
Tools for Parallel I/O and Compute

Intensive Applications

THÈSE No 1915 (1998)

PRÉSENTÉE AU DÉPARTEMENT D’INFORMATIQUE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES

par

VINCENT MESSERLI

Ingénieur-informaticien EPFL
originaire de Rüeggisberg (BE)

acceptée sur proposition du jury:

Prof. Roger-D. Hersch, rapporteur
Dr. Fabrizio Gagliardi, corapporteur
Prof. David Kotz, corapporteur

Prof. John H. Maddocks, corapporteur

Lausanne, EPFL
1998

Acknowledgments

I have many individuals to thank for the successful completion of this research.

First and foremost, I am especially grateful to my research director, Professor Roger-D. Hersch, who helped me to
find a challenging and interesting research area, who gave me guidance and support throughout this research, and
who spent hours reading and commenting on earlier drafts of this dissertation.

I am particularly indebted to Dr Benoit Gennart for his technical expertise, for his help in correcting bugs at any
time of the day, and for the extensive discussions we had, which helped me clarify my ideas, as well as led me to
new ideas. This thesis has been possible thanks to the research pursued by Dr. Benoit Gennart who has developed
the CAP computer-aided parallelization tool.

I would like to thank the members of the Peripheral System Laboratory, among them Marc Mazzariol, Oscar
Figueiredo, Joaquín Tárraga, Oliver Courtois, Samuel Vetsch, for their technical collaboration and support. They
were good friends, and made this research enjoyable on a day-to-day basis providing encouragement and
motivation.

I would like to thank Professors Claude Petitpierre, David Kotz, John H. Maddocks and Dr Fabrizio Gagliardi,
who served on my thesis commitee.

I am grateful to the Department of Computer Science at EPFL and its staff for the excellent facilities.

I would like to thank Prof. Badoux, Président of EPFL for the PhD candidate grant he provided during 3 years.

Finally, I would like to thank my family for all the encouragement they have provided me throughout the 4 years
of research at EPFL.
i

ii

Résumé

La plupart des systèmes de fichiers parallèles actuels offrent une vue séquentielle des fichiers. Pour l’utilisateur,
un fichier parallèle est vu comme une suite d’octets adressable. Afin d’augmenter le débit d’entrées-sorties, ces
systèmes parallèles distribuent de manière transparente les données d’un fichier sur plusieurs disques
magnétiques. La compatibilité avec Unix offre une meilleure portabilité des applications, mais dissimule le
parallélisme sous-jacent à l’intérieur des systèmes de fichiers, empêchant toute optimisation des requêtes
d’entrées-sorties provenant de différents processus. Bien que les systèmes de fichiers parallèles récents
incorporent des interfaces plus élaborées, par exemple des interfaces “collectives” permettant de coordonner les
accès d’entrées-sorties de plusieurs processus, ces systèmes manquent de flexibilité et ne fournissent aucun
moyen pour exécuter des opérations de traitements spécifiques à des applications sur des noeuds d’entrées-sorties.
En effet, afin de réduire la quantité de données voyageant sur le réseau de communication, il serait souhaitable
d’exécuter, localement, les opérations de traitements où les données résident. De plus, actuellement, les
programmeurs doivent utiliser deux systèmes différents: un système de fichiers parallèles pour le stockage
parallèle et, un système de communication pour coordonner les calculs parallèles. Cette séparation entre stockage
et traitement permet difficilement aux programmeurs de combiner, d’une manière optimale, accès aux fichiers et
calcul, c’est-à-dire, le chevauchement des requêtes d’entrées-sorties asynchrones et des traitements.

Cette thèse propose une nouvelle approche pour développer des applications effectuant en parallèle des opérations
de traitements et d’entrées-sorties sur un réseau de PC. En utilisant l’outil d’aide à la parallélisation (CAP), les
programmeurs d’applications développent séparément les parties séquentielles et, expriment le comportement
parallèle du programme à un niveau d’abstraction élevé. Cette description de haut-niveau est automatiquement
transcrite en un programme C++ compilable et exécutable. Grâce à un fichier de configuration spécifiant la
répartition des processus légers (“threads”) d’une application sur l’architecture parallèle, un même programme
peut s’exécuter sans recompilation sur différentes configurations matérielles.

Dans le contexte de cette thèse et, à l’aide de l’outil d’aide à la parallélisation (CAP), un serveur de stockage et de

traitement parallèle (PS2), comprenant une librairie de composants réutilisables pour l’accès à des fichiers
parallèles, a été réalisé. Grâce aux formalisme du langage CAP, ces composants pour systèmes de fichiers
parallèles peuvent être facilement et efficacement combinés avec des opérations de traitements afin de développer
des applications effectuant, en pipeline et en parallèle, des traitements et des entrées-sorties. Ces programmes
peuvent s’exécuter sur des serveurs PC offrant leurs services de stockages et de traitements aux clients situés sur
le réseau.

Ce travail présente l’outil d’aide à la parallélisation (CAP) et son système de communication sous-jacent

accompagné d’une analyse de performance. Le serveur de stockage et de traitement parallèle (PS2) est présenté,
ainsi que son implémentation utilisant l’outil CAP. Ce mémoire décrit également comment les programmeurs

peuvent personaliser le serveur PS2 afin de développer des applications de traitements et d’entrées-sorties
parallèles. Plusieurs exemples sont fournis, parmi eux des opérations de traitement d’images parallèles.

Finalement, la mise en pratique de l’outil CAP et du serveur PS2 pour le développement d’applications
industrielles est démontré avec une application parallèle d’extraction de plan de coupe dans un volume
tomographique 3D. Cette application a été, avec succès, intégrée à un serveur Web et est connue sous le nom de
“Visible Human Slice WEB server” accessible à l’adresse “http://visiblehuman.epfl.ch”.
iii

iv

Abstract

Most parallel file systems provide applications with conventional sequential views of files that stripe data
transparently across multiple disks thus reducing the bottleneck of relatively slow disk access throughput. The
Unix-like interface increases the ease of application portability, but conceals the underlying parallelism within the
file system precluding any optimization of the I/O access pattern from different processes. Although recent
multiprocessor file systems incorporate more sophisticated I/O interfaces, e.g. collective I/O interfaces, enabling
the I/O access-pattern information to flow from an application program down to the data management system,
they still lack flexibility and they do not enable application-specific codes to run on I/O nodes. Therefore
application-specific processing operations cannot be directly executed where data resides. Moreover, with the
conventional approach of developing parallel I/O- and compute- intensive applications on distributed memory
architectures, programmers are faced with two different systems: a parallel file system for parallel I/O and a
message passing system for parallel computation. This separation between storage and processing makes it
difficult for application programmers to combine I/O and computation in an efficient manner, i.e. overlap I/O
requests with computations.

In this thesis we propose a new approach for developing parallel- I/O and compute- intensive applications on
distributed memory PC’s. Using the CAP Computer-Aided Parallelization tool, application programmers create
separately the serial program parts and express the parallel behaviour of the program at a high level of abstraction.
This high-level parallel program description is preprocessed into a compilable and executable C++ source parallel
program. Thanks to a configuration file specifying the layout of the application threads onto the parallel
architecture, a same program can run without recompilation on different hardware configurations.

In the context of this thesis we have designed the runtime system of CAP incorporating among others a

message-passing system, and, using the CAP tool, a Parallel Storage and Processing Server (PS2) comprising a
library of reusable low-level parallel file system components. Thanks to the CAP formalism, these low-level
parallel file system components can be combined with processing operations in order to yield efficient pipelined
parallel I/O and compute intensive programs. These programs may run on multi-PC servers offering their storage
and processing services to clients located over the network.

In this work, we present the CAP computer-aided parallelization tool and its underlying message-passing system

along with a performance analysis. We introduce the PS2 framework and discuss its design and implementation
using the CAP tool. We describe the new two-dimensional extent-oriented structure of a parallel file and show

how the PS2 server can be customized by developers in order to yield efficient parallel I/O and compute intensive
applications. Several examples are provided, among them parallel imaging operations. Finally, the applicability

and the performance of the CAP tool and the PS2 framework on real applications is demonstrated with a parallel
3D tomographic image server application enabling clients to specify and access parallel slices having any desired
position and orientation. This application has been successfully interfaced to a Web server and it is known as the
Visible Human Slice WEB server (http://visiblehuman.epfl.ch).
v

vi

Table of Contents

CHAPTER 1 Introduction . 1

1.1 The IO/computation gap. 1

1.2 I/O- and compute- intensive applications that need parallel storage-and-processing systems. 2

1.3 Contribution of this research . 3

1.4 Outline of this thesis . 3

CHAPTER 2 Related Research . 5

2.1 The Portable Parallel File System . 5

2.2 The Galley Parallel File System . 5

2.3 The Vesta Parallel File System. 6

CHAPTER 3 The CAP Computer-Aided Parallelization Tool . 9

3.1 Introduction . 9

3.2 The CAP macro dataflow computational model . 9

3.2.1 The four computational models . 9

3.2.2 The CAP primitive units of computation . 10

3.2.3 The CAP control mechanism . 11

3.2.4 The CAP communication mechanism and synchronization mechanisms . 12

3.3 The CAP computer-aided parallelization tool philosophy . 12

3.4 Tokens . 14

3.5 Process hierarchy . 15

3.6 Configuration file . 16

3.7 CAP operations. 18

3.7.1 Sequential operations . 19

3.7.2 Parallel operations . 20

3.8 Parallel CAP constructs . 21

3.8.1 The pipeline CAP construct . 21

3.8.2 The if and ifelse CAP construct . 24

3.8.3 The while CAP construct . 27

3.8.4 The for CAP construct . 27

3.8.5 The parallel CAP construct. 29

3.8.6 The parallel while CAP construct. 31

3.8.7 The indexed parallel CAP construct . 33

3.9 The first CAP program: The Sieve of Eratosthenes . 35

3.10 Issue of flow-control in a pipeline within a split-merge parallel while or indexed parallel
CAP construct . 40

3.11 Issue of load balancing in a pipelined parallel execution . 50

3.12 Summary. 53

CHAPTER 4 Runtime System for CAP and PS2 . 55

4.1 Introduction . 55

4.2 Performance evaluation of a multi-SCSI disk array . 55

4.2.1 Performance measurement using a low-level SCSI-2 block interface . 57

4.2.2 Performance measurement using the native NT file system. 57

4.3 Microsoft Windows Sockets 2.0 application programming interface . 58

4.3.1 Definition of a socket . 59

4.3.2 Parameters of a socket . 60
vii

4.3.3 Asynchronous gather send and asynchronous scatter receive . 60

4.4 The token-oriented message-passing system . 61

4.4.1 Serialization of CAP tokens . 64

4.5 Performance evaluation of the token-oriented message-passing system . 67

4.5.1 Theoretical maximum TCP/IP performance over a 100 Mbits/s Fast-Ethernet network 67

4.5.2 The multi-PC environment . 68

4.5.3 Performance evaluation of the token-oriented message-passing system in terms of latency for an
unpipelined token transfer . 69

4.5.4 Performance evaluation of the token-oriented message-passing system in terms of throughput and
processor utilization for a pipelined token transfer . 73

4.6 Summary. 80

CHAPTER 5 Design and Implementation of PS2 . 83

5.1 Introduction . 83

5.2 Trends in parallel storage systems . 83

5.3 The PS2 philosophy . 84

5.4 PS2: a parallel storage and processing server based on commodity components 86

5.5 Parallel file structure. 87

5.5.1 Extent files . 88

5.6 PS2 file tree and its internal representation . 89

5.7 The PS2 access structures. 91

5.8 Synthesizing the PS2 parallel storage and processing server using the CAP computer-aided
parallelization tool . 95

5.8.1 CAP specification of the PS2 server. 97

5.8.2 CAP specification of the PS2 interface server . 100

5.8.3 CAP specification of the PS2 compute server . 101

5.8.4 CAP specification of the PS2 virtual disk server . 101

5.8.5 CAP specification of the PS2 extent file server . 102

5.8.6 CAP specification of the PS2 extent server . 103

5.9 CAP-based synthesis of the parallel file directory operations . 105

5.10 Design and implementation of a single-disk extent-oriented file system: the EFS extent file system. . 107

5.10.1 Extent file structure. 108

5.10.2 Internal organization of EFS. 110

5.11 PS2 configuration files . 111

5.12 Summary. 112

CHAPTER 6 Developing Parallel I/O- and Compute- Intensive Applications using PS2 . 115

6.1 Introduction . 115

6.2 Synthesizing parallel imaging operations using PS2 . 115

6.2.1 2D image file declustering strategy . 115

6.2.2 Neighbourhood independent imaging operations . 117

6.2.3 Neighbourhood dependent imaging operations . 124

6.3 The Visible Human slice server application. 126

6.3.1 Description of the image slice extraction and visualization application . 128

6.3.2 Parallelizing the image slice extraction and visualization application using PS2 129

6.3.3 Performances and scalability analysis of the image slice extraction and visualization application . . 133

6.4 Summary. 137

CHAPTER 7 Conclusion . 139

7.1 Limitations and future improvements. 140
viii

List of Figures

CHAPTER 1 Introduction . 1
Figure 1-1. Enhancement E accelerates a fraction F of a task by a factor S, and the remainder of the task

is unaffected . 1

CHAPTER 2 Related Research . 5

CHAPTER 3 The CAP Computer-Aided Parallelization Tool . 9
Figure 3-1. A) The von Neumann, B) the control-driven, C) the data-driven, and D) the demand-driven

computational models compared on a single example, the evaluation of a=(b+1)*(b-c). 10

Figure 3-2. An example of a CAP macro dataflow depicted by a symmetric directed acyclic graph. Arcs model
data dependencies between actors. Tokens carry data along these arcs. Split routines split input tokens into
several sub-tokens sent in a pipelined parallel manner. Merge routines merge input tokens into one output token
thus acting as synchronization points. . 12

Figure 3-3. An asymmetric directed acyclic graph that can be described with the recent extension to CAP . 12

Figure 3-4. Graphical CAP specification: parallel operations are displayed as parallel horizontal branches,
pipelined operations are operations located in the same horizontal branch . 13

Figure 3-5. Graphical representation of MyHierarchy CAP process hierarchy . 17

Figure 3-6. A sequential operation with its input and output token. Single rounded rectangles depict
sequential operations. 19

Figure 3-7. A parallel operation with its input and output token. Note double rounded rectangle depict
parallel operations. 20

Figure 3-8. Graphical CAP specification of the pipeline construct . 22

Figure 3-9. Timing diagram of the execution of the 3 operations in a pipelined manner 22

Figure 3-10. Timing diagram of a pipelined parallel execution . 23

Figure 3-11. Graphical representation of a pipelined parallel execution. 24

Figure 3-12. Graphical CAP specification of the if construct . 25

Figure 3-13. Graphical CAP specification of the ifelse construct . 26

Figure 3-14. Graphical CAP specification of the while construct . 27

Figure 3-15. Graphical CAP specification of the for construct . 28

Figure 3-16. Graphical CAP specification of the parallel construct. 30

Figure 3-17. Graphical CAP specification of the parallel while construct. 32

Figure 3-18. Graphical CAP specification of the indexed parallel construct . 34

Figure 3-19. The Sieve of Eratosthenes distributed on 3 different threads . 36

Figure 3-20. Graphical CAP specification of “The Sieve of Eratosthenes”. 37

Figure 3-21. Timing diagram of the execution of “The Sieve of Eratosthenes” with a master thread and 3
slave threads . 37

Figure 3-22. Example of a 4-stage pipeline composed of a split routine, two intermediate sequential operations
and a merge routine. Note the input token queues in front of each CAP threads and the MPS output token queues
at the border of each address spaces. . 41

Figure 3-23. Local flow-control mechanism regulating the input token rate according to the output
token rate . 41

Figure 3-24. High-level flow-control mechanism requiring additional communication between the thread who
runs the merge routine (the ThreadB thread) and the thread who runs the split routine (the ThreadA thread) so
as to maintain the split token rate equal to the merged token rate . 42

Figure 3-25. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 1. 44

Figure 3-26. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 2. 45

Figure 3-27. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 3. 45

Figure 3-28. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 4. 45

Figure 3-29. Measured execution times of the 5-stage pipeline for various filling factors 47

Figure 3-30. Execution in a pipelined parallel manner on a multi-PC environment . 51

Figure 3-31. Graphical representation of a pipelined parallel execution. The horizontal arrow represents the
ix

flow-control mechanism and the vertical arrow represents the load-balancing mechanism. 51

CHAPTER 4 Runtime System for CAP and PS2 . 55
Figure 4-1. An array of 15 disks hooked on a Pentium Pro 200MHz PC with 5 SCSI-2 buses 55

Figure 4-2. A disk array can be described using two numbers: latency and throughput 56

Figure 4-3. Measured disk array throughputs and latencies when accessing in parallel blocks randomly
distributed over K disks hooked onto the same multi-SCSI PC using a low-level SCSI-2 block interface. . . 57

Figure 4-4. Measured processor utilization when accessing in parallel blocks randomly distributed over K disks
hooked onto a same multi-SCSI PC using a low-level SCSI-2 block interface . 58

Figure 4-5. Measured disk array throughputs and latencies when accessing in parallel blocks randomly
distributed over k disks hooked onto a same multi-SCSI PC using the NT file system. 58

Figure 4-6. Measured processor utilization when accessing in parallel blocks randomly distributed over K disks
hooked onto a same multi-SCSI PC using the NT file system . 59

Figure 4-7. Gathering and scattering data . 61

Figure 4-8. The TCP protocol has no notion of packets. There is no correspondence between the WSASend and
WSARecv calls. . 62

Figure 4-9. The 3-step mechanism that enables a scattered packet to be transmitted from one address space to
another using a stream socket (TCP/IP protocol) and the overlapped gather/scatter WSASend and
WSARecv routines . 62

Figure 4-10. Message-passing system TCP/IP connections. On each PC runs a MPS daemon connected to one
or several other Mpsd so as to form a network of contributing PC’s. Each Windows NT CAP process is
connected to its local Mpsd to exchange control messages.. 63

Figure 4-11. Outgoing network throughput with a sampling factor of 500ms. 64

Figure 4-12. The copy-pack serialization uses a temporary transfer buffer to copy the structure’s data so that
the data encoding can be modified . 65

Figure 4-13. The address-pack serialization uses a list of scattered buffers (WSABUF buffers) for sending and
receiving the structure’s data with no memory-to-memory copy. 66

Figure 4-14. Timing diagram where the sender transmits two full-sized data segments and then the receiver
sends an acknowledgment for these two data segments . 68

Figure 4-15. The multi-PC environment comprises two Intel PR440FX Bi-Pentium Pro 200MHz with an Intel
EtherExpress Pro/100B PCI network card adapter PC’s interconnected through a switched 100 Mbits/s Fast
Ethernet local area network . 69

Figure 4-16. Socket packet after having coalesced 1 TokenT token and serialized it 71

Figure 4-17. Packet-level and CAP token-level performances in terms of latency and throughput 72

Figure 4-18. Effective throughputs of the packet-level and CAP token-level interfaces as a function of the
socket packet size . 73

Figure 4-19. Socket packet after having coalesced 3 TokenT tokens and serialized it 75

Figure 4-20. Comparing the effective network throughputs of the token-oriented message-passing system with
the overlapped Windows Sockets 2.0 application programming interface for a unidirectional pipelined
data transfer . 76

Figure 4-21. Processor utilization when sending various-sized packets across the network using the overlapped
Windows Sockets 2.0 network interface . 78

Figure 4-22. Processor utilization when receiving various-sized packets from the network using the overlapped
Windows Sockets 2.0 network interface . 78

Figure 4-23. Processor utilization when sending various-sized tokens across the network using the CAP’s
message-passing system . 79

Figure 4-24. Processor utilization when receiving various-sized tokens from the network using the CAP’s
message-passing system . 79

CHAPTER 5 Design and Implementation of PS2 . 83
Figure 5-1. PS2 offers an approach to parallel storage systems similar to Galley and HFS. Traditional systems

depend on a fixed “core” file system that attempts to serve all applications through a common general-purpose
API. With PS2, the fixed core file system is shrunk to a library of reusable low-level parallel file system CAP
components which can, thanks to the CAP formalism, be combined with processing operations in order to yield
efficient pipelined parallel I/O- and compute- intensive applications or libraries. . 84

Figure 5-2. With PS2 disk accesses, computations, and communications are executed in a pipelined
x

parallel manner . 86

Figure 5-3. Architecture of the parallel storage and processing server based on commodity components, i.e.
PC’s, Fast Ethernet, SCSI-2 disks, Windows NT, etc. 87

Figure 5-4. A parallel file is composed of one or more extent files. Each extent file is structured as a collection
of extents and resides entirely on a single virtual disk, and no virtual disk contains more than one extent file
from any parallel file. An extent is a variable size block of data representing the unit of I/O transfer. An extent
within a particular extent file is directly addressed by the application using an extent file index selecting the
extent file and an local extent index selecting the extent within that extent file. 88

Figure 5-5. The mapping of a PS2 tree onto 3 virtual disks located on PC[0] with root D:\PsPs\Disk0, on PC[1]
with root M:\Demo\PsPs\Disk1 and on PC[2] with C:\PsPs\Disk2 . 90

Figure 5-6. Explorer treats the Moon.ps2 parallel file as a single regular file but in fact behind that file there are
2 NTFS extent files residing at two different locations D:\PsPs\Disk0\Moon.ps2 on PC[0] and
C:\PsPs\Disk2\Moon.ps2 on PC[2] . 91

Figure 5-7. How PS2 assigns the virtual disks to the ExtentServer threads and how PS2, thanks to a CAP
configuration file, distributes the VirtualDiskServer[].ExtentServer threads and the ComputeServer[] threads
onto a PS2 server architecture . 94

Figure 5-8. PS2 threads and how they are mapped onto a PS2 server architecture . 97

Figure 5-9. Graphical CAP specification of the parallel Ps2ServerT::OpenParallelFile operation 106

Figure 5-10. Thanks to the pipelined parallel execution of PS2 operations, the ExtentServer threads are able to
perform a sort of intelligent or informed extent prefetching from multiple virtual disks enabling a PS2 operation
to behave as if extents are read from memory with no delay (as long as the PS2 server architecture contains
enough disks to meet the I/O throughput requirement of the operation) . 107

Figure 5-11. Internal structure of an extent file . 110

CHAPTER 6 Developing Parallel I/O- and Compute- Intensive Applications using PS2 . 115
Figure 6-1. For a good data locality when applying an imaging operation on a tiled 2D image, the tile size

should be as small as possible in order to reduce the amount of superfluous image data read from disks . . 116

Figure 6-2. 2D image tiling and the declustering strategy . 117

Figure 6-3. Parameters needed for writing a window into a full declustered 2D image file 118

Figure 6-4. Graphical CAP specification of the parallel Ps2ServerT::WriteWindow operation 118

Figure 6-5. Thanks to the CAP formalism is very easy to incorporate a processing stage within the writing
pipeline, e.g. an extent compression operation. 121

Figure 6-6. Graphical representation of the improved parallel PS2ServerT::WriteWindow operation requiring
much less communication between the SP nodes and the client node . 123

Figure 6-7. During a neighbourhood dependent imaging operation the borders of a tile are fetched from the
neighbouring SP nodes . 124

Figure 6-8. Graphical CAP specification of the neighbourhood dependent imaging operation 125

Figure 6-9. Graphical CAP specification of the parallel Ps2ServerT::ProcessTile operation 126

Figure 6-10. Extraction of slice parts from volumic file extents . 128

Figure 6-11. Selecting an image slice within a 3D tomographic image. 129

Figure 6-12. Sending the extraction requests and receiving the slice parts . 130

Figure 6-13. Graphical representation of the pipelined-parallel slice extraction and visualization operation130

Figure 6-14. Graphical representation of the improved operation requiring much less communication between
the client PC and the SP nodes . 133

Figure 6-15. Performances at zoom factor 1, with the extent cache disabled on each SP node. 134

Figure 6-16. Performances at zoom factor 1, with an extent cache of 25 MBytes per SP node 135

Figure 6-17. Performances at zoom factor 2, with the extent cache disabled on each SP node. 136

Figure 6-18. Performances at zoom factor 2, with an extent cache of 25 MBytes per SP node 137

CHAPTER 7 Conclusion . 139
xi

xii

List of Programs

CHAPTER 1 Introduction . 1

CHAPTER 2 Related Research . 5

CHAPTER 3 The CAP Computer-Aided Parallelization Tool . 9
Program 3-1. 4 token declarations in CAP . 14

Program 3-2. 4 token declaration in C/C++ . 14

Program 3-3. CAP specification of a process hierarchy. 15

Program 3-4. C/C++ specification of a process hierarchy . 17

Program 3-5. Configuration file declaring 4 address spaces, the PC’s addresses where these 4 Windows NT
processes run, the 3 executable filenames and the mapping of the 5 threads to the 4 address spaces 18

Program 3-6. Starting a CAP program with a configuration file at DOS prompt . 18

Program 3-7. Additional operation declarations. 18

Program 3-8. Synchronous call of a CAP operation from a sequential C/C++ program 19

Program 3-9. Asynchronous call of a CAP operation from a sequential C/C++ program 19

Program 3-10. CAP specification of a sequential operation. Note the ‘leaf’ keyword. 20

Program 3-11. CAP specification of a parallel operation. 21

Program 3-12. CAP specification of the pipeline construct . 22

Program 3-13. Declaring two pools of threads within a hierarchical process . 23

Program 3-14. Selecting a thread within a pool . 23

Program 3-15. Equivalent C/C++ specification of the pipeline construct . 24

Program 3-16. CAP specification of the if construct . 25

Program 3-17. Equivalent C/C++ specification of the if construct . 25

Program 3-18. CAP specification of the ifelse construct . 26

Program 3-19. Equivalent C/C++ specification of the ifelse construct . 26

Program 3-20. CAP specification of the while construct . 27

Program 3-21. Equivalent C/C++ specification of the while construct . 28

Program 3-22. CAP specification of the for construct . 28

Program 3-23. Equivalent C/C++ specification of the for construct . 29

Program 3-24. CAP specification of the parallel construct . 30

Program 3-25. C/C++ specification of the parallel construct . 31

Program 3-26. Incorporating an operation which has not the appropriate interface into the schedule of a parallel
operation using a parallel CAP construct with a single branch . 31

Program 3-27. CAP specification of the parallel while construct . 32

Program 3-28. Equivalent C/C++ specification of the parallel while construct. 33

Program 3-29. CAP specification of the indexed parallel construct . 34

Program 3-30. Equivalent C/C++ specification of the indexed parallel construct . 35

Program 3-31. The Sieve of Eratosthenes tokens. 37

Program 3-32. The “Sieve of Eratosthenes” CAP process hierarchy. 38

Program 3-33. Sequential ComputeServerT::FilterNumber operation. 38

Program 3-34. Parallel ParallelProcessingServerT::ComputePrimeNumbers operation 39

Program 3-35. “The Sieve of Eratosthenes” C/C++ main program . 40

Program 3-36. The Sieve of Eratosthenes configuration file . 40

Program 3-37. Example of a CAP program requiring a flow-control preventing the split routine from generating
10’000 tokens . 42

Program 3-38. First high-level flow-controlled split-merge construct that requires one communication between
the thread who runs the merge routine, i.e. the ThreadB thread, and the thread who runs the split routine, i.e.
the ThreadA thread, for each merged tokens . 43

Program 3-39. High-level flow-controlled split-merge construct requiring much less communication between
the thread who runs the merge routine, i.e. the ThreadB thread, and the thread who runs the split routine, i.e.
xiii

the ThreadA thread . 48

Program 3-40. Automatic generation of the 2 flow-controlled split-merge constructs using the CAP
preprocessor . 49

Program 3-41. CAP program where the high-level flow-controlled parallel while and indexed parallel
constructs fail to give good performances . 50

Program 3-42. Example of a CAP program where the jobs are statically distributed in round-robin manner
among the slaves. 52

Program 3-43. Example of a CAP program where the jobs are dynamically distributed amongst the slaves
according to their loads, i.e. the master balances the load amongst the slaves. 53

CHAPTER 4 Runtime System for CAP and PS2 . 55
Program 4-1. Overlapped gather send and overlapped scatter receive (simplified interface) 61

Program 4-2. To serialize a user’s defined C/C++ structure, the CAP’s runtime system needs 4 routines: an
address-list-size, an address-pack, an address-unpack and an address-restore routine 66

Program 4-3. Read and write completion routines used in conjunction with the overlapped Windows Sockets
2.0 WSASend and WSARecv routines. 70

Program 4-4. Packet-level round-trip time measurement using the overlapped Windows Sockets 2.0 WSASend
and WSARecv routines. 70

Program 4-5. Declaration of a token with its serialization routines . 71

Program 4-6. CAP token-level round-trip time measurement using a for CAP construct 71

Program 4-7. Unidirectional pipelined packet transfer measurement using the overlapped Windows Sockets 2.0
WSASend and WSARecv routines. 74

Program 4-8. Unidirectional pipelined token transfer measurement using an indexed parallel CAP
construct . 75

CHAPTER 5 Design and Implementation of PS2 . 83
Program 5-1. CAP specification of the PS2 server (simplified version) . 91

Program 5-2. How the PS2 framework is customized for developing a new parallel processing operations on
parallel files (simplified example) . 92

Program 5-3. Macro that convert a virtual disk index to a virtual disk server index . 94

Program 5-4. Macro that convert a virtual disk index to a compute server index . 95

Program 5-5. Thanks to the ToComputeServerIndex and ToVirtualDiskServerIndex macros, and the
VirtualDiskIndex table of a parallel file, application or library programmers are able to redirect extent access
requests to the ExtentServer thread capable of accessing extents in the desired extent file (in figure the 2nd
extent file) and to redirect processing operations to the ComputeServer thread located in the same address space
as the ExtentServer thread accessing extents in the desired extent file (in figure the 2nd extent file). 95

Program 5-6. CAP specification of the PS2 server (detailed version) . 98

Program 5-7. CAP specification of the PS2 server tokens . 99

Program 5-8. CAP specification of the PS2 interface server . 100

Program 5-9. Concurrent accesses to a same directory or a same parallel file are resolved using a
ConcurrentAccessResolverT object . 101

Program 5-10. CAP specification of the PS2 computer server . 101

Program 5-11. CAP specification of the PS2 virtual disk server . 101

Program 5-12. CAP specification of the PS2 extent file server . 102

Program 5-13. CAP specification of the PS2 extent file server tokens . 104

Program 5-14. CAP specification of the PS2 extent server . 104

Program 5-15. CAP specification of the PS2 extent server tokens . 105

Program 5-16. CAP specification of the parallel Ps2ServerT::OpenParallelFile operation. 106

Program 5-17. Application programming interface of EFS . 108

Program 5-18. Asynchronous programming of the ExtentServerT::ReadExtent sequential operation using the
capDoNotCallSuccessor and capCallSuccessor CAP-library functions. 109

Program 5-19. CAP configuration file mapping the InterfaceServer thread onto the user’s PC, three
ComputeServer threads per SP node, one ExtentFileServer thread per SP node, and one ExtentServer thread per
SP node . 111

Program 5-20. PS2 configuration file specifying the NTFS root directories of each virtual disk 112
xiv

Program 5-21. Starting a PS2 application with a CAP configuration file and a PS2 configuration file at
DOS prompt . 112

CHAPTER 6 Developing Parallel I/O- and Compute- Intensive Applications using PS2 . 115
Program 6-1. Declustering function converting a tile coordinate (TilePositionX, TilePositionY) into an extent

location (ExtentFileIndex, ExtentIndex) . 118

Program 6-2. Declaration of the input and output tokens of the parallel Ps2ServerT::WriteWindow
operation . 119

Program 6-3. CAP specification of the parallel PS2ServerT::WriteWindow operation 120

Program 6-4. Incorporating the parallel Ps2ServerT::WriteWindow operation into a C/C++ image
processing library . 121

Program 6-5. Thanks to the CAP formalism, a minor modification of Program 6-3 enables compressed tiles to
be written . 122

Program 6-6. Improved CAP specification requiring less communication between the SP nodes and the
client node. 123

Program 6-7. CAP specification of the neighbourhood dependent imaging operation 127

Program 6-8. CAP specification of the pipelined-parallel slice extraction and visualization operation 132

Program 6-9. Improved CAP specification requiring much less communication between the client PC and the
SP nodes . 133

CHAPTER 7 Conclusion . 139
xv

xvi

List of Tables

CHAPTER 1 Introduction . 1

CHAPTER 2 Related Research . 5

CHAPTER 3 The CAP Computer-Aided Parallelization Tool . 9
Table 3-1. Comparison of the predicted and measured execution times of the 5-stage pipeline for various

filling factors. 46

CHAPTER 4 Runtime System for CAP and PS2 . 55
Table 4-1. Field sizes for Fast Ethernet theoretical maximum throughput calculation 68

Table 4-2. Latencies and throughputs of the Windows Sockets API (packet-level) and the token-oriented
message-passing system of the CAP parallel programming environment (CAP token-level) 73

Table 4-3. Latencies and throughputs of the overlapped Windows Sockets 2.0 API for a unidirectional
pipelined packet transfer and for various numbers of scattered buffers . 76

Table 4-4. Latencies and throughput of the CAP’s message-passing system for a unidirectional pipelined token
transfer with various coalescence factors . 77

Table 4-5. By increasing the coalescence factor, the latency per token is decreased. 77

CHAPTER 5 Design and Implementation of PS2 . 83

CHAPTER 6 Developing Parallel I/O- and Compute- Intensive Applications using PS2 . 115

CHAPTER 7 Conclusion . 139
xvii

xviii

Chapter 1

Introduction

1.1 The IO/computation gap

The performance gain that can be obtained by improving some portion of a computer can be calculated using
Amdahl’s Law [Amdahl67]. Amdahl’s Law states that the performance improvement to be gained from using a
faster mode of execution is limited by the fraction of time the faster mode can be used.

Suppose that an enhancement E accelerates a fraction F of a task by a factor S, and the remainder of the task is
unaffected (Figure 1-1). Then, the overall speed-up, i.e. how much faster the task will run using the machine with
the enhancement E as opposed to the original machine, is given by Equation 1-1.

(1-1)

Amdahl’s Law, i.e. Equation 1-1, expresses the law of diminishing returns: the incremental improvement in
speed-up gained by an additional improvement in the performance of just a portion of the computation diminishes
as improvements are added. An important corollary of Amdahl’s Law is that if an enhancement is only usable for
a fraction of a task, we cannot speed up the task by more that the reciprocal of 1 minus that fraction (assuming S
tends to be infinite).

Amdahl’s Law implies that the overall performance of a computer system is limited by the performance of its
slowest subsystem or component (processor, memory, disk, or network), i.e. a computer system with faster
processors or more processors needs more disk I/O throughput to maintain the system balanced. For example,
suppose that a sequential application running on a single-processor single-disk computer spends 90% of its
execution time doing computations and 10% of its time doing disk I/O’s. Then, after having parallelized the
algorithm, the overall application speed-up will be 5.26 on a 10-processor single-disk machine (Equation 1-1).
And on a 100-processor single-disk machine, the overall speed-up will be less than 10. This poor speed-up is due
to the unbalanced computer system where 100 processors improve the performance of 90% of the execution time
of the application but leave 10% unaffected (disk I/O’s). Therefore, Amdahl’s rule of thumb claims that a
balanced computer system needs about 1 MBytes of main memory capacity and 1 Mbits/s of I/O bandwidth per 1
MIPS of CPU performance [Amdahl67].

Contemporary high performance computer systems are becoming increasingly unbalanced. Processor speeds have
been improving steadily and substantially for a long time (roughly 35% to 50% growth per year) [Hennessy96].
Memory access times have decreased 30% to 80% each year over the last decade. However, performance gains in
disk I/O subsystems have improved only marginally, i.e. less than 10% performance improvement per year.

Although the increase in disk storage density has kept pace with gains in memory capacity1, disk access times,
limited by mechanical delays, have improved little in comparison with improvements in memory access times and
in processor speeds over the last decades. As a result of these disparities, the disk I/O subsystem has become a
potential performance bottleneck in most computer systems. It becomes increasingly difficult to provide sufficient
I/O bandwidth to keep applications running at full speed for large problems consuming large amounts of data.

Figure 1-1. Enhancement E accelerates a fraction F of a task by a factor S, and the remainder of the task is

unaffected

1. Disk density increases by about 50% per year, quadrupling in just over three years; memory density
increases by about 60% per year, quadrupling in three years [Hennessy96].

T1 T2Tseq T1 T2Tpar

Texec(without E) Texec(with E)

Enhancement E:
Tseq / Tpar = S

Speedupoverall

Texec(without E)

Texec(with E)
--

1

1 F–() F S⁄+
----------------------------------= =
1-1

This widening IO/computation gap is known as the I/O gap problem or the I/O crisis [Patterson88, Kotz91,
Huber95b]. This problem is further aggravated for parallel applications where the processing power of the
applications is increased by using multiple processors.

The most promising solution for balancing the performance of the storage subsystem with other subsystems in a
(multiprocessor) computer, i.e. to fill the IO/computation gap, is to extend parallelism to the disk I/O subsystem.
However, the I/O crisis is not the only motivation for parallel storage subsystems. Several traditional and
emerging I/O- and compute- intensive applications inherently require high-speed and high-volume data transfer to
and from secondary storage devices.

1.2 I/O- and compute- intensive applications that need parallel
storage-and-processing systems

In addition to the quantitative effect (the I/O gap problem), a second, perhaps more important, qualitative effect is
driving the need for parallel storage-and-processing systems. Current (parallel) computers offer tremendous
computing power by incorporating (multiple) faster processors. They enable the creation of new applications and
greatly expand the scope of existing applications. Besides requiring enormous processing power, these emerging
I/O- and compute- intensive applications manipulate huge amounts of persistent data that must be rapidly
transferred to and from secondary storage devices. Some of these I/O- and compute- intensive applications are
discussed below.

Scientific computing

The area of scientific computing has a profusion of I/O- and compute- intensive applications that need to process
large amounts of data [Pool94]. They include biology applications such as neural simulation systems and atomic
structure of viruses; chemistry applications such as quantum chemical reaction dynamics, electronic structure of
superconductors; earth science applications such as seismic data processing, community climate models, and
weather forecasting; astronomy applications [Karpovich93] for example processing data from astronomical
instruments; and engineering applications such as Navier-Stokes turbulence simulations. These applications
typically use enormous working data sets that are stored as scratch files. They often write large checkpoint files in
order to save the computation state in case of a crash and often produce large output files that are used for
visualization. These I/O- and compute- intensive applications certainly need parallel storage-and-processing
systems that can sustain very high disk I/O throughputs and offer tremendous computing power.

Multimedia

Multimedia applications also have inherently high I/O demands with real-time deadlines. They are usually
interactive, and therefore less tolerant to high latency. Video-on-demand, an emerging field in this application
area, not only requires high and variable data rates, but also requires synchronization among competing video
streams. For this kind of applications, specific multimedia parallel storage systems exist. Besides declustering
video streams across several disks, these multimedia parallel storage systems (devised exclusively for multimedia
applications) include real-time disk scheduling algorithms, disk access deadlines, synchronization mechanisms
among the competing streams, quality of services, resource reservations, admission control, etc. Besides requiring
high disk I/O bandwidth, multimedia applications may also require enormous computing power for performing
real-time processing operations on streams, e.g. compressing a stream according to the available network
throughput, extracting a 3-D stream (x-y-time) from a 4-D stream (x-y-z-time). Therefore, such I/O- and
compute- intensive multimedia applications certainly also need powerful parallel storage-and-processing systems.

Wide area information servers

Over the last couple of years, the Web has added a new dimension to wide area information servers. Suddenly,
department-scale storage systems are exposed to information access from users all over the world. Web access has
not only increased the number of clients that a local system has to sustain, it has fundamentally affected the nature
of information access. Not only does a Web server handle many disk I/O requests ranging from very small (e.g. a
simple html file) to very large (e.g. a video), but also it processes informations before data is actually transmitted.
For example, a search engine Web server has to process huge amounts of data distributed across multiple disks for
satisfying one request. Parallel storage-and-processing systems are also suitable as Web server architectures.
1-2

1.3 Contribution of this research

With the emergence of fast networks such as Fast Ethernet and Myrinet, running parallel I/O- and compute-
intensive applications on a network of PC’s are now possible. Making use of a large number of commodity
components (PC’s, Fast Ethernet, SCSI-2 disks) working in parallel, i.e. parallel processing on several PC's and
parallel access to many independent disks, offers the potential of scalable processing power and scalable disk
access bandwidth.

The main problem of using parallel distributed memory computers is the creation of a parallel application made of
many threads running on different computers. Creating parallel I/O- and compute- intensive programs with
completely asynchronous communications and disk I/O accesses is possible, but difficult and error prone. Tiny
programming errors in respect to synchronization and information transfer lead to deadlocks which are very hard
to debug. The difficulty of building reliable parallel programs on distributed memory computers is one of the
reasons why most commercial parallel computers are SMP computers, i.e. computers incorporating shared
memory whose processors interact via shared memory and synchronization semaphores (for example SGI Origin
2000 multiprocessor systems). However, compared to SMP computers, PC-based parallel computers can offer
cheaper solutions, and have the potential of making parallel processing affordable to medium and small size
companies.

In addition, accessing in parallel many independent disks at a time located on different computers requires
appropriate parallel storage system support, i.e. means of declustering a parallel file into a set of disks located on
different computers and of providing metainformation specifying where the file stripes are located and how the
declustering is being done.

This research presents new methods and tools to build parallel I/O- and compute- intensive applications based on
commodity components (PC's, SCSI-2 disks, Fast Ethernet, Windows NT). Using a Computer-Aided

Parallelization tool called CAP1, application programmers create separately the serial program parts and express
the parallel behaviour of the program at a high level of abstraction. This high-level parallel CAP program
description specifies a macro-dataflow, i.e. a flow of data and parameters between operations running on the same
or on different processors. This parallel CAP program description is preprocessed into a compilable and
executable C++ source parallel program.

In the context of this thesis I have contributed to CAP by developing its portable runtime system, incorporating a
CAP-oriented message-passing system (MPS), and by specifying new features to be incorporated into CAP, as a
result of the present thesis research work.

This dissertation describes the CAP language, its underlying message-passing system, and the customizable

parallel storage and processing server (PS2), based on CAP, offering a library of low-level parallel file system
components. Thanks to the CAP formalism, these low-level parallel file access operations can be combined with
application-specific or library-specific processing operations in order to yield efficient pipelined parallel I/O- and
compute- intensive programs. These programs may run on multi-PC servers offering their access and processing
services to clients located over the network.

1.4 Outline of this thesis

This dissertation is structured as follows. In the next chapter we briefly presents some related parallel file systems.
In Chapter 3 we describe the CAP Computer-Aided Parallelization tool facilitating the development of parallel
applications running on distributed memory multi-processors, e.g. PC's connected by Fast Ethernet. Chapter 4
experimentally analyses the performances of a multi-SCSI disk array hooked onto a same PC by several SCSI-2
strings and evaluates the potential overheads of the Windows NT operating system in terms of disk access latency
time and processor utilization. The second part of Chapter 4 is devoted to the message-passing system (MPS)
enabling a distributed CAP application to asynchronously send and receive messages across the network. MPS
has been specially developed for the CAP computer-aided parallelization tool. We show how to ensure
asynchronous communications over TCP/IP connections by using the Microsoft Windows Socket 2.0 interface
and how MPS serializes messages. The end of Chapter 4 gives a detailed performance analysis of MPS. We
compare MPS with Windows Socket 2.0 for two different communication patterns found in real CAP

1. The CAP computer-aided parallelization tool has been partly devised by a colleague Dr. Benoit Gennart.
1-3

applications: an unpipelined data transfer and a pipelined data transfer. Chapter 5 describes the PS2 parallel
storage and processing server: a framework for developing parallel I/O- and compute- intensive applications
using the CAP computer-aided parallelization tool. We show the new extent-oriented two-dimensional structure
of a parallel file that enables programmers to develop high-level libraries providing application-specific
abstractions of files along with parallel processing operations on parallel files. Chapter 6 describes our new

approach for developing parallel I/O- and compute- intensive applications or libraries using the customizable PS2

parallel file system. We apply the PS2 methodology to synthesize parallel imaging operations. We demonstrate
that, thanks to CAP, the generated operations are very flexible and additional processing steps can be easily added

to a pipelined parallel program. The applicability and the performance of the CAP tool and the PS2 framework on
real applications is demonstrated with a parallel 3D tomographic image server application enabling clients to
specify and access in parallel image slices having any desired position and orientation. Evaluation of the obtained
Visual Human image slice access times shows that performances are close to the best performance obtainable by
the underlying hardware. Finally, in Chapter 7, we outline the important conclusions from our work and suggest
possible future work.
1-4

Chapter 2

Related Research

This chapter presents some parallel file systems.

