in a tag size of 10 to 200
bytes. For example, in the case of some physics events, one may want to include
in the tag the energy, the nature of the event and the number of particles involved.

Several types of tags can be defined, with different sizes and contents, even
for the same data items. Different tags will point to different subsets of the data
items and correspond to different criteria.

Tags are small, well structured objects that can be easily stored in a relational
database. Thus, they can be searched using the power of SQL-like languages. The
storage of tags in a relational database is trivial : each type of tag is stored in a
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different table, whose columns are the different values included in the tag plus one
for the pointer to the real data item. The data item itself does not need to be part
of a database.

Tags will be used to make preselections without loading the data items. Since
a tag is approximately 200 bytes and an event 600KB, we reduce the amount of
accessed data by a factor of 3 103 for the case of the LHCb experiment.

item 202

...

item n2

item 201 ptr ...y1 yp

...

Tag typesTag Collection "TCn"

Tag Collection "TC1"
Data items

Data items

item 101

item 102

...

item n1

ptr ...x1 xn

TCn

TC1

locationname type ...

type1

typek

x1, ..., xn

y1, ..., yp

name description

...

...

...

List of Tag Collections

Figure 2.1: Structure of the tag collections

2.3.2 Tag collections

As explained above, tags are subsets of collision event data items. A tag collection
is a set of tags, all of the same type. It corresponds to a set of data items but with
only a subset of the data items values. The values themselves fulfil some criteria,
such as being in the interval between a minimal and a maximal value. Thus, two
different tag collections may correspond to two different subsets of data items,
even if they use the same set of values (type of tags). These subsets may of course
overlap.

Tag collections are stored in a relational database as a table, where each line is
a tag and columns correspond to the values contained in the tags (Fig. 2.1). The
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different tag collections are assembled into a list of tag collections, each with its
associated tag type.

Since tag collections only contain tags for a given subset of the data items,
they act as a first preselection of data. For example, in the LHCb experiment, the
tag collections are in the order of 105 smaller than the database, i.e. approximately
10 GB. A factor 103 is due to the tag size (Section 2.3.1) and another 102 factor
comes from the fact that, on average, less than 1% of the data items have a tag in a
given collection, i.e. tags whose values are within the predefined ranges associated
to that collection. Thus, a collection has typically 107 to 108 entries.

Collections can be defined by any user or group of users who wants to be
able to use a new selection criterion. The creation of a new collection may either
require a scan of the full set of data items or is extracted as a subset from another
tag collection. Scanning the full set of data items is time consuming but will be
far less frequent than the selection of data items. We expect that there will only
be 10 to 20 “base” tag collections in LHCb. All other collections will be subsets
of base tag collections.

2.3.3 Selection Process

There is an immediate gain by selecting tags in tag collections instead of selecting
directly data items. Only data items of interest are loaded instead of loading all
items for each selection.

This is specially interesting in the case that data items are not located in a
database but in regular files and loading a data item requires accessing a file con-
taining many items. With a pointer to the data item within the file, the item of
interest is directly accessed and loaded. Such a strategy of storing the actual data
in regular files may actually be applied to many problems since database manage-
ment systems cannot handle petabytes of data easily.

Furthermore, the 2-level indexing scheme presented here offers a very power-
ful and flexible way of applying various preselections allowing to reduce both the
amount of accessed data and the network traffic. The complete selection process
is shown in Figure 2.2.

The steps involved in the selection process are the following :
1. The client selects a tag collection and sends a SQL query to be applied on

tags from this collection. The usage of a specific collection is actually a first
preselection made by the physicist.

2. The query is processed on the server side.
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Figure 2.2: Data selection process

3. Only matching tags are sent back. This minimises the network load.
4. A second selection may be applied on the client side, for example for queries

that cannot be formulated in SQL and which require a procedural language
such as C++.

5. Once the selection on tags is complete, requests for the corresponding data
items are sent to the data server.

6. Data items are retrieved (from files, in the LHCb experiment).
7. Retrieved data items are sent to the client.
8. A last selection may be performed on the full data items, in the case that

some information was missing in the tags which did not allow to perform
this more narrow selection in a previous step.

Note that the separation between client and servers (a tag server and a data
item server) on Figure 2.2 allows for example to replicate the tag server while
keeping the data item server at a single location .

2.4 Performance evaluation
Let us evaluate the performance of our indexing scheme. It is hard to compare our
proposed scheme to existing indexing techniques since we don’t know of other
indexing techniques except linear scanning which are able to meet our require-
ments.
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Two of the main high-dimensionality indexing schemes are X-trees [BKK96]
and VA-file [WB97]. The X-Tree method is outperformed by a sequential scan
for a dimension exceeding 6 (see [WSB98]) and VA-files are only applicable to
similarity-search queries. Thus, we only compare our performances with the per-
formances of the sequential scan method.

2.4.1 Some approximations

Let us make some simplifications and approximations in order to create a model
of the proposed indexing scheme.

Type of data : We only consider one data type (integers). The cost of a compar-
ison between two values is therefore always the same. This is not the case in real
life, where data typically consist of numbers, booleans and strings. However, it is
always possible to express the comparison cost of a data item type as a factor of a
single integer comparison.

Optimisations : No optimisation of the query processing on tag collections are
taken into account. This means that tag collections are searched sequentially.
Thus, the gain obtained by querying tag collections is really the minimum we can
expect from the new scheme.

Data transfers : No optimisation of data transfers are taken into account. Es-
pecially, we do not consider pipelined scheme where the data transfer of a given
item could be carried out during the computation of the previous one.

Size of tag collections : For the performance analysis, we consider only a single
tag collection with a fixed number of tags. The number of tags and the size of the
tags may be considered as an average among the different values of a real life
example.

Complex queries : We do not take into account complex queries that could
only be processed by a dedicated program. In other words, step 4 of the selection
process (Figure 2.2) does not occur here.
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2.4.2 Theoretical model
Let us adopt the following notations :

N is the number of items in the whole database;
n is the average number of items in a given tag collection;
D is the number of values in a data item i.e. its dimension;
d is the number of values in a tag i.e. the dimension of the tag; we assume

that all these values are tested;
d′ is the number of values that are not contained in the tag but still need to be

tested (step 8 in Figure 2.2);
Tlat is the latency of the network which is used to transfer the data;
Ttr is the time used to transfer one value through the network; in second per

value;
TIO is the time needed to load one value from disk into the memory of the Tag

server or the Data server;
TCPU is the time to compute one value within the client node or within the tag

server, i.e. the time to compare it with another value;
q is the number of matching tags for the query we are dealing with;

tseq is the duration of the query using a sequential scan;
ttag is the duration of the query using the new indexing scheme.

In the case of a sequential scan, the time needed to process a query is simply
the time needed for querying one data item multiplied by N . Each data item is
read from disk, transferred through the network and processed.

tseq = N (Tlat + D (Ttr + TIO) + (d + d′) TCPU)

It is independent of the size of the result.
The time needed to process a query using the new indexing scheme is slightly

more complicated to derive. Using the architecture depicted in Figure 2.2, we can
divide it into two parts : the duration tq of the query on tags and the duration td
of the query on data items. The query on tags is carried out on the tag server.
Matching tags are transferred to the client. The query on data items is similar to
the sequential scan method.

ttag = tq + td

tq = n (d TIO + d TCPU) + q (Tlat + d Ttr)

td = q (Tlat + D (TIO + Ttr) + d′ TCPU)
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Finally :

tseq = N Tlat + N D (TIO + Ttr) + N (d + d′) TCPU (2.1)

ttag = 2 q Tlat + (n d + q D) TIO + q (d + D) Ttr + (n d + q d′) TCPU (2.2)

The query duration is dependent on the number q of matching tags. Note that the
assumption that tags are transferred one by one to the client corresponds to the
worst case. This could be improved by sending groups of tags.

2.4.3 Interpretation
The terms in equations (2.1) and (2.2) can be divided into three parts : processing
time (TCPU ), network transfer time (Tlat and Ttr) and data retrieval time (TIO).
Let us consider them separately.

Processing time : the processing time ratio between tag collection access and
the default sequential scan is :

rCPU =
n d + q d′

N (d + d′)
= α

d + γd′

d + d′
(2.3)

where α =
n

N
γ =

q

n
Since γ ≤ 1 (comes from q ≤ n), we can be sure that rCPU ≤ α. This demon-
strates that the CPU time ratio is less than (but of the order of) the ratio between
the number of tags in a collection and the number of data items.

Network transfer time : the network transfer time ratio between tag collection
access and the default sequential scan is :

rNET =
2 q Tlat + q (d + D) Ttr

N Tlat + N D Ttr

=
q

N

2 Tlat + (d + D) Ttr

Tlat + D Ttr

Since d ≤ D, we finally have :

rNET ≤ 2
q

N
rNET ≤ 2 α γ (2.4)
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where α =
n

N
γ =

q

n

Since γ ≤ 1, the network transfer ratio is at least of the order of the ratio between
the number of tags in a collection and the number of data items. In practise, we
even have γ ¿ 1 (we foresee γ ∼ 10−2 for LHCb) and thus rNET ¿ α.

Data retrieval time : the data retrieval time ratio between tag collection access
and the default sequential scan is :

rDR =
n d + q D

N D
= α (β + γ) (2.5)

where α =
n

N
β =

d

D
and γ =

q

n

Usually, β ¿ 1 and γ ¿ 1. Thus rDR ¿ α. This means that, in respect to
data retrieval time, we gain far more than just the gain obtained by the preselection
on data items.

Let us estimate γ. By definition, γ is the proportion of matching tags in a tag
collection for a given query. Let us consider a very simple case where every part
of the query is a comparison and is fulfilled by half of the items. In addition, let
us suppose that the data is uniformly distributed. This leads to :

γ =
1

2d
and

rDR

α
=

d

D
+

1

2d

Figure 2.3 gives the behaviour of this ratio against the dimension d for different
values of D.

Roughly, rDR

α
goes down from 1 to a minimum for dimensions between 0 and

dm ∼ 8 and increases linearly afterwards until it reaches 1 again for dimension
D. Clearly, we can approximate rDR by α d

D
if d ≥ dm. This is exactly our goal

since the data retrieval time becomes proportional to the loading time of the tags.
For the LHCb experiment, the dimension of a data item is typically D ∼

20000. The minimum I/O time is reached for d ∼ 18 and rDR < α
1000

.

2.5 Conclusions
We presented a new method of indexing and selecting data in huge datasets having
a high index dimensionality. The method avoids linear scanning of the whole data
set. Instead of scanning the whole dataset, we scan only the tags present in the
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Figure 2.3: Evolution of a majoration of the data retrieval ratio divided by α
in function of the dimension of the tag

tag collections. The selected tags point to the data items that are then retrieved for
applying a more narrow selection.

By scanning tags in tag collections instead of a flat scan of all data items,
the minimal gain is proportional to the ratio between the number of data items
and the number of tags within the selected tag collections. In many cases, the
effective gain is the minimal gain multiplied by the ratio of the dimension of the
data items and the dimension of tags.

The proposed data item selection and retrieval scheme (see also [PVH02])
was implemented at CERN, in the context of the LHCb experiment and seems
very promising.
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Chapter 3

Parallelization policies

We propose scheduling policies for parallelizing LHCb analysis applications on
computer clusters. LHCb analysis jobs require the analysis of tens of thousands
of particle collision events, each event requiring typically 200ms processing time
and 600KB of data. Many jobs are launched concurrently by a large number of
physicists. At a first view, particle physics jobs seem to be easy to parallelize,
since particle collision events can be processed independently one from another.
However, since large amounts of data need to be accessed, the real challenge
resides in making an efficient use of the underlying computing resources. We
propose several job parallelization and scheduling policies aiming at reducing job
processing times and at increasing the sustainable load of a cluster server. We
demonstrate via cluster simulations how the different policies improve the system
capabilities.

Section 3.1 presents the issues raised by the parallelization of LHCb analy-
sis jobs. Section 3.2 presents search results in the domain of application paral-
lelization. In Section 3.3, we introduce the simulation tools and the simulation
parameters used to evaluate and compare the scheduling policies. In Section 3.4,
we present simple ’first come first served’ job parallelization and scheduling poli-
cies. In Section 3.5, we introduce out of order job scheduling and data replication
policies. In Section 3.6, we propose a delayed scheduling policy optimising the
resources of the system. Delayed scheduling may have disadvantages for end
users but allows to sustain considerably heavier loads. We also propose an adap-
tive delay strategy that allows to minimise user waiting time at low and normal
loads and to optimise the utilisation of the computing resources at high loads. In
Section 3.7, we draw the conclusions.

37
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3.1 Issues and plans

Most of the data are stored on tapes using Castor [CER05], a tertiary mass storage
system manager developed at CERN that hides the tape archives from the user by
streaming data and caching data on large disk arrays. Data retrieval time from
tertiary mass storage is still about three times slower (i.e. typically 600ms for
retrieving a 600KB data item) than the corresponding data processing time due to
tertiary storage access and to the network throughput limitations.

The parallelization is facilitated by the nature of the processing patterns and
of the corresponding data segments. Data segments comprise a succession of
“small”, fully independent collision events (around 600KB per event). Event pro-
cessing consists of scanning and analysing the events one by one and of creating
corresponding statistics. The event analysis output is very small. It comprises
a set of histograms which can be easily merged when carried out in parallel on
several nodes. Merging and transferring the results requires therefore a negligi-
ble effort. Since events can be analysed independently one from another (no data
dependency), event analysis does not induce inter-node communications.

Particle collision events are usually reused by several jobs. We therefore
present cache based job splitting strategies that considerably increase cluster util-
isation and reduce job processing times. Compared with straightforward job
scheduling on a processing farm, cache based ’first in first out’ job splitting speeds
up average response times by an order of magnitude and reduces job waiting times
in the system’s queues from hours to minutes.

By scheduling the jobs out of order, according to the availability of their colli-
sion events in the node disk caches, response times can be further reduced, espe-
cially at high loads. In the delayed scheduling policy, job requests are accumulated
during a time period, divided into subjob requests according to a parameterizable
subjob size, and scheduled at the beginning of the next time period according
to the availability of their data segments within the disk node caches. Delayed
scheduling sustains a load close to the maximal theoretically sustainable load of a
cluster, but at the cost of longer average response times.

Finally we propose an adaptive delay scheduling approach, where the schedul-
ing delay is adapted to the current load. This last scheduling approach sustains
very high loads and offers low response times at normal loads.
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3.2 Related Work
There are many strategies for scheduling parallel applications on a cluster of
PCs [ZBWS98, AS97, KN93, AGR03]. However, these strategies are gener-
ally not applicable to data intensive applications which are arbitrarily divisible
[BGR03], which access partly overlapping data segments and whose data needs
to be loaded from tertiary storage. On the other hand, strategies focusing on data
retrieval [ML96, BBS+94] deal mainly with I/O throughput without considering
job distribution and scheduling issues. Kadayif et al. address the problem of data
aware task scheduling but only for a unique CPU [KKKC02].

We present new paradigms that aim at optimising the parallelization and sche-
duling of jobs on a cluster of PCs for data-intensive applications. The proposed
parallelization and scheduling policies rely on job splitting, disk data caching, data
partitioning [TF98], out of order scheduling as well as on the concept of delayed
scheduling.

3.3 Cluster simulations
Let us present here the cluster simulation tool that has been developed to validate
the different job scheduling policies.

3.3.1 The framework
We needed a simulation framework allowing to develop and test different job
parallelization and scheduling policies before running them on a real computing
cluster. Since no efficient software adapted to our needs is available, we created
our own simulation tools. Existing general purpose simulation tools [UKSS98,
Gal99] simulate communications between nodes and are therefore too slow to
simulate days or weeks of particle collision event processing.

Since particle collision event processing does not induce communications be-
tween computing nodes, we only take into account the communication time re-
lated to data transfers. The simulation framework (Fig. 3.1) simulates the be-
haviour of a cluster of PCs (CPU + memory + disk) connected via a high speed
network (typically Gigabit Ethernet) to a shared tertiary storage device (e.g. the
CASTOR [CER05] system at CERN).

Cluster management and job scheduling are carried out on a dedicated node
called “master node”. The job parallelization and scheduling software may run
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Figure 3.1: Architecture of the simulated cluster

both on the simulated and on the target system (production environment). It im-
plements a plugin model, enabling new scheduling policies to be easily added.

Due to the available CPU power limitations, the simulations are carried out
at a reduced scale. The total data space is reduced from 2 PB to 2 TB and the
number of nodes in the cluster from 10000 to 10 or 20 nodes, in addition to the
master node.

3.3.2 Parameters of the simulation
In real computing clusters, important parameters are CPU speed, node memory,
disk space, disk throughput, etc. Within our simulation framework, we made the
following assumptions :

• The processing node memory is considered to be infinite since we only run
a single job or subjob per processor at any given time. We therefore expect
the node memory to be always large enough.

• Processing nodes are single CPU computers and all nodes are identical.
• Processing power requirements are expressed in terms of single CPU sec-

onds.
• Disk throughput is 10 MB/s.
• The node disk cache size is either 50 GB, 100GB or 200GB.
• The tertiary storage system is accessed through Castor [CER05]. This sys-

tem caches tape data on disk arrays. We therefore do not take the tertiary
storage system data access latency into account.

• Throughput from tertiary storage to each node is 1 MB/s.
• The total data space accessible by the high energy physics analysis jobs is 2

TB.
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• The default number of processing nodes in the cluster is 10. Simulations
were also carried out for 5 and 20 nodes and lead to similar results. Thus,
we mostly present results for a cluster of 10 nodes.

• Jobs are typical high energy physics analysis jobs. They consist of a large
collection of events, 40000 events on average. The number of events per
job follows an Erlang probability distribution with parameter equal to 4 (see
Figure 4.1 on page 62 for a graph of the Erlang distribution). Each event
requires 200 ms CPU processing time and access to 600 KB of data.

• The events accessed by a given job are contiguous. The data segment they
form starts at a random position within the dataspace. The distribution of
the job start points within the dataspace is homogeneous except for two
regions, representing together 10% of the total data space but incorporating
50% of the start points. Such a distribution mimics the fact that the fraction
of the data associated with some very interesting events is accessed far more
frequently than the remaining data. This start point distribution yields the
data utilisation curve shown in Figure 3.2. The probability of having two
jobs with overlapping data is around 6.7% (see Appendix B for details).
Note that this probability would be 2.4% with a uniform distribution of
start points (see Appendix B). When jobs have overlapping segments, the
average size of the overlapping region is half the average size of the data
segment associated to a job, i.e. 12 GB.

• Job requests arrive randomly, with an exponential distribution of intervals
between arrival times. The mean number of arrival jobs per time (cadence)
depends on the considered load.

3.3.3 Performance measurements
Two variables define the performance of a scheduling strategy, the average wait-
ing time and the average speedup, both a function of the cluster load.

The waiting time is the time spent between job submission and beginning of
job processing. It is interesting to compare it with the average time needed to run
a simple isolated job on a single processing node without cache. In our context,
the average single job single node processing time without disk cache is 32000
seconds, i.e. almost 9 hours.

The speedup of a job is the single job single node processing time without disk
cache divided by the job processing time in the parallel system when scheduled
according to the current policy. The processing time is defined as the time between
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Figure 3.2: Start point and data utilisation distribution

the effective start of job processing, i.e. start of processing of the first part of the
job, and the end of job processing, i.e. end of processing of the last part of the job.
Thus, the processing time may include periods where the job or part of its subjobs
are suspended.

The speedup is larger than one if there is a gain in terms of processing time.
Two main factors contribute to the speedup : parallelization of jobs by job splitting
and data caching. The parallelization is maximised when each job is subdivided
into as many subjobs as available nodes. The performance improvement due to
parallelization is thus lesser or equal to the number of nodes, i.e. 10 in our cluster
configuration. Data caching is maximised when data is always read from disk
caches instead of tertiary storage. In our context, the performance improvement
due to maximal data caching is slightly larger than 3. Therefore the maximal
overall speedup that can be reached is 30.

The load of the cluster is measured in terms of mean number of job arrivals
per hour. The maximal load of a cluster corresponds to the load sustainable when
all processors run at 100% CPU utilization and data is accessed from disk caches
only. In our context (.26 s per event, 4000 events per job and 10 nodes), the
maximal load is 3.46 jobs per hour.

Hereinafter, all measures make the assumption that the cluster runs in steady
state. We do not take into account the startup period of the cluster, when empty
disk caches are filled.
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3.4 First come, first served scheduling policies
In this section, the proposed scheduling policies rely on the following basic prin-
ciples :

• Once started, a job never hangs. Therefore, at least one dedicated node is
allocated to it.

• Jobs are started in a first come first served order in order to ensure a fair
treatment of user requests.

Keeping these principles in mind, we analyse the speedup that can be obtained
with load balancing strategies such as simple job splitting and cache oriented job
splitting.

3.4.1 Processing Farm oriented job scheduling
The simplest scheduling policy relies on the processing farm paradigm. This is
the policy in use at CERN for scheduling jobs on a computing cluster comprising
hundreds of nodes. Jobs are queued in front of the cluster and are transmitted to
the first available node. This node remains dedicated to that job until its end. No
disk caching is performed. All data segments are always transferred from tertiary
storage when needed.

This simple scheduling algorithm is well studied and understood. A mathe-
matical model can be established which describes the cluster behaviour as a spe-
cial case of a M/Er/m queueing system [Kle76]. We simulate the processing farm
oriented job scheduling policy as a reference for judging the performances of the
proposed more advanced parallelization and scheduling policies.

3.4.2 Job splitting
Since jobs contain tens of thousands independent events, they may be split into
subjobs running in parallel on different nodes of the cluster. Job splitting occurs
when new nodes become available and would remain idle, i.e. no new jobs are in
the queue. The job splitting scheduling policy ensures that the maximum possible
number of nodes is used at any time. Data segments are only requested from
tertiary storage when they are needed i.e. when the corresponding event analysis
code is being executed. Job splitting induces therefore no data replication. The
job splitting scheduling policy is described in Table 3.1.
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Table 3.1: The job splitting scheduling policy
Upon job arrival

• If some nodes are idle, the new job is split into subjobs of equal sizes, one per
idle node. All subjobs are launched in parallel. To avoid too small jobs, we do
not split beyond a minimal job size (10 events).

• If no node is idle but some job(s) is/are running in parallel on several nodes,
one node is released by the job having the largest number of nodes per event to
process. The corresponding subjob is suspended and the new job is launched on
the released node.

• If there are as many jobs running as nodes, the new job is queued.

Upon subjob end (but not job end)

• If there are suspended subjobs within the same job, one of them is activated and
runs on the node becoming free.

• Otherwise the node is allocated to an already running job. The largest subjob
running on the cluster is split into two equal parts, one of them being launched on
the free node. Again, jobs below a minimal size are not split.

Upon job end

• If there are queued jobs, the first queued job is run.
• Otherwise the free node is allocated to an already running job, as in the case of

subjob end.

The job splitting policy performs always better than the simple processing
farm oriented job scheduling policy. The job processing time is always lower
compared with the processing farm approach since there are always as many jobs
running as in the processing farm approach and since job splitting reduces the
job processing time. In both approaches, all data segments are transferred from
tertiary storage.

3.4.3 Cache oriented job splitting
The job splitting scheduling policy remains very close to the processing farm ap-
proach since the disks of the processing nodes are not used for caching data. By
always caching data arriving from tertiary storage onto node disks, we improve
the effectiveness of job splitting. We try to schedule jobs on those nodes which
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store, at least partly, their corresponding data segments. This strategy leads to the
new cache oriented job splitting policy detailed in Table 3.2.

Table 3.2: Details of the cache oriented job splitting policy
Upon job arrival

• The new job is split into subjobs depending on the content of node disk caches :
data processed by a given subjob should always either be fully cached on a node
or not cached at all. Again, there is a lower limit on the smallest job size.

• If some nodes are idle, they are given the most suitable subjob (a fully cached
subjob if such a subjob exists). If there are not enough subjobs for all nodes,
they are further subdivided. If there are too many subjobs, the ones that cannot
immediately be scheduled are suspended.

• If no node is idle but some job(s) is/are running in parallel on several nodes, one
selected node is released by a selected job. Node and job selection are performed
so as to maximise cached data access. We try to replace a subjob working with
non cached data by the new job or one of its subjobs, working on cached data.

• If there are as many jobs running as nodes, the new job is queued.

Upon subjob end (but not job end)

• If there are suspended subjobs within the same job, one of them is activated on
the node becoming free. The chosen subjob is the one having the largest amount
of data cached on that node.

• Otherwise the node is allocated to an already running job. The subjob that is split
is the one for which the caching benefit is the largest.

Upon job end

• If some jobs are in the queue, the first one is taken and run.
• Else if there are suspended subjobs, the most suitable one is activated.
• Otherwise an already running subjob is split, as carried out in case of subjob end.

The scheduler maintains the job and subjob queues as well as the state of all disk caches
in the cluster. When needing new disk cache space, it deallocates the least recently used
cached segments.

Cache oriented job splitting offers on average more performance than simple
job splitting since it takes advantage of disk caches. Not every single job termi-
nates earlier since the ordering may change but, in the general case, the average
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time a job spends in the system is reduced. Furthermore, the cluster is better
utilised and therefore capable of sustaining slightly higher loads.