2.1 The Portable Parallel File System

The Portable Parallel File System (PPFS) [Huber95a, Huber95b] has been developed at the University of Illinois
at Urbana-Champaign for quickly experimenting and exploring a wide variety of data placement and data
management policies. They claim that the performance of parallel input/output systems is particularly sensitive to
access pattern, data distribution, cache size, cache location, cache replacement policy, data prefetching, and write
behind. As an answer to these issues, PPFS supports malleable access by providing applications with a high
degree of control on:
• Parallel File Access Modes.

Under PPFS, files consist of a sequence of variable size records, which are numbered starting from zero. The
record is the unit of access; only entire records may be read or written by specifying records by number. An
application may also specify an access pattern, a sequence of records, which specifies how the records will be
accessed. This pattern may be used in two ways: a global access pattern determines how the application as a
whole will access the file, and a local access pattern determines how one particular process accesses the file.
Besides that, PPFS allows applications to overlap computation with I/O operations by providing both
blocking and non-blocking calls.

• Caching.
PPFS employs three levels of caching. 1) Each I/O device has an associated server cache, which only
contains data residing on the given device. 2) Each application node has a client cache which holds data
accessed by the given user process. 3) Finally an application may use one or more global caches. PPFS may
be extended by adding new replacement, prefetching and write behind policies to the system caches. Each
cache may potentially have a different set of policies for each file. Furthermore, policies may changed during
program execution.

• Data placement.
Under PPFS, a parallel file is divided into segments, each of which reside on a particular I/O device. Each
segment is simply a collection of records. An application has full control over 1) the parallel file’s clustering
which associates an I/O device with each segment; 2) the parallel file’s distribution that determines, for each
record, in which segment the record resides; 3) and the indexing scheme which determines the length and
location of the record in that segment.

The organization of PPFS is based on the client/server model. Clients are user application processes. There are
Data Servers which are abstraction of I/O devices. They are built on top of the underlying native file system, e.g.
UNIX. These servers cache data, perform physical I/Os and prefetch data as specified by the clients. There is a
Metadata Server which coordinates the creation, opening and closing of all parallel files and maintains the
directory information. In addition to these, there are optional Caching Agents acting as coordinators for parallel
files which require global caching or access modes.

2.2 The Galley Parallel File System

Thanks to an extensive parallel file system workload characterization on an iPSC/860 multiprocessor machine
running Numerical Aerodynamics Simulation (NAS) applications [Kotz94a], the authors have remarked that
strided I/O requests are common for realistic scientific multiprocessor applications. The authors refer to a set of
I/O requests to a file as a simple-strided access pattern if each request is the same size and if the offset of the file
pointer is incremented by the same amount between each request. A group of requests that appear to be part of a
simple-strided pattern is defined as a strided segment. And a nested-strided access pattern is similar to a
simple-strided access pattern but rather than being composed of simple requests separated by regular strides in the
file, it is composed of strided segments separated by regular strides in the file.
2-5

Based on that observation, the authors of Galley [Nieuwejaar94, Nieuwejaar96] believe that the conventional
Unix-like interface, enabling applications to access multiple disks transparently, is inefficient and insufficient for
parallel file systems. Indeed this interface conceals the parallelism within the file system, increasing the ease of
programmability, but making it difficult or impossible for sophisticated programmers and libraries to use
knowledge about their I/O needs to improve the behaviour of their parallel program. Moreover they argue that an
interface where an application can explicitly make simple- and nested-strided requests, would reduce the number
of I/O requests, and provide additional improvements [Kotz94b, Rosario93, Nitzberg92]. Their analysis suggests
the workload for which most multiprocessor file systems were optimized is very different from the workloads
they are actually being asked to support.

The authors of Galley are also convinced that designing a general-purpose parallel file system that is intended to
directly meet the specific needs of every user will lead to an inefficient system. In response to these motivations,
Nils Nieuwejaar at Dartmouth College designed the Galley parallel file system as a more general one that lends
itself to supporting a wide variety of libraries, each of which should be designed to meet the needs of a specific
community of users [Nieuwejaar96].

In order to provide applications with the ability to fully control the declustering strategy according to their own
needs, Galley introduces a new three-dimensional file structure where files are composed of one or more subfiles.
Each subfile resides entirely on a single disk, and no disk contains more than one subfile from any file.
Recursively each subfile is structured as a collection of one or more independent forks. A fork is a named,
addressable, linear sequence of bytes, similar to a traditional regular Unix file. Unlike the number of subfiles in a
file, the number of forks in a subfile is not fixed; libraries and applications may add forks to, or remove forks from
a subfile at any time.

Letting applications control both how the data is distributed across the disks and control the degree of parallelism
exercised on every subsequent access, Galley only provides data-access requests from a single fork. In addition to
the traditional Unix read and write interface, simple-strided and nested-strided interfaces are available.

The organization of Galley is based on the client-server model. There are Clients which are simply user
applications linked with the Galley run-time library running on compute processors. No caching is done at the
client side, the Galley run-time library merely translates file-system requests from the application into lower-level
requests and passes them directly to the appropriate I/O Servers running on I/O processors.

Each I/O server is composed of a CacheManager and a DiskManager. The CacheManager maintains a LRU
write-back cache of 32KB disk blocks while the DiskManager implements a custom single-disk file system based
on the Unix raw device. Galley’s DiskManager does not attempt to prefetch data. Indiscriminate prefetching can
cause thrashing in the buffer cache. Prefetching is based on the assumption that the system can intelligently guess
what an application is going to request next. Using the interfaces described above, there is no need for Galley to
make guesses about an application’s behaviour; the application is able to explicitly provide that information to
each I/O server.

In contrast with most other parallel file systems like Intel’s CFS [Pierce89], Galley does not rely on a metadata
server to locate files which would create a single point of congestion that could limit the system’s scalability.
Rather, metadata are distributed across all the I/O servers in the system. To find the I/O server that manages a
given file’s metadata, a simple hash function is applied to the file name. Vesta uses a similar hashing scheme for
their naming system [Corbett96].

2.3 The Vesta Parallel File System

The main innovation in Vesta is the fact that it breaks away from the conventional one-dimensional sequential file
structure [Corbett96]. Files is Vesta are two-dimensional, and are composed of one or more cells, each of which is
a sequence of basic striping units (BSUs). BSUs are essentially records, or fixed-sized sequences of bytes. The
number of cells and the BSU size are the two parameters that define the structure of a Vesta file. They are defined
when the file is created and cannot be changed thereafter. Like Galley’s subfiles or PPFS’s segments, each cell
resides on a single disk. However, if there are more cells than I/O nodes, the cells will be distributed to the I/O
nodes in round-robin manner.

Vesta is also unique in terms of its logical partitioning. The data in cells are viewed as a byte sequence defined in
groups of BSUs. For files that have more than one cell, we have a two-dimensional matrix of such BSUs. Vesta’s
interface enables this matrix to be dynamically and logically partitioned, which indicates how the BSUs should be
2-6

distributed among the compute nodes. Each partition is called a subfile. The open call includes parameters that
define a logical partitioning scheme and returns a file descriptor that allows access to a single subfile, not to the
whole file. Not only does this logical partitioning provide a useful means of specifying data distribution, it allows
significant performance gains since it guarantees that each portion of the file will be accessed by only a single
processor. This guarantee reduces the need for communication and synchronization between the nodes.

Another unique feature of Vesta is its ability to checkpoint files. Checkpointing is supported by maintaining two
versions of each Vesta file: the active version and the checkpoint version. By using a copy-on-write mechanism,
only physical blocks that differ are copied, the others are shared by both versions of the file reducing the disk
space needed.

Vesta is the basis of the current AIX PIOFS parallel I/O file system available for the IBM SP2. PIOFS has an
interface that is very similar to the Vesta interface, and provides a default sequential view of each file compliant
with traditional Unix.
2-7

2-8

Chapter 3

The CAP Computer-Aided Parallelization Tool

3.1 Introduction

This chapter describes the CAP computer-aided parallelization tool. The CAP language is a general-purpose
parallel extension of C++ enabling application programmers to create separately the serial program parts and
express the parallel behaviour of the program at a high-level of abstraction. This high-level parallel CAP program
description specifies a macro-dataflow, i.e. a flow of data and parameters between operations running on the same
or on different processors. CAP is designed to implement highly pipelined-parallel programs that are short and
efficient. With a configuration map, specifying the layout of threads onto different PC’s, these pipelined-parallel
programs can be executed on distributed memory PC’s.

This chapter is intended to give readers the necessary background of the CAP methodology and programming
skills required to understand the remainder of this dissertation. Readers who want to have a more in-depth view of
CAP can read its reference manual [Gennart98b].

As CAP is similar to the parallel data-driven (dataflow) computational model, Section 3.2 first presents the four
computational models and discusses how CAP differs from the standard dataflow model. Section 3.3 introduces
the CAP computer-aided parallelization tool methodology. Sections 3.4 to 3.8 present an in-depth view of the
CAP language and describe all the available parallel constructs enabling programmers to specify at a high-level of
abstraction the macro-dataflow of a program. A first simple example of a CAP program is described in Section
3.9. Sections 3.10 and 3.11 discuss how CAP addresses the issues of flow-control and load-balancing. Section
3.12 summarizes the chapter.

3.2 The CAP macro dataflow computational model

3.2.1 The four computational models

A computational model describes, at a level removed from technology and hardware details, what a computer or
language can do, i.e. which primitive actions can be performed, when these actions are performed, and by which
methods can data be accessed and stored. Browne [Browne84a, Browne84b] lists the following five key attributes
that must be specified in a computational model that includes parallelism:
1. The primitive units of computation or basic actions of the computer or language (the data types and

operations defined by the instruction set).
2. The control mechanism that selects for execution the primitive units into which the problem has been

partitioned.
3. The data mechanism (how data in memory are accessed); definition of address spaces available to the

computation.
4. The modes and patterns of communication among computers working in parallel, so that they can exchange

needed information.
5. Synchronization mechanisms to ensure that this information arrives at the right time.

Almasi [Almasi94] presents in his book the four computational models, i.e. von Neumann, control–driven,
data–driven, and demand–driven computational models. Figure 3-1 depicts A) the von Neumann model, showing
sequential execution of instructions and the memory traffic generated by data fetching and storing operations
(instruction fetching is not shown); B) the parallel control-driven (shared-memory) computation using the FORK
construct to spawn parallel executions and the JOIN construct to synchronize them. FORK acts like a branch
command on which both branches are taken. JOIN delays one routine until the other routine arrives. The memory
references for data (not shown) are the same as in A); C) the parallel data-driven (dataflow) model where an
operation is activated when all its input data (tokens) arrive. Note the absence of “variables” that correspond to
cells in global memory; D) the parallel demand-driven (reduction model) model where computation is triggered
by a demand for its result, as when some other instruction containing the routine “a” tries to execute; this other
instruction might be suspended until its demand for “a” is satisfied. The definition of “a” inside the box is
3-9

evaluated in a similar series of steps. In string reduction, each demander gets a copy of the definition for a
“do-it-yourself” evaluation. In graph reduction, the evaluation is performed at the time of the first demand, and
each demander is given a pointer to the result of the evaluation (a=10).

The best-known computational model is the one devised by John von Neumann and his associates years ago. The
von Neumann model’s features, listed in the same order used above, follow:
1. A processor that performs instructions such as “Add the contents of these two registers and put the result in

that register.”
2. A control scheme that fetches one instruction after another from the memory for execution by the processor,

and shuttles data between memory and processor one word at a time.
3. A memory that stores both the instructions and data of a program in cells having unique addresses.

3.2.2 The CAP primitive units of computation

The primitive unit of computation in CAP is any sequence of C/C++ instructions which is serially executed by a

thread to perform a required high-level task1. Examples of high-level tasks are multiplying two matrixes, filtering
an image, reading some data from a disk, writing some data to a disk, displaying a 24-bit image on the screen.
These high-level tasks are defined by a single input data, a single output data, and the sequence of C/C++
instructions that generates the output data from the input data. Of course, these high-level tasks may have
side-effects such as modifying shared global variables.

Figure 3-1. A) The von Neumann, B) the control-driven, C) the data-driven, and D) the demand-driven

computational models compared on a single example, the evaluation of a=(b+1)*(b-c)

1. A task means here a sequential subprogram usable as a high-level building block for concurrent
programming.

* t1 t2 a

b

t1

c

a

Locations

- b c t2

+ b 1 t1

* t1 t2 a

t2

i1:

i2:

i3:

Substract c from b,
store result in t2

Multiply t1, t2,
store result in a

Substract c from b,
store result in t2

Add 1 to b,
store result in t1

Program

Control
Flow

FORK i4

+ b 1 t1

GOTO i5

- b c t2

JOIN 2

* t1 t2 a* t1 t2 a

i2:

i4:

i5:
Wait until JOIN is
executed twice

i1:

i3:

i6:

(4)

(2)

()

()

()

Program

Control
Flow

+ () 1 i3/1 - () () i3/2

* () () a/1

i1: i2:

i3:

Data Token 4 2

25

10

b:(4) c:(2)

i1:(+ b 1) i2:(- b c)

a:(* i1 i2)

Definition

Demand

ik:(...a...) Result

String Reduction:

Graph Reduction:

Copy of Definition

a:(10)

A

B

C D

a=(b+1)*(b-c)
3-10

The term high-level is used to emphasize the fact that the CAP computational model works at a high-level of
abstraction compared with other parallel imperative languages such as High-Performance Fortran [Loveman93],
Multilisp [Halstead85], Concurrent Pascal [Hansen75], Occam [Miller88, Jones85, Inmos85] and compared with
other parallel programming environments such as Express [Parasoft90], PVM [Beguelin90, Sunderam90], Linda
[Carriero89a, Carriero89b], MPI [MPI94]. The history of programming languages shows a discernible trend
towards higher levels of abstraction [Watt90]. Machine instructions and most single statements are examples of
low-level language constructs. The procedure concept (as in C, for example) allows to treat a larger block of code
as an entity that can be easily invoked. The direction in language development has been towards making a
program more and more a collection of classes, with their private lives separated from their public lives, i.e object
oriented programming [Ghezzi82, Ghezzi85]. We believe that is essential for a parallel programming language
such as CAP to offer a high level of abstraction, i.e. to conceive high-level tasks as primitive units of computation
and to provide high-level parallel constructs to easily and efficiently combine these high-level tasks. Thanks to its
macro-dataflow computational model, CAP alleviates parallel programming efforts and enhances performances.
With traditional parallel programming languages (Concurrent Pascal, Occam, etc.) and parallel programming
environments (PVM, MPI, Linda, Express, etc.), programmers are burdened with low-level constructs for parallel

execution1. For example, these include the fork, join, parbegin, and parend primitives for starting and stopping
parallel execution, pvm_send, pvm_receive, mpi_send, and mpi_receive primitives, and semaphores, barriers,
rendez-vous, and remote procedure calls for coordinating parallel execution. This point of view is shared with
Grimshaw [Grimshaw96] who also believes that low-level abstractions require the programmer to operate at the
assembly language level of parallelism. Others [Beguelin92, Hatcher91, Shu91] share our philosophy of
providing a higher-level language interface to simplify applications development.

In the remainder of this dissertation, the CAP primitive units of computation are called sequential operations so as
to avoid confusion with the so-called parallel CAP operations, which are parallel operations at a higher
hierarchical level.

3.2.3 The CAP control mechanism

The control mechanism that selects for execution the primitive units of computation, i.e. sequential operations, is
in CAP based on the macro dataflow MDF [Grimshaw93a] model inspired by the dataflow computational model
[Agerwala82, Dennis75, Srini86, Veen86]. The CAP macro dataflow computational model is a medium-grain,
data-driven model and differs from traditional dataflow in four ways. First, the computation granularity is larger
than in traditional dataflow. Actors, the basic units of computation, are high-level tasks such as multiplying two
matrices specified in a high-level language (C/C++ sequential operation in the CAP terminology) not primitive
operations such as addition. Second, some actors may maintain state between invocations, i.e. have side-effects
such as modifying shared global variables. Third, actors may only depend on the result of their single previous
actor, i.e. single data dependency. Finally, in order to be able to have parallel executions of tasks, CAP has
introduced two particular actors called split and merge routines. A split routine takes as input the token of its
previous actor, and splits it into several sub-tokens sent in a pipelined parallel manner to the next actors. A merge
routine collects the results and acts as a synchronization means terminating its execution and passing its token to
the next actor after the arrival of all sub-results.

An algorithm is described in CAP by its macro dataflow and graphically depicted by a directed acyclic graph
DAG. Directed acyclic graphs are completely general, this means that they can describe any sort of algorithm.
Furthermore, they ensure that the generated code will be deadlocks free. However at the time of this research,
CAP was able to only specify symmetric DAG’s, i.e. where all the split and merge points in the graph match
pairwise (Figure 3-2).

A recent extension to CAP (not described in this dissertation since not available during the research) enables the
programmer to specify asymmetric DAG’s as well, i.e. where split and merge points in the graph do not match
pairwise (Figure 3-3).

1. In order to build a parallel program, there must be constructs [Ghezzi85] to: (a) Define a set of subtasks to
be executed in parallel; (b) Start and stop their execution; (c) Coordinate and specify their interaction
while they are executing.
3-11

3.2.4 The CAP communication mechanism and synchronization
mechanisms

The CAP language does not explicitly provide data transfer mechanisms such as a send or receive primitive.
Communications, i.e. transfer of data among the address spaces, are automatically deducted by the CAP
preprocessor and runtime system based on the CAP specification of the macro dataflow and the mapping of
sequential operations onto the threads available for computation. The CAP paradigm ensures that data transfer,
i.e. token motion, occurs only at the end of the execution of operations in order to redirect the output token of an
operation to the input of the next operation in the macro dataflow. By managing automatically the
communications without programmer intervention, the task of writing parallel programs is simplified.

Regarding communications, the CAP language does not explicitly provide synchronization tools such as
semaphores, barriers, etc. A CAP program is self-synchronized by the data merging operations. Merge routines
act as synchronization points returning their output tokens only when all the sub-tokens have been merged.

3.3 The CAP computer-aided parallelization tool philosophy

The CAP computer-aided parallelization tool enables application programmers to specify at a high level of
abstraction the set of threads, which are present in the application, the processing operations offered by these
threads, and the flow of data and parameters between operations. This specification completely defines how
operations running on the same or on different PC’s are sequenced and what data and parameters each operation
receives as input values and produces as output values.

The CAP methodology consists of dividing a complex operation into several suboperations with data
dependencies, and to assign each of the suboperations to a thread in the thread hierarchy. The CAP programmer
specifies in CAP the data dependencies between the suboperations, and assigns explicitly each suboperation to a
thread. The CAP C/C++ preprocessor automatically generates parallel code that implements the required
synchronizations and communications to satisfy the data dependencies specified by the user. CAP also handles for
a large part memory management and communication protocols, freeing the programmer from low level issues.

Figure 3-2. An example of a CAP macro dataflow depicted by a symmetric directed acyclic graph. Arcs

model data dependencies between actors. Tokens carry data along these arcs. Split routines split input

tokens into several sub-tokens sent in a pipelined parallel manner. Merge routines merge input tokens into

one output token thus acting as synchronization points.

Figure 3-3. An asymmetric directed acyclic graph that can be described with the recent extension to CAP

Split routine Merge routine

Actor or high-level task or
C++ sequential operation
in the CAP terminology

operation4operation1

operation3

operation2

operation5 operation6 operation7

m
erg

e
1

sp
lit

1

sp
lit

2

m
erg

e
2

sp
lit

1

operation1

operation2

operation3

operation4

m
erg

e
1

sp
lit

2

m
erg

e
2

3-12

CAP operations are defined by a single input, a single output, and the computation that generates the output from
the input. Input and output of operations are called tokens and are defined as C++ classes with serialization
routines that enable the tokens to be packed or serialized, transferred across the network, and unpacked or
deserialized. Communication occurs only when the output token of an operation is transferred to the input of
another operation. The CAP’s runtime system ensures that tokens are transferred from one address space to
another in a completely asynchronous manner (socket-based communication over TCP/IP). This ensures that

communication takes place at the same time as computation1.

An operation specified in CAP as a schedule of suboperations is called a parallel operation. A parallel operation
specifies the assignment of suboperations to threads, and the data dependencies between suboperations. When
two consecutive operations are assigned to different threads, the tokens are redirected from one thread to the
other. As a result, parallel operations also specify communications and synchronizations between sequential
operations. A sequential operation, specified as a C/C++ routine, computes its output based on its input. A
sequential operation cannot incorporate any communication, but it may compute variables which are global to its
thread.

Each parallel CAP construct consists of a split routine splitting an input request into sub-requests sent in a
pipelined parallel manner to the operations of the available threads and of a merging function collecting the
results. The merging function also acts as a synchronization means terminating the parallel CAP construct’s
execution and passing its result to the next operation after the arrival of all sub-results (Figure 3-4).

1. In the case of a mono-processor PC communications are only partially hidden, since the TCP/IP protocol
stack requires considerable processing power (Section 4.5).

Figure 3-4. Graphical CAP specification: parallel operations are displayed as parallel horizontal branches,

pipelined operations are operations located in the same horizontal branch

parallel operation OP1

input token inOP1 output token outOP1

input token
inOP1

parallel operation
OP3

sequential
operation OP2

Thread Tj

Thread Ti

output token
outOP1

Thread Tk

Thread Tl

sequential
operation OP4

sequential
operation OP2

parallel operation
OP3

Thread Tj

sequential
operation OP2

output token
outOP3

output token
outOP3

output token
outOP2

output token
outOP2

input token
inOP2

input token
inOP2

input token
inOP4

sp
lit ro

u
tin
e S

F
1

m
erg

e ro
u
tin

e M
F
1

output token
outOP2

sp
lit ro

u
tin

e S
F
2

m
erg

e ro
u
tin
e M

F
2

output token
outOP3

input token
inOP5

input token
inOP6

output token
outOP5

output token
outOP6

sequential
operation OP5

sequential
operation OP6

Thread Tm

Thread Tn
3-13

The CAP specification of a parallel program is described in a simple formal language, an extension of C++. This
specification is translated into a C++ source program, which, after compilation, runs on multiple processors
according to a configuration map specifying the mapping of the threads running the operations onto the set of
available processors. The macro data flow model which underlies the CAP approach has also been used
successfully by the creators of the MENTAT parallel programming language [Grimshaw93a, Grimshaw93b].

3.4 Tokens

In CAP data that flow through operations are called tokens since a CAP program is self-synchronized by its data
motion. A token declaration is similar to the C/C++ struct/class declaration. Along with a token declaration, the
programmer must provide serialization routines necessary for moving the token from one address space to
another, i.e. packing the token in a structure that is easily and efficiently sent through a TCP/IP connection by the
CAP’s runtime system and unpacking the same structure in the other address space (Section 4.4.1). Serialization
occurs only when a token has to be transferred from one address space to another. Within an address space, CAP’s
runtime system uses the shared memory to move tokens from one thread to another.

Program 3-1 shows an example of 4 token declarations, TokenAT (lines 1-8), TokenBT (lines 11-19), TokenCT
(lines 20-24) and TokenDT (lines 30-37). Serialization routines are not shown since Section 4.4.1 is completely
devoted to this issue. The declaration of a token consists of the keyword ‘token’ (lines 1, 11, 20 and 30) followed
by any C/C++ struct/class field declarations (lines 3, 4, 6, 13, etc.). As C++ classes, tokens may contain
constructors and a destructor (line 6, 16, 17 and 35). One can even declare MFC objects inside a token (lines 13
and 14) as long as serialization routines are provided. However CAP does not support pointers since it does not
know how to serialize them. That is the reason of lines 27 and 28.

The pure C/C++ program corresponding to the 4 token declarations in CAP (Program 3-1) is shown in Program
3-2.

Program 3-1. 4 token declarations in CAP

Program 3-2. 4 token declaration in C/C++

1 token TokenAT
2 {
3 int Value;
4 float NumberOfDegree;
5
6 TokenAT(int value, float numberOfDegree);
7 ... // Any C++ field declarations
8 }; // end token TokenAT
9
10
11 token TokenBT
12 {
13 CString AStringOfChars;
14 CArray<float, int> AnArrayOfFloat;
15
16 TokenBT(char* initialCountry);
17 ~TokenBT();
18 ... // Any C++ field declarations
19 }; // end token TokenBT

20 token TokenCT
21 {
22 MyOwnClassT AnObject;
23 ... // Any C++ field declarations
24 }; // end token TokenCT
25
26
27 typedef char* PointerToCharT;
28 typedef double* PointerToDoubleT;
29
30 token TokenDT
31 {
32 PointerToCharT APointerToCharP;
33 PointerToDoubleT APointerToDoubleP;
34
35 TokenDT(TokenAT* fromP);
36 ... // Any C++ field declarations
37 }; // end token TokenDT

1 class TokenAT
2 {
3 int Value;
4 float NumberOfDegree;
5
6 TokenAT(int value, float numberOfDegree);
7 ... // Any C++ field declarations
8 }; // end class TokenAT
9
10
11 class TokenBT
12 {
13 CString AStringOfChars;
14 CArray<float, int> AnArrayOfFloat;
15
16 TokenBT(char* initialCountry);
17 ~TokenBT();
18 ... // Any C++ field declarations
19 }; // end class TokenBT

20 class TokenCT
21 {
22 MyOwnClassT AnObject;
23 ... // Any C++ field declarations
24 }; // end token TokenCT
25
26
27 typedef char* PointerToCharT;
28 typedef double* PointerToDoubleT;
29
30 class TokenDT
31 {
32 PointerToCharT APointerToCharP;
33 PointerToDoubleT APointerToDoubleP;
34
35 TokenDT(TokenAT* fromP);
36 ... // Any C++ field declarations
37 }; // end class TokenDT
3-14

3.5 Process hierarchy

As presented in section 3.3, the fundamental CAP methodology consists of specifying at a high-level of
abstraction a process hierarchy, the operations offered by the processes in the hierarchy, and for parallel
operations the schedule of suboperations described by a macro dataflow depicted as a directed acyclic graph
(DAG).

Program 3-3 shows a process hierarchy declaration where 5 types of processes are defined, ProcessAT (lines
1-16), ProcessBT (lines 19-30), ThreadAT (lines 33-42), ThreadBT (lines 45-54), ThreadCT (lines 57-66),
ThreadDT (lines 69-78), ThreadET (lines 81-90). Processes are declared as C++ classes with the ‘process’
keyword (lines 1, 19, 33, etc.). Note that there are processes with subprocess declarations, ProcessAT and
ProcessBT, and processes without subprocess declarations, ThreadAT, ThreadBT, ThreadCT, ThreadDT and
ThreadET. CAP makes a significant distinction between these two types of declaration. Therefore in the
continuation of this dissertation the term hierarchical process refers to processes with subprocesses defined in a
‘subprocesses:’ section, the term leaf process or thread refers to processes without a ‘subprocesses:’ section, and
the term process refers to either hierarchical or leaf processes. In a ‘subprocesses:’ section programmers
instantiate processes, e.g. the hierarchical process ProcessAT has 3 subprocesses: a ProcessB hierarchical process
of type ProcessBT (line 4), a ThreadA leaf process of type ThreadAT (line 5) and a ThreadB leaf process of type
ThreadBT (line 6). In the same manner ProcessB is hierarchically defined.

In a hierarchical process, high-level operations also called parallel operations are defined as a schedule of
suboperations (either parallel or sequential suboperations) offered by its subprocesses and/or offered by himself
(lines 9-11, 13-15 and 27-29). The flow of tokens between operations, i.e. macro dataflow, is programmed by
combining the 8 high-level CAP constructs described in Section 3.8.

Program 3-3. CAP specification of a process hierarchy

1 process ProcessAT
2 {
3 subprocesses:
4 ProcessBT ProcessB;
5 ThreadAT ThreadA;
6 ThreadBT ThreadB;
7
8 operations:
9 Operation1
10 in TokenAT* InputP
11 out TokenDT* OutputP;
12
13 Operation2
14 in TokenAT* InputP
15 out TokenDT* OutputP;
16 }; // end process ProcessAT
17
18
19 process ProcessBT
20 {
21 subprocesses:
22 ThreadCT ThreadC;
23 ThreadDT ThreadD;
24 ThreadET ThreadE;
25
26 operations:
27 Operation1
28 in TokenCT* InputP
29 out TokenDT* OutputP;
30 } // end process ProcessBT
31
32
33 process ThreadAT
34 {
35 variables:
36 int ThreadLocalStorage;
37
38 operations:
39 Operation1
40 in TokenAT* InputP
41 out TokenBT* OutputP;
42 }; // end process ThreadAT
43
44

45 process ThreadBT
46 {
47 variables:
48 int ThreadLocalStorage;
49
50 operations:
51 Operation1
52 in TokenBT* InputP
53 out TokenCT* OutputP;
54 }; // end process ThreadBT
55
56
57 process ThreadCT
58 {
59 variables:
60 int ThreadLocalStorage;
61
62 operations:
63 Operation1
64 in TokenCT* InputP
65 out TokenCT* OutputP;
66 }; // end process ThreadCT
67
68
69 process ThreadDT
70 {
71 variables:
72 int ThreadLocalStorage;
73
74 operations:
75 Operation1
76 in TokenCT* InputP
77 out TokenCT* OutputP;
78 }; // end process ThreadDT
79
80
81 process ThreadET
82 {
83 variables:
84 int ThreadLocalStorage;
85
86 operations:
87 Operation1
88 in TokenCT* InputP
89 out TokenDT* OutputP;
90 }; // end process ThreadET
91
92
93 ProcessAT MyHierarchy;
3-15

In leaf processes, operations are defined as standard sequential C/C++ subprograms (lines 39-41, 51-53, 63-65,
75-77 and 87-89), henceforth called leaf operations or sequential operations. The term operation is used to refer
to either parallel or sequential operations.

Both parallel and sequential operations take a single input token, e.g. lines 10 and 40, and produce a single output
token, e.g. lines 11 and 41. The input token is in the parallel case redirected to the first operation met when
flowing through the macro dataflow, and in the sequential case it is the input parameter of the function.
Alternatively, the output token is in the first case the output of the last executed operation in the dataflow and in
the second case the result of the serial execution of the C/C++ function.

At line 93 the process hierarchy is instantiated. At run time and with a configuration file (Section 3.6),

MyHierarchy process hierarchy is created on a multi-PC environment1, i.e. only the leaf processes are spawn
since they are the threads executing the sequential operations they offer. Hierarchical processes are merely entities
for grouping operations in a hierarchical manner. They do not participate as threads during execution since the
parallel operations represent exclusively schedules used by leaf processes at the end of a sequential operation to
locate the next sequential operation, i.e. successor, to fire. In other words, tokens flow from sequential operations

to sequential operations guided by parallel operations2. Therefore at run time behind the MyHierarchy process
hierarchy, there are 5 threads of execution, i.e. ThreadA, ThreadB, ThreadC, ThreadD, ThreadE. These threads are
distributed among the PC’s according to a configuration file.

In leaf processes it is possible to declare thread local variables3 in ‘variables:’ sections (lines 36, 48, 60, 72, 84),
i.e. variables that are distinct across different thread instantiations. Hierarchical processes may also contain a
‘variables:’ section but care must be taken if the leaf subprocesses are mapped by the configuration file onto
different address spaces. In that case a local copy of the variables present in the ‘variables:’ section is available in
each address space. CAP’s runtime system does not ensure any coherence between address spaces. Each of them
gets a local copy of all the variables, i.e. the global variables, the thread local variables and the hierarchical
process local variables.

The execution model of MyHierarchy CAP process hierarchy is shown in Figure 3-5. Each threads in the process
hierarchy executes a loop consisting of 1) removing a token from its input queue; 2) selecting the sequential
operation to execute based on the current parallel operation; 3) running the sequential operation to produce an
output token; 4) finding out the successor, i.e. the next sequential operation to be executed by a thread, and
sending asynchronously the output token to that thread using the message passing system.

The C/C++ program corresponding to the CAP process hierarchy declaration (Program 3-3) is shown in Program
3-4. Processes, either hierarchical or leaf processes, are merely declared as C++ classes (lines 1, 18, 32, 44, 56, 68
and 80), subprocesses are declared as members of their parents (lines 4, 5, 6, 21, 22 and 23), and operations, either
parallel or sequential operations, are methods within processes (lines 9-10, 12-13, 26-27, 38-39, 50-51, 62-63,
74-75, 86-87). The operation prototype always features two arguments. The first argument is the pointer to the
input token and the second argument is the pointer’s reference to the output token so as the output token created
inside the operation is returned back to the caller. Process hierarchy instantiation is done in the same manner as
with a CAP process hierarchy (line 92).

3.6 Configuration file

In order to be able to run a CAP program on multiple address spaces, i.e. with several Windows NT processes
distributed on a multi-PC environment, CAP’s runtime system needs a configuration file. A configuration file is a
text file specifying: 1) the number of address spaces (or Windows NT processes) participating in the parallel
computation; 2) the PC’s IP addresses on which these Windows NT processes run; 3) the Windows NT process
executable filenames; 4) the mapping of threads to address spaces.

Program 3-5 gives an example of a configuration file for the MyHierarchy process hierarchy shown in Program
3-3.

1. In the case where the configuration file is omitted, all the threads are spawned in a single address space.
2. In addition, split and merge sequential functions enable scattering and gathering tokens (Sections 3.8.5,

3.8.6 and 3.8.7).
3. This is equivalent to the thread local storage (TLS) used in Win32 program [Cohen98].
3-16

Figure 3-5. Graphical representation of MyHierarchy CAP process hierarchy

Program 3-4. C/C++ specification of a process hierarchy

ThreadAT::
Operation1

?

ThreadA

ThreadAT::
OperationX

?

ThreadBT::
Operation1

?

ThreadB

ThreadBT::
OperationX

?

ProcessAT

M
essag

e P
assin

g
 S
y
stem

M
essag

e P
assin

g
 S
y
stem

input token
queue

thread of
execution

sequential
operations offered

by this leaf
process

which
thread is the
successor?

2

1

3

4

5

1

2

3

4

5

which sequential
operations should I

execute?

6

Message passing
system output
token queue

6

Legend:

ProcessBT

1 class ProcessAT
2 {
3 private:
4 ProcessBT ProcessB;
5 ThreadAT ThreadA;
6 ThreadBT ThreadB;
7
8 public:
9 void Operation1(TokenAT* InputP,
10 TokenDT* &OutputP);
11
12 void Operation2(TokenAT* InputP,
13 TokenDT* &OutputP);
14
15 }; // end class ProcessAT
16
17
18 class ProcessBT
19 {
20 private:
21 ThreadCT ThreadC;
22 ThreadDT ThreadD;
23 ThreadET ThreadE;
24
25 public:
26 void Operation1(TokenCT* InputP,
27 TokenDT* &OutputP);
28
29 }; // end class ProcessBT
30
31
32 class ThreadAT
33 {
34 private:
35 int ThreadLocalStorage;
36
37 public:
38 void Operation1(TokenAT* InputP,
39 TokenBT* &OutputP);
40
41 }; // end class ThreadAT
42
43

44 class ThreadBT
45 {
46 private:
47 int ThreadLocalStorage;
48
49 public:
50 void Operation1(TokenBT* InputP,
51 TokenCT* &OutputP);
52
53 }; // end class ThreadBT
54
55
56 class ThreadCT
57 {
58 private:
59 int ThreadLocalStorage;
60
61 public:
62 void Operation1(TokenCT* InputP,
63 TokenCT* &OutputP);
64
65 }; // end class ThreadCT
66
67
68 class ThreadDT
69 {
70 private:
71 int ThreadLocalStorage;
72
73 public:
74 void Operation1(TokenCT* InputP,
75 TokenCT* &OutputP);
76
77 }; // end class ThreadDT
78
79
80 class ThreadET
81 {
82 private:
83 int ThreadLocalStorage;
84
85 public:
86 void Operation1(TokenCT* InputP,
87 TokenDT* &OutputP);
88
89 }; // end class ThreadET
90
91
92 ProcessAT MyHierarchy;
3-17

A configuration file always contains two sections:
1. A ‘processes:’ section (lines 2-6) where all the address spaces or Windows NT processes participating in the

parallel computation are listed. For each of them a PC’s IP address and an executable filename are given so as
the runtime system is able to spawn the Windows NT process on that PC with that executable file (lines 4, 5,
6). Note the special keyword ‘user’ (line 3) used to refer the Windows NT process launched by the user at
DOS prompt for starting the CAP program (Program 3-6). In that case, the PC’s IP address and the
executable file name is obviously not mentioned as it is the user who launches it.

2. A ‘threads:’ section (lines 8-13) specifying for each threads in MyHierarchy process hierarchy the Windows
NT process where the thread executes.

Program 3-6 shows how to start a CAP program with a configuration file. At the beginning of the execution the
CAP’s runtime system parses the configuration file and thanks to a message passing system (Section 4.4) spawns
all the Windows NT processes (except the ‘user’ one, Program 3-5 line 3) on the mentioned PC’s. Then the 4
Windows NT processes (A, B, C, and D) parse the configuration file so as to spawn the 5 threads in their
respective address space, e.g. the Windows NT process C spawns the ThreadA thread and the ProcessB.ThreadE
thread.

If the configuration file is omitted when starting a CAP program (Program 3-6), then CAP’s runtime system
spawns all the threads in the current Windows NT process.

3.7 CAP operations

After having shown in Section 3.5 how to declare a process hierarchy and the operations offered by the processes
in the hierarchy, this section looks at how to implement sequential operations (Section 3.7.1) and parallel
operations (Section 3.7.2).

CAP enables the programmer to declare an operation, either a parallel operation or a sequential operation, outside
its process interface. This feature is extremely useful for extending the functionalities of existing CAP programs,

e.g. the parallel storage and processing server PS2 (Chapter 6). Instead of declaring the operation inside a given
process, the programmer merely declares its interface globally, using the keyword ‘operation’ (Program 3-7).

Program 3-5. Configuration file declaring 4 address spaces, the PC’s addresses where these 4 Windows NT

processes run, the 3 executable filenames and the mapping of the 5 threads to the 4 address spaces

Program 3-6. Starting a CAP program with a configuration file at DOS prompt

Program 3-7. Additional operation declarations

1 configuration {
2 processes:
3 A ("user") ;
4 B ("128.178.75.65", "\\FileServer\SharedFiles\CapExecutable.exe") ;
5 C ("128.178.75.66", "\\FileServer\SharedFiles\CapExecutable.exe") ;
6 D ("128.178.75.67", "\\FileServer\SharedFiles\CapExecutable.exe") ;
7
8 threads:
9 "ThreadA" (C) ;
10 "ThreadB" (B) ;
11 "ProcessB.ThreadC" (D) ;
12 "ProcessB.ThreadD" (A) ;
13 "ProcessB.ThreadE" (C) ;
14 }; // end of configuration file

1 128.178.75.67> CapExecutable.exe -cnf \\FileServer\SharedFiles\ConfigurationFile.txt ... ↵

1 operation ProcessBT::Operation2 // Additional parallel operation declaration
2 in TokenDT* InputP
3 out TokenBT* OutputP;
4
5 leaf operation ThreadET::Operation2 // Additional sequential operation declaration
6 in TokenBT* InputP
7 out TokenAT* OutputP;
3-18

CAP allows the programmer to call a CAP operation within a C/C++ program or library using the ‘call’ keyword
(Program 3-8, line 8). It is the programmer’s responsibility to create the input token (line 5) and to delete the
output token (line 10). The ‘call’ instruction is synchronous, i.e. the thread that performs the ‘call’ instruction is
blocked until the called operation completes.

CAP also provides an asynchronous ‘start’ instruction where the thread that performs the ‘start’ instruction is not
blocked and may synchronize itself with the capWaitTerminate CAP-library function.

3.7.1 Sequential operations

As mentioned in section 3.2.2, CAP’s primitive units of computation are leaf operations or sequential operations,
i.e. C++ subprograms usable as building blocks for concurrent programming. A sequential operation is defined by
a single input token, a single output token, and the C/C++ function body that generates the output from the input.

In our directed acyclic graph formalism (Figure 3-2), we depict sequential operations as a single rounded
rectangle with an input arrow with the input token’s type, an output arrow with the output token’s type, and the
thread which performs this sequential operation (Figure 3-6).

Program 3-10 shows the implementation of the ThreadAT::Operation1 sequential operation using the ‘leaf
operation’ CAP construct.

Program 3-8. Synchronous call of a CAP operation from a sequential C/C++ program

Program 3-9. Asynchronous call of a CAP operation from a sequential C/C++ program

Figure 3-6. A sequential operation with its input and output token. Single rounded rectangles depict

sequential operations.

1 ProcessAT MyHierarchy;
2
3 int main(int argc, char* argv[])
4 {
5 TokenAT* InputP = new TokenAT(2, 4.562);
6 TokenDT* OutputP;
7
8 call MyHierarchy.Operation1 in InputP out OutputP;
9 printf(“Result = %s\n”), OutputP->APointerToCharP);
10 delete OutputP;
11
12 return 0;
13 } // end main

1 ProcessAT MyHierarchy;
2
3 int main(int argc, char* argv[])
4 {
5 capCallRequestT* CallRequestP;
6 TokenAT* InputP = new TokenAT(2, 4.562);
7 TokenDT* OutputP;
8
9 start MyHierarchy.Operation1 in InputP out NothingP return CallRequestP;
10
11 ...
12
13 OutputP = capWaitTerminate(CallRequestP);
14 printf(“Result = %s\n”), OutputP->APointerToCharP);
15 delete OutputP;
16
17 return 0;
18 } // end main

ThreadAT::Operation1

TokenAT TokenBT

type of the input token

name of the sequential
operation

ThreadA

name of the thread that
executes this sequential

operation

type of the output token

a single rounded
rectangle indicates a
sequential operation

type of the thread
that offers this

sequential operation
3-19

It is the responsibility of the sequential operation to create the output token (line 6) using one of the defined
constructors (Program 3-1). Once the sequential operation is completed, by default, the CAP’s runtime system
deletes the input token. A call to the capDoNotDeleteInputToken CAP-library function inside a sequential
operation tells the CAP runtime system not to delete the input token of the sequential operation.

A sequential operation may have side-effects, i.e. modifying shared global variables or thread local variables, so
as to exchange information between threads in a same address space. It’s the programmer’s responsibility to
ensure the coherence of the shared data by using appropriate synchronization mechanisms, e.g. mutexes,
semaphores, barriers, provided by the CAP runtime library. Care must be taken when using these synchronization
tools in order to avoid deadlocks. Indeed, CAP ensures that parallel programs are deadlock free by specifying
macro dataflows as directed acyclic graphs. However, if additional synchronizations outside CAP are used,
deadlock free behaviour cannot be guaranteed any more.

By default, when a sequential operation terminates, the CAP runtime system calls the successor (see Section 3.5),
i.e. the next sequential operation specified by the DAG. CAP enables the programmer to prevent the CAP runtime
system to call the successor, by calling the capDoNotCallSuccessor CAP-library function in the body of the
sequential operation. The effect of the capDoNotCallSuccessor CAP-library function is to suspend the execution
of the schedule of this particular token. To resume the execution of a suspended token, CAP supplies the
capCallSuccessor CAP-library function. It is the programmer’s responsibility to keep track of the suspended
tokens, e.g. in having a global list of suspended tokens. A typical place to use this feature is when the sequential
operation uses asynchronous system calls, e.g. the ReadFile Win32 system call. When the sequential operation
finishes, the thread is able to execute other sequential operations while the OS is asynchronously doing the system
call. When the system call completes, the callback routine resumes the schedule of the suspended token by calling
the capCallSuccessor CAP-library function (Program 5-18).

3.7.2 Parallel operations

As said in Section 3.5, a parallel operation, i.e. a hierarchically higher-level operation, is defined by an input
token, an output token, and a schedule of suboperations that generates the output from the input. Parallel
operations are possibly executed in parallel in the case of a parallel hardware environment, i.e. a cluster of PC’s.