3.4.4 Simulation Results
Figure 3.3 gives the average speedup and waiting time for different loads and for
each of the scheduling policies described so far, including different cache sizes for
the cache oriented job splitting. The curves on the graph are cut at high loads when
the system leaves the steady state and becomes overloaded. When overloaded,
the notion of average waiting time does not make sense anymore since jobs are
accumulating and the waiting time grows to infinity.
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Figure 3.3: Average speedup and waiting time for different scheduling poli-
cies, different cache sizes and different load levels for a system comprising 10
processing nodes

The results show that the job splitting policy improves the performance, es-
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pecially when the load is not too high. The cache size in the cache oriented job
splitting policy appears to be decisive. The simulation shows that the maximal
data caching speedup factor (i.e. 3) is reached for a disk cache size of 200GB (in
Fig. 3.3, compare the job splitting with the cache oriented policy at low loads).
For smaller caches, the gain in performance compared with the non cache-oriented
job splitting is approximately proportional to the size of the disk cache.

Besides being vertically shifted, the waiting time curves are similar one to
another. As foreseen, the policies providing a higher speedup induce a lower
waiting time. Increasing the cache size decreases the job waiting time from days
to hours.

3.5 Data distribution and data replication

In Section 3.4, we introduced a cache based job splitting policy ensuring a high
degree of fairness by running the jobs in a first in first out order.

Let us study what can be gained by relaxing this constraint and analyse to what
extend a certain degree of fairness can still be reached. Our hypothesis is that the
usage of cache may be improved if we let jobs that find useful data in the cache
execute before jobs that have to load their data from tertiary storage.

3.5.1 Out of order Scheduling

We define a new scheduling policy relying on out of order job scheduling that
aims at making a maximal usage of node disk caches. Table 3.3 describes the out
of order job scheduling policy.

This scheduling policy does not guarantee fairness i.e., according to the avail-
ability of cached data segments, the job execution order is modified. One may
imagine a succession of jobs where a given job having no data in cache would
never be executed. In order to ensure a minimal degree of fairness, we add an
extra feature. Whenever the waiting time of a given job in the queue of jobs with
no data cached exceeds a given maximum (2 days in our context), the job is run
with a higher priority. The first available node executes this job before running
any other job or subjob. When the cluster is not overloaded, such an event occurs
very seldom since there will always be a time point at which the queues become
empty and jobs with non cached data may be launched. The case where a job is
assigned a higher priority typically occurs for less than 0.5 ‰ of the jobs.
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Table 3.3: Details of the out of order job scheduling policy
Each node maintains a queue of subjobs. These subjobs only need data that is cached on
their node. An extra queue contains subjobs with no cached data.
Upon job arrival

• When a job enters the cluster, it is split into subjobs so as to ensure that each
subjob is either fully cached on a node or not cached at all. Jobs are not split
beyond a minimal size.

• Subjobs with cached data are immediately run if the node is idle or if it is running
a subjob without cached data. In that case, the former subjob is suspended and
placed back at the first position of the queue where it came from (queue of subjobs
with no cached data or a specific node queue).

• The remaining subjobs with cached data are queued on the nodes where their data
is cached.

• If some nodes are still idle, they are fed with the subjobs having no cached data.
These subjobs may be split in order to feed all nodes.

• Remaining subjobs with no data cached (if any) are put in the “no cached data”
subjob queue.

Whenever one or several node(s) become(s) available

• If the node has subjob(s) waiting in its queue, the first subjob is run.
• Otherwise a subjob waiting in the “no cached data” subjob queue is run. In case

several nodes are available and there are not enough subjobs in the queue, subjobs
may be further split. The lower limit on the size of subjobs also applies here.

• If some nodes are still available (no subjobs at all in the special queue or too small
ones to be split), they will take work from the most loaded nodes. By doing this,
some subjobs that had cached data will be run on nodes that don’t have the data.
Thus, the subjobs are split so as to ensure that the two subjobs terminate around
the same time. The new subjob incorporates a flag specifying that a subjob with
cached data may take precedence over it in the future (see second point above).

This out of order job scheduling policy optimises the global job throughput by
maximising accesses to data from disk caches. However, isolated jobs may have
an exceptionally long waiting time.

Figure 3.4 gives the average speedup and waiting time for the out of order job
scheduling policy. As in Figure 3.3, the curves are cut at high loads when the
cluster becomes overloaded, i.e. when queues start growing indefinitely.
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Figure 3.4: Average speedup and waiting time for cache-oriented job splitting
and out of order scheduling policies

Figure 3.4 shows that the out of order scheduling policy performs on average
much better than the cache oriented job splitting policy both from a cluster utili-
sation and a user point of view. For the same amount of cache and under the same
load, we obtain a much higher speedup and an average waiting time which is an
order of magnitude lower. The server also sustains far larger loads, especially in
the case of large caches. The degradation of the speedup at the proximity of the
maximal load is excellent.

Regarding the possibly longer waiting time for individual jobs, Figure 3.5
shows the typical waiting time distribution for the out of order scheduling policy
near the maximal sustainable load. The worst-case waiting time is one to two
days, depending on the cache size. This is acceptable since the single job single
node average processing time is 9 hours. The waiting time distribution curves
characterise the out of order scheduling policy. Arriving jobs can be classified
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into two categories : either they have cached data and can overpass the other jobs
(left part of the curves) or they have no cached data and are overpassed (right part
of the curves).

3.5.2 Data Replication

One may think that for high loads the previous scheduling algorithm may be fur-
ther improved by performing data replication between the nodes of the cluster.

Whenever a node is overloaded and other nodes take work from it without
having the corresponding data in their cache, it is pretty inefficient to grab the
data again from the tertiary storage system. It is better to read the data directly
from the disk of the overloaded node and copy it onto the local node disk.

However, such a replication strategy has drawbacks. The replication of the
data segment onto the new node requires another data segment to be removed
from the disk cache. The removed data segment may have been useful for future
jobs. Thus, replicating a data segment when using the replicated data segment
only once is not worthwhile. It is therefore preferable to directly read the data
segment from the other node and use it without replication.

Replication should take place when the cost of not replicating is larger than
the cost of replication [BFR92, FS00]. Applying this principle, we adopted the
following strategy. Whenever a node A works on a data segment that is cached
on another node B, the data segment is remotely read from B. We assume that
B does not slow down due to the activity implied by this access. We also assume
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that B is able to send the segment to A as soon as its disk becomes idle, i.e. in
parallel with the processing of its current job (pipelining of disk I/O and CPU).

By default, a data segment read from a remote node is not put in the cache
of the new node. A data segment is replicated only when the cost of not having
replicated it from the beginning exceeds the cost of the replication. This informa-
tion is obtained by keeping in each node the number of remote accesses to its data
segments. In our context, data replication is carried out only on data items that are
accessed for the third time.

Out of order job scheduling with and without data replication are compared in
Figure 3.6. Basically, there is no difference : data replication does not improve
our scheduling algorithm.
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Figure 3.6: Gain in speedup and waiting time by considering replication ver-
sus no replication of data items for the job out of order scheduling algorithm

The reason for the poor behaviour of data replication appears clearly if one
tries to analyse the consequences of the out of order scheduling policy in respect
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to the distribution of data across the different nodes. The scheduling algorithm,
taking advantage of job or subjob independence, always tries to use all available
nodes whenever a job arrives. This leads to a situation where jobs are always split
onto many nodes. As an example, the first job of each busy period will be split
onto all nodes. Even jobs starting on a single node will, after some time, take
advantage of the nodes released by other terminated jobs.

Therefore, there is never a large continuous segment of data residing within a
single node disk cache. A large data segment is always split onto several nodes.
When a new job requiring a large data segment arrives, it will be immediately split
onto several nodes, ensuring a high degree of load balancing.

The case where a node is overloaded compared with other nodes, i.e. where
data segment replication would improve the performance, occurs very seldom.
The detailed analysis of the simulation reveals that data replication is used in less
than 1 ‰ of the job arrivals.

3.6 Towards cluster-optimal scheduling

We consider a policy to be optimal from a cluster utilisation point of view if it
is able to sustain a larger load than any other policy. In our context, the load is
defined as the mean number of job arrivals per time interval, all other conditions
being identical.

With this definition of optimality, one can enumerate the properties of an op-
timal scheduling policy. The maximal load occurs when all data is cached and
all nodes are fully utilised. This however can never happen if the total disk cache
in all nodes is less than the total data size. Thus an optimum can be achieved if
data is loaded at most once from tertiary storage. An optimal behaviour supposes
that the scheduler has a complete knowledge of all future jobs in order to schedule
jobs before their data segments are removed from the cache. In other words, an
optimal policy is an offline policy.

3.6.1 Delayed scheduling

The previous statement does not help much in an on-line context. But it shows a
tendency : the more we know about future jobs, the better we can schedule them.

This leads to the definition of a delayed scheduling policy where several jobs
are scheduled at fixed time intervals. Time is divided into periods of equal size



3.6. TOWARDS CLUSTER-OPTIMAL SCHEDULING 53

Table 3.4: Details of the delayed scheduling policy
Each node maintains a queue of subjobs. These subjobs only need data that is cached on
their node. An extra queue contains meta-subjobs with no cached data. A meta-subjob
is an aggregation of subjobs requiring overlapping data segments.
At the end of a period, all waiting jobs need to be scheduled. Jobs are scheduled as
follow :

• Each job is split into subjobs so as to ensure that each subjob data segment is
either fully cached on a node or not cached at all. There is a lower limit on the
subjob size.

• Subjobs with cached data are queued on the corresponding nodes.
• The other non-cached subjobs are further split as follows :

– A list defining data segment start and end points of subjobs is built
– Points creating stripes below half the “stripe size” are removed. Points are

also added so as to ensure that no stripe is above the “stripe size”
– The final list of points is used to split the subjobs into subjobs having a

number of events equal to or lower than the stripe size.

• Non cached subjobs working on the overlapping data segments are gathered into
meta-subjobs. Note that the size of the meta-subjob data segments is defined by
the stripe size.

• Meta-subjobs are queued according to their arrival time so as to introduce fairness
in their order of execution. The arrival time of a meta-subjob is defined as the
earliest of its subjobs arrival times.

Once the queues are filled, a new period starts during which the subjobs are processed
as follow :

• Nodes run in priority the subjobs located in their private queue.
• If a node’s queue is empty and the node becomes idle, it pops the first meta-subjob

from the queue of non cached meta-subjobs and places every subjob contained
in it into its queue. By construction, these subjobs are all requiring a partially
common contiguous data segment which is not present on the node and which
will be loaded from tertiary storage.

during which jobs are accumulated without being scheduled. They are then sched-
uled at once at the end of the period and processed during the next period. A data
segment stripe size is also defined as being the largest acceptable size of a data
segment associated to a subjob. We use different values for the stripe size, ranging
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from 200 to 25000 events. Table 3.4 describes the delayed scheduling policy.
The goal of the delayed scheduling policy consists in loading the data from

tertiary storage only once during a given period. In addition, the “stripe size”
parameter controls the average size of a subjob and thus on how many nodes a job
may be distributed.

The comparison between the out of order and the delayed scheduling policies
is not obvious since they don’t try to achieve the same goal. The out of order
scheduling policy, despite its name, is still pretty fair concerning the job execution
order. On the contrary, the delayed scheduling policy only focuses on cluster
utilisation optimisation. The average speedup will thus be lower since many jobs
requiring non cached data may stay idle during long periods while other jobs are
running on cached data (no fairness). For the same reason, their waiting time will
also be worse. In addition the waiting time becomes longer due to the fact that
jobs have to wait until the end of a period before being scheduled. This extra
“period” delay is not included in the waiting time shown in the figures.

Figure 3.7 on page 55 shows the results of the simulation for delayed schedul-
ing with different “period” delays. As in Figure 3.3, the curves in Figure 3.7 are
cut at high loads when the cluster becomes overloaded i.e. when queues start
growing indefinitely. For comparison purposes, the out of order scheduling pol-
icy is also shown. Delayed scheduling behaves poorly both in terms of average
speedup and average waiting time. On the other hand, it allows to sustain very
high loads, especially if the “period” delay is large (up to 1 week for 9 h jobs).
However the total waiting time becomes really high if one takes into account the
“period” delay.

The influence of the stripe size on the delayed scheduling algorithm perfor-
mance is presented in Figure 3.8. It shows a very clear improvement in term of
speedup for small striping values and only a negligible influence on the average
waiting time. This reinforces the idea that the parallelization potential is better
exploited with smaller stripe sizes. A larger average speedup allows to sustain
higher loads.

A summary of the maximal sustainable loads under different period delays,
cache sizes and stripe sizes is given in Figure 3.9. We can observe an almost linear
dependency of the maximal load with respect to both the delay and the stripe size.
The more we wait and the finer we split the jobs, the larger the maximal load we
can sustain. The simulation experiments show that a maximal load of 3 jobs per
hour can be reached by using 200 gigabytes of disk cache, 1 week of delay and a
stripe size of 200 events. This maximal load can be compared with the maximal
theoretical load of 3.46 jobs per hour. It is close to 3 times the load of 1.1 jobs per
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Figure 3.7: Speedup and waiting time (period delay excluded) of the delayed
scheduling policy for different delays (cache size 100 GB, stripe size 5000
events)

hour sustained by processing farm scheduling without disk caching (see Sections
3.4.1 and 3.4.4).

3.6.2 Adaptive delay scheduling
As shown in the previous section, large period delays allow to sustain much higher
loads at the cost of excessive waiting times for the end-users.

We define here a new adaptive delay policy that aims at minimizing the waiting
time, while sustaining the current load. This policy makes use of the performance
parameters shown in Figures 3.7, 3.8 and 3.9 in order to choose the minimal “pe-
riod” delay that allows to sustain the current load.

Figure 3.10 shows the performance of adaptive delay scheduling compared to
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Figure 3.8: Average speedup and waiting time (delay excluded) of delayed
scheduling for different stripe sizes (cache size 100 GB, period delay 2 days)

the out of order scheduling policy. As in previous figures, the curves are cut at
high loads when the cluster becomes overloaded. As expected, the use of delayed
scheduling allows the adaptive delay policy to sustain approximately 50% higher
loads compared with the out of order scheduling policy.

At low loads and for small stripe sizes, the adaptive delay policy is performing
in terms of speedup as well or slightly better than the out of order scheduling
policy. At these low loads, the “period” delay is actually reduced to zero. The
counterpart is a little overhead (up to 1h) in the average waiting time. However,
this overhead is not really significant when compared to the single job single node
average processing time (9h).

One may wonder why there is still a difference between the out of order
scheduling policy and the delayed policy at low loads (where the “period” de-
lay is zero). This is a consequence of the different data distribution strategies.
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Figure 3.9: Maximal sustainable load of the delayed scheduling policy with
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In the out of order scheduling policy, the data distribution is a side-effect of the
parallelization that occurs when computing nodes are idle. However priority is
given to starting new jobs over parallelizing (splitting) running jobs. In the de-
layed scheduling policy, in most of the cases, the data distribution is triggered by
a predefined stripe size. Thus, for small stripe sizes, the level of parallelization of
delayed scheduling is higher, leading to larger speedups. On the other hand, since
jobs are in most cases split into subjobs running in parallel, and since only one
subjob runs on one node at a given time, the number of concurrently running jobs
becomes smaller, leading to longer waiting times.
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Figure 3.10: Speedup and waiting time (delay included) of the adaptive delay
policy for different stripe sizes (cache 100 GB) compared with the out of order
scheduling policy

3.7 Conclusions

We propose several scheduling policies for parallelizing data intensive particle
physics applications on clusters of PCs (see also [PH04]) . Particle physics anal-
ysis jobs are composed of independent subjobs which process either non-overlap-
ping or partly overlapping data segments. Jobs comprise tens of thousands of
collision events, each one requiring typically 200 ms CPU processing time and
access to 600 KB of data.

We show that splitting jobs into subjobs improves the processing farm model
by making use of intra-job parallelism. By caching data on the processing farm
node disks, cached-based job splitting further improves the performances.

The out of order job scheduling policy we introduce takes advantage of cache
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resident data segments and still includes a certain degree of fairness. It offers
considerable improvements in terms of processing speedup, response time and
sustainable loads. For the same level of performance, the typical load sustainable
by the out of order job scheduling policy is double the load sustainable by a simple
first in first out cache-based job splitting scheduling policy.

We propose the concept of delayed scheduling, where the deliberate inclusion
of period delays further improves the disk cache access rate and therefore enables
a better utilisation of the cluster. This strategy is very efficient in terms of the
maximal sustainable load (50 to 100% increase) but behaves poorly in terms of
response time and processing speedup. In order to offer a trade-off between maxi-
mal sustainable load and response time, we introduce an adaptive delay scheduling
policy with large delays at high loads and zero delays at normal loads. The delay
is adapted to the current system load, thus trying to optimise the response time
as a function of the current load. This adaptive delay scheduling policy aims at
satisfying the end user whenever possible and at the same time enables sustaining
high loads.
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Chapter 4

Theoretical models

In this chapter, we try to build theoretical models of different scheduling policies
in order to derive equations describing the system. We develop equations for the
speedup for the job splitting scheduling policy, the out of order scheduling policy
and the delayed scheduling policy. However, the cache oriented scheduling policy
was not modelled due to the high complexity of its queuing system.

We also evaluate the scalability of the scheduling system depending on the
complexity of the algorithms both in term of scheduling time and memory usage.

4.1 Assumptions and notations
The assumptions and notations given in this section are the common base for all
the models developed in this chapter.

4.1.1 Job arrivals

Since the different jobs are issued by independent users, the proposed theoretical
models suppose that the system has no memory about jobs arrival. This leads to
an exponential distribution of the delay between two arrivals as shown in [Kle76,
Section 2.4]. We call λ the parameter of this distribution. After a job arrival, the
distribution of the delay before the next job arrival is thus :

P [time before next arrival < t] = e−λ t (4.1)

where λ also expresses the average number of jobs arriving per unit of time.

61
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4.1.2 Service time
The distribution of the service time on a single node is supposed to be Erlangian
with parameter r and mean service time 1

µ
. The distribution of the service time is :

p[t ≤ service time < t + h] =
(r µ)r tr−1 e−r µ t

µ (r − 1)!
h (4.2)
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Figure 4.1: Erlangian probability Distribution with µ = 1

The choice of this distribution is a trade-off between easyness of the compu-
tations and the proximity of the distribution to the real case. The Erlangian dis-
tribution enables fixing the mean value of the distribution ( 1

µ
) and its correlation

( r
µ

) independently. Figure 4.1 shows how the correlation factor affects the shape
of the probability density. It also shows that for r > 2, the shape is reasonably
close to a real case (usually a Gaussian shape). On the other hand, the Erlangian
distribution is close to the very simple case of the exponential distribution (case
r = 1) and thus enables simple computations.

An Erlangian distribution corresponds to a system where a user request has to
go through r consecutive sequential servers, all identical and having each one an
exponential service time distribution of parameter r µ. The next user request can
only enter the system when the first one is out of the last server. In other words,
at most one of the r servers is active at any point in time. The global service time
distribution of this system is Erlangian with average service time 1

µ
and parameter

r.
This particularity can be used to reformulate the initial problem into a new

one where each job or subjob has to pass through r service steps (the r servers in
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the previous description), all having an exponential service time distribution. For
more details, please refer to [Kle76, Section 4.3], concerning the M/Er/1 queue.

4.1.3 Load
We call ρ the “load” of the system and define it as the ratio of job arrival rate and
job service rate :

ρ , λ

n µ
(4.3)

where n is the number of nodes in the cluster.

4.2 Job splitting Model
In the job splitting policy, each job can be split into several subjobs with no re-
striction on the number of subjobs and the subjobs sizes. In order to model this
behaviour, we will first consider a case where each job is split into exactly m sub-
jobs of equal size. We will then consider the limit when m → +∞ to mimic the
real case. By taking this limit, we reach the case of an infinite number of subjobs.
The scheduling will end up in grouping these subjobs into a finite number of sub-
job sets that match exactly the subjobs that would have been created in the real
case. Thus the model will give the same average service time and speedup as the
real scheduling strategy when m → +∞.

As explained in Section 4.1.2, we assume an Erlangian distribution of the
service time by assuming that the service is divided into r sequential equal service
steps having each an exponential service time distribution.

Let pi(t) denote the probability that the subjobs in the system at time t need
to perform i service steps before finishing. We can estimate the evolution of this
quantity after a very short duration h. Since h is short, we only take into account
the cases when a single event takes place during h. There are three cases :

• no subjob go to the next service step and no new job arrives.

• one subjob goes to next service step and no new job arrives.

• a new job arrives and no subjob goes to next service step. Note that this job
will be split into m subjobs according to our model and will perform m r
steps in total.
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According to the job arrival time distribution (see Section 4.1.1), the probabil-
ity that a new job arrives within h is λ h. According to the service time distribution
(see Section 4.1.2), the probability that a given subjob finishes a given service step
on a given node within h is r µ h (in case of a non idle cluster only). Therefore the
probability that a step is finished by any subjob on any node within h is n m r µ h
where n is the number of nodes and m is the number of subjobs. The sequencing
of steps with the different transition probabilities is summarised in Figure 4.2.

ii−mr

New job arrival
No terminated step

µh(1−nmr   h)λ i+1(1−  h)nmr   hλ µ

Terminated step
No new job

No terminated step
No new job

(1−  h)(1−nmr   h)λ µ

Figure 4.2: Sequence of steps for job splitting

If we take by convention i < 0 ⇒ ∀t pi(t) = 0, this leads to the following
equations for the evolution of the system :

p0(t + h) = p0(t)(1− λ h) ; Probability to remain empty (no new job)
+ p1(t)(1− λ h)n m r µ h ; Probability to terminate last step

and ∀i > 0

pi(t + h) = pi(t)(1− λ h)(1− n m r µ h) ; No new event, no termination
+ pi+1(t)(1− λ h)n m r µ h ; No new event, end of step
+ pi−mr(t)λ h(1− n m r µ h) ; New job, no termination

Neglecting the terms containing h2, this leads to :

p0(t + h)− p0(t)

h
= n m r µp1(t)− λp0(t) (4.4)

and ∀i > 0

pi(t + h)− pi(t)

h
= (−λ− n m r µ) pi(t)

+ n m r µ pi+1(t) (4.5)
+ λ pi−mr(t)
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Since we want to analyse the system in stable mode, the solution to equations
(4.4) and (4.5) must be independent of time. We thus drop the time dependence
and make the left term equal to 0 which leads to the following equation for pi :

p1 =
ρ

m r
p0(t) (4.6)

and ∀i > 0

pi+1 +
ρ

m r
pi−mr =

(
1 +

ρ

m r

)
pi (4.7)

Let us use the z-transform [Vic87] to solve these equations. Thus we define
P (z) :

P (z) =
+∞∑
i=0

pi zi (4.8)

From equations (4.6) and (4.7) we get :

+∞∑
i=1

pi+1 zi +
ρ

m r

+∞∑
i=1

pi−mr zi =
(
1 +

ρ

m r

) +∞∑
i=1

pi zi

1

z
(P (z)− z p1 − p0) +

ρ

m r
zmr P (z) = (1 +

ρ

m r
) (P (z)− p0)

P (z) = p0
1

1− ρ
m r

z A(z)
(4.9)

with A(z) =
zmr − 1

z − 1

Using the definition of P (z), we have P (1) =
∑+∞

i=0 pi = 1. Using equa-
tion 4.9, we also have :

P (1) = p0
1

1− ρ
m r

z A(1)

Since A(1) = mr (see Appendix A), we can deduce that p0 = 1− ρ.
P (z) gives every information on the behaviour of the system. In particular,

we can derive Nm, the average number of jobs in the system. Since the average
number of service steps in the system is

∑+∞
i=1 i pi and the average number of

remaining service steps per job is m r
2

, we have :
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Nm =
2

m r

+∞∑
i=1

i pi (4.10)

From equations (4.9) and (4.10) we get :

Nm =
2

m r

∂P (z)

∂z

∣∣∣∣
z=1

=
2ρ(1− ρ)

m2 r2

A(z) + z ∂A(z)
∂z(

1− ρ
m

z A(z)
)2

∣∣∣∣∣
z=1

Since A(1) = mr and ∂A(z)
z

∣∣∣
z=1

= m r(m r−1)
2

, we finally have :

Nm =
2ρ(1− ρ)

m2 r2

m r + m r(m r−1)
2

(1− ρ)2

Nm =
m r + 1

m r

ρ

1− ρ
(4.11)

Finally, when m → +∞, we obtain the average number of jobs in the real
case :

N∞ =
ρ

1− ρ
(4.12)

Note that this result is identical to the case of a M/M/1 system where a single
node has an exponential service time distribution [Kle76].