In a directed acyclic graph (Figure 3-2), parallel operations are depicted as a double rounded rectangle with an
input arrow with the input token’s type, and an output arrow with the output token’s type (Figure 3-7).

Program 3-10. CAP specification of a sequential operation. Note the ‘leaf’ keyword.

Figure 3-7. A parallel operation with its input and output token. Note double rounded rectangle depict

parallel operations.

1 leaf operation ThreadAT::Operation1
2 in TokenAT* InputP
3 out TokenBT* OutputP
4 {
5 ... // Any C/C++ statements
6 OutputP = new TokenBT(“Switzerland”);
7 ... // Any C/C++ statements
8 } // end ThreadAT::Operation1

a double rounded
rectangle indicates a
paralllel operation

dashed lines indicating that the
parallel operation decomposes into ...

ProcessAT::Operation1

TokenAT TokenDT

type of the input token

name of the parallel
operation

type of the output token

type of the process
that offers this

parallel operation
3-20

Program 3-11 shows the implementation of the ProcessAT::Operation1 parallel operation using the ‘operation’
CAP construct. In order to specify the content of the parallel operation, i.e. to build the schedule of suboperations
(line 5), the programmer may use one or several parallel CAP constructs described in Section 3.8. C/C++
statements are strictly forbidden since a parallel operation only describes the order of execution of suboperations.

3.8 Parallel CAP constructs

This section looks at the 8 parallel CAP constructs, i.e. pipeline (Section 3.8.1), if and ifelse (Section 3.8.2), for
(Section 3.8.4), while (Section 3.8.3), parallel (Section 3.8.5), parallel while (Section 3.8.6), and indexed parallel
(Section 3.8.7) CAP constructs. They are used as building blocks for specifying the macro dataflow of parallel
operations, i.e. the schedule of the underlying sequential operations. These 8 high-level parallel CAP constructs
are automatically translated into a C/C++ source program, which, after compilation, runs on a multi-PC
environment according to a configuration file specifying the mapping of the threads running the sequential
operations onto the set of available Windows NT processes.

For each of the 8 parallel CAP constructs, its graphical specification, i.e its DAG, and its CAP specification are
shown. In order to clarify the schedule of suboperations specified by a parallel CAP construct, each parallel CAP
construct is also given as a pure C/C++ specification corresponding to the serialized schedule.

A question that may arise when reading this section is who executes parallel operations, i.e. who evaluates the
boolean expression in a if (Section 3.8.2), ifelse (Section 3.8.2) and while (Section 3.8.3) CAP construct, who
executes the three expressions (init expression, boolean expression, and increment expression) in a for CAP
construct (Section 3.8.4), who executes the split functions in a parallel (Section 3.8.5) and parallel while (Section
3.8.6) CAP construct, and who executes the three expressions (init expression, boolean expression, and increment
expression) and the split function in an indexed parallel CAP construct (Section 3.8.7). The question of who
executes a sequential operation is simple: the thread specified by the programmer executes the sequential
operation.

The question of who executes parallel operation is much more subtle [Gennart98b]. The job of a parallel
operation is to redirect tokens from their producing sequential suboperation, i.e. the suboperation that generates it,
to the consuming sequential suboperation, i.e. the suboperation that consumes it. The producing suboperation is
not necessarily executed by the same thread as the consuming suboperation. If the producing thread is not in the
same address space as the consuming thread, the token must be transferred from one address space to the other, a
costly operation that should be performed only when explicitly required by the programmer. Therefore in the
current implementation of the CAP runtime system, the producing thread performs the parallel operation in order
to decide himself where to redirect the token he produced. For example, the split functions in the parallel, parallel
while and indexed parallel CAP constructs are always executed by the thread who produced the input token of the
parallel construct.

3.8.1 The pipeline CAP construct

The pipeline CAP construct enables the output of one operation to be redirected to the input of another. It is the
basic CAP construct for combining two operations. Figure 3-8 shows the DAG of the pipeline construct where 3
operations are connected in pipeline, i.e. ThreadAT::Operation1, ThreadBT::Operation1 and
ProcessBT::Operation1 operations. The output of the ThreadAT::Operation1 sequential operation is redirected to
the input of the ThreadBT::Operation1 sequential operation whose output is redirected to the first sequential

operation1 met when flowing through the DAG of the ProcessBT::Operation1 parallel operation.

Program 3-11. CAP specification of a parallel operation

1. This is called the successor of the sequential operation and it is not necessary a sequential operation as
mentioned in Section 3.5.

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ... // One or several parallel CAP constructs
6 } // end ProcessAT::Operation1
3-21

The CAP specification of the DAG in Figure 3-8 is shown in Program 3-12. The output of one operation is
redirected to the input of another operation using the ‘>->’ CAP construct (lines 6 and 8).

The execution of Program 3-12 strongly depends on the configuration file, i.e. whether the threads are mapped
onto different processors or not. If the ThreadA thread, the ThreadB thread and the threads running the
ProcessB::Operation1 parallel operations are mapped onto different processors and if the first operation in the
horizontal branch, i.e. ThreadAT::Operation1 sequential operation, is fed with several tokens, then the 3
operations are executed in a pipelined manner like an assembly line (Figure 3-9).

Supposing now that the ProcessAT hierarchical process declaration contains a pool of ThreadAT threads (Program
3-13, line 5) and a pool of ThreadBT threads (Program 3-13, line 6) instead of ThreadA and ThreadB threads
(Program 3-3, line 5 and 6), then in the CAP specification of ProcessAT::Operation1 parallel operation the
programmer must select within the 2 pools which threads are running ThreadAT::Operation1 and
ThreadBT::Operation1 sequential operations (Program 3-14, lines 5 and 7).

The CAP runtime system provides programmers with the thisTokenP variable pointing to the token about to enter
a CAP construct, e.g. line 5 thisTokenP refers to ProcessAT::Operation1 input token and line 7 refers to
ThreadAT::Operation1 output token. The thisTokenP variable enables tokens to be dynamically redirected
according to their values. If the configuration file maps all the threads to different processors, then Program 3-14

Figure 3-8. Graphical CAP specification of the pipeline construct

Program 3-12. CAP specification of the pipeline construct

Figure 3-9. Timing diagram of the execution of the 3 operations in a pipelined manner

arc indicating that the output of ThreadAT::Operation1 is
redirected to the input of ThreadBT::Operation1

ProcessAT::Operation1

TokenAT TokenDT

TokenAT TokenBT
ThreadA

ThreadBT::Operation1 ProcessBT::Operation1ThreadAT::Operation1

TokenCT TokenDT
ThreadB

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ThreadA.Operation1
6 >->

7 ThreadB.Operation1
8 >->

9 ProcessB.Operation1;
10 } // end ProcessAT::Operation1

ThreadA running
ThreadAT::Operation1

ThreadB running
ThreadBT::Operation1

Threads running
ProcessBT::Operation1
3-22

is executed in a pipelined parallel manner, i.e. ThreadAT::Operation1, ThreadBT::Operation1 and
ProcessBT::Operation1 operations are executed in pipeline while ThreadAT::Operation1 and
ThreadBT::Operation1 operations are executed in parallel by the threads in the two pools (Figure 3-10).

In order to express this pipelined parallel execution, the DAG of ProcessAT::Operation1 hierarchical operation is
modified so as to include two parallel branches (Figure 3-11).

Selecting a thread within a pool raises the issue of load balancing in CAP (Program 3-14, lines 5 and 7).
Supposing that the execution time of ThreadAT::Operation1 depends on the values in its input token and
ThreadA[] threads are selected in a round-robin fashion (Program 3-14, line 5), then the execution flow may be

unbalanced, i.e. the loads of the different ThreadA[] threads1 may be unbalanced, and therefore decrease
performances. This issue is further discussed in Section 3.11.

The equivalent serialized version of the pipeline CAP construct (Program 3-12) is shown in Program 3-15. This
construct consists of (1) declaring the output token – lines 7, 14 and 21; (2) calling the operation – lines 8, 15 and
22; (3) deleting the input token – lines 9, 16 and 23; (4) assigning the output token to thisTokenP token– lines 10,
17 and 24.

Program 3-13. Declaring two pools of threads within a hierarchical process

Program 3-14. Selecting a thread within a pool

Figure 3-10. Timing diagram of a pipelined parallel execution

1. The load of a thread is defined here as the percentage of elapsed time that this thread is executing
sequential operations.

1 process ProcessAT
2 {
3 subprocesses:
4 ProcessBT ProcessB;
5 ThreadAT ThreadA[];
6 ThreadBT ThreadB[];
7 ...

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ThreadA[thisTokenP->ThreadAIndex].Operation1
6 >->

7 ThreadB[thisTokenP->ThreadBIndex].Operation1
8 >->

9 ProcessB.Operation1;
10 } // end ProcessAT::Operation1

ThreadA[0] running
ThreadAT::Operation1

Threads running
ProcessBT::Operation1

ThreadA[1] running
ThreadAT::Operation1

ThreadB[0] running
ThreadBT::Operation1

ThreadB[1] running
ThreadBT::Operation1

ThreadA[2] running
ThreadAT::Operation1

ThreadA[3] running
ThreadAT::Operation1

ThreadB[1] running
ThreadBT::Operation1
3-23

3.8.2 The if and ifelse CAP construct

The if and ifelse CAP constructs enable the output of one operation to be redirected to the input of another
according to the result of the evaluation of a C/C++ boolean expression. Figure 3-12 shows the DAG of the if
construct where ProcessBT::Operation1 input token is redirected either to ThreadCT::Operation1 sequential
operation or to ThreadET::Operation1 sequential operation according to the result of the evaluation of the C/C++
boolean expression. Note that the subconstruct output token type must be equivalent to the if construct input token
type.

The CAP specification corresponding to the DAG in Figure 3-12 is shown in Program 3-16. The if CAP construct
is similar to the if C/C++ construct but instead of braces ‘{}’, the subconstruct must be parenthesized (lines 7-9).

The equivalent serialized version of the if CAP construct (Program 3-16) is shown in Program 3-17. The if CAP
construct is similar to the if C/C++ expression.

Figure 3-11. Graphical representation of a pipelined parallel execution

Program 3-15. Equivalent C/C++ specification of the pipeline construct

dots indicate that the two parallel branches
are executed in parallel on different PC’s

forks indicate that tokens are
redirected towards different PC’s

ProcessAT::Operation1

TokenAT TokenDT

TokenAT

TokenBT
ThreadA[]

ThreadBT::Operation1

ProcessBT::Operation1

ThreadAT::Operation1

TokenCT TokenDT

ThreadB[]

TokenBT

ThreadA[]

ThreadBT::Operation1ThreadAT::Operation1

ThreadB[]

1 void ProcessAT::Operation1(TokenAT* InputP,
2 TokenDT* &OutputP)
3 {
4 void* thisTokenP;
5
6 { // begin pipeline construct
7 void* OutputP;
8 ThreadA.Operation1((TokenAT*) thisTokenP, (TokenBT*&) OutputP);
9 delete (TokenAT*) thisTokenP;
10 thisTokenP = OutputP;
11 } // end pipeline construct
12
13 { // begin pipeline construct
14 void* OutputP;
15 ThreadB.Operation1((TokenBT*) thisTokenP, (TokenCT*&) OutputP);
16 delete (TokenBT*) thisTokenP;
17 thisTokenP = OutputP;
18 } // end pipeline construct
19
20 { // begin pipeline construct
21 void* OutputP;
22 ProcessB.Operation1((TokenCT*) thisTokenP, (TokenDT*&) OutputP);
23 delete (TokenCT*) thisTokenP;
24 thisTokenP = OutputP;
25 } // end pipeline construct
26
27 OutputP = (TokenDT*) thisTokenP;
28 } // end ProcessA::Operation1
3-24

Figure 3-13 shows the DAG of the ifelse CAP construct where the ProcessBT::Operation1 input token is
redirected either to the ThreadCT::Operation1 sequential operation or to the ThreadDT::Operation1 sequential
operation according to the result of the evaluation of the C/C++ boolean expression. Note that the input and
output token type of the true-subconstruct and false-subconstruct must be equivalent.

The CAP specification corresponding to the DAG in Figure 3-13 is shown in Program 3-18.

Figure 3-12. Graphical CAP specification of the if construct

Program 3-16. CAP specification of the if construct

Program 3-17. Equivalent C/C++ specification of the if construct

ProcessBT::Operation1

TokenCT TokenDT

TokenCT
ThreadC

ThreadDT::Operation1ThreadCT::Operation1

ThreadD

? ThreadET::Operation1

ThreadE

TokenCTTokenCT TokenCT TokenDT

0

1

evaluate a C/C++ boolean expression

TokenCT

subconstruct

1 operation ProcessBT::Operation1
2 in TokenCT* InputP
3 out TokenDT* OutputP
4 {
5 if (BooleanExpression)
6 (
7 ThreadC.Operation1
8 >->

9 ThreadD.Operation1
10) // end if
11 >->

12 ThreadE.Operation1;
13 } // end ProcessBT::Operation1

subconstruct

1 void ProcessBT::Operation1(TokenCT* InputP,
2 TokenDT* &OutputP)
3 {
4 void* thisTokenP;
5
6 { // begin if construct
7 if (BooleanExpression)
8 {
9 { // begin pipeline construct
10 void* OutputP;
11 ThreadC.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
12 delete (TokenCT*) thisTokenP;
13 thisTokenP = OutputP;
14 } // end pipeline construct
15
16 { // begin pipeline construct
17 void* OutputP;
18 ThreadD.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
19 delete (TokenCT*) thisTokenP;
20 thisTokenP = OutputP;
21 } // end pipeline construct
22 } // end if
23 } // end if construct
24
25 { // begin pipeline construct
26 void* OutputP;
27 ThreadE.Operation1((TokenCT*) thisTokenP, (TokenDT*&) OutputP);
28 delete (TokenCT*) thisTokenP;
29 thisTokenP = OutputP;
30 } // end pipeline construct
31
32 OutputP = (TokenDT*) thisTokenP;
33 } // end ProcessB::Operation1

subconstruct
3-25

The equivalent serialized version of the ifelse CAP construct (Program 3-18) is shown in Program 3-19.

Figure 3-13. Graphical CAP specification of the ifelse construct

Program 3-18. CAP specification of the ifelse construct

Program 3-19. Equivalent C/C++ specification of the ifelse construct

ProcessBT::Operation1

TokenCT TokenDT

TokenCT
ThreadC

ThreadDT::Operation1

ThreadCT::Operation1

ThreadD

? ThreadET::Operation1

ThreadE

TokenCTTokenCT TokenDT

0

1

evaluate a C/C++ boolean expression

TokenCT

subconstruct-true

subconstruct-false

1 operation ProcessBT::Operation1
2 in TokenCT* InputP
3 out TokenDT* OutputP
4 {
5 ifelse (BooleanExpression)
6 (
7 ThreadC.Operation1
8)
9 (
10 ThreadD.Operation1
11) // end ifelse
12 >->

13 ThreadE.Operation1;
14 } // end ProcessBT::Operation1

subconstruct-true

subconstruct-false

1 void ProcessBT::Operation1(TokenCT* InputP,
2 TokenDT* &OutputP)
3 {
4 void* thisTokenP;
5
6 { // begin ifelse construct
7 if (BooleanExpression)
8 {
9 { // begin pipeline construct
10 void* OutputP;
11 ThreadC.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
12 delete (TokenCT*) thisTokenP;
13 thisTokenP = OutputP;
14 } // end pipeline construct
15 } else {
16 { // begin pipeline construct
17 void* OutputP;
18 ThreadD.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
19 delete (TokenCT*) thisTokenP;
20 thisTokenP = OutputP;
21 } // end pipeline construct
22 } // end ifelse
23 } // end ifelse construct
24
25 { // begin pipeline construct
26 void* OutputP;
27 ThreadE.Operation1((TokenCT*) thisTokenP, (TokenDT*&) OutputP);
28 delete (TokenCT*) thisTokenP;
29 thisTokenP = OutputP;
30 } // end pipeline construct
31
32 OutputP = (TokenDT*) thisTokenP;
33 } // end ProcessB::Operation1

subconstruct-true

subconstruct-false
3-26

3.8.3 The while CAP construct

The while construct is the first iterative CAP construct. It iterates a CAP subconstruct while the result of the
evaluation of a C/C++ boolean expression is true, i.e. at the end of the CAP subconstruct a C/C++ boolean
expression is evaluated and if its result is true then the subconstruct output token becomes the subconstruct input
token. Figure 3-14 shows the DAG of the while CAP construct. Note that the subconstruct input and output token
type must be equivalent to the while construct input token type.

The CAP specification of the DAG in Figure 3-14 is shown in Program 3-20. The while CAP construct is similar
to the while C/C++ expression but instead of braces ‘{}’, the subconstruct must be parenthesized (lines 7-9).

The equivalent serialized version of the while CAP construct (Program 3-20) is shown in Program 3-21.

3.8.4 The for CAP construct

The for construct enables a CAP subconstruct to be iterated while the result of the evaluation of a C/C++ boolean
expression is true. The difference with the while CAP construct resides in the fact that a variable is first initialized
at the beginning of the loop, and at the end of the CAP subconstruct this counter modified, a C/C++ boolean
expression is evaluated and if its result is true then the subconstruct output token becomes the subconstruct input
token. Figure 3-15 shows the DAG of the for construct. Note that the subconstruct input and output token type
must be equivalent to the for construct input token type.

The CAP specification of the DAG in Figure 3-15 is shown in Program 3-22. The for CAP construct is similar to
the for C/C++ construct but instead of braces ‘{}’, the subconstruct must be parenthesized (lines 7-9).

The equivalent serialized version of the for CAP construct (Program 3-22) is shown in Program 3-23.

Figure 3-14. Graphical CAP specification of the while construct

Program 3-20. CAP specification of the while construct

ProcessBT::Operation1

TokenCT TokenDT

ThreadCT::
Operation1 ?

ThreadE

TokenCT TokenCT

TokenCT

TokenDT

0

1

TokenCT

TokenCT

ThreadDT::
Operation1

ThreadET::
Operation1

ThreadC ThreadD

TokenCT

evaluate a C/C++
boolean expression

subconstruct

1 operation ProcessBT::Operation1
2 in TokenCT* InputP
3 out TokenDT* OutputP
4 {
5 while (BooleanExpression)
6 (
7 ThreadC.Operation1
8 >->

9 ThreadD.Operation1
10) // end while
11 >->

12 ThreadE.Operation1;
13 } // end ProcessBT::Operation1

subconstruct
3-27

Program 3-21. Equivalent C/C++ specification of the while construct

Figure 3-15. Graphical CAP specification of the for construct

Program 3-22. CAP specification of the for construct

1 void ProcessBT::Operation1(TokenCT* InputP,
2 TokenDT* &OutputP)
3 {
4 void* thisTokenP = InputP;
5
6 { // begin while construct
7 while (BooleanExpression)
8 {
9 { // begin pipeline construct
10 void* OutputP;
11 ThreadC.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
12 delete (TokenCT*) thisTokenP;
13 thisTokenP = OutputP;
14 } // end pipeline construct
15
16 { // begin pipeline construct
17 void* OutputP;
18 ThreadD.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
19 delete (TokenCT*) thisTokenP;
20 thisTokenP = OutputP;
21 } // end pipeline construct
22 } // end while
23 } // end while construct
24
25 { // begin pipeline construct
26 void* OutputP;
27 ThreadE.Operation1((TokenCT*) thisTokenP, (TokenDT*&) OutputP);
28 delete (TokenCT*) thisTokenP;
29 thisTokenP = OutputP;
30 } // end pipeline construct
31
32 OutputP = (TokenDT*) thisTokenP;
33 } // end ProcessB::Operation1

subconstruct

ProcessBT::Operation1

TokenCT TokenDT

ThreadCT::
Operation1 ?

ThreadE

TokenCT TokenCT

TokenCT

TokenDT

0

1

initialize
counter

increment
counter

TokenCT

TokenCT

ThreadDT::
Operation1

ThreadET::
Operation1

ThreadC ThreadD

TokenCT

evaluate a C/C++
boolean expression

subconstruct

1 operation ProcessBT::Operation1
2 in TokenCT* InputP
3 out TokenDT* OutputP
4 {
5 for (InitExpression; BooleanExpression; IncrementExpression)
6 (
7 ThreadC.Operation1
8 >->

9 ThreadD.Operation1
10) // end for
11 >->

12 ThreadE.Operation1;
13 } // end ProcessBT::Operation1

subconstruct
3-28

3.8.5 The parallel CAP construct

The parallel CAP construct is the first split-merge construct. It segments an input token into several subtokens,
performs different operations in parallel on each of the subtokens, and merges the result of the operations.

Figure 3-16 shows the DAG of the parallel CAP construct. The parallel construct input token (TokenAT) is
divided into 3 subtokens by the Split1, Split2 and Split3 split functions. Each generated subtokens (TokenAT,
TokenBT and TokenCT) is then directed to its parallel body subconstruct, i.e. subconstruct-1, subconstruct-2 or
subconstruct-3. The output of the parallel body subconstructs (TokenBT, TokenCT and TokenDT) are merged into
the parallel construct output token using Merge1, Merge2 and Merge3 merge functions by ThreadB thread. When
all the subtokens are merged, the parallel construct output token (TokenDT) is redirected to its successor.
Depending whether different threads on different processors are selected for computation or not, the 3 parallel
body subconstructs may actually execute in parallel.

The CAP specification of the DAG in Figure 3-16 is shown in Program 3-24. The parallel CAP construct consists
of the keyword ‘parallel’, the two construct initialization parameters and a list of parallel bodies. The two
initialization parameters are the name of the thread (ThreadB) who merges the output of the parallel body
subconstructs into the parallel construct output token (Out1) and the output token declaration (line 41). Note the
keyword ‘remote’ which indicates that the parallel construct input token (thisTokenP) is sent to ThreadB thread in
order to initialize the parallel construct output token in ThreadB address space. If, instead, the keyword ‘local’
would have been used, the parallel construct output token would have been initialized in the current address
space, i.e. the address space of the thread executing the parallel CAP construct, and sent in the ThreadB address
space. Depending on their sizes, the programmer can choose to transfer either the thisTokenP or the Out1 token
from the current address space to ThreadB address space. A parallel body consist of a split function (lines 44, 49
and 54), a parallel body subconstruct (lines 45, 50 and 55), and a merge function (lines 46, 51, 56). A split
function is a sequential C/C++ routine that creates a subtoken from an input token (lines 1-6, 8-13 and 15-20). A
merge function is a sequential C/C++ routine that merges a subtoken into an output token (lines 22-25, 27-30 and
32-35).

The equivalent serialized version of the parallel CAP construct (Program 3-24) is shown in Program 3-25. It
consists of sequentially calling the parallel body subconstructs (lines 48-54, 59, 65 and 70-76) parenthesized by
the split functions (lines 47, 58and 69) and the merge functions (lines 55, 66 and 77).

The parallel CAP construct with a single branch can be used when incorporating an operation which has not the

appropriate interface (i.e. the appropriate input and output token types1) into the schedule of a parallel operation
(Program 3-26). Indeed, this design pattern enables the programmer to adapt the interface of the incorporated

Program 3-23. Equivalent C/C++ specification of the for construct

1 void ProcessBT::Operation1(TokenCT* InputP,
2 TokenDT* &OutputP)
3 {
4 void* thisTokenP = InputP;
5
6 { // begin for construct
7 for (InitExpression; BooleanExpression; IncrementExpression)
8 {
9 { // begin pipeline construct
10 void* OutputP;
11 ThreadC.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
12 delete (TokenCT*) thisTokenP;
13 thisTokenP = OutputP;
14 } // end pipeline construct
15
16 { // begin pipeline construct
17 void* OutputP;
18 ThreadD.Operation1((TokenCT*) thisTokenP, (TokenCT*&) OutputP);
19 delete (TokenCT*) thisTokenP;
20 thisTokenP = OutputP;
21 } // end pipeline construct
22 } // end for
23 } // end for construct
24
25 { // begin pipeline construct
26 void* OutputP;
27 ThreadE.Operation1((TokenCT*) thisTokenP, (TokenDT*&) OutputP);
28 delete (TokenCT*) thisTokenP;
29 thisTokenP = OutputP;
30 } // end pipeline construct
31
32 OutputP = (TokenDT*) thisTokenP;
33 } // end ProcessB::Operation1

subconstruct
3-29

operation, i.e. to adapt the incorporated operation input type to the previous operation output token type
(AdaptInput routine, line 10) and to adapt the incorporated operation output token type to the next operation input
token type (AdaptOutput routine, line 12). Moreover, this design pattern (Program 3-26) enables the programmer
to transfer possible data “through” the incorporated operation, i.e. from the parallel CAP construct’s input token
to the parallel CAP construct’s output token, without having to modify the incorporated operation (line 7,
initializes the parallel CAP construct’s output token with the parallel CAP construct’s input token).

1. i.e. when the incorporated operation input token type is different from the previous operation output token
type or the incorporated operation output token type is different from the next operation input token type.

Figure 3-16. Graphical CAP specification of the parallel construct

Program 3-24. CAP specification of the parallel construct

ProcessAT::Operation1

TokenAT TokenDT

ThreadA

ProcessBT::Operation1

ThreadAT::Operation1

ThreadBT::Operation1

ThreadB

TokenAT

TokenBT TokenCT

TokenCT TokenDT

TokenAT TokenDT

ThreadB

TokenBTS
p
lit1

S
p
lit2

S
p
lit3

M
erg

e1
M
erg

e2
M
erg

e3

This symbol indicates
that the parallel

construct input token is
split into several

subtokens

This symbol indicates that the
output of the parallel body

subconstructs are merged into
the parallel construct output
token. The output token is

redirected to the successor only
when all the split subtokens are

merged.

thread who merges the
subtokens into the output

token

Split routine for the
first branch

Split routine for the
second branch

Split routine for the
third branch

Merge routine for the
first branch

Merge routine for the
second branch

Merge routine for the
third branch

subconstruct-1

subconstruct-2

subconstruct-3

Depending on the
configuration file, the

parallel body
subconstructs may

execute in parallel on
different processors.

1 void Split1(TokenAT* inputP, TokenAT* &subtokenP)
2 {
3 ... // Any C/C++ statements
4 subtokenP = new TokenAT(3, 6.9806);
5 ... // Any C/C++ statements
6 } // end Split1
7
8 void Split2(TokenAT* inputP, TokenBT* &subtokenP)
9 {
10 ... // Any C/C++ statements
11 subtokenP = new TokenBT(“Italy”);
12 ... // Any C/C++ statements
13 } // end Split2
14
15 void Split3(TokenAT* inputP, TokenCT* &subtokenP)
16 {
17 ... // Any C/C++ statements
18 subtokenP = new TokenCT;
19 ... // Any C/C++ statements
20 } // end Split3
21
22 void Merge1(TokenDT* outputP, TokenBT* subtokenP)
23 {
24 ... // Any C/C++ statements
25 } // end Merge1
26
27 void Merge2(TokenDT* outputP, TokenCT* subtokenP)
28 {
29 ... // Any C/C++ statements
30 } // end Merge2
31

32 void Merge3(TokenDT* outputP, TokenDT* subtokenP)
33 {
34 ... // Any C/C++ statements
35 } // end Merge3
36
37 operation ProcessAT::Operation1
38 in TokenAT* InputP
39 out TokenDT* OutputP
40 {
41 parallel (ThreadB, remote TokenDT Out1(thisTokenP))
42 (
43 (
44 Split1,
45 ThreadA.Operation1,
46 Merge1
47)
48 (
49 Split2,
50 ThreadB.Operation1,
51 Merge2
52)
53 (
54 Split3,
55 ProcessB.Operation1,
56 Merge3
57)
58); // end parallel
59 } // end ProcessAT::Operation1

subconstruct-1

subconstruct-2

subconstruct-3
3-30

3.8.6 The parallel while CAP construct

The parallel while CAP construct is the second split-merge construct. It iteratively divides a token into several
subtokens, performs in pipeline similar operations on each of the subtokens, and merges the results of the last
operation in the pipeline.

Figure 3-17 shows the DAG of the parallel while CAP construct. The parallel while construct input token
(TokenAT) is iteratively divided into several subtokens by Split split function. Once a subtoken is generated, it is
redirected to the parallel while body subconstruct which performs the operations in a pipelined manner
(ThreadBT::Operation1 and ThreadCT::Operation1 operations). The output tokens of the parallel while body
subconstruct are merged into the parallel while construct output token using the Merge merge function executed
by the ThreadA thread. When all the subtokens are merged, the parallel while construct output token (TokenDT) is
redirected to its successor. As already mentioned in Section 3.8.1, the operations contained in the parallel while

Program 3-25. C/C++ specification of the parallel construct

Program 3-26. Incorporating an operation which has not the appropriate interface into the schedule of a

parallel operation using a parallel CAP construct with a single branch

1 void Split1(TokenAT* inputP, TokenAT* &subtokenP)
2 {
3 ... // Any C/C++ statements
4 subtokenP = new TokenAT(3, 6.9806);
5 ... // Any C/C++ statements
6 } // end Split1
7
8 void Split2(TokenAT* inputP, TokenBT* &subtokenP)
9 {
10 ... // Any C/C++ statements
11 subtokenP = new TokenBT(“Italy”);
12 ... // Any C/C++ statements
13 } // end Split2
14
15 void Split3(TokenAT* inputP, TokenCT* &subtokenP)
16 {
17 ... // Any C/C++ statements
18 subtokenP = new TokenCT;
19 ... // Any C/C++ statements
20 } // end Split3
21
22 void Merge1(TokenDT* outputP, TokenBT* subtokenP)
23 {
24 ... // Any C/C++ statements
25 } // end Merge1
26
27 void Merge2(TokenDT* outputP, TokenCT* subtokenP)
28 {
29 ... // Any C/C++ statements
30 } // end Merge2
31
32 void Merge3(TokenDT* outputP, TokenDT* subtokenP)
33 {
34 ... // Any C/C++ statements
35 } // end Merge3
36
37 void ProcessAT::Operation1(TokenAT* InputP,
38 TokenDT* &OutputP)
39 {
40 void* thisTokenP = InputP;
41

42 { // begin parallel construct
43 TokenAT* InputP = (TokenAT*) thisTokenP;
44 TokenDT* OutputP =
45 new TokenDT((TokenAT*) thisTokenP);
46
47 Split1(InputP, (TokenAT*&) thisTokenP);
48 { // begin pipeline construct
49 void* OutputP;
50 ThreadA.Operation1((TokenAT*) thisTokenP,
51 (TokenBT*&) OutputP);
52 delete (TokenAT*) thisTokenP;
53 thisTokenP = OutputP;
54 } // end pipeline construct
55 Merge1(OutputP, (TokenBT*) thisTokenP);
56 delete (TokenBT*) thisTokenP;
57
58 Split2(InputP, (TokenBT*&) thisTokenP);
59 { // begin pipeline construct
60 void* OutputP;
61 ThreadB.Operation1((TokenBT*) thisTokenP,
62 (TokenCT*&) OutputP);
63 delete (TokenBT*) thisTokenP;
64 thisTokenP = OutputP;
65 } // end pipeline construct
66 Merge2(OutputP, (TokenCT*) thisTokenP);
67 delete (TokenCT*) thisTokenP;
68
69 Split3(InputP, (TokenCT*&) thisTokenP);
70 { // begin pipeline construct
71 void* OutputP;
72 ProcessB.Operation1((TokenCT*) thisTokenP,
73 (TokenDT*&) OutputP);
74 delete (TokenCT*) thisTokenP;
75 thisTokenP = OutputP;
76 } // end pipeline construct
77 Merge3(OutputP, (TokenDT*) thisTokenP);
78 delete (TokenDT*) thisTokenP;
79
80 delete InputP;
81 thisTokenP = OutputP;
82 } // end parallel construct
83
84 OutputP = (TokenDT*) thisTokenP;
85 } // end ProcessAT::Operation1

subconstruct-1

subconstruct-2

subconstruct-3

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ...
6 >->

7 parallel (ThreadB, local TokenCT Out(thisTokenP))
8 (
9 (
10 AdaptInput, // Adapt input token type
11 ProcessB.Operation1, // Incorporated operation
12 AdaptOutput // Adapt output token type
13) // end parallel branch
14) // end parallel
15 >->

16 ...
17 } // end processAT::Operation1
3-31

body subconstruct (ThreadBT::Operation1 and ThreadCT::Operation1 operations) may execute in a pipelined
manner (Figure 3-9, Program 3-12) or in a pipelined parallel manner (Figure 3-10, Program 3-14) depending
whether different threads on different processors are selected for computation or not.

The CAP specification of the DAG in Figure 3-17 is shown in Program 3-27. The parallel while CAP construct
consists of the keyword ‘parallel while’ (line 20), the four construct initialization parameters (line 21) and a
parallel while body subconstruct (lines 23-25). The first two initialization parameters are the split function and
the merge function. A split function is a sequential C/C++ routine that creates a new subtoken from the parallel
while construct input token and the previous generated subtoken (lines 1-8). At the first iteration, a null pointer is
passed as the previous subtoken (second argument). The split function is called as long as it has returned a 1 in the
previous call. In other words, the split function returns 0 together with the last subtoken. A merge function is a
sequential C/C++ routine that merges parallel while body subconstruct output tokens into the parallel while
construct output token (lines 10-13). The last two initialization parameters are similar to those of the parallel
construct (Section 3.8.5), i.e. the name of the thread (ThreadA) who merges the parallel while body subconstruct
output tokens into the parallel while construct output token (Out1) and the output token declaration.

The equivalent serialized version of the parallel while CAP construct in Program 3-27 is shown in Program 3-28.
It iteratively calls the split function (line 29), the parallel while body subconstruct (lines 32-44) and the merge
function (line 46) while the last subtoken is not merged (line 30). Since the parallel while body subconstruct

Figure 3-17. Graphical CAP specification of the parallel while construct

Program 3-27. CAP specification of the parallel while construct

ProcessAT::Operation1

TokenAT TokenDT

ThreadBT::Operation1

ThreadB

TokenBT TokenCTTokenAT

ThreadC

S
p
lit

M
erg

e

This symbol indicates
that the parallel while
construct input token is
repeatedly split into
several subtokens

This symbol indicates that the
parallel while body

subconstruct output tokens are
merged into the parallel while
construct output token. The

output token is redirected to the
successor only when all the split

subtokens are merged.

thread who merges the
subtokens into the output

token

Split routine
Merge routine

ThreadCT::Operation1

TokenDT

ThreadA

TokenDT

subconstruct

1 bool Split(TokenAT* inputP, TokenBT* prevSubtokenP, TokenBT* &subtokenP)
2 {
3 ... // Any C/C++ statements
4 subtokenP = new TokenBT(...);
5 ... // Any C/C++ statements
6
7 return (IsNotLastSubtoken);
8 } // end Split
9
10 void Merge(TokenDT* outputP, TokenDT* subtokenP)
11 {
12 ... // Any C/C++ statements
13 } // end Merge
14
15
16 operation ProcessAT::Operation1
17 in TokenAT* InputP
18 out TokenDT* OutputP
19 {
20 parallel while

21 (Split, Merge, ThreadA, local TokenDT Out1(thisTokenP))
22 (
23 ThreadB.Operation1
24 >->
25 ThreadC.Operation1
26); // end parallel while
27 } // end ProcessAT::Operation1

subconstruct
3-32

deletes its input subtoken (line 35) and the split function needs the previous subtoken (line 1) to generate the
current subtoken, the input of the parallel while body subconstruct (line 34, thisTokenP) is always the token
preceding the current generated subtoken (line 29, NextSubtokenP). Once a parallel while body subconstruct
output token is merged (line 46, thisTokenP), it is deleted (line 47), and the current generated subtoken (line 29,
NextSubtokenP) becomes the next parallel while body subconstruct input token (line 48, thisTokenP).

3.8.7 The indexed parallel CAP construct

The indexed parallel CAP construct is the third and the last split-merge construct. It is similar to the parallel
while CAP construct (Section 3.8.6) except that the iteration is based on a C/C++ for loop not on a while loop.
The indexed parallel CAP construct iteratively divides a token into several subtokens, performs in pipeline
similar operations on each of the subtokens, and merges the results of the last operation in the pipeline.

Figure 3-18 shows the DAG of the indexed parallel CAP construct which is similar to the DAG of the parallel
while CAP construct (Figure 3-17). The indexed parallel construct input token (TokenAT) is iteratively divided
into several subtokens by Split split function. Once a subtoken is generated, it is redirected to the indexed parallel
body subconstruct which performs the operations in a pipelined manner (ThreadBT::Operation1 and
ThreadCT::Operation1 operations). The output tokens of the indexed parallel body subconstruct are merged into
the indexed parallel construct output token using Merge merge function by ThreadA thread. When all the
subtokens are merged, the indexed parallel construct output token (TokenDT) is redirected to its successor. The
operations contained in the indexed parallel body subconstruct (ThreadBT::Operation1 and

Program 3-28. Equivalent C/C++ specification of the parallel while construct

1 bool Split(TokenAT* inputP, TokenBT* prevSubtokenP, TokenBT* &subtokenP)
2 {
3 ... // Any C/C++ statements
4 subtokenP = new TokenBT(...);
5 ... // Any C/C++ statements
6
7 return (IsNotLastSubtoken);
8 } // end Split
9
10 void Merge(TokenDT* outputP, TokenDT* subtokenP)
11 {
12 ... // Any C/C++ statements
13 } // end Merge
14
15
16 void ProcessAT::Operation1(TokenAT* InputP,
17 TokenDT* &OutputP)
18 {
19 void* thisTokenP = InputP;
20
21 { // begin parallel while construct
22 TokenAT* InputP = (TokenAT*) thisTokenP;
23 TokenDT* OutputP = new TokenDT((TokenAT*) thisTokenP);
24 bool IsNotLastSubtoken;
25 TokenBT* NextSubtokenP;
26
27 IsNotLastSubtoken = (TokenBT*) Split(InputP, (TokenBT*) NULL, (TokenBT*&) thisTokenP);
28 while(IsNotLastSubtoken &&
29 IsNotLastSubtoken = Split(InputP, (TokenBT*) thisTokenP, NextSubtokenP),
30 (thisTokenP != (void*) NULL))
31 {
32 { // begin pipeline construct
33 void* OutputP;
34 ThreadB.Operation1((TokenBT*) thisTokenP, (TokenCT*&) OutputP);
35 delete (TokenBT*) thisTokenP;
36 thisTokenP = OutputP;
37 } // end pipeline construct
38
39 { // begin pipeline construct
40 void* OutputP;
41 ThreadC.Operation1((TokenCT*) thisTokenP, (TokenDT*&) OutputP);
42 delete (TokenCT*) thisTokenP;
43 thisTokenP = OutputP;
44 } // end pipeline construct
45
46 Merge(OutputP, (TokenDT*) thisTokenP);
47 delete (TokenDT*) thisTokenP;
48 thisTokenP = NextSubtokenP;
49 } // end while
50
51 delete InputP;
52 thisTokenP = OutputP;
53 } // end parallel while construct
54
55 OutputP = (TokenDT*) thisTokenP;
56 } // end ProcessAT::Operation1

subconstruct
3-33

ThreadCT::Operation1 operations) may execute in a pipelined manner (Figure 3-9, Program 3-12) or in a
pipelined parallel manner (Figure 3-10, Program 3-14) depending whether different threads on different
processors are selected for computation or not.

The CAP specification of the DAG in Figure 3-18 is shown in Program 3-29. The indexed parallel CAP construct
consists of the keyword ‘indexed’ followed by standard C/C++ for expressions (line 19), and of the keyword
‘parallel’ (line 20) followed by the four construct initialization parameters (line 21) and an indexed parallel body
subconstruct (lines 23-25). The first two initialization parameters are the split function and the merge function. A
split function is a sequential C/C++ routine that creates a new subtoken from the indexed parallel construct input
token and the current index values (lines 1-6). The split function is called for all the index values specified in the
standard C/C++ for expressions (line 19) and may return a null subtoken to skip an iteration. A merge function is
a sequential C/C++ routine that merges indexed parallel body subconstruct output tokens into the indexed parallel
construct output token (lines 8-11). The last two initialization parameters are similar to those of the parallel and
parallel while constructs (Sections 3.8.5 and 3.8.6), i.e. the name of the thread (ThreadA) who merges the indexed
parallel body subconstruct output tokens into the indexed parallel construct output token (Out1) and the output
token declaration.

Figure 3-18. Graphical CAP specification of the indexed parallel construct

Program 3-29. CAP specification of the indexed parallel construct

ProcessAT::Operation1

TokenAT TokenDT

ThreadBT::Operation1

ThreadB

TokenBT TokenCTTokenAT

ThreadC

S
p
lit

M
erg

e

This symbol indicates
that the indexed parallel
construct input token is
repeatedly split into

subtokens

This symbol indicates that the
indexed parallel body

subconstruct output tokens are
merged into the indexed parallel
construct output token. The

output token is redirected to the
successor only when all the split

subtokens are merged.

thread who merges the
subtokens into the output

token

Split routine
Merge routine

ThreadCT::Operation1

TokenDT

ThreadA

TokenDT

subconstruct

1 void Split(TokenAT* inputP, TokenBT* &subtokenP, int index)
2 {
3 ... // Any C/C++ statements
4 subtokenP = new TokenBT(...);
5 ... // Any C/C++ statements
6 } // end Split
7
8 void Merge(TokenDT* outputP, TokenDT* subtokenP, int index)
9 {
10 ... // Any C/C++ statements
11 } // end Merge
12
13
14 operation ProcessAT::Operation1
15 in TokenAT* InputP
16 out TokenDT* OutputP
17 {
18 indexed

19 (int Index = 0; Index < 100; Index++)
20 parallel

21 (Split, Merge, ThreadA, remote TokenDT Out1(thisTokenP))
22 (
23 ThreadB.Operation1
24 >->
25 ThreadC.Operation1
26); // end indexed parallel
27 } // end ProcessAT::Operation1

subconstruct
3-34

The equivalent serialized version of the indexed parallel CAP construct in Program 3-29 is shown in Program
3-30. It consists of C/C++ for expressions (line 23) that iteratively call the split function (line 25), the indexed
parallel body subconstruct (lines 28-40) and the merge function (line 42). Once an indexed parallel body
subconstruct output token is merged (line 42, thisTokenP), it is deleted (line 43). The test at line 26 is due to the
fact that a split function may return a null subtoken to skip an iteration.

3.9 The first CAP program: The Sieve of Eratosthenes

Invented by the greek mathematician Eratosthenes in about 200 BC, The Sieve of Eratosthenes is a very simple
algorithm to compute prime numbers, i.e. numbers that are only divisible by 1 and by itself. In order to check
whether a number is prime or not, this algorithm consists of iteratively dividing this number by the previously
computed prime numbers in the growing order, i.e. 2, 3, 5, etc. As soon as one of the prime numbers divides the
checked number, it is rejected. If the number is not divisible by all the prime numbers, then it is a new prime
number to insert in the list. The algorithm starts by checking the number 2 which is a prime number since the list
of previously computed prime numbers is empty, and continues by checking all the numbers in the growing order,
i.e. 3, 4, 5, 6, etc.

The parallel algorithm consists of assigning a different thread of execution to each of the previously computed
prime numbers so as to form a pipeline of computation. Each threads iteratively (1) waits for a number; (2)
divides it with its locally stored prime number; (3) if it divides then rejects it otherwise transfers it to the adjacent
thread if it exists. If the thread is the last one in the pipeline, then the number is a new prime number and a new
thread is inserted in the pipeline.

Program 3-30. Equivalent C/C++ specification of the indexed parallel construct

1 void Split(TokenAT* inputP, TokenBT* &subtokenP, int index)
2 {
3 ... // Any C/C++ statements
4 subtokenP = new TokenBT(...);
5 ... // Any C/C++ statements
6 } // end Split
7
8 void Merge(TokenDT* outputP, TokenDT* subtokenP, int index)
9 {
10 ... // Any C/C++ statements
11 } // end Merge
12
13
14 void ProcessAT::Operation1(TokenAT* InputP,
15 TokenDT* &OutputP)
16 {
17 void* thisTokenP = InputP;
18
19 { // begin indexed parallel construct
20 TokenAT* InputP = (TokenAT*) thisTokenP;
21 TokenDT* OutputP = new TokenDT((TokenAT*) thisTokenP);
22
23 for (int Index = 0; Index < 100; Index++)
24 {
25 Split(InputP, (TokenBT*) thisTokenP, Index);
26 if (thisTokenP)
27 {
28 { // begin pipeline construct
29 void* OutputP;
30 ThreadB.Operation1((TokenBT*) thisTokenP, (TokenCT*&) OutputP);
31 delete (TokenBT*) thisTokenP;
32 thisTokenP = OutputP;
33 } // end pipeline construct
34
35 { // begin pipeline construct
36 void* OutputP;
37 ThreadC.Operation1((TokenCT*) thisTokenP, (TokenDT*&) OutputP);
38 delete (TokenCT*) thisTokenP;
39 thisTokenP = OutputP;
40 } // end pipeline construct
41
42 Merge(OutputP, (TokenDT*) thisTokenP, Index);
43 delete (TokenDT*) thisTokenP;
44 } // end if
45 } // end for
46
47 delete InputP;
48 thisTokenP = OutputP;
49 } // end indexed parallel construct
50
51 OutputP = (TokenDT*) thisTokenP;
52 } // end ProcessAT::Operation1

subconstruct
3-35

In order to avoid dynamically creating many threads, a pipeline is made of a predefined number of threads
connected so as the last thread is connected to the first thread. Each thread possesses several computed prime
numbers corresponding to different stages in the computation pipeline. Figure 3-19 shows “The Sieve of
Eratosthenes” distributed on 3 different threads and the computation pipeline.

This algorithm is not of practical interest for parallel computation since its grain of parallelism is too small, i.e.
the ratio between computation and communication is the ratio of division time and the time to send a number
across the network. Nevertheless the Sieve of Eratosthenes is a simple program that demonstrates how to use
parallel CAP constructs (Sections 3.8) to program the computation pipeline of Figure 3-19.

The macro dataflow of the algorithm (Figure 3-19) is depicted in Figure 3-20. The input of the parallel
ParallelProcessingServerT::ComputePrimeNumbers operation is a ComputationRequestT token comprising the
number up to which the algorithm must find the prime numbers. This request is divided by the split
GenerateNumber function which generates successive numbers from 2 to the specified maximum number.
Iteratively a NumberT token is redirected through the pipeline formed by the Slave[] threads to be filtered by the
sequential ComputeServerT::FilterNumber operations until the number is either rejected or is a prime number.
The Master thread gathers the results into the output PrimeNumbersT token using the merge MergeNumber

function. Once all the generated NumberT tokens are merged, the output PrimeNumbersT token comprising the
array of found prime numbers is redirected to its successor.

Figure 3-21 shows the timing diagram of the execution of the DAG in Figure 3-20. The master thread both sends
the numbers and collects the results of the pipeline execution on 3 slave threads.

Program 3-31 shows the declaration of the 3 tokens involved in the parallel computation, i.e. the
ComputationRequestT token (lines 1-4), the PrimeNumbersT token (lines 34-40), and the NumberT token (lines
47-53). A ComputationRequestT token contains the number up to all the prime numbers must be found (line 3).
The result of the parallel computation is a PrimeNumbersT token comprising an array of prime numbers (line 36)
and its size (line 37). In order to be able to serialize the token, the ArrayOfIntsT class (lines 6-31) has been
defined. Its serialization routines are not shown in Program 3-31 since Section 4.4.1 is entirely devoted to this
issue. NumberT tokens that flow through the computation pipeline contain 4 fields, namely the number itself (line
49), a first boolean variable specifying if the token has to be redirected to the next thread in the pipeline (line 50),
a second boolean variable indicating if this number is a prime number (line 51), and the filter index or stage index
in the pipeline (line 52).

Program 3-32 shows the ParallelProcessingServer CAP process hierarchy (line 28) where two processes are
declared: A ComputeServerT leaf process (lines 3-12) and a ParallelProcessingServerT hierarchical process
(lines 15-25). The ComputeServerT leaf process offers the FilterNumber sequential operation (lines 9-11) that
divides the input NumberT number with its locally stored prime number and creates the output NumberT number
according to whether the number is divisible or not. The PrimeNumbers thread local storage (line 6) is an array of

Figure 3-19. The Sieve of Eratosthenes distributed on 3 different threads

5

?
13

?

?

3

?
11

?
19

?

2

?
7

?
17

?

...; 23; 22; 21; 20
3-36

Figure 3-20. Graphical CAP specification of “The Sieve of Eratosthenes”

Figure 3-21. Timing diagram of the execution of “The Sieve of Eratosthenes” with a master thread and 3

slave threads

Program 3-31. The Sieve of Eratosthenes tokens

ParallelProcessingServerT::
ComputePrimeNumbers

ComputationRequestT PrimeNumbersT

ComputeServerT::FilterNumber

Slave[]

NumberT

Computation
RequestT

G
en
erateN

u
m
b
er

M
erg

eN
u
m
b
er

Master

? 0

1

ComputeServerT::FilterNumber

Slave[]

NumberT

NumberT NumberT
Prime

NumbersT

Master

2 3 4 5 6 7 8 9 10 11 12

3 5 7 9 11

5 7 11

11
Slave[0]

Slave[1]

Slave[2]

Master

7

11

1 token ComputationRequestT
2 {
3 int MaximumNumber;
4 }; // end token ComputationRequestT
5
6 class ArrayOfIntsT
7 {
8 public:
9 ArrayOfIntsT();
10 ArrayOfIntsT(int size);
11 ~ArrayOfIntsT();
12
13 public:
14 int Size;
15 int* ArrayP;
16 }; // end class ArrayOfIntsT
17
18 ArrayOfIntsT::ArrayOfIntsT()
19 : Size(0), ArrayP(0)
20 {} // end ArrayOfIntsT::ArrayOfIntsT
21
22 ArrayOfIntsT::ArrayOfIntsT(int size)
23 : Size(size)
24 {
25 ArrayP = new int[size];
26 } // end ArrayOfIntsT::ArrayOfIntsT
27

28 ArrayOfIntsT::~ArrayOfIntsT()
29 {
30 delete ArrayP;
31 } // end ArrayOfIntsT::~ArrayOfIntsT()
32
33
34 token PrimeNumbersT
35 {
36 ArrayOfIntsT PrimeNumbers;
37 int NumberOfPrimeNumbers;
38
39 PrimeNumbersT(ComputationRequestT* fromP);
40 }; // end token PrimeNumbers
41
42 PrimeNumbersT::PrimeNumbersT(ComputationRequestT* fromP)
43 : PrimeNumbers(fromP->MaximumNumber),
44 NumberOfPrimeNumbers(0)
45 {} // end PrimeNumbersT::PrimeNumbersT
46
47 token NumberT
48 {
49 int Number;
50 bool ContinueToFilterNumber;
51 bool IsPrimeNumber;
52 int FilterIndex;
53 }; // end token NumberT
3-37

integers that can dynamically shrink and grow as necessary (the CArray class is part of the Microsoft Foundation
Class MFC library). This feature is necessary, since we do not know in advance how many prime numbers each
slave must store.

The hierarchical ParallelProcessingServerT process has a Master leaf subprocess (line 18) and 5 Slave[] leaf
subprocesses (line 19) called Slave[0] to Slave[4] (user-defined). The NUMBER_OF_SLAVES constant is defined
at line 1. The Master thread is responsible for generating the (ComputationRequestT::MaximumNumber-1)
successive numbers and merging the parallel computation results into the PrimeNumbersT token. Slave[0] to
Slave[4] threads form the computation pipeline. The hierarchical ParallelProcessingServerT process can perform
a parallel ComputePrimeNumber operation on a ComputationRequestT input token, and produce a
PrimeNumbersT output token (lines 22-24).

The process hierarchy is instantiated at line 28. At running time and with a configuration file (Program 3-36), the
CAP runtime system will automatically spawn the 6 threads, namely Master and Slave[0] to Slave[4], in order to
execute the parallel ComputePrimeNumbers operation on these 5 threads.

The implementation of the sequential ComputeServerT::FilterNumber operation is shown in Program 3-33.

Three different cases may arise:
1. There is no locally stored prime number at this stage (line 11). Therefore the input number is a prime number

(line 16). It must be stored in the dynamically growing array (line 14). No further filtering is needed for that
number (line 15).

2. The input number is divisible by the locally stored prime number (line 20). In that case the number is not a
prime number (line 24) and filtering must end (line 23).

Program 3-32. The “Sieve of Eratosthenes” CAP process hierarchy

Program 3-33. Sequential ComputeServerT::FilterNumber operation

1 const int NUMBER_OF_SLAVES = 5;
2
3 process ComputeServerT
4 {
5 variables:
6 CArray<int,int> PrimeNumbers; // 2D array of ints
7
8 operations:
9 FilterNumber
10 in NumberT* InputP
11 out NumberT* OutputP;
12 }; // end process ComputeServerT
13
14

15 process ParallelProcessingServerT
16 {
17 subprocesses:
18 ComputeServerT Master;
19 ComputeServerT Slave[NUMBER_OF_SLAVES];
20
21 operations:
22 ComputePrimeNumbers
23 in ComputationRequestT* InputP
24 out PrimeNumbersT* OutputP;
25 }; // end ParallelProcessingServerT
26
27
28 ParallelProcessingServerT ParallelProcessingServer;

1 leaf operation ComputeServerT::FilterNumber
2 in NumberT* InputP
3 out NumberT* OutputP
4 {
5 const int FilterIndex = InputP->FilterIndex/NUMBER_OF_SLAVES; // local index of filter (integer division)
6
7 OutputP = new NumberT;
8 OutputP->Number = InputP->Number;
9 OutputP->FilterIndex = InputP->FilterIndex + 1; // global index of filter
10
11 if (PrimeNumbers.GetSize() <= FilterIndex)
12 {
13 // It is a prime number
14 PrimeNumbers.SetAtGrow(FilterIndex, Input->Number);
15 OutputP->ContinueToFilterNumber = false;
16 OutputP->IsPrimeNumber = true;
17 }
18 else

19 {
20 if (InputP->Number % PrimeNumbers[FilterIndex] == 0)
21 {
22 // It is not a prime number
23 OutputP->ContinueToFilterNumber = false;
24 OutputP->IsPrimeNumber = false;
25 }
26 else

27 {
28 // Continue to filter the number
29 OutputP->ContinueToFilterNumber = true;
30 OutputP->IsPrimeNumber = false;
31 } // end if
32 } // end if
33 } // end ComputeServerT::FilterNumber
3-38

3. The input number is not divisible by the locally stored prime number (line 26). In that case the number has to
be filtered (line 29) by the next slave in the pipeline (line 9).

Program 3-34 shows the CAP specification of the parallel ParallelProcessingServerT::ComputePrimeNumbers
operation. As depicted in its directed acyclic graph in Figure 3-20, the parallel
ParallelProcessingServerT::ComputePrimeNumbers operation consists of an indexed parallel CAP construct
(Section 3.8.7) that repeatedly calls the GenerateNumber split function for Number ranges from 2 to
ComputationRequestT::MaximumNumber (line 26). The GenerateNumber routine simply creates a NumberT
token (line 3) and initializes its 4 fields (lines 4-7).

The while CAP construct (Section 3.8.3) redirects each of the generated NumberT tokens to one of the Slave
threads as long as the number needs to be filtered (lines 30-33). The selection of the Slave thread (line 32) is made
according to the NumberT::FilterIndex value of the token about to enter in the sequential
ComputeServerT::FilterNumber operation. Since consecutive FilterIndex (Program 3-33 line 9) filter indexes are
produced, NumberT tokens flow through the Slave threads in a round-robin fashion as shown in Figure 3-19. Once
a NumberT token quits the while loop, filtering ends and the token is merged into the Result token by the Master

thread using the MergeNumber routine (line 28).

The inline operation at line 23 forces the C/C++ indexed parallel indexing expression (line 26) and the
GenerateNumber split function (lines 1-8) to be executed by the Master thread thus ensuring that the split and the
merge functions are executed by the same thread independently of who is calling the parallel
ParallelProcessingServerT::ComputePrimeNumbers operation. Remember from Section 3.8 the discussion about
who executes parallel operations: “The producing thread performs the parallel operation, and decides himself
where to redirect the token it produced”. At line 23 the Master thread forwards the ComputationRequestT input
token, initializes the PrimeNumbersT output token (line 28), and executes the indexed parallel loop (line 26) and
the GenerateNumber split function (line 28).

Since the thread who executes the split function is similar to the thread who executes the merge function, i.e. the
Master thread, one can initialize the PrimeNumbersT output token (line 28) either locally with the ‘local’
keyword or remotely with the ‘remote’ keyword (Section 3.8.5).

Program 3-35 shows the main function where the parallel ParallelProcessingServerT::ComputePrimeNumbers
operation is called (line 15) and the prime numbers displayed (lines 17-21).

Program 3-34. Parallel ParallelProcessingServerT::ComputePrimeNumbers operation

1 void GenerateNumber(ComputationRequestT* inputP, NumberT* &subtokenP, int number)
2 {
3 subtokenP = new NumberT;
4 subtokenP->Number = number;
5 subtokenP->ContinueToFilterNumber = true;
6 subtokenP->IsPrimeNumber = false;
7 subtokenP->FilterIndex = 0;
8 } // end GenerateNumber
9
10 void MergeNumber(PrimeNumbersT* outputP, NumberT* subtokenP, int number)
11 {
12 if (subtokenP->IsPrimeNumber)
13 {
14 outputP->PrimeNumbers.ArrayP[outputP->NumberOfPrimeNumbers] = subtokenP->Number;
15 outputP->NumberOfPrimeNumbers++;
16 } // end if
17 } // end MergeNumber
18
19 operation ParallelProcessingServerT::ComputePrimeNumbers
20 in ComputationRequestT* InputP
21 out PrimeNumbersT* OutputP
22 {
23 Master.{ } // forces the InputP token to be redirected to the Master thread
24 >->

25 indexed

26 (int Number = 2; Number <= thisTokenP->MaximumNumber; Number++)
27 parallel

28 (GenerateNumber, MergeNumber, Master, local PrimeNumbersT Result(thisTokenP))
29 (
30 while (thisTokenP->ContinueToFilterNumber)
31 (
32 Slave[thisTokenP->FilterIndex % NUMBER_OF_SLAVES].FilterNumber
33) // end while
34); // end indexed parallel
35 } // end operation ParallelProcessingServerT::ComputePrimeNumbers
3-39

In order to run the Sieve of Eratosthenes CAP program (Programs 3-31, 3-32, 3-33, 3-34 and 3-35) on a multi-PC
environment, the CAP runtime system needs a configuration file (Program 3-36) indicating how the 6 threads are
allocated on the various PC’s.

3.10 Issue of flow-control in a pipeline within a split-merge parallel
while or indexed parallel CAP construct

When examining carefully Programs 3-27, 3-29 and 3-34, a common question arises: Who regulates the number
of tokens generated by the split routine? Who prevents the split routine to generate all its subtokens without
knowing whether the parallel while or the indexed parallel body subconstruct is consuming them at the same rate
they are produced? The answer is nobody. The split routine, in the three programs, actually generates all the
subtokens without stopping. If the split routine creates few subtokens this is probably acceptable, but if the split
routine generates thousands of large subtokens then the problem is different. The processor will be overloaded
executing continuously the split routine, memory will overflow, and the network interface will saturate sending all
these subtokens. This will result in a noticeable performance degradation and later in a program crash with a “no
more memory left” error message.

The problem with the parallel while (Section 3.8.6) and the indexed parallel (Section 3.8.7) CAP constructs is
that the split routine generates input tokens faster than the merge routine consumes parallel while or indexed
parallel body subconstruct output tokens. Either because the parallel while or indexed parallel body subconstruct
output token rate is too slow or the merging time of a token is too long. Therefore tokens accumulate somewhere
in the pipeline between the split and the merge routine in the token queue located in front of the most loaded PC’s,
thus becoming the bottleneck of the application (Figure 3-22).

In a multi-PC environment potential bottlenecks are: processors, memory interfaces, disks, network interfaces
comprising the message passing system interface, the PCI network card adapter and the 100 Mbits/s Fast Ethernet
network. If the processor, the memory interface or the disks are the bottleneck, then tokens are accumulated in the

Program 3-35. “The Sieve of Eratosthenes” C/C++ main program

Program 3-36. The Sieve of Eratosthenes configuration file

1 int main(int argc, char* argv[])
2 {
3 int MaximumNumber, Index;
4 ComputationRequestT* InputP;
5 PrimeNumbersT* OutputP;
6
7 printf("The Sieve of Eratosthenes\n");
8 printf("Compute prime numbers between [2..MaximumNumber]\n");
9 printf("MaximumNumber = ");
10 fscanf(stdin, "%d", &MaximumNumber);
11
12 InputP = new ComputationRequestT;
13 InputP->MaximumNumber = MaximumNumber;
14
15 call ParallelProcessingServer.ComputePrimeNumbers in InputP out OutputP;
16
17 printf("Prime numbers between [2..%d]:\n", MaximumNumber);
18 for (Index = 0; Index < OutputP->NumberOfPrimeNumbers; Index++)
19 {
20 printf("%d\n", OutputP->PrimeNumbers.ArrayP[Index]);
21 } // end for
22 delete OutputP;
23
24 return 0;
25 } // end main

1 configuration {
2 processes:
3 A ("user") ;
4 B ("128.178.75.65", "\\FileServer\SharedFiles\Eratosthenes.exe") ;
5 C ("128.178.75.66", "\\FileServer\SharedFiles\Eratosthenes.exe") ;
6 D ("128.178.75.67", "\\FileServer\SharedFiles\Eratosthenes.exe") ;
7 E ("128.178.75.68", "\\FileServer\SharedFiles\Eratosthenes.exe") ;
8 F ("128.178.75.69", "\\FileServer\SharedFiles\Eratosthenes.exe") ;
9
10 threads:
11 "Master" (A) ;
12 "Slave[0]" (B) ;
13 "Slave[1]" (C) ;
14 "Slave[2]" (D) ;
15 "Slave[3]" (E) ;
16 "Slave[4]" (F) ;
17 }; // end of configuration file
3-40

input token queue (Figure 3-22) of the thread who executes the sequential operation that uses this offending
resource, i.e. the resource that forms the bottleneck. Alternately, if the message passing system interface, the PCI
network card adapter or the Fast Ethernet network is the bottleneck, then tokens are accumulated in the message
passing system output queue (Figure 3-22) of the offending Windows NT process, i.e. the Windows NT process
that sends too many tokens. The consequence of such a congestion point is that computing resources are
monopolized for handling such a peak in the flow of tokens, e.g. memory space for storing tokens and computing
power for sending/receiving tokens, leading to a rapid degradation of performances (virtual memory thrashing).

Best performances are achieved when the split routine generates tokens at the same rate as the merge routine
consumes the parallel while or indexed parallel body subconstruct output tokens. In that situation the most loaded
components in the pipeline becomes the bottleneck, i.e. is 100% of the time active and no further improvement is
possible.

For flow-control, two approaches are possible. The first approach consists of a low-level flow-control mechanism
where CAP’s runtime system (message-passing system) itself incorporates at each token queue, i.e. input token
queues and MPS output token queues, a local flow-control mechanism (Figure 3-23) similar to Xon-Xoff in
RS-232 communications.
1. This mechanism detects when the size of the token queue becomes too important, i.e. either consumes too

much memory or contains too many tokens.
2. When the size of the token queue monitored in step 1 is above a certain thresholdmax, the mechanism is able

to stop the producer from generating tokens.
3. It detects when the size of the token queue becomes too small, i.e. either consumes not enough memory or

does not contain enough tokens.
4. When the size of the token queue monitored in step 3 is below a certain thresholdmin, the mechanism is able

to resume the producer to generate tokens.

The local flow-control mechanism (Figure 3-23) is performed on a token queue basis. But since the producer of
one token queue is the consumer of the previous token queue, stopping a producer will have the effect of making
the previous token queue grow. After a certain amount of time, the previous local flow-control mechanism will

Figure 3-22. Example of a 4-stage pipeline composed of a split routine, two intermediate sequential

operations and a merge routine. Note the input token queues in front of each CAP threads and the MPS

output token queues at the border of each address spaces.

Figure 3-23. Local flow-control mechanism regulating the input token rate according to the output token

rate

S
p
lit

M
erg

e

Message Passing
System comprising
the 100 Mbits/s Fast
Ethernet network

input token
queue

MPS output
token queue

CAP thread

address space

SOp1 SOp2

sequential
operation

size of the
token queue

thresholdmax

thresholdmin

the producer is stopped and
cannot generate tokens

the producer is running and
can generate tokens

0

producer consumer

output
token rate

input
token rate

input token rate > output token rate local flow-control mechanism is performed

resume the producer

stop the producer

local flow-control
mechanism

local flow-control mechanism:
token queue
3-41

stop its producer. And so on and so forth until the producer is the thread who runs the split routine which will stop
generating output tokens. When the original token queue becomes almost empty, the local flow-control
mechanism resumes the execution of the producer which will make the previous token queue shrink. After a
certain amount of time, the previous local flow-control mechanism will resume the execution of its producer.
Finally, the producer who runs the split routine will resume generating output tokens.

The low-level flow-control mechanism adapts easily to variable running conditions, e.g. changes in processor,
memory or network utilization, and does not require additional communications. Although with this low-level
mechanism we do not need to modify user’s CAP programs (in particular the parallel while and indexed parallel
CAP constructs), this solution has not been considered in current releases of CAP. Preventing a thread from
sending tokens introduces new issues not investigated yet, e.g. problems of deadlock and circulation of
high-priority data (supervision commands, monitoring commands).

The second approach consists in applying a high-level flow-control mechanism. The offending parallel while and
indexed parallel CAP constructs are replaced by a combination of parallel while, indexed parallel and for CAP
constructs in order to maintain the difference between the number of split tokens and the number of merged
tokens constant by having additional communication between the thread who runs the merge routine and the
thread who runs the split routine (Figure 3-24).

By doing this, the program regulates by itself the split token rate according to the merged token rate, thus
preventing tokens to be accumulated somewhere in the pipeline causing a possible degradation of performance.

Program 3-37 shows a CAP program with an indexed parallel CAP construct at lines 7-13. The inline operation at
line 5 constraints the C/C++ indexed parallel indexing expression (line 8) and the Split routine (line 10) to be
executed by the ThreadA thread. The Merge routine is executed by the ThreadB thread (line 10). Without an
adequate flow-control mechanism this parallel CAP construct generates 10’000 TokenCT tokens that will
certainly fill up the memory and cause a memory overflow condition.

In order to maintain the difference between the number of split TokenCT tokens and the number of merged
TokenDT tokens constant, e.g. 20 tokens, the indexed parallel CAP construct is rewritten. Program 3-38 shows the
first high-level flow-controlled split-merge construct replacing the original indexed parallel CAP construct in
Program 3-37. The idea consist of generating a small amount of tokens, e.g. 20, with a first indexed parallel CAP
construct (lines 7-10) and to redirect 500 times, with a second for CAP construct (line 12), each of these 20

Figure 3-24. High-level flow-control mechanism requiring additional communication between the thread

who runs the merge routine (the ThreadB thread) and the thread who runs the split routine (the ThreadA

thread) so as to maintain the split token rate equal to the merged token rate

Program 3-37. Example of a CAP program requiring a flow-control preventing the split routine from

generating 10’000 tokens

S
p
lit

M
erg

e

SOp1 SOp2

additional communication so as to maintain the
split token rate equal to the merged token rate

ThreadA ThreadB

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ThreadA.{ }
6 >->

7 indexed

8 (int Index = 0; Index < 10000; Index++)
9 parallel

10 (Split, Merge, ThreadB, remote TokenDT Out(thisTokenP))
11 (
12 ProcessB.Operation1
13); // end indexed parallel
14 } // end operation ProcessAT::Operation1
3-42

tokens, through the pipeline formed by the split routine (line 14), the parallel ProcessBT::Operation1 operation
(line 16) and the merge routine (line 18). In other words, the indexed parallel CAP construct (lines 7-11)
generates 20 tokens (or 20 parallel flows) and each of these 20 tokens circulates, in parallel, 500 times through the
pipeline (lines 14-18) thanks to the for CAP construct (lines 12-13). The combination of the indexed parallel and
the for CAP constructs ensures that exactly 20 tokens are always flowing in the pipeline, thus preventing a large
memory consumption and a possible memory overflow.

This first high-level flow-controlled split-merge construct (Program 3-38) requires one additional communication
between the thread who runs the merge routine and the thread who runs the split routine. For example, on a
6-stage pipeline (split routine, 4 intermediate pipe stages, and merge routine) this correspond to a communication
increase of 20%, i.e. 6 token transfers instead of 5 token transfers.

Henceforth the number of tokens that are simultaneously flowing in the pipeline, i.e. within the for CAP construct
(lines 14-18) is named the filling factor. Performance of a flow-controlled split-merge construct (Program 3-38)
highly depends on its filling factor. A too large filling factor creates a congestion point that consumes lots of
memory degrading performance and possibly crashing the program. A too small filling factor does not provide
enough tokens to saturate one of the PC’s components, i.e. the most loaded, on which the pipeline executes. This
decreases the parallelism between the different pipeline stages and performance suffers. At the extreme, a filling
factor of 1 corresponds to a serial execution of the split-merge construct (Programs 3-28 and 3-30). Best
performances are obtained when the filling factor is equal to the minimum factor that saturates the most loaded
components on which the pipeline executes.

In order to illustrate how we calculate the optimal value of the filling factor giving the best performance, let us
take a simple example where the pipeline is composed of 5 compute-bound stages, each distributed on a different
PC. Stages 1 to 5 occupy the processor for 50 ms, 160 ms, 200 ms, 100 ms and 150 ms respectively. The tokens
flowing through these 5 stages are made of a single 32 bit number and the time for sending such a 32-bit token
from one PC to another is 530 µs (calculated using Equation 3-3 and the measured serial execution time). The
experiment consists of flowing through the 5-stage pipeline 1000 times using the high-level flow-controlled
split-merge construct shown in Program 3-38 and completing the computation on the same PC it starts, i.e. the
50ms-stage PC. Since for the experiment we use Bi-Pentium Pro PC’s, we can assume that sending and receiving
tokens happen asynchronously without interfering with the computation, i.e. one processor is dedicated to
computation and the second is dedicated to communication. Communication overlaps computation on a given

PC1.

The third processor runs the thread who executes the slowest 200ms stage. It represents the application’s
bottleneck when the following equation is verified:

Program 3-38. First high-level flow-controlled split-merge construct that requires one communication

between the thread who runs the merge routine, i.e. the ThreadB thread, and the thread who runs the split

routine, i.e. the ThreadA thread, for each merged tokens

1. As mentioned in Section 4.5, on a mono-processor PC, communications are only partially hidden, since
the TCP/IP protocol stack requires considerable processing power.

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ThreadA.{ }
6 >->

7 indexed

8 (int IndexFlowControl1 = 0; IndexFlowControl1 < 20; IndexFlowControl1++)
9 parallel

10 (SplitFlowControl1, MergeFlowControl1, ThreadB, remote FlowControlT Out1(thisTokenP))
11 (
12 for (int IndexFlowControl2 = 0; IndexFlowControl2 < 10000/20; IndexFlowControl2++)
13 (
14 ThreadA.SplitFlowControl2
15 >->

16 ProcessB.Operation1
17 >->

18 ThreadB.MergeFlowControl2
19) // end for
20) // end indexed parallel
21 >->

22 ThreadB.ReturnOutputToken;
23 } // end operation ProcessAT::Operation1

filling factor

pipeline
3-43

(3-1)

Equation 3-1 reflects the case when there are enough tokens in the full pipeline for keeping the third thread active
while the first token leaves the 200ms-stage, flows through the next 4 stages and gets back to the 200ms-stage
input token queue. Solving equation 3-1 gives a filling factor of at least 3.32 tokens. With an optimal value of 4
tokens, the present high-level flow-controlled split-merge construct (Program 3-38) gives the best performance.
Increasing the filling factor beyond 4 tokens will not improve performance since the third processor is already
100% active executing repeatedly the slowest 200ms pipe stage.

More generally, Equation 3-2 gives the formula for calculating the filling factor of any K-stage pipelines running
on K different PC’s, where the pipeline round trip time is the time for a token to flow through the whole pipeline
and to arrive where it starts.

(3-2)

Figures 3-25 to 3-28 show how the pipeline execution time decreases while the filling factor increases (PC’s are
bi-processor PC’s).

Figure 3-25 shows the timing diagram of the execution of the 5-stage pipeline with a filling factor of 1.

This corresponds to a serial execution where each pipe stages is executed one after the other. In that case the
execution time is:

(3-3)

Figure 3-26 shows the timing diagram with a filling factor of 2.

In that case the execution time is reduced by a factor of 2:

(3-4)

With a filling factor of 3, the processor on PC3 is still not the bottleneck (Figure 3-27).

The execution time is reduced by a factor of 3 compared with the serial execution in Figure 3-25:

(3-5)

As demonstrated by Equation 3-1, the third processor becomes the application’s bottleneck from a filling factor of
4 tokens (Figure 3-28).

Figure 3-25. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 1

FillingFactor 1–() 200ms⋅ 0.53ms 100ms 0.53ms 150ms 0.53ms 50ms 0.53ms 160ms 0.53ms+ + + + + + + +≥

FillingFactor 1–() LengthOfSlowestPipeStage⋅ PipelineRoundTripTime LengthOfSlowestPipeStage–≥

comp.

comm.
PC4

comp.

comm.
PC1

comp.

comm.
PC2

comp.

comm.
PC3

comp.

comm.
PC5

1st cycle 2nd cycle 1000th cycle

1000 50ms 0.53ms 160ms 0.53ms 200ms 0.53ms 100ms 0.53ms 150ms 0.53ms+ + + + + + + + +()⋅ 662.651s=

1 200ms⋅
500

+

50ms 0.53ms 160ms 0.53ms 200ms 0.53ms 100ms 0.53ms 150ms 0.53ms+ + + + + + + + +()⋅ 331.525s=

2 200ms⋅
334

+

50ms 0.53ms 160ms 0.53ms 200ms 0.53ms 100ms 0.53ms 150ms 0.53ms+ + + + + + + + +()⋅ 221.725s=
3-44

The pipeline filling time is the time for a token to reach the slowest pipe stage from the beginning of the pipeline
and the pipeline draining time is the time for a token to reach the beginning of the pipeline from the end of the
slowest pipe stage. The minimum 5-stage pipeline execution time on a 5 PC environment is:

Figure 3-26. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 2

Figure 3-27. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 3

Figure 3-28. Timing diagram of the execution of the 5-stage pipeline with a filling factor of 4

comp.

comm.
PC4

comp.

comm.
PC1

comp.

comm.
PC2

comp.

comm.
PC3

comp.

comm.
PC5

1st cycle 2nd cycle 500th cycle
startup
time

comp.

comm.
PC4

comp.

comm.
PC1

comp.

comm.
PC2

comp.

comm.
PC3

comp.

comm.
PC5

1st cycle 334th cyclestartup time

comp.

comm.
PC4

comp.

comm.
PC1

comp.

comm.
PC2

comp.

comm.
PC3

comp.

comm.
PC5

pipeline filling
time

pipeline draining
time
3-45

(3-6)

More generally and only if the filling factor is large enough to make the processor executing the slowest stage the
bottleneck (Equation 3-2), the minimum execution time of a K-stage pipeline running on K different PC’s
(Program 3-38) is given by Equation 3-7 where N is the number of tokens which need to travel through the whole
pipeline.

(3-7)

Or:

(3-8)

A remarkable effect in Equations 3-6, 3-7 and 3-8 is that communication overhead is present only in the pipeline
filling and draining time factors. During most of the execution time, i.e. ‘N x LengthOfSlowestPipeStage’ or in
our example 99.77% of the time, communications are overlapped by computations. This is achieved in CAP
thanks to the pipeline CAP construct (Section 3.8.1) and to the message passing system which asynchronously
sends and receives tokens (Section 4.3.3).

Table 3-1 compares the 3 predicted 5-stage pipeline execution times with those measured on 5 Bi-Pentium Pro
200 MHz PC’s interconnected by a 100 Mbits/s Fast Ethernet network. As correctly predicted, from a filling
factor of 4 tokens the slowest 200ms pipe stage becomes the bottleneck and communications are completely
overlapped by computations.

Figure 3-29 depicts the evolution of the measured 5-stage pipeline execution times for 10 different filling factors.

From Equation 3-6, we can calculate the maximum 5-stage pipeline application’s speed-up:

(3-9)

This speedup gives an efficiency of only 3.29 / 5 = 65.8%. This raises a new difficulty when designing a CAP
program featuring a pipeline such as the one in Programs 3-27, 3-29 and 3-38, i.e. how to balance the length of
each sequential operation composing the pipeline. The same load-balancing problem is found in processor
pipelines, e.g. instruction fetch cycle (IF), instruction decode/register fetch cycle (ID), execution/effective address
cycle (EX), memory access/branch completion cycle (MEM) and write-back cycle (WB) [Hennessy96, Chapter
3].

Filling
factor

Predicted
execution time [secs]

Measured
execution time [secs]

1 not predicted; measured 662.651

2 331.525 331.725

3 221.725 221.869

4 200.463 200.711

5 200.463 200.711

10 200.463 200.686

20 200.463 200.688

50 200.463 200.672

100 200.463 200.666

200 200.463 200.705

Table 3-1. Comparison of the predicted and measured execution times of the 5-stage pipeline for various

filling factors

50ms 0.53ms 160ms 0.53ms+ + +()
1000 200ms⋅() 0.53ms 100ms 0.53ms 150ms 0.53ms+ + + +()

+

+ 200.463s=

PipelineExecutionTime PipelineFillingTime N LengthOfSlowestPipeStage⋅ PipelineDrainingTime+ +=

PipelineExecutionTime PipelineRoundTripTime N 1–() LengthOfSlowestPipeStage⋅+=

1000 50ms 160ms 200ms 100ms 150ms+ + + +()⋅
200.463s

--- 3.29=
3-46

In a K-stage pipeline, where all the K stages are perfectly balanced and are mapped onto different PC’s, the filling
factor is given by Equation 3-2 customized in Equation 3-10 where S is the execution time of a stage and T is the
transmission time of a token from one PC to another.

(3-10)

Which after reduction gives:

(3-11)

Equation 3-11 ensures that the K PC’s are 100% active throughout the execution of the high-level flow-controlled
split-merge construct of Program 3-38 except during the pipeline fills and drains. In that condition, the execution
time is given by Equation 3-7 customized in Equation 3-12.

(3-12)

The factor ‘K x (S+T) - S’ in Equation 3-12 represents the time that the pipeline fills and drains. The speed-up is
given in Equation 3-13.

(3-13)

Which after reduction gives:

(3-14)

Equation 3-14 clearly shows that the speed-up is less than K, since during the pipeline filling and draining time
not all the K PC’s are 100% active. Equation 3-15 gives the corresponding efficiency.

(3-15)

Our first attempt of a high-level flow-controlled split-merge construct (Program 3-38) requires one
communication between the thread who runs the last sequential operation of the pipeline (or merge routine, line
18) and the thread who runs the first sequential operation of the pipeline (or split routine, line 14) for each
iterations (provided that ThreadA thread and ThreadB thread are mapped onto two different PC’s). Remember that
the two original split-merge CAP constructs (Sections 3.8.6 and 3.8.7, Program 3-37) do not require any
additional communications but they do not offer any flow-control mechanism. Although communications are
mostly overlapped by computations (Equations 3-6, 3-7, 3-8 and 3-12), sending and receiving many small tokens
such as those required for the high-level flow-control (Program 3-38) add an additional load on processors and

Figure 3-29. Measured execution times of the 5-stage pipeline for various filling factors

150

200

250

300

350

400

450

500

550

600

650

700

Filling Factor

E
xe

cu
tio

n
tim

e
[s

ec
on

ds
]

1 2 3 4 5 10 20 50 100 200

FillingFactor 1–() S× K 1–() S⋅ K T⋅+≥

FillingFactor K
K T⋅
S

-----------+≥

PipelineExecutionTime N 1–() S⋅ K S T+()⋅+=

Speedup
N K S⋅ ⋅

N 1–() S⋅ K S T+()⋅+
---=

Speedup K 1
1

1
N S⋅

K S T+() S–⋅
-----------------------------------+

--–

 
 
 
 

×=

Efficiency 1
1

1
N S⋅

K S T+() S–⋅
-----------------------------------+

--–=
3-47

network interfaces. Often, network interfaces and the processing power required for the TCP/IP protocol
represent the bottleneck (Section 6.3.3). Therefore, even if flow-control tokens are small (between 50 and 100
Bytes), it is essential to reduce communications so as to alleviate these two scarce resources.

The second high-level flow-controlled split-merge construct in Program 3-39 requires much less communication
between the thread who runs the merge routine, i.e. the ThreadB thread, and the thread who runs the split routine,
i.e. the ThreadA thread. This is achieved by having a second indexed parallel CAP construct (lines 16-19) within
the for CAP construct (line 12). Consequently only every each 10 tokens merged by the ThreadB thread using the
MergeFlowControl2 routine a FlowControlT token (line 19, Out2 token) is sent back to the ThreadA thread (line
14) which uses the SplitFlowControl2 routine to split the next 10 tokens feeding the pipeline. The empty inline
sequential operation at line 14 forces the ThreadB thread to send the flow-control Out2 token to the ThreadA
thread. Otherwise the SplitFlowControl2 routine would have been executed by the ThreadB thread which is
different from the original program (Program 3-37, line 10) where the Split routine is executed by the ThreadA
thread. The outer indexed parallel CAP construct (lines 7-10) with an appropriate filling factor, allow to saturate
the most loaded PC’s components in the pipeline. With an outer filling factor of 1, the pipeline is empty while the
flow-control Out2 token is being sent from the ThreadB thread to the ThreadA thread thus decreasing
performance.

Contrary to the first high-level flow-controlled split-merge construct (Program 3-38), in the improved construct
(Program 3-39) the filling factor is composed of 2 values. A first value named filling factor1 specifying the

number of bunches of tokens (line 8), and a second value named filling factor2 specifying the number of tokens

per bunch (line 17). Additional flow-control communications occur only every each filling factor2 merged tokens.

The maximum number of tokens that may simultaneously be in the pipeline is filling factor1 multiplied by filling

factor2 tokens. With a filling factor2 of 1, the improved high-level flow-controlled split-merge construct (Program

3-39) is equivalent to the first construct (Program 3-38).

Similarly to Equation 3-2, Equation 3-16 must be verified so that the thread who executes the slowest pipe stage
of length Smax is 100% active during the execution of the flow-controlled split-merge construct except while the

pipeline fills and drains.

(3-16)

Equations 3-7 and 3-8 giving the pipeline execution time are still valid with the second flow-controlled
split-merge construct (Program 3-39), provided that Equation 3-16 is verified.

Program 3-39. High-level flow-controlled split-merge construct requiring much less communication

between the thread who runs the merge routine, i.e. the ThreadB thread, and the thread who runs the split

routine, i.e. the ThreadA thread

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ThreadA.{ }
6 >->

7 indexed

8 (int IndexFlowControl1 = 0; IndexFlowControl1 < 2; IndexFlowControl1++)
9 parallel

10 (SplitFlowControl1, MergeFlowControl1, ThreadB, remote FlowControlT Out1(thisTokenP))
11 (
12 for (int IndexFlowControl2 = 0; IndexFlowControl2 < 10000/(2*10); IndexFlowControl2++)
13 (
14 ThreadA.{ }
15 >->

16 indexed

17 (int IndexFlowControl3 = 0; IndexFlowControl3 < 10; IndexFlowControl3++)
18 parallel

19 (SplitFlowControl2, MergeFlowControl2, ThreadB, remote FlowControlT Out2(thisTokenP))
20 (
21 ProcessB.Operation1
22) // end indexed parallel
23) // end for
24) // end indexed parallel
25 >->

26 ThreadB.ReturnOutputToken;
27 } // end operation ProcessAT::Operation1

filling factor1

filling factor2

pipeline

FillingFactor1 1–() FillingFactor2 S
max

⋅ ⋅ PipelineRoundTripTime S
max

–≥
3-48

The CAP preprocessor is able to generate itself the two high-level flow-controlled split-merge constructs of
Programs 3-38 and 3-39 from the original parallel while and indexed parallel CAP constructs (Sections 3.8.6 and
3.8.7) thus simplifying the task of writing parallel CAP programs. Program 3-40 shows how with the keyword
‘flow_control’ the programmer can specify a split-merge CAP construct with a high-level flow control
mechanism. The first flow-controlled construct in Program 3-38 is generated if the ‘flow_control’ keyword
contains a single argument, i.e. the filling factor. The second flow-controlled construct in Program 3-39 is
generated if the ‘flow_control’ keyword contains two arguments, i.e. the filling factor1 and filling factor2.

Programmers must be aware that the two high-level flow-controlled parallel while and indexed parallel CAP
constructs (Program 3-40) require additional communications. Performance may suffer if the pipeline empties,
either due to the additional communication cost or due to too small filling factors.

Although the two flow-controlled parallel while and indexed parallel CAP constructs prevent a program from
crashing, the high-level flow-control mechanism has several disadvantages:
• It requires additional communication that may slightly reduce performances.
• Experience has shown that it is quite difficult to adjust the filling factors so as to make the most loaded PC

the bottleneck thus giving the best performance.
• Moreover, there are cases where the filling factors must be adapted to the split-merge construct input token

making it even more difficult to set these factors. For example in the case of the pipelined parallel slice
translation operation (Section 6.3.2), the filling factor giving the number of prefetched slices should depend
on the split-merge construct input token, i.e. the image slice size and the zoom factor.

• The high-level flow-control mechanism does not solve the problem when running conditions change during
the execution of the split-merge construct, i.e. when processor, memory, disk or network utilization change.
For example this happens when several operations are concurrently executed on a same multi-PC
environment or in other words when the computing resources must be shared among several users.

• Program 3-41 shows a CAP program where the high-level flow-control mechanism might fail. This is due to
the fact that an inner split-merge CAP construct (lines 7-9) is called within an outer split-merge CAP
construct (23-27). The filling factors of the inner parallel while CAP construct are computed using Equation
3-16 which assumes that the construct is executed one at a time. In Program 3-41 several parallel while
instances, i.e. 4 in our program (line 23), are concurrently running, therefore too many tokens might
accumulate in the pipeline. and memory might overflow. Although the programmer may prevent the
application from crashing by adapting the filling factors of the inner split-merge construct (line 7) according
to the filling factor of the outer split-merge construct (line 23), the program does not behave as desired.
Supposing that ProcessBT::ExtractAndVisualizeSlice operation is an image slice extraction and visualization
operation (Section 6.3.2) and ProcessAT::VisualizeConsecutiveSlices operation is an image slice translation
operation extracting consecutive image slices using the ProcessBT::ExtractAndVisualizeSlice operation.
Program 3-41 starts extracting the second, the third and even the fourth image slice while the first requested
image slice is being extracted, requiring lots of memory and an important seek-time overhead. Instead of
maximum 20, up to 80 tokens may be in circulation. Therefore due to the imbrication of two levels of
flow-control mechanisms, Program 3-41 gives poor performance. The desired execution schedule, i.e. the
execution schedule giving the best performance, would start extracting the second image slice as soon as the
first image slice is about to be fully extracted so as to maintain the difference between the number of split
tokens and the number of merged tokens (line 9) constant (2 x 10 tokens in Program 3-41), i.e. to maintain the
pipeline filled or the most loaded PC 100% active. Unfortunately, such a schedule is not specifiable with the
present high-level flow-control mechanism. However with standard inter-thread synchronization
mechanisms, i.e. semaphores, the above optimal schedule is specifiable (for the sake of simplicity, the
solution is not shown in this dissertation).

Program 3-40. Automatic generation of the 2 flow-controlled split-merge constructs using the CAP

preprocessor

1 operation ProcessAT::Operation1
2 in TokenAT* InputP
3 out TokenDT* OutputP
4 {
5 ThreadA.{ }
6 >->

7 flow_control(20) // or flow_control(2, 10)
8 indexed

9 (int Index = 0; Index < 1000; Index++)
10 parallel

11 (Split, Merge, ThreadB, remote TokenDT Out1(thisTokenP))
12 (
13 ProcessB.Operation1
14); // end indexed parallel
15 } // end operation ProcessAT::Operation1
3-49

• Equations 3-2 and 3-16 assume that the execution model of a sequential operation follows the rule “first
token in first token out”. However there are cases where a sequential operation may mix up the output token
order using the capDoNotCallSuccessor and the capCallSuccessor CAP-library functions (Section 3.7.1),
e.g. the ExtentServerT::ReadExtent sequential operation (Program 5-18) taken from the library of reusable

parallel file system components of PS2. In these cases, although the high-level flow-control filling factors are
well sized, the pipeline may empty, degrading the performance. Remember that with the second high-level
flow-controlled split-merge construct (Program 3-39), a new bunch of 10 tokens is generated (line 17) only
when all the 10 tokens belonging to a same bunch are merged. If the pipeline (line 21) mixes up the token
order and 9 tokens of each bunch are merged, i.e. a total of 2 x 9 = 18 tokens (line 8: 2 bunches of tokens),
then, while the last 2 tokens are being merged, the pipeline is empty.