The average service time AST for a job in the job splitting policy can be
evaluated from N∞. The average service time if the number of jobs in the system
would always be equal to i would be :

ASTi =

{
i

n µ
if i ≤ n,

1
µ

if i ≥ n,
(4.13)

With Pi, the probability that there are exactly i jobs in the system, we have :

AST =

∑+∞
i=1 Pi ASTi∑+∞

i=1 Pi

=

∑+∞
i=1 Pi ASTi

1− P0

(4.14)
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In the case of a sustainable load, the probability that the number of running jobs is
greater than the number of nodes is very small. In other words, ∀ i > n Pi ¿ 1.
We can thus evaluate AST by writing :

AST ≈
∑+∞

i=1 Pi
i

n µ

1− P0

AST ≈ 1

n µ (1− P0)

+∞∑
i=1

i Pi (4.15)

By construction, the sum in the second term of equation (4.15) is the average
number of jobs in the system, i.e. N∞. Noting that P0 = p0 = 1 − ρ, and using
equation (4.12) we have :

AST ≈ N∞
n µ (1− p0)

AST ≈ 1

n µ (1− ρ)
(4.16)

We then derive the speedup, i.e. the relative decrease of the average service time,
in respect to the case of single job running on a single node (case ρ = 0, n = 1) :

Speedup , 1

µ AST

Speedup ≈ n (1− ρ) (4.17)

Figure 4.3 shows the accuracy of the theoretical equations compared to the
simulation.

4.3 Out of order Scheduling Model

4.3.1 Speedup derivation based on Job Splitting case
In the out of order scheduling policy, the main variation compared to the job split-
ting policy is the presence of the disk data caches and the way subjobs are sched-
uled depending on whether they access cached data or non cached data. In the
case where the data caches have a zero size, the subjobs are not reordered and
the two policies are similar. Thus, as a first approximation, the equations (4.12),
(4.16) and (4.17) apply.
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Figure 4.3: Average speedup time for the job splitting policy compared with
the theoretical estimation

In the case of non-zero size disk caches, the effect of the caches can be seen as
a modification of the average service time of each node. Since the subjobs can be
reordered, the out of order policy will most of the time be able to take advantage
of cached data. This is actually the main difference with the cache oriented job
splitting policy where the subjobs are not reordered and very often have to be
started without taking cached data into account.

Let γ be the gain in processing time when a node accesses cached data com-
pared to its accesses to non cached data. We use here the following parameters,
corresponding to the setup of the simulation in Section 3.3.2 :

• Disk throughput : 10 MB/s,

• Tertiary storage throughput : 1 MB/s

• Average event size : 600 KB

• Average CPU time per event : 200 ms

By assuming that the out of order policy manages to always use cached data by
reordering subjobs, we have :

γ =
TI/O 3rd storage + TCPU

TI/O disk + TCPU

=
0.6s + 0.2s

0.06s + 0.2s
≈ 3 (4.18)
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This gain γ is only achieved on cached data, otherwise the gain is 1. The
average gain Γ depends on the probability that a given event is cached. It depends
therefore on the size of the disk caches. Let c be the probability that a given event
is cached on a given node. Thus n c is the probability a given event is cached,
assuming that caches contain distinct events. c is derived from Figure 3.2 on page
42 using the equations given in Appendix B on page 111.

We obtain :

Γ = P [data is cached] γ + P [data is not cached]

= n c γ + 1− n c

= 1 + n c (γ − 1) (4.19)

Let us now reconsider Section 4.2 with a single node service rate µ′ = Γ µ,
which implies a load of ρ′ = ρ

Γ
. This leads to an average service time :

AST ≈ 1

n µ Γ
(
1− ρ

Γ

) (4.20)

and therefore :
Speedup ≈ n (Γ− ρ) (4.21)
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Figure 4.4: Average speedup time for out of order scheduling policy com-
pared with the theoretical estimations

Figure 4.4 compares these theoretical estimations with the simulation results.
Although the equations give an approximation of the simulated speedup, the shape
of the speedup evolution with respect to the load is not correct. This is probably
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due the fact that in the out of order scheduling policy, the reordering of job re-
quests has not been modeled.

At high load, the reordering makes the out of order scheduling policy closer
to the delayed scheduling policy than to the job splitting scheduling policy. This
is due to the fact that jobs working on non cached segments will be delayed until
all the jobs with cached segments are processed.

4.3.2 Improved model

Figure 4.4 shows that the approximation given by equations 4.20 and 4.21 are too
rough. The simulations tend to suggest that the actual equations for the average
service time and the speedup should be :

Γ = 1 +
3

4
n c (γ − 1) (4.22)

AST ≈ 1

n µ Γ
√

1− ρ
Γ

(4.23)

Speedup ≈ n
√

Γ
√

Γ− ρ (4.24)

Figure 4.5 gives a comparison of the simulations and the theory with this set
of empirically derived equations.
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4.3.3 Number of subjobs per jobs
The number of subjobs created per job is an important parameter of the system
and is needed to compute the algorithms complexities (Section 4.5). Therefore,
we need to establish the dependency between the number of subjobs per job and
the number of nodes in the cluster.

Let j(t) be the number of jobs running concurrently in the cluster and s(t)
the average number of subjobs per job at time t. If the cluster is not idle, the job
splitting algorithm ensures that all nodes have a running subjob. Thus :

∀t > 0 j(t) s(t) ' n (4.25)

In the case of the out of order scheduling policy, splitting of subjobs is carried
out by ensuring that the maximum number of subjobs can start immediately after
their creation. Let us assume that all subjobs are always running. Thus, the aver-
age speedup at time t is proportional to s(t). Provided that the cluster is running
j(t) jobs concurrently and that the maximum average speedup is bounded (see
Section 3.4.4), we have a ratio of subjobs and jobs which does not depend on the
number of nodes :

s(t)

j(t)
= O(1) (4.26)

Therefore :

∀t > 0 j(t) = O(
√

n) (4.27)
s(t) = O(

√
n) (4.28)

We deduce that the number of subjobs per job at a given time as well as the
number of running jobs are both proportional to the square root of the number of
nodes. Figure 4.6 gives a comparison of this result with the simulations.

4.4 Delayed Scheduling Model

4.4.1 Two phases
In the delayed scheduling policy, scheduling is only carried out once per period
of time. Let H be the length of this period. If we assume that the system is
not overloaded, we can consider that all jobs of the previous period have been
terminated at the beginning of a new period. Thus processing operations carried
out during the new period are divided in two parts :



72 CHAPTER 4. THEORETICAL MODELS

 10

 100

 1000

 10  100  1000  10000

N
um

be
r 

of
 s

ub
jo

bs
 p

er
 jo

b

Nb nodes

Simulation
Theory

Figure 4.6: Average number of subjobs per job for the out of order scheduling
policy compared with the theoretical model

• the processing of events that are present in caches

• the processing of all other events, after loading the data segments from ter-
tiary storage.

Let T1 and T2 be the durations of these two phases and c be the portion of data
cached on a single node. The number of jobs queued in front of a node after
scheduling because they access cached data is :

Ncached = λ H c (4.29)

Let γ be the speedup when processing an event located in cache. Then

T1 =
Ncached

γ µ

=
λ H c

γ µ

With ρ = λ
n µ

, we have :

T1 =
n c

γ
ρ H (4.30)

Let d be the portion of data (cached + non cached) read on average by a job.
The average number of jobs that will access the data item associated to a given
event during a period will be :

Njobs = λ H d = n µ ρ H d (4.31)
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In the second phase of the processing, the data segments have to be loaded but
they are only loaded once. The average speedup Γ of the jobs during this period
can be estimated by considering that the speedup is 1 once every Njobs jobs when
the data has to be loaded and γ for all the others jobs, when the data is already
loaded. This leads to :

Γ =

{
1 if Njobs ≤ 1,

1
Njobs

1 +
(Njobs−1)
Njobs

γ if Njobs ≥ 1

Γ =

{
1 if Njobs ≤ 1,

γ + (1−γ)
n µ ρ H d

if Njobs ≥ 1
(4.32)

The total number of jobs to be processed in the second part is :

Nnon cached = λ H − n Ncached

= λ H (1− n c) (4.33)

Since these jobs will be processed in parallel on all nodes of the cluster, we de-
duce :

T2 =
Nnon cached

n µ Γ

=
λ H (1− n c)

n µ Γ

T2 =
ρ H (1− n c)

Γ
(4.34)

4.4.2 Average waiting time

Two cases have to be considered depending whether a job has some of its data
cached or not. In case a job has cached data, it will start during phase one. If we
neglect the processing time of a single job compared to the duration T1 of the first
phase, we can say that on average, such a job has a waiting time of T1

2
.

When a job has no data cached at all, it will start during phase two, i.e. it
will wait during the whole first phase plus, on average, half of the second phase
(we neglect the processing time of a single job compared to the duration T2 of the
second phase). Its waiting time will thus be T1 + T2

2
.
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Let us call α the probability that a job has some of its data cached. We get the
average waiting time per job AWT :

AWT = α
T1

2
+ (1− α)

(
T1 +

T2

2

)

= T1

(
1− α

2

)
+ T2

1− α

2

AWT = ρ H

[
n c

γ

(
1− α

2

)
+

1− n c

Γ

(
1− α

2

)]
(4.35)

where only Γ is not a constant (at least when Njobs ≥ 1).
It is difficult to derive a precise number for α since it depends on several

difficult to establish parameters such as the cache policy, the stripe size and the job
size distribution. However, we can have a rough estimate of the average waiting
time by using α = n c, i.e. the portion of the data space contained in the caches.
This lead to :

AWT = ρ H

[
n2 c2

2 γ
+

n c (1− n c)

γ
+

(1− n c)2

2 Γ

]
(4.36)
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Figure 4.7: Average waiting time for delayed scheduling policy compared
with equations

Figure 4.7 plots a comparison between the simulated average waiting time
and formula 4.36. It shows that the approximation is valid in the range of loads
between 10% and 90% of the maximal load.
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4.4.3 Average speedup

While we had to consider two cases for the waiting time, we have to consider three
cases for the derivation of the average speedup :

• jobs with only cached data

• jobs with no cached data

• jobs with partially cached data and partially non cached data

In the first two cases, the jobs start and end within the same phase while in the
third case, the jobs start in the first phase and then stop and wait for the second
phase to resume and complete their execution.

If a job has only cached data, its average service time AST can be deduced
from the service time on a single node with no cache (i.e. 1

µ
) by taking into account

the improvement due to the cache and the improvement due to the parallelization.
The improvement due to the cache is γ. We call d//c the improvement due to the
parallelization. We obtain :

ASTcached =
1

γ µ d//c

(4.37)

where d//c can be seen as the average degree of parallelization of the jobs
with only cached data, i.e. the average number of nodes on which they run. Note
that due to the specificities of the delayed scheduling policy (ignorance of the job
arrival order) and to the random distribution of the data used by the different jobs,
d//c does not depend on the load nor on the delay. Thus, it is a constant in our
context.

The same reasoning line applies to jobs without cached data, leading to the
same kind of formula for their average service time :

ASTnon cached =
1

Γ µ d//nc

(4.38)

where d//nc can be seen as the average degree of parallelization of the job without
cached data.

In the case of jobs with both cached and non cached data, we have to take into
account their waiting phase. For typical loads and delays, this waiting phase is
far longer than the job processing time. We thus neglect the processing time and
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suppose that the average service time is equal to the duration of the waiting phase,
i.e. on average :

ASTmixed =
T1 + T2

2

ASTmixed =
ρ H

2

(
n c

γ
+

1− n c

Γ

)
(4.39)

Let finally α and β be the probabilities that a job has only cached data and
respectively no cached data. Then we have :

AST = α ASTcached + β ASTnon cached + (1− α− β) ASTmixed

=

(
α

γ d//c

+
β

Γ d//nc

)
1

µ
+

1− α− β

2
ρ H

(
n c

γ
+

1− n c

Γ

)
(4.40)

And by definition of the speedup :

Speedup , 1

µ AST

Speedup =
1(

α
γ d//c

+ β
Γ d//nc

)
+ 1−α−β

2

(
n c
γ

+ 1−n c
Γ

)
ρ H µ

(4.41)

Deriving theoretical estimates of the unknown values α, β, d//c and d//nc is
beyond our knowledge. However, we can conclude about the form of the speedup
and its dependency with respect to the load and the delay :

Speedup =
1

a + b ρ H µ
(4.42)

where a and b are considered as constants which do not depend on the load.
Figure 4.8 shows how expression 4.42 fits the simulation data for different

delays and stripe sizes. The values of a and b are fitted from the simulated data
and given in Table 4.1. Note that the actual values of α, β, d//c and d//nc may be
extracted from the simulation data. This would require more simulations where
the cache setup and the value of the gain γ are changed in addition to the load and
the delay. It is only by using these 4 degrees of liberty that all 4 parameters can
be isolated.
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Figure 4.8: Average speedup for delayed scheduling policy compared with
equations

4.5 Scheduling time complexities

The theoretical time complexity of each of the presented scheduling algorithms
can be derived by a careful analysis of their implementation. Table 4.3 presents
the main lines of this analysis leading to the scheduling time complexities per job
summarised Table 4.2. The complexities are given with respect to the number n
of computing and storage nodes present in the system.