For these above reasons, the high-level flow-control mechanism is at the present time not completely satisfactory.
Further investigation and experiences with the CAP tool will address these issues.

3.11 Issue of load balancing in a pipelined parallel execution

Figure 3-30 shows a pipelined parallel execution on a multi-PC environment. The master PC divides a large task
into many small jobs which are executed in parallel on M different pipelines of execution. In this example, the
pipeline of execution is composed of N different PC’s each performing a particular stage. After a job has
performed the N stages of a pipeline, the result is sent back to the master PC where all the job results are merged
into the result buffer. When all the jobs making up the task are completed, the result of the execution of the task is
sent back to the client PC who requested the execution of the task. The master PC is responsible for distributing
the jobs making up a task and for balancing the load amongst the M pipelines.

The graphical representation (DAG) of the pipelined parallel schedule depicted in Figure 3-30 is shown in Figure
3-31. The input of the parallel ParallelProcessingServerT::PerformTask operation is a task request, i.e. a TaskT
token. Using a split-merge CAP construct, this task request is divided into many small jobs by the Master thread
using the SplitTaskIntoJobs split routine. Then, each job is routed through one of the M pipelines. At the end of
the M pipelines, the job results, i.e. the JobResultT tokens, are merged into a TaskResultT token using the
MergeJobResults merge routine. When all the job results are merged, the result of the execution of the task, i.e.
the TaskResultT token, is passed to the next operation.

Program 3-41. CAP program where the high-level flow-controlled parallel while and indexed parallel

constructs fail to give good performances

1 operation ProcessBT::ExtractAndVisualizeSlice
2 in SliceExtractionRequestT* InputP
3 out VoidTokenT* OutputP
4 {
5 ThreadC.{ }
6 >->

7 flow_control(2, 10)
8 parallel while
9 (Split2, Merge2, ThreadC, local TokenDT Out1(thisTokenP))
10 (
11 ThreadD.ExtractSlice
12 >->

13 ThreadE.VisualizeSlice
14); // end parallel while
15 } // end operation ProcessBT::ExtractAndVisualizeSlice
16
17 operation ProcessAT::VisualizeConsecutiveSlices
18 in ConsecutiveSliceExtractionRequestT* InputP
19 out VoidTokenT* OutputP
20 {
21 ThreadA.{ }
22 >->

23 flow_control(4)
24 indexed

25 (int Index = 0; Index < 1000; Index++)
26 parallel

27 (Split1, Merge1, ThreadB, remote TokenDT Out1(thisTokenP))
28 (
29 ProcessB.ExtractAndVisualizeSlice
30); // end indexed parallel
31 } // end operation ProcessAT::VisualizeConsecutiveSlices
3-50

A pipelined parallel execution such as the one depicted in the schedule of Figure 3-31 raises two orthogonal
problems, i.e. flow-control and load-balancing. The mechanism of flow-control, presented in Section 3.10,
attempts to regulate the flow of tokens through a single pipeline so that the split token rate is both high enough for
maintaining the most loaded PC 100% of the time active and low enough for preventing tokens from
accumulating in front of the most loaded PC and causing problems to the application.

A mechanism of load-balancing balances the load among the parallel pipelines (pipeline1 to pipelineM in Figure

3-30 or 3-31), i.e. prevents the most loaded thread1 in each of the parallel pipelines from being more loaded than
the most loaded threads in another pipelines. A pipelined parallel execution on M pipelines each made of N
threads is well balanced if Equation 3-17 is verified.

Figure 3-30. Execution in a pipelined parallel manner on a multi-PC environment

Figure 3-31. Graphical representation of a pipelined parallel execution. The horizontal arrow represents

the flow-control mechanism and the vertical arrow represents the load-balancing mechanism.

1. The load of a thread is defined as the percentage of elapsed time that this thread is executing a pipe stage.

task

result of
the

execution
of the task

job job job

job job job

results of the execution of
the jobs in a pipeline manner

results of the execution of
the jobs in a pipeline manner

MASTER

SLAVE1-1

pipeline1

pipelineM

SLAVE1-2 SLAVE1-N

SLAVEM-1 SLAVEM-2 SLAVEM-N

the master
divides an

important task
into small jobs

which are
executed in a

pipelined
parallel manner
on an array of

PC’s

ParallelProcessingServerT::PerformTask
TaskT

TaskT

S
p
litT

ask
In
to
Jo
b
s

M
erg

eJo
b
R
esu

lts

Master

TaskResultTJobT

JobT
Slave1-1

SlaveT::PerformJob2SlaveT::PerformJob1

Job
ResultT

Slave1-2

SlaveM-1

SlaveT::PerformJob2SlaveT::PerformJob1

SlaveM-2

TaskResultT

Master

SlaveT::PerformJob3

Slave1-N

SlaveT::PerformJob3

SlaveM-N

JobT

flow-control mechanism

load-balancing mechanism

JobT

JobT

pipeline1

pipelineM
3-51

(3-17)

Such a mechanism is necessary when the utilization of the computing resources, e.g. processors, memory, disks,
network, etc, is unequal between the PC’s on which the parallel pipelines execute, i.e. when:
• the multi-PC environment is shared among several users, e.g. on a network of multi-user workstations.
• the multi-PC environment is made of different machines, e.g. Pentium Pro 200 MHz PC’s, Pentium II

333MHz PC’s, Pentium 90 MHz PC’s, etc.
• the execution time of a pipe stage depends on the input token data, e.g. the number of computations in a

Mandelbrot computation depends on the current value of the free variable.

Program 3-42 shows a CAP program where the master PC divides an important task into small jobs and statically
distributes them in a round-robin fashion (line 8) amongst the worker slaves. The GetJob routine (lines 4-12)
splits the input TaskT task into JobT jobs and computes the index of the slave (line 8) that will perform this job
(line 29). The MergeJobResult routine (lines 14-17) merges the results of the jobs into a single TaskResultT token.
The parallel ParallelProcessingServerT::PerformTask operation consist of iteratively getting a job, performing
the job by a slave and merging its result into the output TaskResultT token using the high-level flow-controlled
parallel while CAP construct (lines 25-30). Note that the selection of the slave (line 29) is done statically without
balancing the loads of the slaves.

The principle of a load-balancing mechanism consist of having a distinct high-level flow-controlled split-merge
construct for each of the parallel pipelines. As soon as a slave completes a job, a new job is redirected to him. In
that way the load is automatically balanced, since jobs are dynamically redirected to slaves completing their
computation.

Program 3-43 shows the CAP program equivalent to Program 3-42 with a load-balancing mechanism. The first
indexed parallel CAP construct (lines 10-13) generates NUMBER_OF_SLAVES parallel flows of execution
consisting of a high-level flow-controlled parallel while CAP construct (line 15-17) distributing jobs to its slave.
As soon as a slave completes a job, a new job is redirected to him thanks to the flow-controlled parallel while
CAP construct (lines 15-18). The filling factor (line 15) computed using Equation 3-2 ensures that slaves are
100% of the time active and computations overlap communications.

To summarize, at the present time CAP does not provide any automatic tool for balancing the load between
worker threads, i.e. there is no specific CAP construct. However, the design pattern shown in Program 3-43
provides application programmers with an excellent load-balancing mechanism.

Program 3-42. Example of a CAP program where the jobs are statically distributed in round-robin manner

among the slaves

N

Max

i 1=

load of thread1-i()

N

Max

i 1=

load of thread2- i() …

N

Max

i 1=

load of thread
M- i()= = =

1 const int NUMBER_OF_SLAVES = 5;
2 const int FILLING_FACTOR_PER_SLAVE = 3;
3
4 bool GetJob(TaskT* inputP, JobT* prevSubtokenP, JobT* &subtokenP)
5 {
6 ... // Any C/C++ statements
7 subtokenP = new JobT(...);
8 subtokenP->SlaveIndex = prevSubtokenP ? (prevSubtokenP->SlaveIndex + 1) % NUMBER_OF_SLAVES : 0;
9 ... // Any C/C++ statements
10
11 return (IsNotLastJob);
12 } // end GetJob
13
14 void MergeJobResult(TaskResultT* outputP, JobResultT* subtokenP)
15 {
16 // Any C/C++ statements
17 } // end MergeJobResult
18
19 operation ParallelProcessingServerT::PerformTask
20 in TaskT* InputP
21 out TaskResultT* OutputP
22 {
23 Master.{ }
24 >->

25 flow_control(NUMBER_OF_SLAVES * FILLING_FACTOR_PER_SLAVE)
26 parallel while

27 (GetJob, MergeJobResult, Master, local TaskResultT Out(thisTokenP))
28 (
29 Slave[thisTokenP->SlaveIndex].PerformJob
30); // end parallel while
31 } // end operation ParallelProcessingServerT::PerformTask
3-52

3.12 Summary

This chapter presents the CAP computer-aided parallelization tool to simplify the creation of pipelined parallel
distributed memory applications. Application programmers create separately the serial program parts and express
the parallel behaviour of the program with CAP constructs. Thanks to the automatic compilation of parallel
applications, application programmers do not need to explicitly program the protocols to exchange data between
parallel threads and to ensure their synchronizations. The 8 predefined parallel CAP structures ensure that the
resulting parallel program executes as an acyclic directed graph and is therefore deadlock free. Furthermore, due
to its macro-dataflow nature, it generates highly pipelined applications where communication operations run in
parallel with processing operations.

A CAP program can be easily modified by changing the schedule of operations or by building hierarchical CAP
structures. CAP facilitates the maintenance of parallel programs by enforcing a clean separation between the
serial and the parallel program parts. Moreover, thanks to a configuration text file, generated CAP applications
can run on different hardware configurations without recompilation.

The CAP environment has been ported to a number of operating systems, including Microsoft Windows NT, Sun
Solaris and Digital OSF Unix. Its underlying MPS communication library is portable but requires a socket
interface for providing asynchronous SendToken and ReceiveToken routines.

The CAP approach works at a higher abstraction level than the commonly used parallel programming systems
based on message passing (for example MPI [MPI94] and MPI-2 [MPI97]). CAP enables programmers to express
explicitly the desired high-level parallel constructs. Due to the clean separation between parallel construct
specification and the remaining sequential program parts, CAP programs are easier to debug and to maintain than
programs which mix sequential instructions and message-passing function calls. Wilson et al. [Wilson96] provide
a thorough overview of existing approaches using object oriented programming for supporting parallel program
development.

The CAP computer-aided parallelization tool has been conceived by a colleague Dr. Benoit Gennart. However, in
the context of this thesis, I have contributed to CAP by developing its portable runtime system incorporating
among others a CAP-oriented message-passing system (MPS). Throughout the development of the parallel

storage and processing server (PS2), I tested the functionality of the CAP preprocessor and of the parallel CAP
constructs. Based on my experience and the problems that I have encountered, I suggested new parallel constructs
and new design patterns, i.e. combinations of parallel CAP constructs. These include solutions for the
flow-control problem and a solution for incorporating an operation which has not an appropriate interface within
the schedule of a parallel operation.

Program 3-43. Example of a CAP program where the jobs are dynamically distributed amongst the slaves

according to their loads, i.e. the master balances the load amongst the slaves

1 const int NUMBER_OF_SLAVES = 5;
2 const int FILLING_FACTOR_PER_SLAVE = 3;
3
4 operation ParallelProcessingServerT::PerformTask
5 in TaskT* InputP
6 out TaskResultT* OutputP
7 {
8 Master.{ }
9 >->

10 indexed

11 (int SlaveIndex = 0; SlaveIndex < NUMBER_OF_SLAVES; SlaveIndex++)
12 parallel

13 (DuplicateTask, MergeJobResult1, Master, local TaskResultT Out1(thisTokenP))
14 (
15 flow_control(FILLING_FACTOR_PER_SLAVE)
16 parallel while

17 (GetJob, MergeJobResult2, Master, local TaskResultT Out2(thisTokenP))
18 (
19 Slave[SlaveIndex].PerformJob
20) // end parallel while
21); // end indexed parallel
22 } // end operation ParallelProcessingServerT::PerformTask
3-53

3-54

Chapter 4

Runtime System for CAP and PS2

4.1 Introduction

This chapter is divided into two separate parts. The first part (Section 4.2) is devoted to analysing the performance
of a multi-SCSI disk array hooked onto a same PC by several 10 MBytes/s SCSI-2 strings. The results of this

section will enable performances of PS2 applications to be predicted, in terms of I/O throughput and to reveal
possible bottlenecks when accessing in parallel numerous disks. The second part of this chapter (Sections 4.3 to
4.5) is devoted to the token-oriented Message-Passing System MPS that implements the SendToken and
ReceiveToken functions enabling distributed CAP applications to asynchronously transmit tokens from one
address space to another through TCP/IP connections. Section 4.3 first introduces asynchronous socket
programming using the Microsoft Windows Sockets 2.0 API. Thanks to this asynchronous network interface,
token transmissions over TCP/IP connections occur entirely within pre-emptive contexts, i.e. asynchronously by
calling completion routines, thus enabling a single thread to handle several TCP/IP connections simultaneously.
Thanks to this crucial feature, CAP applications overlap communications with computations. After having
introduced socket programming, Section 4.4 gives an overview of the token-oriented Message-Passing System
and addresses the issue of serialization of tokens. Finally, Section 4.5 evaluates the performances of MPS for two
types of communication patterns found in real CAP programs: an unpipelined token transfer (Section 4.5.3) and a
pipelined token transfer (Section 4.5.4).

4.2 Performance evaluation of a multi-SCSI disk array

This section analyses the performance of a multi-SCSI disk array hooked onto the same PC by several 10 MByte/s
SCSI-2 buses. The goal of these experiments is twofold. One is to measure the I/O raw performance in terms of
throughput and latency and to analyse the scalability when increasing the number of disks per SCSI string and the

number of SCSI strings. Since the low-level parallel file system components (PS2) (Section 5.10) are based on top
of the native Windows NT file system, the second goal of this section is to evaluate the overhead of the Windows
NT file system in terms of processor utilization and to examine whether the Windows NT operating system
introduces a bottleneck when accessing many disks in parallel.

For the experiments, we used a Mono-Pentium Pro 200 MHz PC with 5 Adaptec 2940 SCSI-2 PCI adapters and
an array of 15 IBM DPES-31080 disk drives equally distributed amongst the 5 SCSI-2 buses, i.e. 3 disks per
SCSI-2 bus (Figure 4-1). The PC runs the Microsoft Windows NT 4.0 operating system. A short specification of
the IBM DPES-31080 is given in Figure 4-1.

Figure 4-1. An array of 15 disks hooked on a Pentium Pro 200MHz PC with 5 SCSI-2 buses

5 x 10 MBytes/s
SCSI-2 buses

15 x 1 GByte IBM
DPES-31080 disks

Pentium Pro 200MHz PC
with 5 Adaptec 2960 PCI

SCSI-2 adapters

IBM DPES-31080 disk drive specification:

Rotational speed: 5400 RPM:

Average seek time (typical read): 10.5 ms

Data heads: 4:

Formatted capacity: 1054 MBytes

512 KBytes segmented buffer with write cache and read
lookahead

Disks: 2

from http://www1.ibmlink.ibm.com/HTML/SPEC/goem1055.html

Track to track seek time: 2.3 ms

Average number of sectors per track: 95

Head switching time: 0.7 ms

Sector size: 512 Bytes
4-55

Disks exhibit a linear behaviour, i.e. the time to read or write randomly-distributed blocks depends linearly on the
I/O request size [Hennessy96, Chapter 6 and Patterson98, Chapter 8]. Therefore two parameters, i.e. latency (or
response time) and throughput, are sufficient to model the linear behaviour of a disk or an array of disks using
Equation 4-1.

(4-1)

To access data, the disk must first position its head over the proper track. This operation is called a seek, and the
time to move the head to the desired track is called the seek time. Once the head has reached the correct track, we
must wait for the desired sector to rotate under the read/write head. This time is called the rotational delay. Then,
the average disk response time (Equation 4-1), is the sum of the seek time and the rotational delay (Equation 4-2).
From the vendor specification (Figure 4-1), we can calculate the IBM DPES-31080 latency where the average
rotational delay is half of the time of one rotation.

(4-2)

We calculate the disk data transfer rate based on a complete disk scan policy as follows [Chen95, Chapter2]
(Equation 4-3): once the head reaches and retrieves the first block, it retrieves all the adjacent data blocks in the
same track. If a whole track has been retrieved, the head switches to the next platter but remains in the same
cylinder. If the whole cylinder has been retrieved, it switches to the adjacent cylinder.

(4-3)

Given the vendor specification (Figure 4-1), the IBM DPES-31080 throughput is given by Equation 4-4.

(4-4)

To evaluate latency and throughput of a given disk or disk array, we measure the delay when accessing in parallel
randomly-distributed blocks distributed over K disks for increasing block sizes and we linearize the delay using a
least-square fit. The slope of the linearized curve gives the throughput. The intersection with the vertical axis
gives a measure of the latency.

Figure 4-2 reports the measured delay when reading in parallel 3 disks using the Windows NT native file system,
i.e. NTFS. Up to a request size of 64 KBytes, the disk read time increases linearly. This is due to a historic limit of
the x86 processors whose memory segments have a maximum size of 64 KBytes.

Figure 4-2. A disk array can be described using two numbers: latency and throughput

Disk Read Time Response Time Transfer Time+ Latency
Request Size

Throughput
-------------------------------+= =

Latency Average Seek Time Average Rotational Delay+ 10.5 ms
60 s

minute

minute

5400 rot
--------------------× 0.5 rot×+ 16.1 ms= = =

Throughput
NHeads NSectorsPerTrack× NBytesPerSector×

NHeads RotationTime× NHeads HeadSwitchTime× TrackToTrackSeekTime+ +
--=

Throughput
4 95× 512×

4 11.11 ms 4 0.7 ms× 2.3 ms+ +×

-- 3.75 MBytes/s= =

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Disk request size [KBytes]

A
cc

es
s

tim
e

fo
r

a
se

to
f

3
di

sk
s

[m
s]

3 disks accessed in parallel with a filling
factor of 5 disk requests per disk

Model for disk access time

1 10 20 30 40 50 60 70 80 90

DiskAccessTime = 5.07ms +
DiskRequestSize

8.81 MBytes/s
4-56

To measure the performance of the NT file system when accessing in parallel K files distributed over K disks, two
types of experiments are conducted. The first experiment consists in accessing in parallel K disks using a
low-level SCSI-2 block interface without the overhead of the NT file system. The second experiment consists of
accessing the same K disks in parallel but through the NT file system. Comparing the results of these two tests
enables the overhead induced by the NT file system to be evaluated.

For both experiments, asynchronous calls are used thus enabling a single thread to read or write in parallel from
multiple disks, i.e. to issue several I/O requests to different disks. Moreover, to enhance performance, i.e. to
benefit from I/O pipelining, several I/O requests are simultaneously issued to a same disk. The filling factor
parameter corresponds to the number of outstanding I/O requests for a specific disk (Figure 4-2).

4.2.1 Performance measurement using a low-level SCSI-2 block

interface

Figure 4-3 shows the measured throughputs and latencies when accessing (reading) a disk array of 1 to 15 disks
hooked onto the same multi-SCSI PC using a low-level SCSI-2 block interface. Figure 4-3 reports a single disk
throughput of 3.5 MBytes/s and a single disk latency of 13.77 ms confirming the vendor specification (Equations
4-2 and 4-4). With a single disk and a block size of 50 KBytes, an effective I/O throughput of 1.76 MBytes/s is
reached. Due to the contention on a single SCSI-2 bus, the throughput is not linearly scalable up to 3 disks. This
effect is particularly visible with a filling factor of a single I/O request. With a filling factor of 2 or more requests
per disk, the throughput, thanks to I/O pipelining, can be increased by a factor of 1.25. Throughputs scale linearly
when increasing the number of SCSI strings. With 5 SCSI strings, i.e. 15 disks, throughput increases by a factor of
5. With a 15 disk configuration and a block size of 50 KBytes, an effective I/O throughput of 23.51 MBytes/s is
reached, giving a speedup of 13.35 and an efficiency of 88.98%.

According to the PS2 methodology, disk accesses are overlapped with computations. Measuring the processor
activity while accessing disks enables us to evaluate how well a PC can concurrently handle I/O requests and
computation tasks. Figure 4-4 reports the measured processor utilization (mainly system and interrupt activities
executed in a privileged processor mode) when accessing a disk array of 1 to 15 disks hooked onto the same
multi-SCSI PC using a low-level SCSI-2 block interface. As expected, disk accesses do not consume much
computing power (less than 14% with 15 disks). The SCSI-2 protocol is handled by the 5 PCI cards which
transfer data to or from the computer’s main memory using a DMA mechanism.

4.2.2 Performance measurement using the native NT file system

This second experiment consists of accessing in parallel K files distributed on K disks using the native NT file
system with its cache disabled.

Figure 4-3. Measured disk array throughputs and latencies when accessing in parallel blocks randomly

distributed over K disks hooked onto the same multi-SCSI PC using a low-level SCSI-2 block interface

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of disks (IBM-DPES 31080)

L
at

en
cy

[m
s]

Filling factor = 1 disk request

Filling factor = 2 disk requests

Filling factor = 5 disk requests

Filling factor = 10 disk requests

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of disks (IBM-DPES 31080)

T
hr

ou
gh

pu
t[

M
B

yt
es

/s
]

Filling factor = 10 disk requests

Filling factor = 5 disk requests

Filling factor = 2 disk requests

Filling factor = 1 disk request

SCSI string configurations:

1..3 disks:1 string; 4..6 disks: 2 strings;
7..9 disks: 3 strings; and 10..12 disks: 4 strings
4-57

Figure 4-5 shows the measured throughputs and latencies when accessing (reading) a disk array of 1 to 15 disks
hooked onto the same multi-SCSI PC using the NT file system. By comparing Figures 4-5 and 4-3, we can
conclude that the NT file system does not affect I/O performance. The NT file system is perfectly scalable up to
15 disks.

Moreover, the NT file system does not consume much processing power. Figure 4-6 reports the measured
processor utilization (mainly system and interrupt activities executed in a privileged processor mode) when
accessing a disk array of 1 to 15 disks hooked onto the same multi-SCSI PC using the NT file system. For a
request size of 50 KBytes, less than 15% of the processing power is used for retrieving in parallel 23.51 MBytes/s
from 15 NT files stored on 15 different disks.

4.3 Microsoft Windows Sockets 2.0 application programming

interface

The sockets abstraction was first introduced in 1983 in the 4.2 Berkeley Software Distribution (BSD) Unix
[Wright95, Chapter 15] to provide a generic and uniform application programming interface (API) to interprocess
and network communication protocols such as the Internet protocols [Postel94], e.g. the User Datagram Protocol
(UDP) [Postel80], the Transfer Control Protocol (TCP) [Postel81b] and the Internet Protocol (IP) [Postel81a].
Since then, all Unix versions, e.g. Solaris from Sun Microsystems, have adopted the sockets abstraction as their
standard API for network computing. Besides the most popular Berkeley sockets API, there is the Transport

Figure 4-4. Measured processor utilization when accessing in parallel blocks randomly distributed over K

disks hooked onto a same multi-SCSI PC using a low-level SCSI-2 block interface

Figure 4-5. Measured disk array throughputs and latencies when accessing in parallel blocks randomly

distributed over k disks hooked onto a same multi-SCSI PC using the NT file system

0

2

4

6

8

10

12

14

16

18

20

Request size [KBytes]

Pr
oc

es
so

r
ut

ili
za

tio
n

[%
]

15 disks accessed in parallel

12 disks accessed in parallel

9 disks accessed in parallel

6 disks accessed in parallel

3 disks accessed in parallel

2 disks accessed in parallel

1 disk accessed in parallel

1 5 10 15 20 25 30 35 40 45 50 55 60 65

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of disks (IBM-DPES 31080)

L
at

en
cy

[m
s]

Filling factor = 1 disk request

Filling factor = 2 disk requests

Filling factor = 5 disk requests

Filling factor = 10 disk requests

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of disks (IBM-DPES 31080)

T
hr

ou
gh

pu
t[

M
B

yt
es

/s
]

Filling factor = 10 disk requests

Filling factor = 5 disk requests

Filling factor = 2 disk requests

Filling factor = 1 disk request
4-58

Layer Interface (TLI) originally developed by AT&T and sometimes called X/Open Transport Interface (XTI)
recognizing the work done by X/Open, an international group of computer vendors that produce their own set of
standards. All the programming details for both sockets and TLI are available in [Stevens90].

Microsoft has also adopted and adapted the sockets paradigm as a standard on its various operating systems, i.e.
Windows 3.11, Windows 95/98 and Windows NT. The first Windows Sockets 1.1 application program interface
released is centred around the UDP/IP and TCP/IP protocol stacks. With the emerging networking capabilities
such as multimedia communications, Microsoft released in 1996 the Windows Sockets 2 API now available on
Windows 95/98 and Windows NT 4.0. One of the primary goals of the Windows Sockets 2 API has been to
provide a protocol-independent interface fully capable of supporting any number of underlying transport
protocols. Comparing the Windows Sockets 1.1 API, the Windows Sockets 2 API extends functionality in a
number of areas:
• Access to protocols other than UDP/IP and TCP/IP – The Windows Sockets 2 API enables the application to

use the familiar socket interface to achieve simultaneous access to a number of installed transport protocols,
e.g. DECNet or OSI TP4.

• Overlapped I/O with scatter/gather – The Windows Sockets 2 API incorporates scatter/gather capabilities and
the overlapped paradigm for socket I/O, according to the model established in the Win32 environment.

• Protocol-independent name resolution facilities – The Windows Socket 2 API includes a standardized set of
functions for querying and working with the myriad of name resolution domains that exist today, e.g. the
Domain Name System (DNS) [Mockapetris87a, Mockapetris87b], SAP, NIS and the OSI directory service
X.500 [Weider92].

• Quality of service – The Windows Sockets 2 API establishes conventions that applications use to negotiate
required service levels for parameters such as bandwidth and latency.

To describe some important mechanisms of the message passing system, the remainder of this section presents the
Windows Sockets 2 application programming interface and its advanced features used for improving
performance. For the sake of simplicity, the interfaces have been simplified and only essential parameters are
shown.

4.3.1 Definition of a socket

The term socket first appeared in the original TCP specification [Postel81b] referring to the combination of an IP
address and a TCP port number. Later it became used as the name of the Berkeley-derived programming interface.

A socket is a communication endpoint, i.e. an object through which a Windows Sockets application sends or
receives packets of data across a network. A socket has a type and is associated with a running process, and it may
have a name. Sockets exchange data with other communication endpoints, e.g. sockets or TLI endpoints, in the
same “communication domain” which uses for example the Internet protocol suite.

Figure 4-6. Measured processor utilization when accessing in parallel blocks randomly distributed over K

disks hooked onto a same multi-SCSI PC using the NT file system

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Request size [KBytes]

Pr
oc

es
so

r
ut

ili
za

tio
n

[%
]

15 disks accessed in parallel

12 disks accessed in parallel

9 disks accessed in parallel

6 disks accessed in parallel

3 disks accessed in parallel

2 disks accessed in parallel

1 disk accessed in parallel

1 5 10 15 20 25 30 35 40 45 50 55 60 65
4-59

In the case of the Internet address family, two types of sockets are available:

• Stream sockets providing sequenced1, reliable, flow-controlled, two-way, connection-based data flows
without record boundaries, i.e. byte streams. Stream sockets use the underlying TCP/IP protocol stack and
may have a name composed of a 32-bit IP address and a 16-bit TCP port number.

• Datagram sockets supporting record-oriented data flows, i.e. datagrams, which are connectionless, unreliable
buffers of a fixed (typically 8 KBytes) maximum length. Datagrams are not guaranteed to be delivered and

may not be sequenced as sent or unduplicated2. Datagram sockets use the UDP/IP protocol stack and may
have a name composed of a 32-bit IP address and a 16-bit UDP port number.

Both kinds of sockets are bi-directional: they are data flows that can be communicated in both directions
simultaneously, i.e. full-duplex.

To implement a portable message passing system for transmitting CAP tokens (Section 3.4) from one address
space to another, two different possibilities exist: either using datagram sockets or stream sockets. Since CAP
needs a reliable means of communication, stream sockets were preferred thus avoiding designing a mechanism
that provides sequenced, reliable, unduplicated data flows on top of unreliable datagram sockets. The remainder
of this section assumes that sockets are always stream sockets.

4.3.2 Parameters of a socket

Three parameters enable programmers to significantly modify the sending and receiving behaviour of stream
sockets affecting the TCP/IP performance:
• SO_SNDBUF: Specify the size in Bytes of the transmit buffer.
• SO_RCVBUF: Specify the size in Bytes of the receive buffer. Indirectly this parameter changes the window

size of the TCP sliding window protocol [Stevens96, Section 20.4].
• TCP_NODELAY: This option enables or disables the Nagle algorithm [Nagle84] [Stevens96, Section 19.4]

which reduces the number of small TCP/IP packets, called tinygrams, congestioning wide area networks
(WAN). This algorithm says that a TCP connection can only have one outstanding small TCP segment that
has not yet been acknowledge. No additional small segments can be sent until the acknowledgment is
received. Instead, small amounts of data are collected by TCP and sent in a single segment when the
acknowledgment arrives. The beauty of this algorithm is that it is self-clocking: the faster ACKs come back,
the faster the data is sent. But on a slow WAN, where it is desired to reduce the number of tinygrams, fewer
segments are sent. However there are situations where the Nagle algorithm needs to be turned off. The classic
example is the X Window System server: small messages (mouse movements) must be delivered without
delay to provide real-time feedback for interactive users doing certain operations.

[Mogul93] shows some results for file transfer between two workstations on an Ethernet, with varying sizes for
the transmit buffer and receive buffer. For a one-way flow of data such as a file transfer, it is the transmit buffer on
the sending side and the size of the receive buffer on the receiving side that matters. The common default of 4
KBytes for both is not optimal for an Ethernet. An approximate 40% increase in throughput is seen by just
increasing both buffers to 16 KBytes. Similar results are shown in [Papadopoulos93].

4.3.3 Asynchronous gather send and asynchronous scatter receive

The scatter/gather send and receive follow the overlapped paradigm established in the Win32 environment and
enable data to be asynchronously sent or received through connected stream sockets. Thanks to these two new
functions not found in the first Windows Socket 1.1 API, a single thread may simultaneously execute several
overlapped I/O requests thus alleviating the task of writing networking applications and improving performance.
This feature is extensively used in the token-oriented message-passing system for handling several connections
simultaneously.

Program 4-1 shows the two overlapped gather/scatter send and receive routines.

The first argument (lines 11 and 18) is a connected stream socket through which data is sent/received. The second
argument (line 12 and 19) is an array of WSABUF buffers enabling to send/receive data from/into several
disconnected buffers, i.e. scatter/gather or vectored I/O. The third argument (lines 13 and 20) gives the number of

1. Sequenced means that packets are delivered in the order sent.
2. Unduplicated means that you get a particular packet only once.
4-60

WSABUF buffers in the BufferP array. The thread performing one of the two operations is not blocked, the I/O
operation is started and returns immediately. It overlaps with the thread computation. Once the I/O completes and
the thread who initiated the I/O operation is in an alertable wait state, the completion routine (lines 15 and 22) is
called with the provided argument (lines 8, 14 and 21) and the number of bytes transferred (line 7). In the case of
a WSASend, the I/O completion occurs only when all the data that are in the WSABUF buffers are sent or the
connection is closed. In the case of a WSARecv, the I/O completion occurs when the WSABUF buffers are filled,
the connection is closed or internally buffered data is exhausted. Regardless of whether or not the incoming data
fills all the WSABUF buffers, the completion indication occurs.

As explained in Section 4.4.1, the scatter and gather interfaces (Figure 4-7) enable the number of memory to
memory copies to be reduced when packing and unpacking CAP tokens.

Contrary to the UDP protocol (datagram sockets), the TCP protocol (stream sockets) has no notion of packets
with boundaries. A TCP/IP connection is a two-way reliable flow-controlled stream of bytes. The receiver has no
information about the number of bytes that the sender is transmitting and how its WSABUF buffers are scattered,
i.e. the number of WSABUF buffers and their sizes. Figure 4-8 depicts a TCP/IP transmission example where the
sender with a single call to the WSASend routine transmits a whole group of scattered WSABUF buffers, while the
receiver has to implement a mechanism that repeatedly calls the WSARecv routine in order to fill the destination
scattered WSABUF buffers with the incoming data. Remember that a read completion may occur regardless of
whether or not the incoming data fills all the destination WSABUF buffers.

To transfer CAP tokens through a TCP/IP connection, a 3-step mechanism indicating to the receiver the number
of scattered buffers and their sizes has been implemented (Figure 4-9). For the remainder of this section, the term
packet (or socket packet) is used to refer to the array of WSABUF buffers sent with a single WSASend call and
received using the appropriate 3-step mechanism that repeatedly calls the WSARecv routine.

Thanks to the asynchronous WSASend and WSARecv routines, data transmissions occur entirely within
pre-emptive contexts, i.e. by calling completion routines (Programs 4-3 and 4-4), thus enabling a single thread to
handle several connections simultaneously.

4.4 The token-oriented message-passing system

This section describes the token-oriented message-passing system named MPS developed within the context of
the CAP computer aided parallelization tool (Chapter 3). It must provide the CAP’s runtime system with:
• A portable communication environment. The problem of portability has been addressed by isolating

platform-dependent code within a few number of files. A high-level platform-independent stream socket
kernel has been devised providing simple robust efficient functions for creating passive and active sockets

Program 4-1. Overlapped gather send and overlapped scatter receive (simplified interface)

Figure 4-7. Gathering and scattering data

1 struct WSABUF {
2 int Len;
3 char* BufP;
4 }; // end struct WSABUF
5
6
7 typedef void (*CompletionRoutineT) (int bTransferred,
8 void* argP);
9
10

11 void WSASend(SOCKET socket,
12 WSABUF* BufferP,
13 int BufferCount,
14 void* argP,
15 CompletionRoutineT writeCompletion);
16
17
18 void WSARecv(SOCKET socket,
19 WSABUF* BufferP,
20 int BufferCount,
21 void* argP,
22 CompletionRoutineT readCompletion);

10

33

25

17

1

2

3

4

1 2 3 4

4 3 2 1

BufferCount = 4

WSARecv()

WSASend()

10 Bytes 25 Bytes 17 Bytes 33 Bytes
4-61

(see TCP passive and active open in [Postel81b] and the sockets terminology in [Microsoft96]),
asynchronously sending C/C++ structures to active sockets and asynchronously receiving C/C++ structures
from active sockets. The interest and the efficiency of the socket kernel resides in the fact that all network
events, i.e. new incoming connection, lost connection, connection established, data received, data sent, etc.,
are asynchronously handled by a single thread, the message-passing system thread, called the Mps thread. All
low-level tedious error-prone platform-dependent communication mechanisms such as the packet transfer
mechanism (Program 4-9), the C/C++ structure serialization (Section 4.4.1), the coalescence of C/C++
structures into a same socket packet for improving performance (Section 4.5), are located within a same file
enabling to optimize the code for a particular platform.
At the present time, MPS runs on Sun Solaris, Microsoft Windows NT and Digital Unix OSF 1. However,
most advanced features such as the zero-copy serialization mechanism (Section 4.4.1, address-pack
serialization) are only available on Windows NT platforms.

Figure 4-8. The TCP protocol has no notion of packets. There is no correspondence between the WSASend

and WSARecv calls.

Figure 4-9. The 3-step mechanism that enables a scattered packet to be transmitted from one address space

to another using a stream socket (TCP/IP protocol) and the overlapped gather/scatter WSASend and

WSARecv routines

sending direction

WSABUF

WSASend()

receiving direction

tran
sm

issio
n
 d
irectio

n

WSABUF

1st WSARecv()

2nd WSARecv()

3rd WSARecv()

4th WSARecv()

network

BufferCount = 5 BufferCount = 3

WSABUF

BufferCount = 2

receiving direction

sending direction

WSASend

receiving direction

tran
sm

issio
n
 d
irectio

n

network

1
3
2

5
5
6

6
0

7
7
6

2
0

4

132

556

60

776

2
0
 B
y
tes

5
5
6
 B
y
tes 6

0
 B
y
tes

7
7
6
 B
y
tes

1
3
2
 B
y
tes

4

4

1
6

132

556

60

776

1
3
2

5
5
6

6
0

7
7
6

1
3
2
 B
y
tes 5

5
6
 B
y
tes 6

0
 B
y
tes

7
7
6
 B
y
tes

receiving direction receiving direction

WSARecv

WSARecv

receive the number of
user’s buffers1 receive the size of each

user’s buffer2 receive the user’s data3

1
6
 B
y
tes
4-62

• A means for a thread to asynchronously receive tokens from any threads independently whether they are in
the same address space, in a different address space but on the same PC, or located on another PC, i.e.
communication of any threads to 1 thread. In the MPS terminology such a communication endpoint is called
an input port comprising a FIFO queue (Figure 3-5, input token queue) where received tokens are inserted.
Before a thread can receive tokens from an input port, it must be registered to the message-passing system.
That is, the CAP runtime system must name the input port using a string of characters and a 32-bit instance
number uniquely identifying the connection endpoint so that any other threads in the MPS network can use
this logical name for sending tokens to this input port. The creation and the destruction of the input ports are
completely dynamic. A Windows NT process can create and delete input ports whenever it wants during
execution.

• A means for a thread to asynchronously send tokens to any threads independently whether they are in the
same address space, in a different address space but on the same PC, or located on another PC. In the MPS
terminology such a communication endpoint is called an output port. Before a thread can send tokens through
an output port, it must be connected to an input port. That is, the CAP runtime system must open the output
port by providing the name of the input port previously registered. At opening time, the message-passing
system resolves the input port name into an IP address and a 16-bit TCP port number, and opens a TCP/IP
connection between the output port and the input port. If the input port is located in the same address space as
the output port, then instead of using a TCP/IP connection, the shared memory along with an inter-thread
synchronization mechanism is used avoiding to serialize the tokens, i.e. only pointers are copied. Any
number of output ports can be connected to a same input port. The creation and the destruction of the output
ports are completely dynamic. A Windows NT process can create and delete output ports whenever it wants
during execution.

A name resolution system, such as the Internet Domain Name System [Mockapetris87a, Mockapetris87b], has
been implemented so that the message-passing system can resolve an input port name into an IP address and a
16-bit TCP port number when an output port is opened. Each PC participating in the parallel computation runs a
message-passing system daemon, called the Mpsd, connected to one or several other Mpsd’s so as to form a
network of contributing PC’s (Figure 4-10). Each Windows NT CAP process is connected to its local MPS
daemon to exchange control messages.

When an input port is created, a passive TCP connection is opened listening for incoming network connections
and a control message is sent to the local MPS daemon to register the input port name with the newly allocated
TCP port number, i.e. to notify the MPS daemon that an input port is created on the following TCP port. When an
output port is created two different cases arise. Either the input port is in the same address space or in a distinct

Figure 4-10. Message-passing system TCP/IP connections. On each PC runs a MPS daemon connected to

one or several other Mpsd so as to form a network of contributing PC’s. Each Windows NT CAP process is

connected to its local Mpsd to exchange control messages.

Mpsd

Windows NT CAP
process

CAP
thread

CAP
thread

CAP
thread

Mps
thread

Windows NT CAP
process

CAP
thread

Mps
thread

Mpsd
Windows NT CAP

process

CAP
thread

Mps
thread

Mpsd

Windows NT CAP
process

CAP
thread

CAP
thread

Mps
thread

Windows NT CAP
process

CAP
thread

Mps
thread

Windows NT CAP
process

CAP
thread

Mps
thread

PC

Legend:

PC

PC

A

B

C

Mpsd to Mpsd TCP/IP
bidirectional connection

Mps thread to Mpsd TCP/IP
bidirectional connection

output to input port
undirectional connection

within a same address space

output to input port
undirectional TCP/IP
connection across two

address spaces
4-63

address space. If the input port is in the same address space, then the output port is merely a pointer to the input
port object and sent tokens are transferred using the shared memory, i.e. only pointers are copied. On the other
hand, if the input port is located on a separate address space, then a control message is sent to the local MPS
daemon for seeking its input port IP address and TCP port number. The local MPS daemon first searches in his
internal list of registered input ports and in the case the port is not found, a control message is sent to all MPS
daemons for seeking the input port. Once found, the output port establishes the TCP connection with the
corresponding input port.

The network of MPS daemons is also used for spawning Windows NT processes on remote PC’s when a CAP
program is launched with a configuration file (Section 3.6, Program 3-6).

To evaluate the performance of CAP programs, the message-passing system provides numerous counters for
measuring the incoming and outgoing token and network rates. Moreover, MPS is able to automatically sample
these counters in constant intervals and maintain a history list. Figure 4-11 shows such a history list sampled at
500ms intervals when executing a CAP program.

4.4.1 Serialization of CAP tokens

To move a C/C++ structure, i.e. a CAP token, from one address space to another, the structure’s data should be
prepared for transfer, sent over a communication channel linking the two address spaces, received in the
destination address space, and finally restored the data into a C/C++ structure identical to the original one. This
process of preparing a data structure for transfer between two address spaces is called serialization.

The serialization process consists of these four steps:
• The packing step prepares the data structure for the transfer.
• The sending step sends the prepared data structure over a communication channel, i.e. a TCP/IP stream

socket for MPS, linking two address spaces.
• The receiving step receives the data in the destination address space.
• The unpacking step restores the received data into the original C/C++ structure in the destination address

space.

The token-oriented message-passing system implements two types of serialization, the copy-pack serialization
and the address-pack serialization. The copy-pack mechanism uses a temporary buffer for transmitting the
structure’s data thus enabling two computers with different data encoding (little endian, big endian, etc.), i.e.
heterogeneous environment, to communicate. However, the use of a temporary buffer involves two
memory-to-memory copies, one at the sending side and one at the receiving side. In the case where the two
computers use the same data encoding, i.e. homogeneous environment, the address-pack serialization avoids these
two copies by copying the addresses to the structure’s data into a list of pointers to memory blocks (Program 4-1,
WSABUF buffers).

Figure 4-11. Outgoing network throughput with a sampling factor of 500ms

0

5

10

15

20

25

30

35

40

45

50

55

60

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000

Elapsed time [ms]

O
ut

go
in

g
ne

tw
or

k
th

ro
ug

hp
ut

[M
bi

ts
/s

]

4-64

When packing a token, the CAP’s runtime system adds its type index, which is a 32-bit value identifying the type
of the transmitted token so that in the destination address space, the corresponding unpack function is called. The
unpack function creates a token of the original type and copies the received data into it.

In Figure 4-12, the copy-pack packing mechanism copies all the token’s fields into a single memory buffer called
the transfer-buffer. The CAP tool automatically generates instructions for packing the predefined C/C++ types,
e.g. int, float, double, char. For user defined C/C++ structures and pointers, the CAP’s runtime system calls,
thanks to C++ function overloading, the appropriate user defined pack routine that recursively copies the
structure’s data fields into the same memory block. At the receiving address space, the token is first created based
on the received type index and then data is copied from the transfer-buffer into the token’s fields using the
corresponding unpack routines.

In Figure 4-13, the address-pack packing mechanism creates a list of pointers to memory blocks (WSABUF

buffers), and the overlapped gather send (Program 4-1, lines 13-17) handles the transfer of these scattered
memory blocks. The CAP tool automatically generates instructions for packing the token’s memory block. For
user’s defined C/C++ structures and pointers, the CAP’s runtime system calls, thanks to C++ function
overloading, the appropriate user’s defined pack routine that recursively copies all the pointers to the structure’s
memory blocks into the list of WSABUF buffers. At the receiving address space, the token is first created based on
the received type index, then a list of pointers to memory blocks is created using the corresponding unpack
routines, and the overlapped scatter receive (Program 4-1, lines 20-24) handles the transfer. Since the memory
block-oriented transfer process also copies pointers, e.g. in Figure 4-12 the DP and EP pointers, an additional
address-restore stage restoring the clobbered pointers is required. Note that it is necessary to restore the pointer to
the virtual function table in the case of a C++ class containing at least one virtual function.