Table 4.2 gives the complexity of scheduling one job depending on the number
n of nodes in the cluster. However, in a real case, the number of jobs processed
per unit of time is also dependent on the number of nodes, typically proportional
to it. Taking this fact into account, theoretical complexities can be compared with
the measurements from the simulation system. Figure 4.9 gives simulation for the
following case :
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delay stripe size (nb events) a b

11 h 1000 .062 .248
2 days 1000 .070 .163
1 week 1000 .072 .090
2 days 200 .056 .074
2 days 1000 .070 .163
2 days 5000 .132 .273
2 days 25000 .216 .252

Table 4.1: Coefficients used for fitting delayed scheduling data with theoreti-
cal equations

Policy Complexity
Processing Farm O(n)

Job Splitting O(n2)
Out of order O(n

√
n)

Delayed Scheduling O(n)

Table 4.2: Scheduling time complexities of the different scheduling algo-
rithms presented in respect to the number n of nodes in the cluster

1. The cluster load is proportional to the number of nodes

2. The data space is size proportional to the number of nodes

3. For delayed scheduling, the period delay is inversely proportional to the
number of slave nodes. Thus the average number of jobs arriving into the
cluster within a period is not dependent on the number of slave nodes. The
delay used in Figure 4.9 is one month for a one node cluster, corresponding
to e.g. 3 days for a 10 nodes cluster and 7 hours for a hundred nodes cluster.

Figure 4.9 shows both the simulation data (marker lines) and the theoretical
models (dotted, without marker lines). Only the slope of the lines were known
and their position was derived from the simulation data.

Simulations and theory match well for the job splitting and out of order poli-
cies. In the case of the delayed policy, the load represents both the subdivision of
data into the desired stripe size and job splitting. Thus an extra curve of simulated
data shows the time spent only in the job splitting part of the delayed scheduling



4.5. SCHEDULING TIME COMPLEXITIES 79

Table 4.3: Details on the computation of the theoretical scheduling time com-
plexities of the different algorithms presented with respect to the number n
of nodes in the cluster.

Processing Farm
Scheduling one job requires traversing
the list of nodes to find an idle node.
Scheduling complexity is O(n).

Job Splitting
Upon job arrival, the worst case requires
scanning all nodes to find the subjob to
be suspended. Complexity of this case is
O(n).
Upon job or subjob end, the worst case
consists in finding the subjob to split. By
looking at all of them (one per node) the
complexity is O(n) per split.
According to the theoretical model of Sec-
tion 4.2, the average number of jobs in the
system depends only on the load, and is in-
dependent of the number of nodes n. Since
the jobs are parallelized across all nodes,
the number of splits per job is O(n). Since
the number of splits per job is O(n) and
each split operation is O(n), the overall
complexity of single job splitting is O(n2).

Out Of order
Upon job arrival, the new job has to be split
into subjobs. Splitting takes caches into ac-
count by reading the content description of
each node cache, yielding a complexity of
O(n).
When a node becomes available, a subjob
needs to be split. By looking at all of them
(one per node), the complexity is O(n) per
split. The global complexity per job is thus
of the order of O(n) multiplied with the
average number of splits per job, i.e. the
average number of subjobs. According to
Section 4.3, the average number of subjobs
is
√

n. the complexity per job is thus
O(n

√
n).

Delayed Scheduling
At each new period, the new jobs are split
into subjobs. Job splitting takes caches into
account by reading the content description
of each node cache, yielding a complexity
of O(n).
The non cached subjobs are further split.
The number of splits per job is given by
the stripe size and is independent of the
number of nodes yielding a complexity of
O(1). The overall complexity per job is
thus O(n).

algorithm. It clearly shows that the complexity of the job splitting part matches
the theoretical complexity. However, the simulations show that the job splitting
part becomes preponderant only for a large number of nodes, around 50 000.

From the extrapolations of the simulated data via the theory, the expected max-
imum number of nodes that a single master node can handle is around 5 000 for
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Figure 4.9: Average scheduling load of the master node as a fraction of the
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on a single 2.0GHz Intel Celeron processor, the delay for delayed scheduling
is one month divided by the number of nodes

the job splitting policy, around 20 000 for the out of order scheduling policy and
around 300 000 for the delayed scheduling policy. The period delay introduced
by the delayed scheduling policy reduces the job scheduling load for very large
clusters by an order of magnitude.

4.6 Scheduling Memory Space complexity
The memory space complexity is bound by the amount of data needed by the
master node to schedule the jobs, namely the list of nodes and the status of their
disk caches. The required memory space is linear with the number of nodes and
remains relatively small :

• The list of nodes is not large compared with the representation of the infor-
mation present in the disk caches

• The size of the representation of the information contained in a disk cache
is in the order of the cache size divided by the stripe size. The maximal
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cache size being around a few terabytes and the stripe size comprising a
few events i.e. a few megabytes, the size of the representation of cached
information is a few megabytes.

We may therefore store the information contained in two thousands very large disk
caches (each disk 500 GB yielding a total size of 1 PB) divided into very small
stripes within 1GB of RAM. For a regular stripe size, the scalability limitation
due to memory limitations on the master node is of the order of tens of thousands
of slave nodes in the cluster.

4.7 Conclusion
We develop theoretical model for some of the scheduling algorithms elaborated in
chapter 3. The job splitting scheduling policy model is derived from the theory of
queueing systems and matches very well the simulation data.

The out of order scheduling policy is approximated by extending equations of
the job splitting scheduling policy model. The resulting model is not very precise
(see Figure 4.4) since it does not take into account the effects of subjobs reordering
on the jobs themselves. Improved equations (4.22 to 4.24) are derived from the
simulation data but more research effort are needed to derive them directly from
the theory.

The delayed scheduling policy model gives an exact formula for the average
waiting time (see equation 4.36) but only the shape of the speedup. Some pa-
rameters are actually unknown and have to be deduced from the simulation data.
Comparison of theory and simulation data shows a very good match (Figures 4.7
and 4.8).

We finally study the scheduling time and space complexities of the different
scheduling algorithms and show that a single master node can handle from 5000
to 200 000 slave nodes, depending on the scheduling policy (Figure 4.9).
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Chapter 5

Pipelining processing and I/O
operations

In the previous chapters, we considered that I/O operations are performed serially,
i.e. processing operations can operate on data only after the disk accesses have
been carried out. However modern computing systems allow to asynchronously
perform I/O and processing operations and to hide the shortest of the two activi-
ties. We consider two types of pipelining :

• pipelining of tertiary storage access and computation : the access to tertiary
storage and the processing are performed asynchronously

• pipelining of local disk I/O, tertiary storage access and computation : read-
ing data segments from the disk caches is pipelined with the processing
activities

5.1 Pipelining accesses from tertiary storage

The computation of a given event can be carried out in parallel with the loading of
the next event from the tertiary storage (if the next event is not cached). With this
strategy, we expect to be able to hide completely the computation activity for non
cached events. The theoretical speedup for an event read from tertiary storage is
TCPU+TI/O

TI/O
= 0.2+0.6

0.6
= 1.33, i.e. a performance improvement of 33%.

83
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5.1.1 First come, first served scheduling policies

Figure 5.1 shows the improvement in speedup due to pipelining according to sim-
ulations for both the processing farm and the job splitting policy. The theoretical
value of 33% is confirmed for the processing farm policy : the speedup is stable
at 1.33 with pipelining.
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Figure 5.1: Average speedup for different scheduling policies with and with-
out pipelining of tertiary storage accesses, deduced from simulations.

For the job splitting policy, the theoretical speedup improvement of 33% is
confirmed at low loads. We obtain speedup of 13 with pipelining and of 9.75
without pipelining. At higher loads, the speedup improvement is higher than the
theoretical value. This is mainly due to a virtuous cycle starting with the reduction
of the average time spent by the jobs in the cluster. Whenever a job spends less
time in the cluster, it leaves its nodes earlier. The other running jobs can take
advantage of these nodes to increase their parallelization degree and run faster.
They will in turn stop earlier, leaving even more nodes for the next jobs.

Applying the theoretical results of Section 4.2 and letting Λ be the average
improvement for a single job on a single node (here Λ = 1.33), the average service
time ASTTP with pipelining of tertiary storage access is :

ASTTP ≈ 1

n µ Λ (1− ρ
Λ
)

(5.1)

where the mean service time µ of equation (4.16) has been replaced by µ
Λ

for the
pipelined case. Note that since the load ρ = λ

µ
and ρ is being divided by Λ, we
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obtain the speedup :

SpeedupTP ≈ n Λ (1− ρ

Λ
) (5.2)

≈ n (Λ− ρ) (5.3)

The speedup improvement of a factor Λ at low loads is confirmed (See Figure
5.2 for load 0.05). For higher loads, the speedup of the job splitting strategy de-
creases linearly with the load along the same slope as in the case with no pipeline.
The theory and the simulations match very well as shown by Figure 5.2. Figure
5.1 shows that the speedup improvement of 33% at low loads becomes 50% for
0.5 jobs per hour, 100% for 0.9 jobs per hour and 300% for 1 jobs per hour. The
maximum sustainable load of the cluster using the job splitting policy increases
from 1.15 to 1.5 jobs per hour, i.e. by a factor Λ as predicted by the theory.

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

A
v
e
ra

g
e

 s
p

e
e

d
u
p

Load (jobs/hour)

Job splitting
Job splitting Pipelined

Theory Job splitting
Theory Job splitting Pipelined

Figure 5.2: Average speedup for the job splitting scheduling policy with pipe-
lining of tertiary storage accesses compared with the theoretical estimations

5.1.2 Out of order scheduling policy

Figure 5.3 shows the gain of pipelining for the out of order scheduling policy,
according to the simulations. The relative speedup gain is proportional to the
amount of data that is loaded from tertiary storage. This leads to large improve-
ments in case of a small disk cache and no improvement at all when all data
is located within the disk caches. The maximum load supported by the cluster is
also improved in the case of small disk caches. From a performance point of view,
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Figure 5.3: Average speedup for the out of order scheduling policy with and
without pipelining of tertiary storage accesses for different disk cache sizes
and different load levels, deduced from simulations

pipelining has the same effect on the out of order scheduling policy as increasing
the disk cache size.

Applying the theoretical results of Section 4.3 and letting Λ be the average im-
provement for a single job on a single node (here Λ = 1.33), the average speedup
ΓTP with pipelining of tertiary storage access is :

ΓTP = Λ + n c (γ − Λ) (5.4)

Using equations 4.20 and 4.21, we can then deduce the average service time and
speedup with pipelining of tertiary storage access :

AST ≈ 1

n µ ΓTP

(
1− ρ

ΓTP

) (5.5)

Speedup ≈ n (ΓTP − ρ) (5.6)

Figure 5.4 shows a comparison of the theoretical computations and the simu-
lations results. As in the case without pipelining, the theoretical computation is
not precise enough although the order of magnitude of the speedup is correct.

However, reusing the improved equations given in Section 4.3.2 we can write :
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ΓTPi = Λ +
3

4
n c (γ − Λ) (5.7)

ASTTPi ≈ 1

n µ ΓTPi

√
1− ρ

ΓTPi

(5.8)

SpeedupTPi ≈ n
√

ΓTPi

√
ΓTPi − ρ (5.9)
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Figure 5.5 shows that the improved equations match accurately the simula-
tions.
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5.1.3 Delayed scheduling policy
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Figure 5.6: Average speedup for the delayed scheduling policy with and with-
out pipelining of tertiary storage accesses for a small disk cache and different
load levels

Figure 5.6 shows the gain of pipelining for the delayed scheduling policy ac-
cording to the simulations. The disk cache size was fixed to 50GB and different
delays were simulated. The improvements are also proportional to the proportion
of data read from tertiary storage. Since the delayed scheduling policy makes a
heavy use of disk caches, improvements are only present for small delays. Note
that the same simulations with a disk cache of 100GB show no improvement at
all, even for small delays, confirming that access to tertiary storage is negligible
for this cache size.

5.2 Pipelining of cache disk I/O
Pipelining of cache disk I/O and event processing allows us to further reduce
the overall processing time by hiding the disk I/O in the case of cached data.
When pipelining disk I/O, the theoretical speedup for an event read from disk is
TCPU+TI/O

TCPU
= 0.2+0.06

0.2
= 1.3. Pipelining of cache disk I/O brings no speedup when

the event is loaded from tertiary storage. However, in such a case, pipelining
from tertiary storage access brings an important speedup. The two pipelining
capabilities are therefore complementary.

Note that disk I/O pipelining makes no sense in the case of the computing farm
and job splitting policies since, for these policies, data segments are always read
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from tertiary storage.

5.2.1 Out of order scheduling policy

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.5  1  1.5  2  2.5  3

A
v
e
ra

g
e
 S

p
e
e
d

u
p

Load (jobs/hour), Out of Order policy

Tertiary storage pipe - 50 GB
Tertiary storage + disk I/O pipe - 50 GB

Tertiary storage pipe - 100 GB
Tertiary storage + disk I/O pipe - 100 GB

Tertiary storage pipe - 200 GB
Tertiary storage + disk I/O pipe - 200 GB

Figure 5.7: Average speedup for the out of order scheduling policy with ter-
tiary storage pipelining only and with both tertiary storage and disk I/O
pipelining for different disk cache sizes and different load levels

Figure 5.7 shows the gain of pipelining disk I/O and tertiary storage access in
the case of the out of order policy compared to the case where only the access to
tertiary storage is pipelined. The simulations show that the gain is large for large
disk caches where most of the data is read from the disk caches while it is small
for small disk caches where most of data is read from tertiary storage. Since the
performance gain of disk I/O pipelining is complementary to the gain obtained
by tertiary storage pipelining, the total gain in speedup due to both disk I/O and
tertiary storage pipelining is quite constant, around 30% as shown in Figure 5.8.

Reusing Section 4.3, we can establish the theoretical model for the case where
both disk I/O and access to tertiary storage are pipelined. Let η be the speedup in
case of disk I/O pipelining for a cached event (here we have η = 1.3) and ΓTDPi

the average speedup where TDPi
means respectively “Tape”, “Disk”, “Pipelining”

and “improved”. We adapt Equation 5.7 deduced from the simulations and ob-
tain :

ΓTDPi
= Λ +

3

4
n c (η γ − Λ) (5.10)

According to Equations 5.8 and 5.9, we derive the following equations for the
service time and the speedup :
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ASTTDPi
≈ 1

n µ
√

ΓTPi

√
ΓTDPi

− ρ
(5.11)

SpeedupTDPi
≈ n

√
ΓTPi

√
ΓTDPi

− ρ (5.12)

Note the use of both ΓTPi and ΓTDPi
in the equations. Figure 5.9 shows that

equations 5.11 and 5.12 fit the simulation data.
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5.2.2 Delayed scheduling policy
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Figure 5.10: Average speedup for the delayed scheduling policy with tertiary
storage pipelining only and with both tertiary storage and disk I/O pipelining
for different disk cache sizes and different load levels

Figure 5.10 shows the gain of pipelining the disk I/O in the case of the de-
layed policy compared to the case where only the tertiary storage accesses were
pipelined. The first figure shows simulations run with a disk cache of 100GB. In
the second figure, the disk cache is only 50GB.

In the 100GB case, in a first approximation, tertiary storage accesses are neg-
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ligible. We thus expect a speedup of 30% due to pipelining of disk I/O. This is
actually confirmed for all loads when the delay is 11h or 2 days. In the case of
long delays (1 week), the speedup improvement is hidden by the very long delays
that the delayed scheduling policy imposes.

In the 50GB case, due to the smaller cache, the impact of disk I/O pipelining
is smaller, especially for short delays, e.g. the improvement for a delay of 11h is
only 15%.

5.3 Conclusions
Pipelining tertiary storage accesses and computations increases performances of
scheduling policies when caches are not heavily used. The gain in speedup in-
creases up to 30% in cases where the cache is not used.

Pipelining disk I/O and computation increases the performances of scheduling
policies where the cache is heavily used. The gain in speedup increases up to 30%
and it adds to the gain obtained the pipelining of tertiary storage accesses.

Using both pipelining techniques, an average speedup gain of 30% is observed
in case of job splitting and out of order scheduling policies. However, the speedup
improvement is smaller for the delayed scheduling policy due to the long delays
it suffers from.

Theoretical models of pipelining are based on the modelization of the different
scheduling policies. As a consequence, the model of pipelining for the job split-
ting policy matches very well the simulation results while the model of the out of
order scheduling policy is not very accurate. As in Chapter 4, we give improved
equations for the out of order scheduling policy, deduced from the simulation re-
sults. More work is needed to derive them directly from the theory.



Chapter 6

Integration in LHCb’s framework

In the previous chapters, we have studied in details the different scheduling algo-
rithms for parallelizing physics data analysis jobs on clusters of PCs.

We will now show how this parallelization can be implemented on a real parti-
cle physics application, namely the LHCb software. All the application of LHCb
are based on a common framework called GAUDI [cg05]. Our goal is to imple-
ment the parallelization at the framework level so as to ensure that all applications
can benefit from the parallelization with no modification of their own code.

We will first present the GAUDI framework and the DPS [GH03] paralleliza-
tion tool before describing the implementation and the status of our prototype.

6.1 GAUDI, the LHCb framework

The GAUDI framework aims at providing a set of tools that facilitate the creation
of particle physics applications. Section 6.1.1 presents the major design criteria of
GAUDI. Section 6.1.2 presents an overview of the main components of GAUDI
and Section 6.1.3 describes its event loop concept.

6.1.1 Major design criteria

Clear separation between data and code

Data handled by GAUDI applications are events, geometry data and histograms.
The processing code is provided by physicists and is mainly contained in algo-
rithms. Algorithms are stateless pieces of code and implement some data trans-
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formation process. As an example, an algorithm can compute statistics and create
histograms or reconstruct particle tracks and fill the fields of the event data items.

Data centered architecture

The architecture allows the development of physics algorithms in a fairly indepen-
dent way. A transient data store is used for communication between algorithms.
Data objects can be registered and identified through a hierarchical addressing
scheme. The transient store is a pure memory object. Algorithms do not have to
care about data persistency.

Clear separation between persistent data and transient data

Persistent data items reside on disk or tape while transient data items reside in
memory, i.e. in transient stores. The conversion between transient and persis-
tent data is carried out automatically by the DataSvc service and its sets of data
converters. The conversion is carried out on demand by the framework.

Well defined interfaces, as generic as possible

Each component of the architecture implements a number of abstract interfaces
used for interacting with the other components. Therefore, the implementation of
a component can be replaced without changing the rest of the application.

6.1.2 Main components
A picture of the main components of GAUDI is given in Figure 6.1.

Algorithms and Application Manager

The essence of GAUDI applications is event processing, i.e. computations based
on particle physics events. The processing code is encapsulated into a set of com-
ponents called algorithms. Algorithms implement an abstract interface that allow
to call them without knowing what they really do. By calling each other, algo-
rithms build a hierarchical structure at the top of which the application manager
sits. The application manager is the “chef d’orchestre” who decides what algo-
rithms to load and when to call them, based on the application’s configuration
file.
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Figure 6.1: GAUDI architecture : Component view

Transient data stores

The data objects needed by the algorithms are organised in various transient data
stores : event data store, detector data store and histogram data store. These
are pure memory object stores, automatically populated on demand from event,
geometry or histogram files by dedicated services using appropriate sets of data
converters.

Services

Services are components which offer useful functionalities to physicists, enabling
them to concentrate on developing the physics content of the algorithms. Exam-
ples of services can be seen in the object diagram on Figure 6.1. For instance,
there are services for managing the different transient stores (event, detector and
histogram data service), sending messages to the user, dealing with options, ac-
cessing a repository of particle properties, ...

Event Selector

The Event Selector provides functionality to the application manager for selecting
the events that the application should process. This will be one of the main targets
for our parallelization efforts, together with the Application Manager itself.
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6.1.3 The event loop
The Event Loop is the central part of the GAUDI architecture. It is handled by
the Application Manager and is supposed to run a given list of algorithms on each
event of the input set. Figure 6.2 gives a schema of a Gaudi application from the
event loop point of view.

Start of
Event Loop

nextEvent Execute
event

Application
Manager

Application
Manager

Gaudi init

Event Selector

Figure 6.2: The Event Loop

Inside the Execute Event operation, algorithms are run in a specific order,
given by the configuration file of the GAUDI application. Everything runs as a
data flow from one algorithm to the next, as shown on the left part of Figure 6.3.

Algo 1

Algo 3

Algo 2

Algo 2Algo 1 Algo 3

Transient Store

Application
Manager

Event Selector

Config File

Algo 1
Algo 2
Algo 3

High level view Internal View

nextEvent

input

output

Figure 6.3: GAUDI high level and internal view

The actual execution is shown on the right part of Figure 6.3. The applica-
tion manager uses the event selector to run through the events and runs the algo-
rithms one by one as specified by the configuration file. From its point of view,
algorithms are completely independent. The transmission of the data from one
algorithm to the next is carried out through the transient store.
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6.2 DPS, the dynamic parallelization system
DPS (Dynamic Parallel Schedules) [GH03] is a framework for developing dis-
tributed parallel applications on clusters of PCs or workstations. DPS uses a high-
level graph-based application description model, allowing for complex applica-
tion designs. DPS also provides a dynamic application execution environment,
allowing for malleable applications and fault-tolerance.

6.2.1 Split - Merge construct
An application using DPS is expressed as a directed acyclic graph of sequential
operations, called a flow graph. The flow graph is built of compositional cus-
tomisable split - process - merge constructs as shown in Figure 6.4.

MergeSplit

Process Data

Process Data

Process Data

Figure 6.4: Unfolded split-operation-merge flow graph

The Split operation takes as input one data object, and generates as output
multiple output data objects representing the subtasks to execute. Each Process-
Data leaf operation processes the incoming data object and generates one output
data object. The Merge operation collects all the output data objects to produce
one global result. The programmer does not have to know how many data objects
arrive at the merge operation, since DPS keeps track of the number of data objects
generated by the corresponding split operation.

6.2.2 Flow graph representation
An application using DPS is described by its flow graph, also called parallel sched-
ule. This description contains a sequence of operations passing data objects from
one operation to the next operation.

The graph elements are compositional: a split-merge construct may contain
another split-merge construct. A split-merge construct may incorporate different
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paths, enabling a data-dependent conditional execution of parts of the flow graph
at run time. Leaf operations can be sequenced, thus enabling the pipelined ex-
ecution of operations in the flow graph. This allows overlapping computations,
communications and I/O operations.

As it stands, a flow graph only indicates the processing operations and their
order of execution. To enable parallelism, the operations need to be mapped
onto different threads, possibly located on different processing nodes. Threads
are mapped onto the nodes where their operations will execute. The threads are
grouped into thread collections. A user-defined routing function specifies at run
time in which instance of the thread in the thread collection the operation will
execute.

DPS flow graphs and the mapping of thread collections to operating system
threads are specified dynamically at run time by the application.

SplitToNode

SplitBorder

CopyBorder

MergeBorder SplitToNode

Process

SyncMerge SyncMerge

ProcessingBorder Exchange

Figure 6.5: Flow graph for a game of life application

Figure 6.5 gives an example of a real life flow graph illustrating the paral-
lelization of a neighbourhood dependant computation such as the game of life.

To parallelize the neighbourhood dependant computation (game of life), the
world is split into horizontal tiles. Each node also stores the bottom-most line of
the tile above it as well as the top-most line of the tile below it.

Each parallel iteration is then composed of two steps which have to be exe-
cuted by all tiles. First the borders are exchanged by having each node asking its
two neighbouring nodes to send their top and bottom rows to the requesting nodes.
After this border exchange, the new state of the cells in the tile is computed.

The left part of the flow graph in Figure 6.5 parallelizes the border exchange
between the different nodes.

• The first split operation asks all nodes to start performing the border ex-
changes.
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• The second split is launched by each node to request from its neighbour-
ing nodes the corresponding top and bottom border. The exchanges of the
different borders are carried out in parallel.

The right part of the flow graph parallelizes the computation of the next step
among the different nodes Figure 6.6 shows an expanded view of the execution of
such a graph on 3 processing nodes.

Main
Proc 0

Proc 2

Proc 1

Proc 0

Proc 1

Proc 2

Main Main

Figure 6.6: Expanded flow graph for a game of life application

6.3 Integration of GAUDI and DPS

6.3.1 Parallelizing the event loop
In order to parallelize the event loop of Figure 6.2, the loop over nextEvent and
Execute event is replaced by a split merge structure. Each iteration of the split
calls nextEvent and posts a SplitToken. The Process Data task calls Execute event.
Figure 6.7 shows the equivalent flow graph.

Start of
Evt LoopGaudi init Execute

event

nextEvent merge

Figure 6.7: Parallelization of the GAUDI Event Loop
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Figure 6.8 shows an unfolded view of the processing of the parallelized event
loop on 2 threads distributed on 2 computer nodes. Node A is both the master
node and a slave. Node B is only a slave. This figure describes how DPS executes
the flow graph of Figure 6.7. Figure 6.8 should be compared to Figure 6.2. New
items are painted in pink.
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Start of
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Execute
event

Event Address
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Blue boxes are actions taken by gaudi, pink boxes are actions taken by DPS

Figure 6.8: Integration of DPS in the GAUDI event loop

The sequence of actions is the following :

• GAUDI initialises and calls the event loop

• The DPS runtime is initialised. During initialisation, DPS go through the
following steps :

– it launches a new thread on the master node for the Merge part of the
split-merge structure

– it launches a new thread on node A for the Process part of the split-
merge structure

– it launches a GAUDI process on node B to run the Process part. This
process runs the same application as the master node. It will also ini-
tialise GAUDI, which will start an event loop. This second event loop
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will also initialise DPS and this second instance of DPS will commu-
nicate with the first one and launch a thread for the Process part

• GAUDI calls nextEvent in the Split thread. Its output is posted by DPS as
a token to be used by one of the Process threads. The token contains the
address of an event to process.