Program 4-2 shows a PrimeNumbersT token comprising a user’s defined ArrayOfIntsT object (line 66). To
serialize such a C/C++ structure, the CAP’s runtime system needs 4 routines. An address-list-size routine (lines
59-62) calculating the number of scattered memory blocks necessary for transmitting the whole structure’s data.
An address-pack routine (lines 22-29) copying the pointers to the structure’s memory blocks (line 27) and their
sizes (line 26) into the list of memory buffers to send (line 23 and Program 4-1 line 14). An address-unpack
routine (line 31-49) allocating the internal structure’s memory blocks (line 37) and copying their pointers into the
list of memory buffers where the incoming network data will be stored (line 32 and Program 4-1 line 21). And
finally, an address-restore routine (lines 51-57) restoring the clobbered pointers (line 55) previously saved in the
unpack-routine (line 45). For transmitting PrimeNumbersT tokens, the CAP tool automatically generates
appropriate calls to the 4 user’s defined serialization routines and assigns a unique token type index.

To alleviate the task of writing these 4 serialization routines, which is often tricky, error prone and hard to debug,
an ongoing extension to the CAP tool will automatically generate these 4 functions based on the C/C++ structure
declaration along with a CAP specification.

Figure 4-12. The copy-pack serialization uses a temporary transfer buffer to copy the structure’s data so

that the data encoding can be modified

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

double Y;

char Z;

char A;

int B;

int X;

double Y;

char Z;

int X;

double Y;

char Z;

array

array

temporary transfer-buffer

copy-pack
packing

possibly
modify the

data encoding
according to

the destination
computer

copy-pack
unpacking

TokenT

UserT

1

64

477

1
2

6
4number of

scattered buffers

type index

size of 1st scattered
buffer

WSABUF buffers

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

double Y;

char Z;

array

TokenT

UserT

6
4
 B
y
tes
4-65

Figure 4-13. The address-pack serialization uses a list of scattered buffers (WSABUF buffers) for sending

and receiving the structure’s data with no memory-to-memory copy

Program 4-2. To serialize a user’s defined C/C++ structure, the CAP’s runtime system needs 4 routines: an

address-list-size, an address-pack, an address-unpack and an address-restore routine

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

int Y;

char Z;

array

address-pack
packing

address-pack
unpacking

TokenT

UserT

1

28

477

2
0

2
8

WSABUF buffers

34

12

3
4

1
2

1

28

477

2
0

2
8

WSABUF buffers

34

12

3
4

1
2

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

int Y;

char Z;

array

TokenT

UserT

2
8
 B
y
tes

1
2
 B
y
tes

34 Bytes

2
0
 B
y
tes

2
0
 B
y
tes

1 class ArrayOfIntsT
2 {
3 public:
4 ArrayOfIntsT();
5 ~ArrayOfIntsT();
6
7 public:
8 int Size;
9 int* ArrayP;
10 }; // end class ArrayOfIntsT
11
12 ArrayOfIntsT::ArrayOfIntsT()
13 : Size(0), ArrayP(0)
14 {
15 } // end ArrayOfIntsT::ArrayOfIntsT
16
17 ArrayOfIntsT::~ArrayOfIntsT()
18 {
19 delete ArrayP;
20 } // end ArrayOfIntsT::~ArrayOfIntsT()
21
22 void capAddressPack(int& listSize,
23 WSABUF* &bufferP,
24 ArrayOfIntsT* udP)
25 {
26 bufferP->Len = udP->Size;
27 bufferP->BufP = (char*) udP->ArrayP;
28 bufferP++; // Points to next memory block
29 } // end capAddressPack
30

31 void capAddressUnpack(int& listSize,
32 WSABUF* &bufferP,
33 ArrayOfIntsT* udP)
34 {
35 if(bufferP->Len)
36 {
37 udP->ArrayP = new int[bufferP->Len];
38 }
39 else
40 {
41 udP->ArrayP = 0;
42 } // end if
43
44 bufferP->BufP = (char*) udP->ArrayP;
45 thrAddressSave(listSize,
46 bufferP,
47 (void*) &(udP->ArrayP));
48 bufferP++; // Points to next memory block
49 } // end capAddressUnpack
50
51 void capAddressRestore(int& listSize,
52 WSABUF* &bufferP,
53 ArrayOfIntsT* udP)
54 {
55 thrAddressRestore(listSize, bufferP);
56 bufferP++; // Points to next memory block
57 } // end capAddressRestore
58
59 int capAddressListSize(ArrayOfIntsT* udP)
60 {
61 return 1; // size of list
62 } // end capAddressListSize
63
64 token PrimeNumbersT
65 {
66 ArrayOfIntsT PrimeNumbers;
67 int NumberOfPrimeNumbers;
68 }; // end token PrimeNumbers
4-66

4.5 Performance evaluation of the token-oriented message-passing

system

The communication mechanism comprising the token-oriented message-passing system, the Windows Sockets
library, the TCP/IP stack protocol, the network card adapter and the Fast Ethernet network, is a potential
bottleneck that may limit scalability of distributed-memory CAP applications when increasing the number of

cooperating PC’s or the number of contributing disks in the case of PS2 applications.

This section evaluates the overlapped Windows Sockets application programming interface and the
token-oriented message-passing system when faced with two communication patterns as they can be found in real
CAP programs. The first pattern arises when a single token flows from one PC to another (Section 4.5.3). Since,
in this case, the communication mechanism cannot pipeline network I/O requests, this experiment mainly
evaluates performance in terms of latency. The second pattern arises when a bunch of tokens is transferred from
one PC to another (Section 4.5.4). In this case, the communication mechanism pipelines the network I/O requests
thus decreasing latency, and performance is mainly affected by throughput.

The aim of these two experiments are the following:
• Measure the performance of the Windows Sockets API and the token-oriented message-passing in terms of

effective throughput, i.e. the number of bytes that the communication mechanism transmits per unit of time.
These results will set a first limit of scalability in the case where the token throughput between PC’s is the
bottleneck.

• Measure the performance of the Windows Sockets API and the token-oriented message-passing system in
terms of processor utilization, i.e. the percentage of elapsed time that processors spend sending or receiving
data through a TCP/IP connection. Although PCI network card adapters, that equip most recent server PC’s,
use a DMA mechanism to move data between the main memory and the network card’s internal buffers, these
results will demonstrate that handling a TCP/IP connection is a processor consuming task setting a second
limit of scalability in the case where processors are bottlenecks because they handle both user’s computations
(sequential operations) and communications occurring entirely within pre-emptive contexts.

• Evaluate the cost of the token-oriented message-passing system compared with the raw Windows Sockets
communication mechanism.

• Demonstrate how coalescing tokens into a same socket packet may boost the performance of the
message-passing system not only in terms of throughput, but also in terms of processor utilization.

• Understand how the overlapped Windows Sockets API and the underlying TCP/IP connection behave under
various parameters (Section 4.3.2) and under various I/O request sizes. This knowledge will enable the
token-oriented message-passing to be tuned so as to increase the effective throughput and to decrease the
processor utilization.

When measuring networking performances power of 2 are used, i.e. KBytes stands for 1024 Bytes, MBytes stands
for 1024 x 1024 Bytes and Mbits/s stands for 1024 x 1024 bits per second.

4.5.1 Theoretical maximum TCP/IP performance over a 100 Mbits/s

Fast-Ethernet network

Stevens in his book [Stevens96, pp. 354–356] gives a comprehensive look at how to compute the theoretical
maximum throughput that the TCP/IP stack protocol can handle over a 100 Mbits/s Fast Ethernet link. Table 4-1
gives the numbers of bytes exchanged for a full-sized –DATA– segment and an –ACK– segment. This table takes
into account the overhead dues to: the Fast Ethernet preamble, the PAD bytes that are added to the
acknowledgement so as to meet the minimum required Fast Ethernet packet size, the CRC and the minimum
interpacket gap (916 ns, which equals 12 bytes at 100 Mbits/s).

We first assume that the sender transmits two full-sized data segments and then the receiver sends an –ACK– for
these two data segments. This corresponds to a window size of 2920 Bytes since each data segment comprises
1460 user data. Figure 4-14 depicts the timing diagram of such a unidirectional transmission and Equation 4-5
gives the obtained theoretical maximum throughput (user data).

(4-5)Throughput
2 1460 Bytes×

2 1538× 84 Bytes+
--- 100 Mbits/s× 92.4 Mbits/s= =
4-67

If the TCP window is opened to its maximum size (65535), this enables the sender to transmit 44 full-sized data

segments each of 1460 bytes. If the receiver sends an –ACK– every 22nd segment, then the obtained theoretical
maximum throughput is given by Equation 4-6.

(4-6)

This is the theoretical limit, and makes certain assumptions: an –ACK– sent by the receiver doesn’t collide on the
Ethernet with one of the sender’s –DATA– segment, the sender can transmit two segments with the minimum Fast
Ethernet spacing, and the receiver can generate the –ACK– within the minimum Fast Ethernet spacing.

The bottom line in all these numbers is that the real upper limit on how fast TCP can run is determined by the size
of the TCP window and the speed of light, i.e. network throughput. As concluded by [Partridge93], many protocol
performance problems are implementation deficiencies rather that inherent protocol limits.

4.5.2 The multi-PC environment

All the experiments described in this section have been conducted on two PC’s running the Microsoft Windows
NT 4.0 service pack 3 operating system and interconnected by a switched Fast Ethernet network (Figure 4-15).
Each PC is a Bi-Pentium Pro 200MHz with the Intel PR440FX ATX motherboard comprising 64 MBytes of 60ns
EDO RAM and an Intel EtherExpress Pro/100B PCI network card adapter.

Field –DATA– segment #Bytes –ACK– segment #Bytes

Fast Ethernet preamble 8 8

Fast Ethernet destination address 6 6

Fast Ethernet source address 6 6

Ethernet type field 2 2

IP header 20 20

TCP header 20 20

User data 1460 0

Pad to Fast Ethernet minimum 0 6

Fast Ethernet CRC 4 4

Interpacket gap on Fast Ethernet: 916 ns 12 12

Total 1538 84

Table 4-1. Field sizes for Fast Ethernet theoretical maximum throughput calculation

Figure 4-14. Timing diagram where the sender transmits two full-sized data segments and then the receiver

sends an acknowledgment for these two data segments

gap between Fast Ethernet packets

gap between Fast Ethernet packets

size of the Fast Ethernet packet

Fast Ethernet throughput

–DATA–

–ACK–

–DATA–

Throughput
22 1460 Bytes×

22 1538× 84 Bytes+
-- 100 Mbits/s× 94.7 Mbits/s= =
4-68

Experiences (not presented in this section for the sake of simplicity), have shown that the Nagle algorithm
(Section 4.3.2) introduces a predominant latency of 220 ms when transmitting a single token from one PC to
another, i.e. unpipelined token transfer (Section 4.5.3). Moreover, for optimal performance, the transmit buffer
size and the receive buffer size should be between 8 KBytes (which is the default value for a socket) and 16
KBytes (Section 4.3.2). Poor performance has been observed when decreasing these two sizes.

Therefore, the results obtained in this section have been measured by disabling the Nagle algorithm and setting
the transmit and receive buffer size to 8 KBytes.

4.5.3 Performance evaluation of the token-oriented message-passing

system in terms of latency for an unpipelined token transfer

Communication networks exhibit a linear behaviour. The time for a packet to be transferred from one PC to
another using a given communication library, e.g. the Windows Sockets library, and a given protocol stack, e.g.
the TCP/IP protocol stack, depends linearly on the size of the packet. Therefore two parameters, i.e. latency and
throughput, are sufficient to model the linear behaviour of a communication mechanism using Equation 4-7.

(4-7)

As mentioned by Hennessy and Patterson [Hennessy96, pp. 641], communication latency is crucial since it affects
both performance and how easy it is to program a multiprocessor. Unless latency is hidden, it directly affects
performance either by tying up processor resources or by causing the processor to wait. With the CAP computer
aided parallelization tool (Chapter 3), communication latencies and even communications are hidden by
overlapping communications with computations, thanks to the inherent pipelined execution with the two
split-merge parallel while (Section 3.8.6) and indexed parallel (Section 3.8.7) CAP constructs and the two
asynchronous SendToken and ReceiveToken routines (Section 4.4).

To evaluate latency and throughput of a given communication mechanism, we plot the time for a packet or a token
to be transferred from one PC to another as a function of the data set size, and linearize using a least-square fit
approximation. The slope of the linearized curve gives the throughput. The intersection with the vertical axis
(zero size packet) gives a measure of the latency.

To evaluate the time for a packet to be transferred from one PC to another, we measure its round-trip time and
divide it by 2. In order to quantify the cost of the 3 mechanisms (Section 4.4) that coalesce tokens, serialize the
coalesced tokens into socket packets and transfer the socket packets, two different experiments are conducted.

The first experiment consists of transferring a packet back and forth between two PC’s for increasing sizes using
the asynchronous Windows Sockets 2.0 WSASend and WSARecv routines without any programming overheads. In
order to mimic a single token transmission (Figure 4-16), the socket packet contains one WSABUF buffer of
increasing size. The results of this packet-level experiment evaluates, in terms of latency and throughput, the
performance of the TCP/IP protocol stack and the asynchronous Windows Sockets interface giving an upper limit.

Figure 4-15. The multi-PC environment comprises two Intel PR440FX Bi-Pentium Pro 200MHz with an

Intel EtherExpress Pro/100B PCI network card adapter PC’s interconnected through a switched 100

Mbits/s Fast Ethernet local area network

switched 100 Mbits/s Fast
Ethernet local area

network Intel PR440FX
Bi-Pentium Pro 200MHz

PC with an Intel
EtherExpress Pro/100B

PCI network card adapter

Intel PR440FX
Bi-Pentium Pro 200MHz

PC with an Intel
EtherExpress Pro/100B

PCI network card adapter

Microsoft Windows
NT 4.0

Microsoft Windows
NT 4.0

TransferTime Latency
PacketSize

Throughput
----------------------------+=
4-69

Program 4-3 shows the read and write completion routines used in Program 4-4. Since the write completion
occurs only when all the data that are in the packet are sent (Section 4.3.3), the WriteCompletion routine (lines
16-18) awakes the thread who initiates the I/O operation by signaling a semaphore (line 17). On the other hand,
the read completion occurs regardless of whether or not the incoming data fills all the WSABUF buffers contained
in the packet (Section 4.3.3). Therefore the ReadCompletion routine (lines 19-36) must check that all the buffers
are filled before signaling the thread who initiates the I/O operation (line 26). If all the buffers are not filled, then
the callback routine initiates a new receive operation with an updated packet (lines 32-35). This permits data
transmissions to occur entirely within a pre-emptive context.

Program 4-4 shows the master and slave main routines (lines 1-17 for the master and lines 18-34 for the slave)
that iteratively exchange a packet back and forth between a PC and another PC.

The second experiment consists of transferring a CAP token back and forth between two PC’s for increasing sizes
using a real CAP program (Programs 4-5 and 4-6) with the token-oriented message-passing system (Section 4.4).
Remember that the asynchronous SendToken and ReceiveToken routines use the same asynchronous Windows
Sockets 2.0 routines used in the packet-level experiment, but includes three additional mechanisms that coalesce
tokens, serialize the coalesced tokens into packets and transfer packets through a stream-oriented connection.
Therefore the results of this CAP token-level experiment evaluates, in terms of latency and throughput, how well
does the token-oriented message-passing system and its underlying mechanisms compare with the packet-level
measurements.

Program 4-5 declares a TokenT token (lines 70-72) comprising a single user buffer of any size (lines 36-37).
Serialization routines (Section 4.4) are also shown, i.e. the pack routine (lines 42-48), the unpack routine (lines
50-57), the address restore routine (lines 59-64) and the transfer address list size routine (lines 66-68). In order to
make a fair comparison of the CAP token-level measurements with the packet-level measurements, the socket
packet corresponding to the serialization of a single TokenT token must be taken into account when plotting the
token transfer time as a function of the data set size, i.e. socket packet size. Figure 4-16 depicts the socket packet
that is transferred across the network by the token-oriented message-passing system. The CAP’s runtime system
adds a 28-byte header containing all the information to execute a parallel operation and an 8-byte trailer

Program 4-3. Read and write completion routines used in conjunction with the overlapped Windows

Sockets 2.0 WSASend and WSARecv routines

Program 4-4. Packet-level round-trip time measurement using the overlapped Windows Sockets 2.0

WSASend and WSARecv routines

1 struct PacketT {
2 SOCKET Socket;
3 WSABUF* CurrentP; int Index;
4 WSABUF* BufferP; int BufferCount;
5 void Reset() {
6 for(int i = 0; i < BufferCount; i++) {
7 CurrentP[i].Len = BufferP[i].Len;
8 CurrentP[i].BufP = BufferP[i].BufP;
9 } // end for
10 Index = 0;
11 } // end Reset
12 }; // end struct PacketT
13
14 SemaphoreT SEMAPHORE(0);
15
16 void WriteCompletion(int bWritten, PacketT* packetP) {
17 SEMAPHORE.Signal(); // Wake up main thread
18 } // end WriteCompletion

19 void ReadCompletion(int bRead, PacketT* packetP) {
20 while(packetP->Index < packetP->BufferCount &&
21 bRead >= packetP->CurrentP[packetP->Index].Len) {
22 bRead -= packetP->CurrentP[packetP->Index].Len
23 packetP->Index++;
24 } // end while
25 if(packetP->Index == packetP->BufferCount) {
26 SEMAPHORE.Signal(); return; // Wake up main thread
27 } // end if
28 packetP->CurrentP[packetP->Index].Len -= bRead;
29 packetP->CurrentP[packetP->Index].BufP += bRead;
30
31 WSARecv(packetP->Socket, // Initiate new read request
32 packetP->CurrentP + packetP->Index,
33 packetP->BufferCount - packetP->Index,
34 packetP,
35 ::ReadCompletion);
36 } // end ReadCompletion

1 void Master(PacketT* packetP) {
2 for(int i = 0; i < NTIMES; i++) {
3 packetP->Reset();
4 WSASend(packetP->Socket, // Initiate write request
5 packetP->CurrentP, packetP->BufferCount,
6 packetP,
7 ::WriteCompletion);
8 SEMAPHORE.Wait(); // Wait for network completion
9
10 packetP->Reset();
11 WSARecv(packetP->Socket, // Initiate read request
12 packetP->CurrentP, packetP->BufferCount,
13 packetP,
14 ::ReadCompletion);
15 SEMAPHORE.Wait(); // Wait for network completion
16 } // end for
17 } // end Master

18 void Slave(PacketT* packetP) {
19 for(int i = 0; i < NTIMES; i++) {
20 packetP->Reset();
21 WSARecv(packetP->Socket, // Initiate read request
22 packetP->CurrentP, packetP->BufferCount,
23 packetP,
24 ::ReadCompletion);
25 SEMAPHORE.Wait(); // Wait for network completion
26
27 packetP->Reset();
28 WSASend(packetP->Socket, // Initiate write request
29 packetP->CurrentP, packetP->BufferCount,
30 packetP,
31 ::WriteCompletion);
32 SEMAPHORE.Wait(); // Wait for network completion
33 } // end for
34 } // end Slave
4-70

containing some constants needed for certain parallel CAP constructs. The message passing system adds a
40-byte WSABUF buffer to transfer the packet through a stream-oriented connection (TCP/IP). Therefore, the size
of the transferred socket packet equals 76 Bytes plus the user’s buffer size.

Program 4-6 shows the CAP specification for measuring the token round-trip time. It is based on the for CAP
construct (line 9) that iteratively redirects a token from the master (line 13) to the slave (line 11) and back to the
master (line 13).

Results of the packet-level and CAP token-level experiments (Figure 4-17) show that the communication
mechanism, i.e. the token-oriented message-passing system, the Windows Sockets library, the TCP/IP stack
protocol and the Fast Ethernet network, exhibits two zones with different linear behaviours: a first zone for

Program 4-5. Declaration of a token with its serialization routines

Figure 4-16. Socket packet after having coalesced 1 TokenT token and serialized it

Program 4-6. CAP token-level round-trip time measurement using a for CAP construct

35 struct BufferT {
36 void* BufferP;
37 int BufferSize;
38
39 void Allocate(int bufferSize);
40 }; // end class BufferT
41
42 void capAddressPack(int& listSize,
43 WSABUF* &bufferP,
44 BufferT* udP) {
45 bufferP->Len = udP->BufferSize;
46 bufferP->BufP = udP->BufferP;
47 bufferP++; // Points to next memory block
48 } // end capAddressPack
49
50 void capAddressUnpack(int& listSize,
51 WSABUF* &bufferP,
52 BufferT* udP) {
53 udP->Allocate(bufferP->Len);
54 bufferP->BufP = udP->BufferP;
55 thrAddressSave(listSize, bufferP, &(udP->BufferP));
56 bufferP++; // Points to next memory block
57 } // end capAddressUnpack
58

59 void capAddressRestore(int& listSize,
60 WSABUF* &bufferP,
61 BufferT* udP) {
62 thrAddressRestore(listSize, bufferP);
63 bufferP++; // Points to next memory block
64 } // end capAddressRestore
65
66 int capAddressListSize(BufferT* udP) {
67 return 1; // Size of list
68 } // end capAddressListSize
69
70 token TokenT {
71 BufferT Buffer;
72 }; // end token TokenT

40

28

64

8

1 326 6 28 0 64 -12 8 -2

CAP token’s header

user’s buffer

number of coalesced CAP tokens

total size of the transfer address lists type of the token

CAP token’s constants

size of the transfer address list

1st token

WSABUF

BufferCount = 4

1 const int NTIMES = 10000;
2
3 operation ServerT::RoundTripTimeMeasurement
4 in TokenT* InputP
5 out TokenT* OutputP
6 {
7 Master.{ }
8 >->

9 for(int Index = 0; Index < NTIMES; Index++)
10 (
11 Slave.{ }
12 >->
13 Master.{ }
14); // end for
15 } // end operation ServerT::RoundTripTimeMeasurement
16
17 int main(...)
18 {
19 ...
20 start_time();
21 call Server.RoundTripTimeMeasurement in ...
22 stop_time();
23 ...
24 } // end main
4-71

small-sized packets ranging from 16 Bytes to 2 KBytes and a second zone for medium-sized packets ranging from
2 KBytes to 64 KBytes. For large-sized packets, i.e. above 64 KBytes, the communication interface becomes
saturated and a degradation of performance is observed.

Figure 4-17 depicts the two linear behaviours of the packet-level (Programs 4-3 and 4-4) and CAP token-level
(Programs 4-5 and 4-6) interfaces and their linearization using the least-square fit approximation. The horizontal
axis represents the size of the socket packet in Bytes and the vertical axis represents the time to transfer such a
packet from one PC to another using either the low-level Windows Sockets library (packet-level) or the CAP
programming environment (CAP token-level).

Figure 4-18 shows the measured effective network throughputs (Equation 4-8) for the packet-level and CAP
token-level experiments as a function of the transmitted packet size. The curve named “effective user throughput”
gives the number of user’s data transferred per second where PacketSize = UserBufferSize + 76 Bytes (Figure
4-16, Equation 4-9). Dashed lines represent our linear model for communication using latencies and throughputs
of Figure 4-17.

(4-8)

(4-9)

Table 4-2 summarizes and compares latencies and throughputs of the Windows Sockets 2.0 application
programming interface (packet-level) with the token-oriented message-passing system of the CAP parallel
programming environment based on the Windows Sockets API.

As expected, the Windows Sockets application programming interface provides lower latencies than the
token-oriented message-passing system for all socket packet sizes (Figure 4-18 and Table 4-2). This slight
degradation of performance is due to the 3 mechanisms implemented in the message-passing system necessary for
transmitting CAP tokens from one address space to another, i.e. coalescencing of tokens, the serialization into a
packet (and deserialization) and the transfer of packets through a stream-oriented socket. The cost of these 3
mechanisms is an increase of less than 230 µs in latency, i.e. a 50% increase for small-sized packets and a 40%
increase for medium-sized packets. Transmission throughputs are not affected by the message passing system for
all configurations.

The cost of the 76 Bytes of data (Figure 4-16) that CAP runtime system and the message-passing system add to a
user’s token (Program 4-5) is an increase of less than 16 µs (= 76 Bytes / 37.63 Mbits/s, Equation 4-9) in latency
for small-sized tokens, i.e. a 3.3% increase. For medium- and large-sized tokens the cost is completely negligible.

From these two packet-level and CAP token-level experiments we can conclude that:

Figure 4-17. Packet-level and CAP token-level performances in terms of latency and throughput

200

300

400

500

600

700

800

900

Packet size [Bytes]

T
im

e
to

se
nd

a
pa

ck
et

[µ
s]

Packet-level

Token-level

Model for communication

64 256 512 1K 2K

Latency = 236.06 µs
Throughput = 34.47 Mbits/s

Latency = 465.87 µs

Throughput = 37.63 Mbits/s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Packet size [Bytes]

T
im

e
to

se
nd

a
pa

ck
et

[µ
s]

Packet-level

Token-level

Model for communication

2K 16K 32K 64K8K

Latency = 303.18 µs
Throughput = 61.36 Mbits/s

Latency = 511.18 µs
Throughput = 60.97 Mbits/s

EffectiveNetworkThroughput
PacketSize

TransferTime

PacketSize

Latency
PacketSize

Throughput
----------------------------+

--= =

EffectiveUserThroughput
UserBufferSize

TransferTime

UserBufferSize

Latency
76

Throughput
----------------------------+ 

  UserBufferSize

Throughput
-------------------------------------+

---= =
4-72

• Due to the significant transmission latencies (between 200 and 500 µs), the effective network throughput
strongly depends on the transmitted packet size. Up to a size of 64 KBytes, the effective network throughput
increases from a few of Mbits/s up to 55 Mbits/s. From 64 KBytes, stream sockets operate poorly due to a
saturation somewhere in the TCP/IP internal protocol buffers. These buffers influence the behaviour of the
TCP sliding window protocol which regulates the data flow, thus degrading performance. Therefore, the
token coalescence mechanism implemented in the token-oriented message-passing system attempts to
transmit only medium-sized socket packets (approximately between 4 KBytes and 32 KBytes) in order to
optimize the latency of the underlying transmission protocol.

• The cost of the token-oriented message-passing system has been evaluated in terms of latency and
throughput. A reasonable increase of less than 230 µs in latency is observed while throughputs are not
affected by the token transfer mechanisms. Since the SendToken and ReceiveToken routines are
asynchronous, the CAP parallel programming tool, thanks to its inherent pipeline execution, is able to hide
these high transmission latencies by overlapping communications with computations.

• The 76-byte data that CAP runtime system and the message passing system append to a user’s token does not
affect performance. The CAP runtime system automatically routes tokens without loss of performance.

4.5.4 Performance evaluation of the token-oriented message-passing

system in terms of throughput and processor utilization for a

pipelined token transfer

The previous section has demonstrated the efficiency of the message-passing system of the CAP tool mainly in
terms of latency when transmitting a single token from one PC to another. This section evaluates the
performances that programmers can expect when parallel CAP operations transfer not a single token but a bunch
of tokens from one PC to another. This crucial pattern of communication, induced by the parallel while (Section

Figure 4-18. Effective throughputs of the packet-level and CAP token-level interfaces as a function of the

socket packet size

Size of the socket packet Packet-level interface CAP token-level interface
(function of the packet size)

CAP token-level interface
(function of the user’s buffer size)

Small: 16 Bytes - 2 KBytes
Latency = 236.06 µs

Throughput = 34.47 Mbits/s
Latency = 465.87 µs

Throughput = 37.63 Mbits/s
Latency = 481.28 µs

Throughput = 37.63 Mbits/s

Medium: 2 KBytes - 32 KBytes
Latency = 303.18 µs

Throughput = 61.36 Mbits/s
Latency = 511.18 µs

Throughput = 60.97 Mbits/s
Latency = 511.18 µs

Throughput = 60.97 Mbits/s

Large: > 32 KBytes Not a linear behaviour, saturation Not a linear behaviour, saturation Not a linear behaviour, saturation

Table 4-2. Latencies and throughputs of the Windows Sockets API (packet-level) and the token-oriented

message-passing system of the CAP parallel programming environment (CAP token-level)

0

5

10

15

20

25

30

35

40

45

50

55

60

Packet size [Bytes]

E
ff

ec
tiv

e
th

ro
ug

hp
ut

[M
bi

ts
/s

]
Packet-level

Token-level

Model for communication

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K

effective network throughput

effective user throughput
4-73

3.8.6) and indexed parallel (Section 3.8.7) CAP constructs, appears more frequently in CAP programs than a
single token motion. The token-oriented message passing system and the underlying stream sockets are able to
improve performance by pipelining network access requests thus reducing latencies, i.e. latency of the
message-passing system, latency of the TCP/IP stack protocol and latency of the Fast Ethernet network.

The goal of this section is to evaluate the mechanism that coalesces tokens into a same socket packet and to
measure the processor utilization when sending or receiving tokens so as to be able to quantify how well CAP’s
runtime system can overlap communications by computations.

The first experiment consists of transferring a bunch of packets from one PC to another for increasing sizes using
the asynchronous Windows Sockets 2.0 WSASend and WSARecv routines without any programming overheads
(Programs 4-3 and 4-7). In order to mimic the coalescence of 1, 5, 10 or 15 tokens performed by the
token-oriented message-passing system, the transferred socket packets contain 1, 5, 10 or 15 WSABUF buffers per
test. The results of this packet-level experiment characterizes, in terms of latency, throughput and processor
utilization, the unidirectional pipelined performance of the Windows Sockets interface and the underlying TCP/IP
stack protocol thus giving references to compare with the message-passing system measurements.

Program 4-7 shows the sender and receiver main routines (lines 1-10 for the sender and lines 11-20 for the
receiver) where the sender asynchronously sends NTIMES packets to the receiver located on a different PC. The
ReadCompletion and WriteCompletion routines are shown in Program 4-3.

The second experiment consists of transferring a bunch of CAP tokens from one PC to another for increasing
sizes using either a parallel while or an indexed parallel CAP construct (Program 4-8). To evaluate the token
coalescence mechanism, several measurements are conducted with different coalescence factors (1, 5, 10 and 15).
The results of this CAP token-level experiment characterizes, in terms of latency, throughput and processor
utilization, the unidirectional pipelined performance of the token-oriented message-passing system and are
compared with the above packet-level experiment so as to evaluate the relative performance of the
message-passing system.

Program 4-8 shows the CAP specification for measuring the unidirectional pipelined token transfer time. It is
based on the indexed parallel CAP construct (lines 24-30) that sends NTIMES tokens from the Sender’s PC to the
Receiver’s PC.

Program 4-8 does not use the high-level flow-control mechanism provided by the CAP tool (Section 3.10), since
flow-control requires additional communication between the Receiver and the Sender interfering with the
performance measurements. A global semaphore, not shown for the sake of simplicity, regulates the number of
split tokens: in the user’s buffer allocation (line 9) the semaphore is decremented and in the TokenT token’s
destructor the semaphore is incremented, i.e. when the token is sent. Therefore, the semaphore’s initial value
corresponds to the number of tokens that are in the message-passing system output queue (Figure 3-5).

As in Section 4.5.3, to make a fair comparison of CAP token-level measurements with packet-level
measurements, the size of the packets transmitted by the message-passing system must be taken into account
when plotting the token transfer time as a function of the data set size. Figure 4-19 depicts the transferred socket
packets after coalescing 3 TokenT tokens (Programs 4-5 and 4-8).

The size of a transferred socket packet is given by Equation 4-10 and its number of scattered buffers is given by
Equation 4-11. The coalescence factor is the number of tokens that the message-passing system coalesces into a
single packet.

Program 4-7. Unidirectional pipelined packet transfer measurement using the overlapped Windows

Sockets 2.0 WSASend and WSARecv routines

1 void Sender(PacketT* packetP) {
2 for(int i = 0; i < NTIMES; i++) {
3 packetP->Reset();
4 WSASend(packetP->Socket, // Initiate write request
5 packetP->CurrentP, packetP->BufferCount,
6 packetP,
7 ::WriteCompletion);
8 SEMAPHORE.Wait(); // Wait for network completion
9 } // end for
10 } // end Sender

11 void Receiver(PacketT* packetP) {
12 for(int i = 0; i < NTIMES; i++) {
13 packetP->Reset();
14 WSARecv(packetP->Socket, // Initiate read request
15 packetP->CurrentP, packetP->BufferCount,
16 packetP,
17 ::ReadCompletion);
18 SEMAPHORE.Wait(); // Wait for network completion
19 } // end for
20 } // end Receiver
4-74

(4-10)

(4-11)

Program 4-8. Unidirectional pipelined token transfer measurement using an indexed parallel CAP

construct

Figure 4-19. Socket packet after having coalesced 3 TokenT tokens and serialized it

1 const int NTIMES = 10000;
2 const int BUFFER_SIZE = 64;
3
4 void GenerateToken(TokenT* inputP,
5 TokenT* &subtokenP,
6 int index)
7 {
8 subtokenP = new TokenT;
9 subtokenP->Buffer.Allocate(BUFFER_SIZE);
10 } // end GenerateToken
11
12 void MergeToken(TokenT* outputP,
13 TokenT* subtokenP,
14 int index)
15 {
16 } // end MergeToken
17
18 operation ServerT::UnidirectionalPipelinedMeasurement
19 in TokenT* InputP
20 out TokenT* OutputP
21 {
22 Master.{ } // Tokens generated by Master
23 >->

24 indexed

25 (int Index = 0; Index < NTIMES; Index++)
26 parallel

27 (GenerateToken, MergeToken, Slave, TokenT Out1())
28 (
29 Slave.{ } // Tokens received by Slave
30); // end indexed parallel
31 } // end operation ServerT::UnidirectionalPipelinedMeasurement
32
33 int main(...)
34 {
35 ...
36 start_time();
37 call Server.UnidirectionalPipelinedMeasurement in ...
38 stop_time();
39 ...
40 } // end main

104

28

64

8

3 3218 6 28 0 64 -12 8 -2 32 6 28 0 64 -12 8 -2 32 6 28 0 64 -12 8 -2

CAP token’s header

user’s buffer

28

64

8

28

64

8

number of coalesced CAP tokens

total size of the 3 transfer address lists

type of the token

CAP token’s constants

CAP token’s header

CAP token’s header

CAP token’s constants

CAP token’s constants

user’s buffer

user’s buffer

size of the transfer address list

1st token

2nd token

3rd token

WSABUF

BufferCount = 10

transfer address list of the 2nd token

PacketSize 8 Bytes CoalescenceFactor 68 Bytes UserBufferSize+()⋅+=

NumberOfScatteredBuffers 1 CoalescenceFactor 3⋅+=
4-75

Figure 4-20 compares the effective network throughputs (Equation 4-8) for a unidirectional pipelined data
transfer obtained with the overlapped Windows Sockets 2.0 programming interface (Program 4-7) and the
token-oriented message-passing system (Program 4-8).

Table 4-3 summarizes, after having linearized the 4 curves of Figure 4-20, latencies and throughputs of the
overlapped Windows Sockets 2.0 application programming interface. Two different linear behaviours are
observed. For small-sized packets, latency is predominant, while for medium-sized packets, latency is nearly
negligible and the effective network throughput is approximately independent of the packet size. For large-sized
packets, the communication interface becomes saturated and performance suffers due to the TCP sliding window
protocol regulating the data flow. This effect is also visible in Figure 4-18 when sending one packet after the other
without pipelining.

Since for coalescing tokens, the message-passing system increases the number of scattered buffers per packet, it is
essential to evaluate how the number of WSABUF buffers affects performance. For both small- and medium-sized
packets, increasing the number of scattered buffers only increases latency. Since for medium-sized packets, the
latency factor is rather negligible compared with the throughput factor, the cost of coalescing tokens into several
scattered buffers reduces as the packet size increases (Figure 4-20).

Fortunately, when the overlapped Windows Sockets interface is faced with a series of packet sending requests
(Figure 4-20, Table 4-3), the operating system is able to pipeline the transfer requests and to optimize the network
utilization thus reducing latency: for small-sized packets, latency is reduced by 63% and for medium-sized
packets, latency is reduced by 95% when comparing with the unpipelined packet transfer (Table 4-2). Concerning
throughput, the Sockets library is able to gather several small-sized packets within a same TCP segment thus
increasing throughput up to 90 Mbits/s, while for large-sized packets, throughput is unchanged at 60 Mbits/s.

Figure 4-20. Comparing the effective network throughputs of the token-oriented message-passing system

with the overlapped Windows Sockets 2.0 application programming interface for a unidirectional pipelined

data transfer

Packet size
[Bytes]

Packet with 1
WSABUF buffer

Packet with 5
WSABUF buffers

Packet with 10
WSABUF buffers

Packet with 15
WSABUF buffers

Small: 16 – 1K
Latency = 87.08 µs

Throughput = 89.87 Mbits/s
Latency = 101.76 µs

Throughput = 85.69 Mbits/s
Latency = 115.49 µs

Throughput = 79.81 Mbits/s
Latency = 142.85 µs

Throughput = 84.13 Mbits/s

Medium: 1KB – 32K
Latency = 16.25 µs

Throughput = 60.91 Mbits/s
Latency = 61.63 µs

Throughput = 61.81 Mbits/s
Latency = 74.12 µs

Throughput = 61.27 Mbits/s
Latency = 91.38 µs

Throughput = 60.91 Mbits/s

Large: > 32K
Not a linear behaviour,

saturation
Not a linear behaviour,

saturation
Not a linear behaviour,

saturation
Not a linear behaviour,

saturation

Table 4-3. Latencies and throughputs of the overlapped Windows Sockets 2.0 API for a unidirectional

pipelined packet transfer and for various numbers of scattered buffers

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Packet size [Bytes]

E
ff

ec
tiv

e
ne

tw
or

k
th

ro
ug

hp
ut

[M
bi

ts
/s

]

Token with coalescence factor = 1

Token with coalescence factor = 5

Token with coalescence factor = 10

Token with coalescence factor = 15

Packet with 1 WSABUF buffer

Packet with 5 WSABUF buffers

Packet with 10 WSABUF buffers

Packet with 15 WSABUF buffers

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K16 512K
4-76

Table 4-4 summarizes, after having linearized the 4 curves of Figure 4-20, latencies and throughputs of the CAP’s
message-passing system. Surprisingly, it offers better throughput for medium-sized packets than the Windows
Sockets experiment (70 Mbits/s in Table 4-4 instead of 60 Mbits/s in Table 4-3). This might be due to the
numerous small-sized WSABUF buffers appearing in the socket packets (Figure 4-19) which slow down the
sender thus enabling the receiver to unpack the tokens and post a new socket read request (Section 4.4.1) before
the TCP sliding window protocol stops the sender.

As in the unpipelined data transfer experiments (Section 4.5.3), the cost of a token-oriented message-passing
system is essentially an increase of latency (Tables 4-4 and 4-3). However, as the coalescence factor increases,
latency per token decreases (Table 4-5). This beneficial effect is exploited in the message-passing system to
increase the effective network and user throughput. For example when transmitting 1KB tokens, with a
coalescence factor of 1, an effective network throughput of 25 Mbits/s is reached, while with a coalescence factor
of 15, an effective network throughput of 47 Mbits/s is obtained, i.e. an 88% increase (Figure 4-20). By adapting
the coalescence factor to the token sizes, i.e. to transmit only packets whose sizes are within the optimal range
16KB–32 KB, it is possible to maximize the effective user throughput.

Since the CAP computer aided-parallelization tool is able to overlap communications by computations (Section
3.3), it is essential to evaluate how much processor resource is consumed for sending and receiving tokens and
how CAP message-passing system can decrease processor utilization.

Figures 4-21 and 4-22 show the processor utilization for the sender and the receiver during a unidirectional
pipelined packet transfer using the overlapped Windows Sockets 2.0 application programming interface (Program
4-7). Three different curves are depicted. The first one represents the user test program activities, i.e. the
percentage of elapsed time that the processor spends in user mode executing user code. The second one represents
the network and system activities, i.e. the percentage of time that the processor spends in privileged mode
executing system code or handling network interrupts. The third one represents all the activities, i.e. the sum of
the user’s activities and the system’s activities (system code, network interrupts). Since Bi-Pentium Pro PC’s are
used for the experiments (Section 4.5.2), all processor utilization percentages indicate the utilization of the 2
processors, i.e. a processor utilization of 50% corresponds to a processor 100% busy and a processor 0% busy.

From Figures 4-21 and 4-22, we remark that:
• The sender and receiver processor utilizations are quite independent of the number of scattered buffers

meaning that the overhead of the gather send and scatter receive interfaces are negligible.
• For small-sized packets, the sender processor utilization is around 55% – 60%. For medium-sized packets,

the sender processor utilization drops as low as 25% – 30% for an optimal packet size of 8K – 32K bytes.
This also corresponds to the zone where the effective network throughput is maximum (Figure 4-20, 60
Mbits/s). Therefore, the sender processor utilization is not proportional to the output socket packet rate, but
rather depends on the TCP/IP protocol efficiency, i.e. how well the TCP segments are filled with incoming
user’s data (internal pipeline) and how well the TCP sliding window protocol works.

Packet size
[Bytes]

Coalescence factor
1

Coalescence factor
5

Coalescence factor
10

Coalescence factor
15

Small: 16 – 2K
Latency = 233.48 µs

Throughput = 84.60 Mbits/s
Latency = 372.68 µs

Throughput = 86.75 Mbits/s
Latency = 540.89 µs

Throughput = 83.04 Mbits/s
Latency = 691.00 µs

Throughput = 71.06 Mbits/s

Medium: 2K - 32K
Latency = 70.74 µs

Throughput = 68.79 Mbits/s
Latency = 105.08 µs

Throughput = 71.09 Mbits/s
Latency = 488.48 µs

Throughput = 71.21 Mbits/s
Latency = 585.90 µs

Throughput = 62.24 Mbits/s

Large: > 32K
Not a linear behaviour,

saturation
Not a linear behaviour,

saturation
Not a linear behaviour,

saturation
Not a linear behaviour,

saturation

Table 4-4. Latencies and throughput of the CAP’s message-passing system for a unidirectional pipelined

token transfer with various coalescence factors

Packet size
[Bytes]

Coalescence factor
1

Coalescence factor
5

Coalescence factor
10

Coalescence factor
15

Small: 16 – 2K Latency = 233.48 µs/token Latency = 74.54 µs/token Latency = 54.09 µs/token Latency = 46.07 µs/token

Medium: 2K - 32K Latency = 68.79 µs/token Latency = 21.02 µs/token Latency = 48.85 µs/token Latency = 39.06 µs/token

Table 4-5. By increasing the coalescence factor, the latency per token is decreased
4-77

• The receiver processor utilization tends to decrease as the packet size and the effective network throughput
increase. For small-sized packets, the receiver processor utilization is around 50% – 60% and for
medium-sized packets, it drops below 45%.

• Receiving packets consumes more processing power than sending packets.
• The TCP/IP stack protocol consumes much processing power. Particularly at the receiving site where

approximately one processor is fully busy handling network interrupts.

Figures 4-23 and 4-24 show the processor utilization for the sender and the receiver during a unidirectional
pipelined token transfer using CAP message-passing system (Program 4-8). Three different curves are depicted.
The first one represents the test CAP program activities, i.e. the percentage of elapsed time that the processor
spends executing Program 4-8. The second one represents the message-passing system thread, the network and
the system activities, i.e. the percentage of time that the processor spends in user mode executing the
message-passing system code, and in privileged mode executing system code and handling network interrupts.
The third one represents all the activities, i.e. the sum of the test CAP program activities (first curve) and the
message-passing system activities (second curve).