• One Process thread processes the event. This is where most of the GAUDI
code runs. The output is packaged into a DPS token that is sent to the Merge
thread using the DPS system.

• The Merge thread collects the results coming from all Process threads and
produces the output files, as if everything had been produced by a single,
standalone GAUDI process.

6.3.2 The LHCb DPS flow graph

The parallelization detailed in the previous section uses a single split-merge con-
struct to parallelize the event processing on multiple nodes. However, as we have
seen in Section 6.1, the algorithms could write the results into the transient stores.
We thus need to collect the different stores on the different nodes and copy them
to the store of the master.

This is carried out by using a second split-merge structure dedicated to the
collection of store contents. The final flow graph is given in Figure 6.9.

HistoSplit

Histogram retrievalProcessing

HistoMergeNodeSplit NodeMerge

ExecuteAlgos

RetrieveHisto

Figure 6.9: Flow graph of the parallel version of GAUDI
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6.3.3 Implementing a parallel GAUDI

The architecture of the GAUDI framework allows to parallelize all applications
based on GAUDI by only modifying two core components : the Application Man-
ager and the Event Selector. These two components, as any other GAUDI com-
ponent, have abstract interfaces that guaranty that no changes are needed in the
application code when they are replaced by a different implementation. Further-
more, the choice of the implementation used can be done at run time by changing
a single line in the configuration file of the GAUDI application.

As a proof of concept and feasibility, an implementation of a parallel version
of the GAUDI Application Manager and Event Selector was written in 2003, us-
ing version v12r0 of the framework. This included the full flow graph presented in
Figure 6.9. The provided event selector implemented the batch oriented schedul-
ing policy.

This implementation was intended to be extended with the other scheduling
policies described in the rest of this document. Although the policies were imple-
mented in the simulation environment and can be reused as is in the GAUDI-DPS
context, the resulting software could not be run due to clashes between DPS and a
component introduced into newer versions of GAUDI : the ROOT [tea06] library.
Both libraries are using threads in an incompatible way. After several weeks of
debugging, it appeared that the ROOT software has to be modified in order to fix
the situation which is not in the scope of the present thesis.

6.4 Conclusion

The ideas developed earlier in this thesis can be used to parallelize the different
applications of the LHCb collaboration. All these applications are based on the
same framework called GAUDI. Parallelizing the framework thus brings paral-
lelizations to all the LHCb software.

GAUDI is designed with event processing in mind and controls the flow of
incoming events in a dedicated service called the Event Loop. Using the Dy-
namic Parallel Schedule (DPS) system developed by EPFL, the Event Loop can
be parallelized so that consecutive events are actually run in parallel on different
machines. DPS allows a very comprehensive and elegant implementation of this
parallel version of the event loop by separating the event processing itself from
the parallelization code. The parallelization itself is handled by the DPS library,
based on a description of the application under the form of a flow graph.
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The integration of DPS and GAUDI was carried out successfully in an old
version of the GAUDI. It was successfully tested on real data and provided par-
allelization to all LHCb application at the only cost of 2 additional lines in the
configuration file. However, the parallel implementation of the event loop failed
to be ported to newer versions of GAUDI due to incompatibilities between DPS
and a library called ROOT. As a consequence, the scheduling policies presented
in this work could not be tested on real data.

Note that even if the expected performances of the parallel version of GAUDI
are identical to the simulations, it would anyway be difficult to compare the two
approaches. Simulations are collecting statistics over several years of virtual run-
ning time. A realistic comparison with running programs will thus require study-
ing how to accelerate the real case applications without modifying the scheduling
statistics.
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Conclusion

In this thesis, we have tried to solve several issues regarding the processing of
particle physics data on clusters of PCs.

In chapter 2, we presented a new way of indexing and selecting data items
in huge datasets having a high index dimensionality. The method avoids linear
scanning of the whole data set. Only a minimal set of data is scanned, namely the
values stored in tag collections. The selected tags point to the data items that are
then retrieved for applying a more narrow selection.

By scanning tags in tag collections instead of a flat scan of all data items, the
minimal gain is proportional to the ratio between the total number of data items
and the number of tags within the selected tag collections. In many cases, the
effective gain is the minimal gain multiplied by the ratio of the dimension of data
items and the dimension of tags.

The proposed data items selection and retrieval scheme was implemented at
CERN, in the context of the LHCb experiment and seems very promising. It was
presented at the Conference on Mass Storage Systems and Technologies in April
2002 and published in the proceedings [PVH02].

In chapter 3, we propose several scheduling policies for parallelizing data in-
tensive particle physics applications on clusters of PCs. We show that splitting
jobs into subjobs improves the processing farm model by making use of intra-job
parallelism. By caching data on the cluster node disks, cached-based job splitting
further improves the performances.

The out of order job scheduling policy we introduce takes advantage of cache
resident data segments and still includes a certain degree of fairness. It offers
considerable improvements in terms of processing speedup, response time and
sustainable loads. For the same level of performance, the typical load sustainable
by the out of order job scheduling policy is double the load sustainable by a simple
first in first out cache-based job splitting scheduling policy.

We proposed the concept of delayed scheduling, where the deliberate inclu-
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sion of period delays further improves the disk cache access rate and therefore
enables a better utilisation of the cluster. This strategy is very efficient in terms of
the maximal sustainable load (50 to 100% increase) but behaves poorly in terms of
response time and processing speedup. In order to offer a tradeoff between maxi-
mal sustainable load and response time, we introduce an adaptive delay scheduling
policy with large delays at high loads and zero delays at normal loads. The delay
is adapted to the current system load, thus trying to optimise the response time
as a function of the current load. This adaptive delay scheduling policy aims at
satisfying the end user whenever possible and at the same time allows to sustain
high loads. All scheduling policies were presented at the 18th International Par-
allel and Distributed Processing Symposium in April 2004 and published in the
proceedings [PH04].

In chapter 4, we built theoretical models for the different scheduling policies
proposed in the previous chapters. The job splitting model is modelled by relying
on the queueing theory. We present equations that match the simulations with a
very good accuracy.

The out of order scheduling policy model was approximated based on the job
splitting model. The approximated model does no closely match the simulations.
We therefore propose more accurate equations that match perfectly the simula-
tions but are variations of the results derived from the theoretical considerations.

For the delayed scheduling policy model, we proposed precise equations for
the waiting time as well as the general form of the equations of the speedup.
Although all the parameters of the equation could not be derived, we showed that
a right choice of these parameters creates a perfect match between theory and
simulations.

In chapter 5, we studied the improvements brought by pipelining the data I/O
operations with the processing operations, both for tertiary storage I/O and for disk
I/O. We showed that the improvement is of the order of 30% for the job splitting
and for the out of order scheduling policies. However, the speedup improvement
is smaller for the delayed scheduling policy due to the long delays it suffers from.
These results will be published in a special issue of the International Journal of
Computational Science and Engineering in 2006 [PHed].

In chapter 6, we describe how the proposed algorithms can be implemented
in the context of the LHCb experiment at CERN, using the parallelization tools
developed at the EPFL. We show that the architecture of both the LHCb frame-
work and the DPS parallelization framework allow a very easy introduction of
parallelism into the existing system. A first prototype was implemented and all
scheduling policies can be easily plugged into it.
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The next step is to port this prototype to recent versions of the LHCb frame-
work and check our results against real computations. However, this requires
studying how far the results presented in the present thesis at a reduced scale also
apply to the full blown system. Since each simulation presented here is based on
several years of simulated activity.
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Appendix A

Computation of A(1) and ∂A(z)
z

∣∣∣
z=1

These values are used on page 65 and 66 and we give here the details of their
computations. The definition of A(z) is

A(z) =
zmr − 1

z − 1
(A.1)

We compute A(1), according to the l’Hospital rule :

A(z)|z=1 =
zmr − 1

z − 1

∣∣∣∣
z=1

=

∂(zmr−1)
∂z

∣∣∣
z=1

∂(z−1)
∂z

∣∣∣
z=1

=
mrzmr−1|z=1

1
A(1) = mr (A.2)
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Z

∣∣∣
Z=1

The same technique can be applied to the computation of ∂A(z)
z

∣∣∣
z=1

:

∂A(z)

z

∣∣∣∣
z=1

=
∂ zmr−1

z−1

∂z

∣∣∣∣∣
z=1

=
mrzmr−1(z − 1)− (zmr − 1)

(z − 1)2

∣∣∣∣
z=1

=

∂[mrzmr−1(z−1)−(zmr−1)]
∂z

∂[(z−1)2]
∂z

∣∣∣∣∣∣
z=1

=
mr(mr − 1)zmr−2(z − 1) + mrzmr−1 −mrzmr−1

2(z − 1)

∣∣∣∣
z=1

=
mr(mr − 1)zmr−2

2

∣∣∣∣
z=1

∂A(z)

z

∣∣∣∣
z=1

=
mr(mr − 1)

2
(A.3)



Appendix B

Data utilisation distribution

Let us compute the probability p of having two jobs with overlapping data first in
the case of a uniform data utilisation distribution and then in the case of the data
utilisation distribution of Figure 3.2 on page 42.

B.1 Uniform data utilisation distribution
Two jobs have data in common if and only if their data segments overlap. We will
first derive the probability pf for 2 segments to overlap in the case of a uniform
data utilisation distribution.

Let L be the average length of a job data segment and D the total length of
the data space. We consider a given segment in the dataspace of length l starting
at point a. Overlapping segments among the ones of length λ are the ones with a
starting point between a− λ and a + l (See Figure B.1).

Dataspacea

lλ

Figure B.1: Probability of having 2 overlapping segments. Segments having
an overlap with the dashed one are thick.

Let f be the distribution of segment lengths. If we neglect border effects, the
probability of having overlapping segments is :

pf =

∫ ∞

l=0

∫ ∞

λ=0

l + λ

D
f(l) f(λ) dl dλ (B.1)
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By definition of the segment length distribution f and of the mean segment
length L, we have :

∫ ∞

l=0

f(l) dl = 1 (B.2)
∫ ∞

l=0

l f(l)dl = L (B.3)

leading to :

pf =

∫ ∞

λ=0

∫∞
l=0

l f(l) dl + λ
∫∞

l=0
f(l) dl

D
f(λ)dλ

=

∫ D

λ=0

L + λ

D
f(λ) dλ

=
L

∫ D

λ=0
f(λ) dλ +

∫ D

λ=0
λ f(λ) dλ

D
(B.4)

And with overlapping segments of average length L, we obtain :

pf =
2 L

D
(B.5)

With a data space size D = 2 TB and an average segment length L = 24 GB,
we obtain an overlap probability pf = 2.4%.

B.2 Realistic data utilisation distribution

In the case of the data segment utilisation distribution of Figure B.2, the computa-
tion is approximately the same as for a uniform distribution except that we have to
distinguish different zones depending on the data utilisation value. For each zone,
the result of the uniform distribution case can be applied.

Figure B.2 names the different zones. We call DX the length of zone X and
ρX the probability that a job accesses a data segment belonging to zone X (we
neglect here the overlapping regions). Values for ρX and DX are given in Table
B.1.
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Figure B.2: Start point and data utilisation distribution

ρA = 1
6

DA = D ∗ 30%

ρB = 1
4

DB = D ∗ 5%

ρC = 1
6

DC = D ∗ 30%

ρD = 1
4

DD = D ∗ 5%

ρE = 1
6

DE = D ∗ 30%

Table B.1: Probability that a job belongs to a given zone and length of the
zone. The probability of accessing a given data segment zone is given by the
utilisation density of Figure B.2 multiplied by the data range size.

We can then derive p :

p =
∑

X∈{A,B,C,D,E}
ρ2

X

2 L

DX

(B.6)

= 3

(
1

6

)2
2 L

.3 D
+ 2

(
1

4

)2
2 L

.05 D

≈ 2.78
2 L

D
(B.7)

Providing that D = 2TB and L = 24GB, we get p = 6.67%.
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In September 2000, Sébastien came to CERN, Geneva as a member of the
LHCb computing team. He worked on the geometrical description of the LHCb
detector based on XML and its automatic conversion into C++ objects. At the end
of 2001, he started a phd work in collaboration with the Peripheral Systems Lab-
oratory of EPFL concerning the parallelization of the LHCb framework (Gaudi)
on large clusters of PCs. This thesis is the final result of this work, that was con-
tinued on his spare time after he left LHCb. In spring 2002, Sébastien became a
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