Figure 4-21. Processor utilization when sending various-sized packets across the network using the

overlapped Windows Sockets 2.0 network interface

Figure 4-22. Processor utilization when receiving various-sized packets from the network using the

overlapped Windows Sockets 2.0 network interface

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Packet size [Bytes]

Se
nd

er
pr

oc
es

so
r

ut
ili

za
tio

n
[%

]

Packet with 1 WSABUF buffer

Packet with 5 WSABUF buffers

Packet with 10 WSABUF buffers

Packet with 15 WSABUF buffers

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Network and system activities

User test program activities

All activities

0

5

10

15

20

25

30

35

40

45

50

55

60

65

Packet size [Bytes]

R
ec

ei
ve

r
pr

oc
es

so
r

ut
il

iz
at

io
n

[%
]

Packet with 1 WSABUF buffer

Packet with 5 WSABUF buffers

Packet with 10 WSABUF buffers

Packet with 15 WSABUF buffers

16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

User test program activities

Network and system activities

All activities
4-78

From Figures 4-23 and 4-24, we remark that:
• For medium-sized packets, the sender processor utilization is quite independent of the coalescence factor and

is around 40% – 60%. Moreover, as the packet size increases the processor utilization decreases. Then,
coalescing tokens not only increases the effective network throughput but also decreases the sender processor
utilization. Note that increasing the effective network throughput, decreases the time during which the
processor sends tokens (for a same amount of data to be transferred), therefore, also decreases the effective
processor utilization.
In order to illustrate this effect, let us take an example where a CAP program sends every second 2048 tokens
of 2KBytes each, i.e. 32 Mbits/s. With a coalescence factor of 1, the sender processor utilization is 50%
(Figure 4-23, packet size = 2KBytes) and the effective network throughput is 40 Mbits/s (Figure 4-20). Then,
the transmission time is 2048[tokens] x 2[KBytes] / 40[Mbits/s] = 800 ms during which the processor is 50%
busy. Therefore, over a period of 1 second, the mean effective sender processor utilization is 40%. With a
coalescence factor of 16, the sender processor utilization is 45% (Figure 4-23, packet size = 32KBytes) and
the effective network throughput is 55 Mbits/s (Figure 4-20). Then, the transmission time is 2048[tokens] x

Figure 4-23. Processor utilization when sending various-sized tokens across the network using the CAP’s

message-passing system

Figure 4-24. Processor utilization when receiving various-sized tokens from the network using the CAP’s

message-passing system

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Packet size [Bytes]

Se
nd

er
pr

oc
es

so
r

ut
ili

za
tio

n
[%

]

Token with coalescence factor = 1

Token with coalescence factor = 5

Token with coalescence factor = 10

Token with coalescence factor = 15

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

User test CAP program activities

Message-passing system, network and system activities

All activities

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Packet size [Bytes]

R
ec

ei
ve

r
pr

oc
es

so
r

ut
il

iz
at

io
n

[%
]

Token with coalescence factor = 1

Token with coalescence factor = 5

Token with coalescence factor = 10

Token with coalescence factor = 15

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K

User test CAP program activities

Message-passing system, network and system activities

All activities
4-79

2[KBytes] / 55[Mbits/s] = 582 ms during which the processor is 45% busy. Therefore, over a period of 1
second, the mean effective sender processor utilization is 26% (compared to 40% with a coalescence factor of
1).

• The token-oriented message-passing system introduces a maximum increase of 30% on the sender processor
utilization compared with the overlapped Windows Sockets application programming interface.

• For medium sized-packets, the receiver processor utilization is around 65% – 80%. Despite the fact that the
instantaneous receiver processor utilization slightly increases as the packet size and the effective network
throughput increase, it is still worth coalescing tokens to reduce the receiver processor utilization.
In order to illustrate this effect, let us take an example where a CAP program receives every second 2048
tokens of 2KBytes each, i.e. 32 Mbits/s. With a coalescence factor of 1, the receiver processor utilization is
70% (Figure 4-24, packet size = 2KBytes) and the effective network throughput is 40 Mbits/s (Figure 4-20).
Then, the transmission time is 2048[tokens] x 2[KBytes] / 40[Mbits/s] = 800 ms during which the processor
is 70% busy. Therefore, over a period of 1 second, the mean effective receiver processor utilization is 56%.
With a coalescence factor of 16, the receiver processor utilization is 75% (Figure 4-24, packet size =
32KBytes) and the effective network throughput is 55 Mbits/s (Figure 4-20). Then, the transmission time is
2048[tokens] x 2[KBytes] / 55[Mbits/s] = 582 ms during which the processor is 75% busy. Therefore, over a
period of 1 second, the mean effective receiver processor utilization is 44% (compared to 56% with a
coalescence factor of 1).

• The token-oriented message-passing system introduces a maximum increase of 40% on the receiver
processor utilization compared with the overlapped Windows Sockets application programming interface.

4.6 Summary

Section 4.2 has demonstrated that it is possible to access in parallel 15 disks hooked onto the same PC (with an
efficiency of 89%) using the Windows NT file system without any loss of performance, i.e. compared with the
experiment where the 15 disks are accessed using a low-level SCSI-2 block interface. Moreover, reading 23.51
MBytes/s of data from 15 disks with the NT file system does not consume much computing power (less than

14%) thus enabling PS2 applications to overlap disk accesses with computations. These results also show that
accessing disks through a low-level SCSI-2 block interface and implementing a custom single-disk file system

will not improve performances. It is worth implementing the PS2 customizable parallel file system directly on top

of the native Windows NT file system for several reasons: firstly it greatly simplifies the development of PS2,

secondly it increases the ease of portability, thirdly it yields to a more reliable1 parallel file system and fourthly it
keeps the compatibility with other Windows applications (e.g. the Explorer application).

Section 4.3 has shown how MPS asynchronously transmits a packet, i.e. a serialized CAP token, through a
TCP/IP connection using the Microsoft Windows Sockets 2.0 API. Section 4.4 has presented the two mechanisms
used in MPS for serializing CAP tokens, i.e. the copy-pack and the address-pack serialization mechanisms. Since
the copy-pack mechanism requires the use of a temporary buffer involving additional memory-to-memory copies,
it is only used in heterogeneous environments where the transmitted data format has to be adapted to the
destination machine (big/little endian, 32/64 bits). The address-pack mechanism, only used in homogeneous
environments (e.g. in a multi-PC environment), enables CAP tokens to be serialized and transferred with no
superfluous memory-to-memory copy providing optimal performance.

Section 4.5.3 has compared the performances of MPS with the raw performances of the asynchronous Windows
Sockets 2.0 network interface for an unpipelined data transfer, i.e. when transmitting a single token at a time.
Results of this experiment have shown that MPS increases the transfer latency by less than 230 µs, corresponding
to a 40%-50% increase depending on the size of the transmitted packet. This growth in latency is due to the
serialization mechanism and to the 3-step transfer mechanism slightly perturbing the underlying TCP/IP data
transfer. On the other hand, MPS provides the same throughput (up to 61 Mbits/s on a Fast Ethernet network) as
the raw Windows Sockets interface. This demonstrates that MPS does not add a cost proportional to the
transferred CAP token but only a certain latency.

Section 4.5.4 has compared the performance of MPS with the raw performances of the asynchronous Windows
Sockets 2.0 network interface for a pipelined data transfer, i.e. when transmitting numerous CAP tokens from one
address space to another (induced by the indexed parallel or the parallel while CAP constructs). Results of this
experiment have shown the benefits of the coalescence mechanism implemented in MPS coalescing several CAP

1. Reliable not in case of a disk crash but in case of an application crash or a PC crash. The NTFS file system
incorporates data recovery mechanisms usable in case of a sudden PC crash.
4-80

tokens into a same socket packet. For example, when transmitting 1KB tokens, an 88% effective network
throughput increase (25 Mbits/s with a coalescence factor of 1 to 47 Mbits/s with a coalescence factor of 15) has
been obtained when coalescing 15 tokens into a same packet. Moreover, when faced with a pipelined token
transfer, MPS is able to sustain an effective throughput of up to 70 Mbits/s over a Fast Ethernet network. As
expected the TCP/IP stack protocol consumes much processing power making it difficult to overlap
communications by computations, unless we use multi-processors PC’s. For example on Bi-Pentium Pro 200MHz
PC’s, when transmitting CAP tokens at 70 Mbits/s, the sender processor utilization reaches 50%, i.e. one
processor is totally devoted to communication, and the receiver processor utilization reaches 75%, i.e. more than
one processor is devoted to communication.
4-81

4-82

Chapter 5

Design and Implementation of PS2

5.1 Introduction

This chapter describes our extensible framework for developing parallel I/O- and compute- intensive applications
on distributed memory commodity components. This framework consists of a CAP process hierarchy called the

Parallel Storage-and-Processing Server (PS2). The PS2 process hierarchy comprises a fixed set of low-level
parallel file system components as well as an extensible parallel processing system. The reusable low-level
parallel file system components offered by a set of I/O threads enables files that are declustered across multiple
disks to be accessed. The extensible parallel processing system comprises a set of compute threads that
programmers can freely customized by incorporating application-specific or library-specific processing
operations. The I/O threads and the compute threads are distributed among the distributed memory PC’s. Each
contributing PC comprises at least one I/O thread performing parallel disk accesses on locally hooked disks and at
least one compute thread running application-specific or library-specific processing operations. Application or

library programmers can, thanks to the CAP formalism, easily and elegantly extend the functionalities of PS2 by
combining the predefined low-level parallel file access components with the application-specific or
library-specific processing operations in order to yield efficient pipelined parallel I/O- and compute- intensive
CAP operations. These parallel CAP operations may be incorporated into C/C++ high-level libraries offering
specific abstractions of parallel files and appropriate processing routines.

5.2 Trends in parallel storage systems

Most parallel file systems are based on a Unix-like interface, i.e. a file is seen as an addressable linear sequence of
bytes (or records). Examples include the Bridge file system [Dibble88, Dibble89], the Intel Concurrent File
System (CFS) on the iPSC/860 [Pierce89, Nitzberg92], the Scalable File System (sfs) on the CM-5 [LoVerso93],
the CMMD I/O library also on the CM-5 [Best93], the ParFiSys parallel file system [Carretero96a, Carretero96b],
and the Scotch parallel storage system [Gibson95]. These systems designed for parallel machines stripe data
transparently across the available I/O devices thus reducing the bottleneck of slow disk access throughput. By
hiding the underlying parallel nature of files, these parallel file systems provide compatibility with existing Unix
file systems. Any deviation from the Unix semantics of stream files is painful for application developers.

The research community has agreed upon the fact that conventional sequential views of files such as “stream of
bytes” (Unix-like interfaces) are ill-suited for parallel file systems and for high-performance parallel computing.
This rudimentary interface prevents users from tailoring their I/O patterns to match the available disks and
precludes any optimization of the I/O access pattern from different processes [Corbett96, Reed95, Kotz94b,
Nieuwejaar94, Nieuwejaar96]. In other words, a conventional Unix-like interface does not provide an efficient
method for application programmers to describing their I/O access patterns.

First generation parallel file systems are naive extensions of sequential files, focusing on the coordination of file
pointers [Pierce89, Nitzberg92, Best93]. I/O access and prefetching do not consider any information about
interleaved access patterns by different processes. This results in a lot of thrashing, lost bandwidth, and poor
performance. New parallel file systems must feature mechanisms, i.e. interfaces, that let users control how the
system manages I/O, how it distributes data across the storage devices, when and what it prefetches, and what
caching algorithms it uses. They must also provide collective-I/O interfaces [Reed95, Kotz94b], in which all
compute processors may cooperate to make single large requests, making it easier for the data management
system to coordinate I/O for better performance [Rosario93, Nitzberg92].

However, a single solution cannot suit all applications [Kotz96, Krieger97]. Flexibility is needed for performance
and the traditional functionality of parallel file systems should be separated into two components: a fixed core that
is standard on all platforms, encapsulating only primitive abstractions and interfaces, and a set of high-level
libraries providing a variety of abstractions and application-programmer interfaces (API). For better flexibility
and performances, advanced parallel file systems should even allow application-specific code to run on I/O nodes
directly where data reside. There are many benefits from running application-selected code on I/O nodes.
5-83

Application-specific optimizations can be applied to I/O-node caching and prefetching. Mechanisms like
disk-directed I/O [Kotz94b] can be implemented. Incoming data can be filtered in a data-dependent way, passing
only the necessary data to the compute nodes, saving network bandwidth and compute-node memory [Kotz95b].
Format conversion, compression, and decompression are also possible. In short, there are many ways that we can
optimize memory and disk activity at the I/O node, and reduce disk and network traffic, by moving what is
essentially application code to run at the I/O node in addition to the compute nodes.

5.3 The PS2 philosophy

PS2 addresses simultaneously two issues. The issue of developing efficient parallel processing applications on
distributed memory PC’s that perform intensive computations on large data sets, and the issue of developing
parallel storage systems capable of declustering these large application data sets across multiple disks meeting the
I/O requirement of these parallel applications. For high-performance, these two issues are deeply dependent. An
application performing a parallel intensive computation on a large data set better knows how to distribute its data
across multiple disks and how to access them in parallel. So far, the research community has separated parallel
computation with parallel storage. On one hand we have parallel programming environments and toolkits (e.g.
MPI [MPI94, MPI97], PVM [Sunderam90]) providing supports for parallel intensive computation, e.g. primitives
for creating heavy-weight processes, primitives for synchronizing and coordinating parallel activities, primitives
for transmitting information between processors. On the other hand we have parallel file systems (e.g. Scotch
[Gibson95], Intel CFS [Pierce89], Galley [Nieuwejaar96], Vesta [Corbett96], HFS [Krieger97]) providing
supports for parallel storage and parallel file access, e.g. file declustering, coordination of file pointers,
prefetching, caching, abstractions of parallel files, collective I/O interfaces.

PS2 offers an approach to parallel storage systems similar to Galley [Nieuwejaar96] and HFS [Krieger97] (Figure
5-1). Instead of designing a new parallel storage system that is intended to directly meet the specific needs of

every parallel compute intensive application1, PS2 has been devised as an extensible framework for developing a
wide variety of high-level parallel I/O- and compute- intensive libraries, each of which designed to meet the needs

of specific applications. In other words, PS2 enables breaking the traditional functionality of parallel storage

systems by providing: comprising an extensible framework (PS2) comprising a library of low-level reusable
parallel file system components. On top of these parallel file system components, application programmers may
build applications or high-level libraries providing a variety of file abstractions (e.g. 2D images, matricies) along
with appropriate processing operations (e.g. filtering a 2D image, resampling a 2D image, LU matrix
decomposition, matrix multiplication).

1. i.e. separation between parallel processing and parallel storage.

Figure 5-1. PS2 offers an approach to parallel storage systems similar to Galley and HFS. Traditional

systems depend on a fixed “core” file system that attempts to serve all applications through a common

general-purpose API. With PS2, the fixed core file system is shrunk to a library of reusable low-level

parallel file system CAP components which can, thanks to the CAP formalism, be combined with

processing operations in order to yield efficient pipelined parallel I/O- and compute- intensive applications

or libraries.

general-purpose API

core file system with
fixed file structure,

declustering strategy,
caching policy,

disk-management
strategy

applications

Processing
node

Storage
node

Processing node
&

Storage node

thanks to CAP, the low-level parallel
file system components are
combined with processing

operations in order to yield efficient
pipelined parallel I/O- and compute-
intensive applications or librairies

library of reusable
low-level parallel file

system CAP components

Traditional approach
PS2 approach

PS2 extensible
framework

applications or
high-level libraries
5-84

PS2 offers an extensible framework for developing parallel I/O- and compute- intensive high-level libraries on

parallel storage-and-processing server architectures (PS2 server architectures). A PS2 server architecture
comprises a number of PC’s connected to a Fast Ethernet network and offering data storage and processing
services to application threads located over the network on a number of client PC’s. Contrary to most current
massively parallel supercomputers [Feitelson95] (e.g. CM-5, Intel iPSC and Paragon, Meiko CS-2, IBM SP2), a

PS2 server architecture makes no difference between I/O nodes and compute nodes, i.e. there is no notion of I/O

nodes dedicated to disk accesses and compute nodes dedicated to computations. Instead, PS2 introduces storage
and processing PC’s, called SP nodes, offering data storage and processing services to application threads running
on client nodes.

PS2 defines an extensible CAP process hierarchy (Section 3.5) comprising a set of storage threads, a set of
compute threads. Storage threads offer low-level parallel file system CAP components enabling to access files
that are declustered across multiple disks distributed over several SP nodes. Library programmers can freely
extend the functionalities of compute threads by incorporating library-specific processing operations. The storage
threads and the compute threads are distributed between the SP nodes so as each contributing SP node comprises
at least one storage thread performing parallel disk accesses on locally hooked disks and at least one compute
thread running library-specific processing operations. Library programmers can, thanks to the CAP formalism,

easily and elegantly extend the functionalities of the PS2 process hierarchy by combining the predefined low-level
parallel file access components with the library-specific processing operations in order to yield efficient pipelined
parallel I/O- and compute- intensive CAP operations. Then, these parallel CAP operations can be incorporated
into C/C++ high-level libraries offering specific abstractions of parallel files and processing routines on those
abstractions.

To minimize the amount of data transferred between SP nodes and client nodes, library-specific processing

operations can, thanks to the PS2 flexibility and the CAP formalism, be directly executed on the SP nodes where
data resides. A compute thread can process data that are read by its companion storage thread located on the same
SP node. There are many benefits from running library-specific code on SP nodes, i.e. where data resides
[Kotz96].
• Application or library programmers may conceive caching and prefetching mechanisms tailored to the

application I/O access pattern on top of the PS2 reusable low-level parallel file access components.
• Data accessed from disks may be processed and only the necessary data passed to the client nodes, avoiding

superfluous data communication.
• Application data may be preprocessed and written to disk in appropriate format providing better

performances, e.g. data compression.

With PS2, developing a new parallel I/O- and compute- intensive operation operating on a large application data
set declustered across multiple disks may consist in (example):
1. dividing the application data set into data parts, called data extents,
2. striping these data extents on several disks,
3. on the SP nodes, reading each of the data extents from the multiple disks,
4. on the SP nodes, performing a library-specific processing operation on each of the read data extents,
5. transmitting the processed data extents from the SP nodes to the client node,
6. and finally on the client node, merging the processed data extents into the application’s buffer.

Thanks to the CAP methodology (Section 3.3), disk access operations1 (i.e. reading data extents), library-specific
processing operations (i.e. processing data extents), data communications (i.e. transmitting processed data extents
to the client node), and collecting the results (i.e. merging the processed data extents) are executed in a pipelined
parallel manner (Figure 5-2).

In a pipelined parallel execution (Figure 5-2), pipelining is achieved at three levels:
• A library-specific processing operation is performed by the SP node on one data extent while the SP node

reads the next data extents,
• a processed data extent is asynchronously sent across the network to the client node while the next data extent

is processed,
• a processed data extent is merged by the client node while the next processed data extent is asynchronously

transmitted across the network from the SP node to the client node.

1. The low-level parallel file system components offered by the storage threads.
5-85

Parallelization occurs at two levels:

• several data extents are simultaneously read from different disks; the number of disks in the PS2 server
architecture can be increased to improve I/O throughput,

• application-specific or library-specific processing operation on data extents are done in parallel by several SP
node processors; the number of SP node processors can be increased to improve processing performance.

Provided that there are enough disks hooked onto the SP nodes to meet the I/O requirement of an application, i.e.
when the execution time of the parallel I/O- and compute- intensive operation is limited by the processing power
at the SP nodes (Figure 5-2), a pipelined parallel execution enables hiding slow disk accesses and high-latency

network communications. Therefore, PS2 enables application programmers to design parallel I/O and compute
operations on striped data sets that have the same execution time as if the large application data sets would be
stored in huge main memories instead of being striped across multiple disks hooked on several SP nodes.

5.4 PS2: a parallel storage and processing server based on commodity

components

A parallel storage and processing server architecture (PS2 server architecture) comprises several storage and
processing nodes (SP nodes), each consisting of a number of processors and disks connected to a local area
network (Figure 5-3). SP nodes offer data storage and processing services to clients located over the network. An

example of a PS2 server architecture is a cluster of 3 Bi-Pentium Pro 200MHz PC’s, each with 9 disks distributed

among 3 SCSI strings, and interconnected through a switched 100 Mbits/s Fast Ethernet network. PS2

applications, i.e. applications developed using the PS2 customizable parallel file system, can also run on a single
mono-processor PC with a single disk.

Even on an architecture comprising a single mono-processor PC with a single disk, applications can benefit from

the PS2 methodology. Disk accesses and processing operations are pipelined, i.e. I/O’s operate in a completely
asynchronous manner, ensuring that either the processor or the disk is the bottleneck, i.e. is 100% active. By
increasing the number of processors per SP node, the number of disks per SP node, or the number of SP nodes, we

can potentially scale a PS2 application, until the execution time is limited by one of the bottlenecks, i.e. disks, SP
node processing power, SP node network interface, network throughput, client network interface, or client
processing power.

Figure 5-2. With PS2 disk accesses, computations, and communications are executed in a pipelined parallel

manner

process the data
extents in parallel

on multiple
processors

serially merged
the processed

data extents into
the application’s

buffer

SP node

SP node

disk

disk

disk

disk

processor

processor

processor

processor

disk

disk

disk

disk

read the data
extents in parallel

from multiple
disks

read the data
extents in parallel

from multiple
disks

process the data
extents in parallel

on multiple
processors

Client node processor
5-86

5.5 Parallel file structure

PS2 does not impose any declustering strategy on an application’s data. Instead, PS2 provides application or
library programmers with the ability to fully, easily, and efficiently program their declustering strategy according
to their own needs using the CAP language. This control is particularly important when implementing
I/O-optimal algorithms [Cormen93]. To allow this behaviour, a parallel file, i.e. a file whose data is declustered

across multiple virtual disks1, is composed of one or more extent files, i.e. local files or subfiles, which may be
directly addressed by the application using a 32-bit value called the extent file index. Each extent file resides
entirely on a single virtual disk, and no virtual disk contains more than one extent file from any parallel file. When
a parallel file is created, the programmer is asked to specify how many extent files the parallel file contains and on
which virtual disks the extent files will be created. The number of extent files and their locations remain fixed
throughout the life of the parallel file. The striping factor of a parallel file represents the number of extent files it
contains, or in other words the number of virtual disks across which it is declustered.

As in the Galley parallel file system [Nieuwejaar96], the use of extent files gives applications the ability both to
control how the data is distributed across the virtual disks, and to control the degree of parallelism exercised on
every subsequent access. Of course, many application programmers will not want to handle low-level details such
as the declustering algorithm and will even not program with the CAP language. We therefore anticipate that most
end users will use high-level C/C++ libraries, e.g. an image library (Section 6.2), that provide a variety of
abstractions with appropriate declustering strategies, but hide the details of these strategies from the end users.

Figure 5-3. Architecture of the parallel storage and processing server based on commodity components, i.e.

PC’s, Fast Ethernet, SCSI-2 disks, Windows NT, etc.

1. Since PS2 is based on top of native file systems, e.g. the Windows NT file system, the term virtual disk is
more appropriate than the term disk. Indeed, the term virtual disk refers to a (NTFS) directory stored on a
physical disk. Therefore, a same physical disk may contain several virtual disks. However, for the sake of
simplicity, we assume in this dissertation that a physical disk cannot contain more than one virtual disk,
i.e. a virtual disk corresponds to a (NTFS) directory on a dedicated physical disk.

SP Node[N-1]SP Node[0] SP Node[1]

Local Area
Network

Parallel Storage
&

Processing Server

Client
Client

Client

Client
5-87

5.5.1 Extent files

Each extent file is structured as a collection of extents. An extent within a particular extent file is addressable by a
32-bit value called the local extent index. An extent is a variable size block of data representing the unit of I/O
transfer, i.e. applications may read or write entire extents only. In order to offer added flexibility for building

C/C++ libraries on top of PS2 parallel files, an extent is decomposed into a variable size header and a variable size
body. Both are optional, i.e. an extent can contain only a header, only a body, or a header and a body which are
stored contiguously on a virtual disk. For high-performance, an extent should have a size of approximately 50
KBytes in order to balance the disk latency time with the disk transfer time (Section 4.2). Unlike the number of
extent files in a parallel file, the number of extents in an extent file is not fixed. Libraries and applications may
add extents to or remove extents from an extent file at any time. There is no requirement that all extent files have
the same number of extents, or that all extents have the same size.

The final two-dimensional parallel file structure of PS2 is shown in Figure 5-4. A particular extent is addressed
using two 32-bit unsigned values: an extent file index ranges from 0 to N-1, where N is the striping factor, and a
local extent index within that extent file which ranges from 0 to (2^32)-1. Extents within an extent file are not
necessarily stored by successive extent indices, i.e. an extent file may contain extents with scattered indices.

The use of such a two-dimensional parallel file structure (Figure 5-4) provides library and application
programmers with the ability to fully control:
• the declustering strategy,
• the location of each basic striping unit (extent),
• and the degree of parallelism exercised on every subsequent access.

Extents comprising headers and bodies are likely to be useful when implementing parallel data access libraries. In
addition to storing the application’s data, many libraries also need to store persistent, library-specific metadata.

One example of such a library is the image-oriented library for PS2 (Section 6.2). Along with each 2D tile, a tile

descriptor indicates whether the tile is compressed or not and the compression algorithm used. With PS2, such a
library stores each 2D tile in an extent body and its associated meta-information in the extent header. Another
example of such a library would be the storage of compressed files according to [Seamons95]. Rather than
compressing the whole file at once, making it difficult to modify or extract data in the middle of the file, the file is

broken into a series of chunks, which are compressed independently. With PS2, such a storage system could store
one uncompressed or compressed data chunk into one extent body and the necessary meta-information about that
chunk in the corresponding extent header.

Figure 5-4. A parallel file is composed of one or more extent files. Each extent file is structured as a

collection of extents and resides entirely on a single virtual disk, and no virtual disk contains more than one

extent file from any parallel file. An extent is a variable size block of data representing the unit of I/O

transfer. An extent within a particular extent file is directly addressed by the application using an extent

file index selecting the extent file and an local extent index selecting the extent within that extent file.

parallel file declustered across N virtual disks

extent file[0]

extent[2]

extent[4]

extent[5]

extent[6]

extent[7]

extent[865]

extent file[1]

extent[0]

extent[10]

extent[22]

extent file[N-1]

extent[0]

extent[1]

extent[2]

extent[12]

extent[13]

data

data

data

data

data

data

data

data

data

data

data

data

data

data

data

extent[322]
5-88

PS2 ensures that an extent comprising a variable size header and a variable size body is always stored
contiguously in the NTFS extent file, i.e. the header and the body of an extent form the unit of I/O transfer. Recall
that extents can have any sizes even within a same extent file and the user when reading an extent is not asked to

provide its header size and its body size. Besides reading the extent’s data, PS2 also retrieves its header size and
its body size mostly without any additional overhead, i.e. without additional NTFS I/O requests (Section 5.10.2).
By doing this, a parallel data access library is able to read or write with one NTFS I/O request both
library-specific metadata and application data (which can have variable sizes), thus reducing the number of I/O
accesses and increasing the effective disk throughput. This is not feasible with conventional sequential views of
files where the library must first read from one file the library-specific metadata providing the file extent size and
other necessary information for accessing the extent and then read the application’s data extent from another file.

Moreover, the use of extents as the basic unit of NTFS I/O transfer enables applications to have full control on the
number of NTFS I/O requests and on their sizes. Since for performance consideration (Section 4.2), the NT file
system cache is disabled for all extent accesses, NTFS imposes that all I/O requests are aligned on 512 Bytes
(both the position and the size of the request) corresponding to the standard SCSI-2 logical disk block size. Then,
if an application reads an extent whose size is 513 Bytes, 1024 Bytes of data are read. By specifying the extent
size, a fine control over the NTFS I/O requests is exercised. It optimizes the effective disk I/O throughput
influenced by the number of disk arm motions and the amounts of data read in each seek.

5.6 PS2 file tree and its internal representation

PS2 organizes parallel files as a tree with a single root node called root (written “/”); every non-leaf node of the
parallel file system structure is a directory of files, and files at the leaf nodes of the tree are either empty
directories or parallel files. The name of a file, i.e. either a directory or a parallel file, is given by a path name that

describes how to locate the file in the PS2 hierarchy. A path name is a sequence of component names separated by
slash characters “/”; a component is a sequence of characters that designates a file name that is uniquely contained

in the previous directory component. In PS2 a path name starts always with a slash character (absolute path name)
and specifies a file that can be found by starting at the file system root, and traversing the file tree, following the
branches that lead to successive component names of the path name. Thus, the path names
“/Images/Lausanne.ps2”, “/Archive/Sun-Star.ps2”, and “/Archive/Old” designates two parallel files and one

directory in the PS2 tree shown in Figure 5-5. Note that the “.ps2” extension is not interpreted by PS2. A file, i.e.
a directory or a parallel file, may have any name. In particular with or without an extension. This hierarchical

structure of files is similar to the UNIX file system tree [Bach86] except that PS2 does not support relative path
names, i.e. path names that are designated relative to the current directory of the process.

To implement such a hierarchical directory structure (Figure 5-5, PS2 tree), PS2 relies on the native Windows NT

file system, i.e. the PS2 directory tree is replicated on all disks starting at their roots (Figure 5-5, NTFS trees). For

example, when a user creates a PS2 directory, e.g. “/Archive/New”, internally and in parallel, PS2 creates an

NTFS directory on each disk whose path name is the concatenation of the disk’s root path name with the PS2

directory path name, i.e. on PC[0] the “D:\PsPs\Disk0\Archive\New” directory is created, on PC[1] the
“M:\Demo\PsPs\Disk1\Archive\New” directory is created and on PC[2] the “C:\PsPs\Disk2\Archive\New”
directory is created. The same technique is used to create parallel files, but instead of creating an NTFS extent file

on each disk, PS2 creates an extent file only on the requested disks. For example, when a user creates a PS2

parallel file, e.g. “/Images/New.ps2” on the disks 2 and 0 (striping factor of 2), internally and in parallel, PS2

creates the first NTFS extent file (extent file index = 0) “C:\PsPs\Disk2\Images\New.ps2” on PC[2] and the
second NTFS extent file (extent file index = 1) “D:\PsPs\Disk0\Images\New.ps2” on PC[0].

When an application wishes to open or delete a parallel file, PS2 must first locate the extent files composing that
parallel file, i.e. locate on which disks the extent files reside. Contrary to some other parallel file systems, e.g. the

Galley file system [Nieuwejaar96] or the Vesta file system [Corbett96], PS2 does not rely on metadata files to

locate extent files, instead PS2 interrogates in parallel the native file system (NTFS) on each disk. For example, to

locate the “/Archive/Daemon.ps2” parallel file, PS2 interrogates in parallel the first disk on PC[0] to check the
existence of the “D:\PsPs\Disk0\Archive\Daemon.ps2” extent file, the second disk on PC[1] to check the
existence of the “M:\Demo\PsPs\Disk1\Archive\Daemon.ps2” extent file, and the third disk on PC[2] to check the

existence of the “C:\PsPs\Disk2\Archive\Daemon.ps2” extent file. Based on the NTFS answers, PS2 is able to
5-89

determine the striping factor of the parallel file and the location of each extent file, i.e. extent file[0] through
extent file[StripingFactor-1]. This method of locating extent files works even if a user mixes up the extent files of
a parallel file, e.g. when copying extent files from one location to another using the Windows “Explorer”

application. For improved scalability and performance, PS2 could maintain a cache of metadata distributed on all
storage and processing PC’s. To find the PC that manages a given parallel file’s metadata, a hash function may be
applied to the parallel file name. Vesta and Galley use this hashing scheme for their naming system [Corbett96,
Nieuwejaar96].

PS2 provides CAP operations to create and delete a directory, and list the contents of a directory. Of course, PS2

applies the same rules as the UNIX file system, e.g. a directory may be deleted only if it is empty. Regarding

protection of files (directories or parallel files), PS2 relies on the native Windows NT file system and does not
implement any operations to modify file access permissions.

In order to alleviate the task of managing such a replicated tree with numerous extent files distributed over the

disks (Figure 5-5), future releases of PS2 should provide a kit of commands similar to the Windows NT
commands, e.g. Cacls, Copy, Dir, Del, Mkdir, Move, etc, but instead of performing an operation on NTFS files,

the operation is performed on PS2 files, i.e. the corresponding Windows NT command is performed on all NTFS

files, i.e. either directories or extent files, forming the PS2 files. For example copying a PS2 parallel file consists
of copying all the extent files, which are NTFS files, distributed in several directories to another locations.
Another approach would be to extend the functionalities of the “Explorer” Windows NT application. Instead of
displaying the NTFS extent files, we customize the “Explorer” application so that it treats a group of NTFS extent

files as a single PS2 parallel file (Figure 5-6).

Figure 5-5. The mapping of a PS2 tree onto 3 virtual disks located on PC[0] with root D:\PsPs\Disk0, on

PC[1] with root M:\Demo\PsPs\Disk1 and on PC[2] with C:\PsPs\Disk2

Images

/

Archive Moon.ps2

Lausanne.ps2 VisibleHuman.ps2 Old Daemon.ps2

Sun-Star.ps2

PS2 tree

D:\PsPs\Disk0

Moon.ps2Images Archive

VisibleHuman.ps2 Old Daemon.ps2

Sun-Star.ps2

M:\Demo\PsPs\Disk1

Images Archive

VisibleHuman.ps2 Old Daemon.ps2

Sun-Star.ps2

Lausanne.ps2

C:\PsPs\Disk2

Moon.ps2Images Archive

Lausanne.ps2 Old

Sun-Star.ps2

NTFS trees

virtual disk[0] tree on PC[0] virtual disk[1] tree on PC[1]

virtual disk[2] tree on PC[3]

Moon.ps2: parallel file declustered
across the virtual disks 0 and 2

Lausanne.ps2: parallel file declustered
across the virtual disks 1 and 2

VisibleHuman.ps2: parallel file declustered
across the virtual disks 0 and 1

Daemon.ps2: parallel file declustered
across the virtual disks 0 and 1

Sun-star.ps2: parallel file declustered
across the virtual disks 0, 1 and 2

Image: directory

Archive: directory

Old: directory

Contents:

extent file[0]

extent file[1]

leaf node
non-leaf node
5-90

5.7 The PS2 access structures

As introduced in Section 5.3, PS2 defines a CAP process hierarchy, henceforth called the PS2 server process

hierarchy or simply the PS2 server, offering reusable low-level parallel file system CAP components.

In order to introduce some terminologies and programming structures, Program 5-1 shows a simplified version of

the PS2 server process hierarchy. A PS2 server (lines 1-9) consists in a number of VirtualDiskServer hierarchical
processes (line 4) and a number of ComputeServer threads (line 5). A VirtualDiskServer process (lines 18-22)

only contains one ExtentServer thread1 (line 21). To summarize, a PS2 server contains a set of ComputeServer
threads (ComputeServer[0], ComputeServer[1], ...) and a set of ExtentServer threads
(VirtualDiskServer[0].ExtentServer, VirtualDiskServer[1].ExtentServer, ...). The ComputeServer threads perform
application-specific or library-specific processing operations on extent data, i.e. computations. The ExtentServer
threads perform extent access operations, i.e. disk I/O’s.

Figure 5-6. Explorer treats the Moon.ps2 parallel file as a single regular file but in fact behind that file

there are 2 NTFS extent files residing at two different locations D:\PsPs\Disk0\Moon.ps2 on PC[0] and

C:\PsPs\Disk2\Moon.ps2 on PC[2]

1. In the simplified PS2 server declaration (Program 5-1) the use of an intermediate VirtualDiskServer
hierarchical process containing a single ExtentServer thread may seem cumbersome. Section 5.8 explains
the reason of this additional level in the hierarchy of process.

Program 5-1. CAP specification of the PS2 server (simplified version)

1 process Ps2ServerT
2 {
3 subprocesses:
4 VirtualDiskServerT VirtualDiskServer[];
5 ComputeServerT ComputeServer[];
6
7 operations:
8 ... // parallel file directory operations
9 }; // end process Ps2ServerT
10
11 process ComputeServerT
12 {
13 operations: // must remain empty
14 // A ComputeServer thread does not offer any
15 // predefined operations. It is fully customizable.
16 }; // end process ComputeServerT
17

18 process VirtualDiskServerT
19 {
20 subprocesses:
21 ExtentServerT ExtentServer;
22 }; // end process VirtualDiskServerT
23
24 process ExtentServerT
25 {
26 operations:
27 ... // extent access operations
28 }; // end process VirtualDiskServerT
29
5-91

A particular ExtentServer thread is addressed by a 32-bit VirtualDiskServerIndex value ranging from 0 to

NumberOfVirtualDiskServers1-1, e.g. VirtualDiskServer[5].ExtentServer designates the 6th ExtentServer thread

in the PS2 server process hierarchy. A particular ComputeServer thread is addressed by a 32-bit

ComputeServerIndex value ranging from 0 to NumberOfComputeServers2-1, e.g. ComputeServer[7] designates

the 8th ComputeServer thread in the PS2 server process hierarchy.

The library of reusable low-level parallel file system CAP components is divided into two parts (Program 5-1).
The first part (line 8) provided by the PS2ServerT hierarchical process consists in parallel file directory
operations, i.e. parallel operations manipulating parallel files (open, close, create, and delete) and directories
(create, delete, and list). The second part (line 27) provided by the ExtentServerT thread consists in extent access
operations, i.e. sequential operations accessing extents in extent files (read, write, and delete).

The ComputeServer threads do not offer any processing operations (Program 5-1, lines 14-15). They are
customized, i.e. their functionalities are extended, by programmers who incorporate application-specific or
library-specific processing operations. Thanks to a CAP configuration file (Section 3.6), the ComputeServer
threads performing the added processing operations can be mapped into the same Windows NT processes as the
ExtentServer threads performing extent access operations, i.e. I/O’s. Therefore, disk I/O’s and computations can
be closely coupled for high performance.

When developing new parallel I/O- and compute- intensive operations, the functionality of the PS2ServerT
(Program 5-1, lines 1-9) hierarchical process is extended, i.e. application or library programmers define new
parallel operations by combining the application-specific or library-specific processing operations (provided by
the ComputeServer threads) with the predefined extent access operations (provided by the ExtentServer threads)
using the parallel CAP constructs described in Chapter 3. Program 5-2 shows a simplified example where a new
Ps2ServerT::ParallelIOAndComputeOperation parallel processing operation on parallel files (line 8) is
incorporated into the PS2ServerT hierarchical process. This new parallel operation combines an

application-specific or library-specific processing operation with an extent access operation taken from the PS2

library of reusable low-level parallel file system components (lines 15-17).

Application or library programmers need to be able:

1. The NumberOfVirtualDiskServers value is a PS2 application parameter provided as an argument when

launching the PS2 application (Section 5.11). The number of virtual disks must be multiple of the number
of virtual disk servers.

2. The NumberOfComputeServers value is a PS2 application parameter provided as an argument when

launching the PS2 application (Section 5.11). The number of virtual disks must be multiple of the number
of compute servers.

Program 5-2. How the PS2 framework is customized for developing a new parallel processing operations on

parallel files (simplified example)

1 leaf operation ComputeServerT::ProcessingOperation
2 in ...
3 out ...
4 {
5 // C/C++ code
6 } // end leaf operation ComputeServerT::ProcessingOperation
7
8 operation Ps2ServerT::ParallelIOAndComputeOperation
9 in ...
10 out ...
11 {
12 // Parallel CAP constructs combining processing operations with extent access operations
13
14 // For example:
15 ComputeServer[ComputeServerIndex].ProcessingOperation
16 >->

17 VirtualDiskServer[VirtualDiskServerIndex].ExtentServer.WriteExtent
18 ...
19 } // end operation Ps2ServerT::ParallelIOAndComputeOperation
5-92

• to direct an extent access request1 to an ExtentServer thread where the desired extent file is accessible2, i.e. to

compute the VirtualDiskServerIndex value selecting the appropriate ExtentServer thread in the PS2 server
process hierarchy (Program 5-2, line 17),

• to direct a processing request3 to a ComputeServer thread which is located in the same address space as the
ExtentServer thread who performs the extent access operation (read, write, or delete extent), i.e. to compute

the ComputeServerIndex value selecting the appropriate ComputeServer thread in the PS2 server process
hierarchy (Program 5-2, line 15),

PS2 assigns the virtual disks to the ExtentServer threads, and distributes, thanks to a CAP configuration file

(Section 3.6), the ExtentServer threads and the ComputeServer threads onto the PS2 server architecture (Figure
5-3) according to the following rules:

1. The virtual disks are evenly distributed between the ExtentServer threads, i.e. PS2 assigns to each

ExtentServer thread the same number of virtual disks. For example, if a PS2 application is launched with 10

ExtentServer threads and 20 virtual disks, PS2 assigns 2 virtual disks per ExtentServer threads, i.e. the

VirtualDiskServer[0].ExtentServer thread accesses extents located only in the 0th and 1st virtual disks4, the

VirtualDiskServer[1].ExtentServer thread accesses extents located only in the 2nd and 3rd virtual disks, etc,

and the VirtualDiskServer[9].ExtentServer thread accesses extents located only in the 18th and 19th virtual
disks.

2. The VirtualDiskServer hierarchical processes (ExtentServer threads) are evenly distributed between the SP
nodes, i.e. there is the same number of ExtentServer threads per SP node.

3. The ComputeServer threads are evenly distributed between the SP nodes, i.e. there is the same number of
ComputeServer threads per SP node.

4. The ExtentServer threads and the ComputeServer threads located on the same SP node reside in a same
Windows NT process so as to benefit from the shared memory for transferring tokens from ExtentServer
threads to their companion ComputeServer threads and vice versa.

Figure 5-7 depicts an example on how PS2 assigns the virtual disks to the ExtentServer threads, and how the

ExtentServer threads and the ComputeServer threads are distributed onto a 3-SP node PS2 server architecture. The
18 virtual disks (corresponding to 18 NTFS directories in 18 different physical disks) are evenly distributed
between the 6 ExtentServer threads, i.e. the VirtualDiskServer[0].ExtentServer thread accesses extents only

located in the 0th, 1st and 2nd virtual disks, the VirtualDiskServer[1].ExtentServer thread accesses extents only

located in the 3rd, 4th and 5th virtual disks, the VirtualDiskServer[2].ExtentServer thread accesses extents only

located in the 6th, 7th and 8th virtual disks, etc, and the VirtualDiskServer[5].ExtentServer thread accesses extents

only located in the 15th, 16th and 17th virtual disks. The 6 ExtentServer threads are evenly distributed between the

3 SP nodes, i.e. the VirtualDiskServer[0-1].ExtentServer threads reside in the 0th SP node, the

VirtualDiskServer[2-3].ExtentServer threads reside in the 1st SP node, the VirtualDiskServer[4-5].ExtentServer

threads reside in the 2nd SP node. The 9 ComputeServer threads are also evenly distributed between the 3 SP

nodes, i.e. the ComputeServer[0-1-2] threads reside in the 0th SP node, the ComputeServer[3-4-5] threads reside

in the 1st SP node, and the ComputeServer[6-7-8] threads reside in the 2nd SP node.

Based on the above 4 static mapping rules, the PS2 framework provides application or library programmers with
structures and macros enabling to redirect extent access requests to appropriate ExtentServer threads, i.e. to
compute the VirtualDiskServerIndex, and to redirect processing requests to appropriate ComputeServer threads,
i.e. to compute the ComputeServerIndex. In order to be able to develop processing operations on parallel files,

1. An extent access request is a token that is redirected to an ExtentServer thread for performing an extent
access operation (read, write, and delete) on an extent file belonging to a parallel file. The extent access
operations are part of the library of reusable low-level parallel file system CAP components.

2. An extent access request must be directed to an ExtentServer thread located on the SP node where the
accessed disk (i.e. the disk where the desired extent file resides) is hooked onto.

3. A processing request is a token that is redirected to a ComputeServer thread for performing an
application-specific or a library-specific processing operation on extent data.

4. In other words, the ExtentServer[0] thread accesses extents located only in extent files stored in the 0th

and 1st virtual disks.
5-93

when opening a parallel file, PS2 returns a table of VirtualDiskIndex specifying for each extent file its location, i.e.
on which virtual disk it resides. For example, the VirtualDiskIndex[k] value specifies the index of the virtual disk

where the kth extent file resides. Based on the location of the extent files making up a parallel file (the
VirtualDiskIndex mapping table), application or library programmers are able to redirect extent access requests
and processing requests using the two macros shown in Programs 5-3 and 5-4.

Program 5-3 shows the macro converting the index of the virtual disk where the kth extent file resides
(VirtualDiskIndex[k]) to a virtual disk server index designing the ExtentServer thread that is able to access the

extents in that extent file. Since PS2 evenly distributes the virtual disks between the VirtualDiskServer
hierarchical processes, i.e. the ExtentServer threads (Figure 5-7), a virtual disk server index is computed by
dividing (integer division) a virtual disk index by the number of virtual disks assigned per VirtualDiskServer

hierarchical process (i.e. NumberOfVirtualDisks / NumberOfVirtualDiskServers). Note that PS2 imposes that the
NumberOfVirtualDisks be multiple of the NumberOfVirtualDiskServers.

Program 5-4 shows the macro converting the index of the virtual disk where the kth extent file resides
(VirtualDiskIndex[k]) to a compute server index designing the ComputeServer thread located in the same address

space as the ExtentServer thread accessing extents in that extent file. Since PS2 evenly distributes the virtual disks
between the ComputeServer threads (Figure 5-7), a compute server index is computed by dividing (integer
division) a virtual disk index by the number of virtual disks assigned per ComputeServer threads (i.e.

NumberOfVirtualDisks / NumberOfComputeServers). Note that PS2 imposes that the NumberOfVirtualDisks be
multiple of the NumberOfComputeServers.

Figure 5-7. How PS2 assigns the virtual disks to the ExtentServer threads and how PS2, thanks to a CAP

configuration file, distributes the VirtualDiskServer[].ExtentServer threads and the ComputeServer[]

threads onto a PS2 server architecture

Program 5-3. Macro that convert a virtual disk index to a virtual disk server index

SP Node[0] SP Node[1] SP Node[2]

ComputeServer[0]

ComputeServer[1]

ComputeServer[2]

0

1

2

3

4

5

ComputeServer[3]

ComputeServer[4]

ComputeServer[5]

6

7

8

9

10

11

ComputeServer[6]

ComputeServer[7]

ComputeServer[8]

12

13

14

15

16

17

VirtualDiskIndex VirtualDiskServerIndex

VirtualDiskServer[0].
ExtentServer

ComputeServerIndex

VirtualDiskServer[1].
ExtentServer

VirtualDiskServer[2].
ExtentServer

VirtualDiskServer[3].
ExtentServer

VirtualDiskServer[4].
ExtentServer

VirtualDiskServer[5].
ExtentServer

1 inline int ToVirtualDiskServerIndex(int virtualDiskIndex)
2 {
3 return virtualDiskIndex / (NumberOfVirtualDisks / NumberOfVirtualDiskServers);
4 } // end ToDiskServerIndex
5-94

Program 5-5 shows an example on how to redirect extent access requests on ExtentServer threads and processing
requests on ComputeServer threads based on the indices of the extent files making up a parallel file (in Figure 5-5,
ExtentFileIndex = 2). At line 5, the processing request is redirected to the ComputeServer thread located in the

same address space as the ExtentServer thread at line 7, i.e. the ExtentServer thread accessing extents in the 2nd

extent file. At line 7, the extent access request is redirected to the ExtentServer thread accessing extents in the 2nd

extent file. By doing this, application or library programmers are able to redirect the extent access requests to SP
nodes where the extent files reside, i.e. for better performance, each SP node issues disk I/O requests only to
locally hooked physical disks. Moreover, programmers are also able to redirect the processing requests on the
same SP nodes where the extent access requests are performed.

5.8 Synthesizing the PS2 parallel storage and processing server using

the CAP computer-aided parallelization tool

The PS2 server process hierarchy is composed of 4 types of CAP threads:
• There is an InterfaceServer thread responsible for coordinating parallel file directory operations, i.e. open

parallel file, close parallel file, create parallel file, delete parallel file, create directory, delete directory, and
list directory. The InterfaceServer thread maintains a list of open parallel files and a list of ongoing file
operations so as to be able to resolve race conditions on files (parallel files and directories), e.g. when
simultaneously a first application thread creates a parallel file and a second application thread deletes the
directory into which the first thread wants to create the parallel file. In case of a race condition, the

InterfaceServer thread serializes the offending parallel file directory operations preventing PS2 from
becoming inconsistent.

• There are ExtentFileServer threads offering extent file directory operations, i.e. open extent file, close extent
file, create extent file, delete extent file, create extent file directory, delete extent file directory, and list extent
file directory. Each ExtentFileServer thread is based on an extent-oriented single-disk file system, called EFS
Extent File System (Section 5.10). Since the extent file directory calls of EFS (open, close, create, delete, list)
are synchronous, a given ExtentFileServer thread can handle one extent file directory request at a time, i.e.
the extent file directory operations are processed by an ExtentFileServer thread sequentially one after the
other without any overlapping with subsequent extent file directory operations; even if the subsequent extent
file directory operations involve different virtual disks, e.g. the first extent file directory operation is to create
an extent file in “C:\PsPs\Disk1” and the second extent file directory operation is to delete an extent file in
“D:\PsPs\Disk2”. Since we assume that simultaneous extent file directory operations are rare, no effort has
been made to make the ExtentFileServer work asynchronously.

• There are ExtentServer threads offering extent access operations, i.e. read extent, write extent, and delete
extent. As the ExtentFileServer threads, each ExtentServer thread is based on EFS (Section 5.10) for reading,
writing and deleting extents. Contrary to the extent file directory calls, the extent calls of EFS are

Program 5-4. Macro that convert a virtual disk index to a compute server index

Program 5-5. Thanks to the ToComputeServerIndex and ToVirtualDiskServerIndex macros, and the

VirtualDiskIndex table of a parallel file, application or library programmers are able to redirect extent

access requests to the ExtentServer thread capable of accessing extents in the desired extent file (in figure

the 2nd extent file) and to redirect processing operations to the ComputeServer thread located in the same

address space as the ExtentServer thread accessing extents in the desired extent file (in figure the 2nd extent

file)

1 inline int ToComputeServerIndex(int virtualDiskIndex)
2 {
3 return virtualDiskIndex / (NumberOfVirtualDisks / NumberOfComputeServers);
4 } // end ToComputeServerIndex

1 operation Ps2ServerT::ParallelIOAndComputeOperation
2 in ...
3 out ...
4 {
5 ComputeServer[ToComputeServerIndex(thisTokenP->VirtualDiskIndex[2])].ProcessingOperation
6 >->

7 VirtualDiskServer[ToVirtualDiskServerIndex(thisTokenP->VirtualDiskIndex[2])].ExtentServer.WriteExtent
8 } // end operation Ps2ServerT::ParallelIOAndComputeOperation

No of extent file
5-95

asynchronous thus enabling a single ExtentServer thread to read, write, and delete extents in parallel from
multiple virtual disks. Moreover, the use of asynchronous I/O calls allows to pipeline I/O requests on each
I/O device, i.e. to have more than one outstanding I/O request per virtual disk (Section 4.2, filling factor).
Recent disks benefit from receiving several I/O requests; this improves the efficiency of their advanced
technologies such as the rotational-seek sorting [Patwardhan94] and multiple-head parallel access
[Sutton94].

• There are ComputeServer threads responsible for handling application- or library- specific processing
operations. A ComputeServer thread, thanks to the CAP formalism (Section 3.7, additional operation
declaration), is fully extensible (or customizable). By default a ComputeServer thread does not offer any
sequential operations. Application or library programmers are free to add processing operations to
ComputeServer threads and to combine these added functionalities with the predefined low-level parallel file
access components offered by the ExtentServer threads.

An ExtentFileServer thread grouped with an ExtentServer thread represents a VirtualDiskServer hierarchical CAP
process. Having two threads, one offering extent file directory operations and the other offering extent access
operations, per VirtualDiskServer process enables extents to be asynchronously read, written, and deleted, with
one thread, while the other thread is synchronously running extent file directory operations. Moreover, extent
access operations can be handled at a higher priority than extent file directory operations by having the priority of
the ExtentServer thread greater than the priority of the ExtentFileServer thread.

We can assign several virtual disks to a same VirtualDiskServer process, i.e. a single ExtentFileServer thread and
a single ExtentServer thread access asynchronously extent files located on different virtual disks. This feature is
essential for reducing the number of running threads per SP nodes. Although threads are lighter than Windows NT
processes, they still require memory and consume resources such as the processor to run the scheduler for a
context switching. For example, we have demonstrations where a single PC must handle up to 60 virtual disks.
For these kind of applications, it would be ridiculous to have 60 VirtualDiskServer processes, i.e. 120 threads,
when 2 threads are sufficient.

Figure 5-8 shows an example on how the PS2 threads can be mapped onto a PS2 server comprising N SP nodes.
On the client side, the application threads and the InterfaceServer thread are running. On each SP node, an
ExtentFileServer thread, an ExtentServer thread, and a number of ComputeServer threads are running. The
application threads communicate with the InterfaceServer thread for all parallel file directory operations. The
InterfaceServer thread communicates with the ExtentFileServer threads to execute these parallel file directory
operations. In order to maintain the consistency between the virtual disks, an application thread never
communicates directly with the ExtentFileServer; for example for creating an extent file. On the other hand,
application threads communicate directly with the ExtentServer threads to read extents, write extents, and delete
extents. For pipelined parallel I/O and compute operations, the application thread, the ComputeServer threads and
the ExtentServer threads interact with each other as specified in the corresponding CAP parallel constructs.

The thread-to-process mapping defined by a configuration text file (Sections 3.6 and 5.11) is under the control of

application or library programmers. According to the PS2 server architecture and to the application itself,

programmers may adapt the PS2 process and thread configuration. For example application or library
programmers may:
• increase the number of ComputeServer threads per SP nodes in order to benefit from multiprocessor SP PC’s,
• map the ComputeServer threads into the same Windows NT processes as the ExtentServer threads so as to

benefit from the shared memory to exchange data extents without copies,
• map the ComputeServer threads onto specific compute PC’s and map the ExtentServer threads onto specific

I/O PC’s,
• map the InterfaceServer thread on one of the SP nodes, either in a separate Windows NT process or in a same

Windows NT process as a ComputeServer thread or as an ExtentServer thread.

Although the mapping of the PS2 threads is under the control of application programmers, some restrictions are
imposed:
• There must be always a single InterfaceServer thread somewhere in the network, either in a pre-existing

Windows NT process or in a completely separate Windows NT process.
• Since an ExtentFileServer thread and its companion ExtentServer thread (forming together a

VirtualDiskServer hierarchical CAP process) share extent file objects through a shared memory, i.e. the
ExtentFileServer thread creates and deletes extent file objects and the ExtentServer thread uses these objects
for reading, writing, and deleting extents, they must be mapped into a same Windows NT process.
5-96

• The VirtualDiskServer processes, i.e. the ExtentFileServer threads and the ExtentServer threads, must be
located on PC’s where the assigned virtual disks, i.e. the NTFS directories, are accessible. For example, if a
local NTFS directory, e.g. “C:\PsPs\Disk2”, is assigned to a VirtualDiskServer process, then the
VirtualDiskServer process must reside on the PC where the local NTFS directory exists. On the other hand, if
the assigned directory is a network directory specified as a UNC name (NFS equivalent), e.g.
“\\FileServer\PsPs\Disk2”, then the VirtualDiskServer process may reside anywhere in the network.

• Since several virtual disks can be assigned to a same VirtualDiskServer process and accessing a physical disk
is more efficient through its local NTFS directory, e.g. “C:\PsPs\Disk2”, than through its network directory,
e.g. “\\FileServer\PsPs\Disk2”, each SP node should run as many VirtualDiskServer processes as processors
(independently of the number of disks hooked on the SP node). For example, if 15 disks are hooked on a
Bi-Pentium PC, two VirtualDiskServer processes are enough to handle I/O accesses on these 15 disks.

5.8.1 CAP specification of the PS2 server

Program 5-6 shows the CAP declaration of the parallel storage and processing server (Ps2ServerT) hierarchical
process (lines 1-40). At line 42, the Ps2ServerT process declaration is instantiated giving a Ps2Server hierarchical
process. The Ps2Server hierarchical process is composed of one InterfaceServer thread (line 4), several
VirtualDiskServer hierarchical processes (line 5), and several ComputeServer threads (line 6). As already
mentioned in Section 5.8, the InterfaceServer thread coordinates parallel file directory operations (open parallel

Figure 5-8. PS2 threads and how they are mapped onto a PS2 server architecture

SP Node[0]

Local Area
Network

SP Node[1] SP Node[N-1]

InterfaceServerapplication threads

Client

ComputeServer

ComputeServer

ComputeServer

ExtentFileServerExtentServer

ComputeServer

ComputeServer

ComputeServer

ExtentFileServerExtentServer

ComputeServer

ComputeServer

ComputeServer

ExtentFileServerExtentServer

VirtualDiskServer VirtualDiskServer VirtualDiskServer
5-97

file, close parallel file, create parallel file, delete parallel file, create directory, delete directory, and list directory)
and resolves race conditions on parallel files when the Ps2Server hierarchical process is faced with simultaneous
parallel file directory access requests. The VirtualDiskServer hierarchical processes offer extent file directory
operations (open extent file, close extent file, create extent file, delete extent file, create extent file directory,
delete extent file directory, and list extent file directory) and extent access operations (read extent, write extent,
and delete extent) on extent files stored on virtual disks. The ComputeServer threads are fully customizable by
application or library programmers for offering processing operations to be combined with extent access
operations.

The Ps2Server hierarchical process offers 8 predefined parallel operations for manipulating parallel files (lines
9-27) and directories (lines 29-39). The declaration of the input tokens (those ending with IT), i.e. the input of
operations, and the declaration of the output tokens (those ending with OT), i.e. the output of operations, are
shown in Program 5-7. Each output tokens contains an error code reporting possible errors, e.g. parallel file not
found.

A brief description of each parallel operation offered by the Ps2Server hierarchical process (Program 5-6) is given
below (line numbers refer to Program 5-7):
• Ps2ServerT::LocateParallelFile

The Ps2ServerT::LocateParallelFile operation locates the extent files making up a parallel file, i.e. locates on
which virtual disks the extent files reside. The input of the operation is the path name of the parallel file (line
3). The output is the virtual disk indices where the extent files reside (line 8), i.e. VirtualDiskIndex[k] index

corresponds to the index of the virtual disk where the kth extent file (i.e. whose extent file index is k) resides.
This parallel operation is internally used by the Ps2ServerT::OpenParallelFile and
Ps2ServerT::DeleteParallelFile operations for locating extent files before opening or deleting them.

• Ps2ServerT::OpenParallelFile

The Ps2ServerT::OpenParallelFile operation opens a parallel file, i.e. opens all the extent files making up the
parallel file. Once a parallel file is open one can read from, write to, or delete from the extent files extents
using the extent access operations offered by the VirtualDiskServer[VirtualDiskServerIndex].ExtentServer
threads (Program 5-14). The input of the operation is the path name of the parallel file (line 14) and the
opening flags (line 15). The opening flags specify if the parallel file is open for only reading extents, only
writing extents, or both, and specify also the share modes, i.e. if subsequent opens can be performed on the
parallel file for read or write access. The output of the operation is a parallel file descriptor (line 20), the
virtual disk indices where the extent files reside (line 21), and the extent file descriptors (line 22) so that
application threads may directly access the VirtualDiskServer[VirtualDiskServerIndex].ExtentServer threads
for reading, writing, or deleting extents.

• Ps2ServerT::CloseParallelFile

The Ps2ServerT::CloseParallelFile operation closes an open parallel file, i.e. closes all the extent files
making up the parallel file. The input of the operation is the parallel file descriptor (line 28) and the output is
merely the error code (line 33). Once a parallel file is closed, its descriptor becomes invalid.

• Ps2ServerT::CreateParallelFile

The Ps2ServerT::CreateParallelFile operation creates a parallel file, i.e. creates all the extent files making up
the parallel file. The input of the operation is the path name of the parallel file (line 38) and the virtual disk

Program 5-6. CAP specification of the PS2 server (detailed version)

1 process Ps2ServerT
2 {
3 subprocesses:
4 InterfaceServerT InterfaceServer;
5 VirtualDiskServerT VirtualDiskServer[];
6 ComputeServerT ComputeServer[];
7
8 operations:
9 LocateParallelFile
10 in LocateParallelFileIT* InputP
11 out LocateParallelFileOT* OutputP;
12
13 OpenParallelFile
14 in OpenParallelFileIT* InputP
15 out OpenParallelFileOT* OutputP;
16
17 CloseParallelFile
18 in CloseParallelFileIT* InputP
19 out CloseParallelFileOT* OutputP;
20

21 CreateParallelFile
22 in CreateParallelFileIT* InputP
23 out CreateParallelFileOT* OutputP;
24
25 DeleteParallelFile
26 in ps2DeleteParallelFileIT* InputP
27 out ps2DeleteParallelFileOT* OutputP;
28
29 CreateDirectory
30 in CreateDirectoryIT* InputP
31 out CreateDirectoryOT* OutputP;
32
33 DeleteDirectory
34 in DeleteDirectoryIT* InputP
35 out DeleteDirectoryOT* OutputP;
36
37 ListDirectory
38 in ListDirectoryIT* InputP
39 out ListDirectoryOT* OutputP;
40 }; // end process ps2ServerT
41
42 Ps2ServerT Ps2Server;
5-98

indices where to create the extent files (line 39). PS2 cannot create more than one extent file per virtual disk,

e.g. VirtualDiskIndex[3] = 8 and VirtualDiskIndex[6] = 8, meaning that the 3rd and the 6th extent files are to

be created on the 8th virtual disk, is illegal. The output of the operation is merely the error code (line 44).
• Ps2ServerT::DeleteParallelFile

The Ps2ServerT::DeleteParallelFile operation deletes a parallel file, i.e. deletes all the extent files making up
the parallel file. The input of the operation is the path name of the parallel file (line 49) and the output is
merely the error code (line 54).

• Ps2ServerT::CreateDirectory

The Ps2ServerT::CreateDirectory operation creates a directory, i.e. creates an extent file directory on each
virtual disk. The input of the operation is the path name of the directory (line 59) and the output is merely the
error code (line 74).

• Ps2ServerT::DeleteDirectory

The Ps2ServerT::DeleteDirectory operation deletes a directory, i.e. deletes all the extent file directory on
each virtual disk. The input of the operation is the path name of the directory (line 69) and the output is
merely the error code (line 74). A directory can be deleted only if all the extent file directories are empty.

• Ps2ServerT::ListDirectory

The Ps2ServerT::ListDirectory operation lists the contents of a directory, i.e. lists the contents of the extent

file directory on each virtual disk and checks the coherence of the parallel files, i.e. for each parallel file PS2

ensures that all the extent files making up the parallel file are present and coherent. The input of the operation
is the path name of the directory (line 79) and the output is the contents of the directory (line 84). A
DirEntryT structure (line 84) contains a path name and a flag indicating whether the path name refers to a
parallel file or a directory.

Program 5-7. CAP specification of the PS2 server tokens

1 token LocateParallelFileIT
2 {
3 PathNameT PathName;
4 }; // end LocateParallelFileIT
5
6 token LocateParallelFileOT
7 {
8 ArrayT<int> VirtualDiskIndex;
9 int ErrorCode;
10 }; // end LocateParallelFileOT
11 --
12 token OpenParallelFileIT
13 {
14 PathNameT PathName;
15 int OpeningFlags;
16 }; // end token OpenParallelFileIT
17
18 token OpenParallelFileOT
19 {
20 int ParallelFileDescriptor;
21 ArrayT<int> VirtualDiskIndex;
22 ArrayT<int> ExtentFileDescriptor;
23 int ErrorCode;
24 }; // end token OpenParallelFileOT
25 --
26 token CloseParallelFileIT
27 {
28 int ParallelFileDescriptor;
29 }; // end token CloseParallelFileIT
30
31 token CloseParallelFileOT
32 {
33 int ErrorCode;
34 }; // end token CloseParallelFileOT
35 --
36 token CreateParallelFileIT
37 {
38 PathNameT PathName;
39 ArrayT<int> VirtualDiskIndex;
40 }; // end token CreateParallelFileIT
41
42 token CreateParallelFileOT
43 {
44 int ErrorCode;
45 }; // end token CreateParallelFileOT
46 --

47 token DeleteParallelFileIT
48 {
49 PathNameT PathName;
50 }; // end token DeleteParallelFileIT
51
52 token DeleteParallelFileOT
53 {
54 int ErrorCode;
55 }; // end token DeleteParallelFileOT
56 --
57 token CreateDirectoryIT
58 {
59 PathNameT PathName;
60 }; // end token CreateDirectoryIT
61
62 token CreateDirectoryOT
63 {
64 int ErrorCode;
65 }; // end token CreateDirectoryOT
66 --
67 token DeleteDirectoryIT
68 {
69 PathNameT PathName;
70 }; // end token DeleteDirectoryIT
71
72 token DeleteDirectoryOT
73 {
74 int ErrorCode;
75 }; // end token DeleteDirectoryOT
76 --
77 token ListDirectoryIT
78 {
79 PathNameT PathName;
80 }; // end token ListDirectoryIT
81
82 token ListDirectoryOT
83 {
84 ArrayT<DirEntryT> List;
85 int ErrorCode;
86 }; // end token ListDirectoryOT
5-99

5.8.2 CAP specification of the PS2 interface server

Program 5-8 shows the CAP declaration of the InterfaceServerT thread (lines 12-20). For the sake of simplicity,
sequential operations (line 19) are not shown. As shown in Program 5-6, the Ps2Server hierarchical process
contains one InterfaceServer thread (line 4) coordinating the parallel file directory operations and maintaining the
consistency of the virtual disks. Since all parallel file directory operations are handled by the InterfaceServer
thread, it forms a single access point for all these operations. This might become a congestion point limiting the

scalability of PS2 when increasing the number application threads intensively doing parallel file directory

operations. However, PS2 has been designed assuming that parallel file opening and creation operations are rare.

PS2 is a library of reusable low-level parallel file system components linked within an application comprising
several application threads, but not thousands, mostly doing parallel computations and parallel I/O’s directly with
the ComputeServer threads and the ExtentServer threads without involving the InterfaceServer thread. Therefore,
within that context, having a single access point for parallel file directory operations, i.e. a single InterfaceServer
thread, should not degrade performances.

The InterfaceServer thread (its declaration is shown in Program 5-8) maintains a table of all open parallel files
(line 16). Each time a parallel file is opened, the InterfaceServer thread first checks whether that parallel file is
already open or not so as to verify if the opening flags (line 6) allow subsequent opening operations. The
reference count value (line 9) indicates how many times a parallel file has been opened, i.e. how many parallel file
descriptors refer to that entry.

In order to maximize the utilization of the ExtentFileServer threads, the InterfaceServer thread is designed so as
to be able to execute simultaneously several parallel file directory operations, e.g. to create a parallel file
(consisting of creating the extent files), to delete a directory (consisting of deleting the extent file directories), and
to open a parallel file (consisting of opening the extent files). However, there are race conditions that must be

resolved in order to keep stored parallel files consistent and PS2 coherent. For example, a first application thread
opens the “/image.ps2” parallel file and simultaneously a second application thread deletes that parallel file. In
order to avoid deleting an open parallel file leading to an incoherence, the InterfaceServer thread detects race
conditions and serializes the offending parallel file directory operations, i.e. executes one offending operation
after the other is completed.

Program 5-9 shows the declaration of the ConcurrentAccessResolverT class resolving race conditions on parallel
files and directories. The InterfaceServer thread contains such an object (Program 5-8, line 15) for serializing
conflicting operations. Each time an operation on a parallel file is started, e.g. the Ps2ServerT::OpenParallelFile
operation, the parallel file is locked using the LockParallelFile method (line 4). Once the operation is completed,
the parallel file is unlocked using the UnlockParallelFile method (line 5). Each time an operation on a directory is
started, e.g. the Ps2ServerT::CreateDirectory operation, the directory is locked using the LockDirectory method
(line 6). Once the operation is completed the directory is unlocked using the UnlockDirectory method (line 7).
The return boolean values (lines 4 and 6) indicate whether the parallel file or the directory has been successfully
locked or not.

Program 5-8. CAP specification of the PS2 interface server

1 const int PARALLEL_FILE_TABLE_SIZE = 500;
2
3 struct ParallelFileT
4 {
5 PathNameT PathName;
6 int OpeningFlags;
7 ArrayT<int> VirtualDiskIndex;
8 ArrayT<int> ExtentFileDescriptor;
9 int ReferenceCount;
10 }; // end struct ParallelFileT
11
12 process InterfaceServerT
13 {
14 variables:
15 ConcurrentAccessResolverT ConcurrentAccessResolver;
16 ParallelFileT* ParallelFileTable[PARALLEL_FILE_TABLE_SIZE];
17
18 operations:
19 // ...
20 }; // end process InterfaceServerT
5-100

A parallel file can be locked if it is unlocked and the directory where it resides is also unlocked. A directory can
be locked if it is unlocked, the parent directory is unlocked, and all files (parallel files and directories) contained
in that directory are also unlocked. If a parallel file or a directory cannot be locked, i.e. there are conflicting files
that are locked, the capDoNotCallSuccessor CAP-library function (Section 3.7.1) is applied on the token of the
offending operation (lines 4 and 6, second argument) to temporarily suspend its execution. Once the conflict is
resolved, i.e. the last conflicting file (parallel file or directory) is unlocked, the suspended operation is resumed by
calling the capCallSuccessor CAP-library function (Section 3.7.1) on its token. This strategy ensures that once a
parallel file or a directory is locked, the InterfaceServer thread can safely perform the required parallel file
directory operation on that file without having in parallel another parallel file directory operation on the same

parallel file or on the same directory possibly leading to an incoherence within PS2.

5.8.3 CAP specification of the PS2 compute server

Program 5-10 shows the declaration of the ComputeServerT thread. A ComputeServerT thread does not offer any

predefined sequential operations. Application or library developers are free to extend the functionalities of PS2,

i.e. to customize PS2, by adding library-specific or application-specific processing operations on ComputeServer
threads contained in the Ps2Server hierarchical process (Program 5-6, line 6). Thanks to the declaration of
additional operations (Program 3-7), these added application-specific processing operations are declared and
defined in separate application-specific CAP source files.

5.8.4 CAP specification of the PS2 virtual disk server

Program 5-11 shows the CAP declaration of the VirtualDiskServerT hierarchical process which comprises an
ExtentFileServer thread (line 15) and an ExtentServer thread (line 16). A VirtualDiskServerT hierarchical process
does not offer any parallel operations. It is merely used for declaring variables shared among the ExtentFileServer
thread and the ExtentServer thread (line 12). Thanks to the asynchronous extent access operations of EFS (Section
5.10), a same VirtualDiskServerT hierarchical process can serve in parallel several virtual disks. For each served
virtual disk, a VirtualDiskT structure (lines 3-7) is created comprising an EFS object (line 5) and a table of open
extent files.

Program 5-9. Concurrent accesses to a same directory or a same parallel file are resolved using a

ConcurrentAccessResolverT object

Program 5-10. CAP specification of the PS2 computer server

Program 5-11. CAP specification of the PS2 virtual disk server

1 class ConcurrentAccessResolverT
2 {
3 public:
4 bool LockParallelFile(const PathNameT& pathName, capTokenT* tokenP);
5 void UnlockParallelFile(const PathNameT& pathName);
6 bool LockDirectory(const PathNameT& pathName, capTokenT* tokenP);
7 void UnlockDirectory(const PathNameT& pathName);
8 }; // end class ConcurrentAccessResolverT

1 process ComputeServerT
2 {
3 operations: // must remain empty
4 }; // end process ComputeServerT

1 const int EXTENT_FILE_TABLE_SIZE = 500;
2
3 struct VirtualDiskT
4 {
5 ExtentFileSystemT ExtentFileSystem;
6 ExtentFileT* ExtentFileTable[EXTENT_FILE_TABLE_SIZE];
7 }; // end struct VirtualDiskT
8

9 process VirtualDiskServerT
10 {
11 variables:
12 VirtualDiskT VirtualDisk[];
13
14 subprocesses:
15 ExtentFileServerT ExtentFileServer;
16 ExtentServerT ExtentServer;
17
18 operations:
19 }; // end VirtualDiskServerT
5-101

5.8.5 CAP specification of the PS2 extent file server

Program 5-12 shows the CAP declaration of the ExtentFileServerT thread offering extent file directory operations
(open extent file, close extent file, create extent file, delete extent file, create extent file directory, delete extent
file directory, list extent file directory). Each of these extent file directory operations are implemented using the
extent file system described in Section 5.10. An ExtentFileServerT thread offers 10 predefined operations for
manipulating extent files (lines 12-26 and 40-42), extent file directories (lines 28-38), and extent file systems
(lines 4-10). As already mentioned in Section 5.8, all these extent file directory operations are synchronous, i.e. an
ExtentFileServerT thread executes one operation at a time. These 10 extent file directory operations are internally
used by the InterfaceServer thread when executing parallel file directory operations. Under no circumstances
should programmers use the extent file directory operations offered by an
VirtualDiskServer[VirtualDiskServerIndex].ExtentFileServer thread contained in the Ps2Server hierarchical
process hierarchy (Program 5-6, line 5).

The declaration of the input tokens (those ending with IT), i.e. the input of operations, and the declaration of the
output tokens (those ending with OT), i.e. the output of operations, are shown in Program 5-13. Since an
ExtentFileServer thread can serve several virtual disks, each input token contains the index of the virtual disk
(VirtualDiskIndex) to which the extent file directory operation refers (e.g. line 3). This VirtualDiskIndex value is
an index within the table of virtual disks of the VirtualDiskServer hierarchical process (Program 5-11, line 12).
Each output token contains an error code reporting possible errors, e.g. extent file not found.

A brief description of each sequential operation offered by an ExtentFileServerT thread (Program 5-12) is given
below (line numbers refer to Program 5-13):
• ExtentFileServerT::MountExtentFileSystem

The ExtentFileServerT::MountExtentFileSystem operation mounts an NTFS directory onto a virtual disk, i.e.
this NTFS directory, either a local NTFS directory, e.g. “C:\PsPs\Disk2” or a network NTFS directory, e.g.
“\\FileServer\PsPs\Disk2”, becomes the root of the virtual disk. Subsequent operations on that virtual disk are
relative to that NTFS directory. For example, creating the extent file “/Archive/Old/Sun-Star.ps2” (Figure
5-5) creates an NTFS file starting from the root directory, e.g. “C:\PsPs\Disk2\Archive\Old\Sun-Star.ps2” or
“\\FileServer\PsPs\Disk2\Archive\Old\Sun-Star.ps2”. This operation must be called once before any other
operations. The input of the operation is the path name of the root directory (line 4) to mount and a boolean
value indicating if its a read only virtual disk (line 5). The output of the operation is merely the error code
(line 10).

• ExtentFileServerT::UnmountExtentFileSystem

The ExtentFileServerT::UnmountExtentFileSystem operation unmounts the NTFS root directory from a
virtual disk. Before calling this operation, all extent files must be closed. The input of the operation is the
index of a mounted virtual disk (line 15) and the output is merely the error code (line 20).

• ExtentFileServerT::OpenExtentFile

The ExtentFileServerT::OpenExtentFile operation opens an extent file. The open extent file object
(ExtentFileT class) is kept in the extent file table (Program 5-11, line 6) of the virtual disk so that subsequent
operations may refer to that extent file. The input of the operation is the path name of the extent file (line 26)
and the opening flags (line 27) specifying whether to open the extent file for only reading extents, only

Program 5-12. CAP specification of the PS2 extent file server

1 process ExtentFileServerT
2 {
3 operations:
4 MountExtentFileSystem
5 in MountExtentFileSystemIT* InputP
6 out MountExtentFileSystemOT* OutputP;
7
8 UnmountExtentFileSystem
9 in UnmountExtentFileSystemIT* InputP
10 out UnmountExtentFileSystemOT* OutputP;
11
12 OpenExtentFile
13 in OpenExtentFileIT* InputP
14 out OpenExtentFileOT* OutputP;
15
16 CloseExtentFile
17 in CloseExtentFileIT* InputP
18 out CloseExtentFileOT* OutputP;
19
20 CreateExtentFile
21 in CreateExtentFileIT* InputP
22 out CreateExtentFileOT* OutputP;
23

24 DeleteExtentFile
25 in DeleteExtentFileIT* InputP
26 out DeleteExtentFileOT* OutputP;
27
28 CreateExtentFileDirectory
29 in CreateExtentFileDirectoryIT* InputP
30 out CreateExtentFileDirectoryOT* OutputP;
31
32 DeleteExtentFileDirectory
33 in DeleteExtentFileDirectoryIT* InputP
34 out DeleteExtentFileDirectoryOT* OutputP;
35
36 ListExtentFileDirectory
37 in ListExtentFileDirectoryIT* InputP
38 out ListExtentFileDirectoryOT* OutputP;
39
40 LocateExtentFile
41 in LocateExtentFileIT* InputP
42 out LocateExtentFileOT* OutputP;
43 }; // end process ExtentFileServerT
5-102

writing extents, or both. Moreover, there is a flag for disabling the EFS extent cache for this particular extent
file, i.e. subsequent read and write extent operations to that extent file will go directly to the disk without
visiting the extent cache. The output of the operation is the extent file descriptor which is an index in the
extent file table of the virtual disk (Program 5-11, line 6).

• ExtentFileServerT::CloseExtentFile

The ExtentFileServerT::CloseExtentFile operation closes an extent file. Before closing an extent files, all
operations on that extent file, e.g. ExtentServerT::ReadExtent, must be completed. The input of the operation
is the extent file descriptor (line 39) and the output is merely the error code (line 44). Once an extent file is
closed, its descriptor becomes invalid and can be reallocated to another extent file.

• ExtentFileServerT::CreateExtentFile

The ExtentFileServerT::CreateExtentFile operation creates an extent file. The input of the operation is the
path name of the extent file (line 50), its extent file index (remember that all extent files making up a parallel
file are numbered from zero, line 51) and the striping factor of the parallel file (line 52). The stored extent file
index is used when the InterfaceServer thread locates the extent files making up a parallel file
(Ps2ServerT::LocateParallelFile operation). The output of the operation is merely the error code (line 57).

• ExtentFileServerT::DeleteExtentFile

The ExtentFileServerT::DeleteExtentFile operation deletes an extent file from a virtual disk. The input of the
operation is the path name of the extent file (line 63) and the output is merely the error code (line 68).

• ExtentFileServerT::CreateExtentFileDirectory

The ExtentFileServerT::CreateExtentFileDirectory operation creates an extent file directory on the virtual
disk. The input of the operation is the path name of the extent file directory (line 74) and the output is merely
the error code (line 79).

• ExtentFileServerT::DeleteExtentFileDirectory

The ExtentFileServerT::DeleteExtentFileDirectory operation deletes an extent file directory from the virtual
disk. The input of the operation is the path name of the extent file directory (line 85) and the output is merely
the error code (line 90).

• ExtentFileServerT::ListExtentFileDirectory

The ExtentFileServerT::ListExtentFileDirectory operation lists the contents of an extent file directory. The
input of the operation is the path name of the extent file directory (line 96) and the output is the contents of
the directory (line 101). An ExtentDirEntryT structure contains a path name, a flag indicating whether the
path name refers to an extent file or an extent file directory, and in case of an extent file its extent file index
and the striping factor of the parallel file.

• ExtentFileServerT::LocateExtentFile

The ExtentFileServerT::LocateExtentFile operation is used to retrieve the extent file index of an extent file.
This operation is used by the InterfaceServer thread for locating the extent files making up a parallel file
(Ps2ServerT::LocateParallelFile operation). The input of the operation is the path name of the extent file
(line 108) and the output is its extent file index (line 113) and the striping factor of the parallel file (line 114).

5.8.6 CAP specification of the PS2 extent server

Program 5-14 shows the CAP declaration of the ExtentServerT thread offering 3 operations for reading from,
writing to, and deleting from extent files extents. These reusable low-level extent access operations can be
combined with application-specific or library-specific processing operations offered by the ComputeServer
threads (Program 5-6, line 6). All these extent access operations are asynchronous, i.e. an ExtentServer thread
performs extent accesses asynchronously without blocking. This enables a single ExtentServer thread to read in
parallel from, or write in parallel to several extent files located on different virtual disks.

The declaration of the input tokens (those ending with IT), i.e. the input of operations, and the declaration of the
output tokens (those ending with OT), i.e. the output of operations, are shown in Program 5-15. Since an
ExtentServerT thread can serve several virtual disks, each input token contains the index of the virtual disk
(VirtualDiskIndex) to which the extent access operation refers (e.g. line 3). This VirtualDiskIndex value is an
index within the table of virtual disks of the DiskServerT process (Program 5-11, line 12). Each output token
contains an error code reporting possible errors, e.g. virtual disk full.

A brief description of each operation offered by an ExtentServerT thread (Program 5-14) is given below (line
numbers refer to Program 5-15):
• ExtentServerT::ReadExtent

The ExtentServerT::ReadExtent operation reads an extent from an extent file. If the extent has not been
previously written, an empty extent is returned (it is not an error). The input of the operation is the descriptor
5-103

of the extent file (line 4) and the local extent index (line 5), i.e. which extent has to be read? The output of the
operation is the extent (line 10) comprising a buffer with the data (header and body), the size of the header in
bytes, and the size of the body in bytes.

Program 5-13. CAP specification of the PS2 extent file server tokens

Program 5-14. CAP specification of the PS2 extent server

1 token MountExtentFileSystemIT
2 {
3 int VirtualDiskIndex;
4 PathNameT RootPathName;
5 bool ReadOnlyExtentFileSystem;
6 }; // end token MountExtentFileSystemIT
7
8 token MountExtentFileSystemOT
9 {
10 int ErrorCode;
11 }; // end token MountExtentFileSystemOT
12 ---
13 token UnmountExtentFileSystemIT
14 {
15 int VirtualDiskIndex;
16 }; // end token UnmountExtentFileSystemIT
17
18 token UnmountExtentFileSystemOT
19 {
20 int ErrorCode;
21 }; // end token UnmountExtentFileSystemOT
22 ---
23 token OpenExtentFileIT
24 {
25 int VirtualDiskIndex;
26 PathNameT PathName;
27 int OpeningFlags;
28 }; // end token OpenExtentFileIT
29
30 token OpenExtentFileOT
31 {
32 int ExtentFileDescriptor;
33 int ErrorCode;
34 }; // end token OpenExtentFileOT
35 ---
36 token CloseExtentFileIT
37 {
38 int VirtualDiskIndex;
39 int ExtentFileDescriptor;
40 }; // end token CloseExtentFileIT
41
42 token CloseExtentFileOT
43 {
44 int ErrorCode;
45 }; // end token CloseExtentFileOT
46 ---
47 token CreateExtentFileIT
48 {
49 int VirtualDiskIndex;
50 PathNameT PathName;
51 int ExtentFileIndex;
52 int StripingFactor;
53 }; // end token CreateExtentFileIT
54
55 token CreateExtentFileOT
56 {
57 int ErrorCode;
58 }; // end token CreateExtentFileOT
59 ---

60 token DeleteExtentFileIT
61 {
62 int VirtualDiskIndex;
63 PathNameT PathName;
64 }; // end token DeleteExtentFileIT
65
66 token DeleteExtentFileOT
67 {
68 int ErrorCode;
69 }; // end token DeleteExtentFileOT
70 ---
71 token CreateExtentFileDirectoryIT
72 {
73 int VirtualDiskIndex;
74 PathNameT PathName;
75 }; // end token CreateExtentFileDirectoryIT
76
77 token CreateExtentFileDirectoryOT
78 {
79 int ErrorCode;
80 }; // end token CreateExtentFileDirectoryOT
81 ---
82 token DeleteExtentFileDirectoryIT
83 {
84 int VirtualDiskIndex;
85 PathNameT PathName;
86 }; // end token DeleteExtentFileDirectoryIT
87
88 token DeleteExtentFileDirectoryOT
89 {
90 int ErrorCode;
91 }; // end token DeleteExtentFileDirectoryOT
92 ---
93 token ListExtentFileDirectoryIT
94 {
95 int VirtualDiskIndex;
96 PathNameT PathName;
97 }; // end token ListExtentFileDirectoryIT
98
99 token ListExtentFileDirectoryOT
100 {
101 ArrayT<ExtentDirEntryT> List;
102 int ErrorCode;
103 }; // end token ListExtentFileDirectoryOT
104 ---
105 token LocateExtentFileIT
106 {
107 int VirtualDiskIndex;
108 PathNameT PathName;
109 }; // end token LocateExtentFileIT
110
111 token LocateExtentFileOT
112 {
113 int ExtentFileIndex;
114 int StripingFactor;
115 int ErrorCode;
116 }; // end token LocateExtentFileIT

1 process ExtentServerT
2 {
3 operations:
4 ReadExtent
5 in ReadExtentIT* InputP
6 out ReadExtentOT* OutputP;
7
8 WriteExtent
9 in WriteExtentIT* InputP
10 out WriteExtentOT* OutputP;
11
12 DeleteExtent
13 in DeleteExtentIT* InputP
14 out DeleteExtentOT* OutputP;
15 }; // end process ExtentServerT
5-104

• ExtentServerT::WriteExtent

The ExtentServerT::WriteExtent operation writes an extent to an extent file. If the extent exists, i.e. was
previously written, its contents is destroyed. The input of the operation is the descriptor of the extent file (line
17), the local extent index (line 18), i.e. which extent is written, and the extent (line 19). The output is merely
the error code (line 24).

• ExtentServerT::DeleteExtent

The ExtentServerT::DeleteExtent operation deletes an extent from an extent file. If the extent does not exist,
i.e. has not been previously written, the operation does nothing and returns successfully. The input of the
operation is the descriptor of the extent file (line 30) and the index of the extent to delete (line 31). The output
is merely the error code (line 36).

5.9 CAP-based synthesis of the parallel file directory operations

This section describes how the parallel file directory operations offered by the PS2 server (Ps2ServerT
hierarchical process, Program 5-6) are synthesized using the CAP computer-aided parallelization tool. For the
sake of simplicity, only the parallel Ps2ServerT::OpenParallelFile operation is shown. Other parallel file
directory operations are similar.

Figure 5-9 shows the graphical CAP specification of the parallel Ps2ServerT::OpenParallelFile operation. The
input of the macro-dataflow graph is an OpenParallelFileIT token comprising the name of the parallel file to open
and the opening flags. The input token is first redirected to the InterfaceServerT::Stage1 sequential operation
performed by the InterfaceServer thread who locks the parallel file using the ConcurrentAccessResolver object
(Program 5-8, line 15). If the parallel file is already locked, then the capDoNotCallSuccessor CAP-library
function is applied on the token suspending the execution of the Ps2ServerT::OpenParallelFile operation until the
parallel file is unlocked. If there is no error, the InterfaceServerT::Stage1’s output token is redirected to the
InterfaceServerT::Stage2 sequential operation also performed by the InterfaceServer thread. In
InterfaceServerT::Stage2, the parallel file table (Program 5-8, line 16) is browsed in order to check whether the
parallel file is already open or not. If the parallel file is already open, the InterfaceServer thread verifies that
successive opens are allowed, i.e. the parallel file was first open with the appropriate sharing flags. If the parallel
file is not already open, the InterfaceServer thread allocates a new entry within the parallel file table, and the
output token is redirected to the Ps2ServerT::LocateParallelFile parallel operation. The parallel
Ps2ServerT::LocateParallelFile operation is incorporated into the schedule using the design pattern shown in
Section 3.8.5 enabling to transfer essential data through the incorporated operation. The parallel
Ps2ServerT::LocateParallelFile operation locates the extent files making up the parallel file, and if there is no
error, the extent files are then opened in parallel using an indexed parallel CAP construct. The indexed parallel
construct’s input token is divided by a split function into OpenExtentFileIT subtokens (Program 5-13), containing
the name of each of the extent files making up the parallel file. The OpenExtentFileIT subtokens are routed to the
appropriate ExtentFileServer threads, which open the extent files. The ExtentFileServerT::OpenExtentFile
sequential operation performed by each ExtentFileServer threads returns an OpenExtentFileOT token comprising
an extent file descriptor which is merged into the indexed parallel construct’s output token. Once all the extent

Program 5-15. CAP specification of the PS2 extent server tokens

1 token ReadExtentIT
2 {
3 int VirtualDiskIndex;
4 int ExtentFileDescriptor;
5 int ExtentIndex;
6 }; // end token ReadExtentIT
7
8 token ReadExtentOT
9 {
10 ExtentT Extent;
11 int ErrorCode;
12 }; // end token ReadExtentOT
13 ---
14 token WriteExtentIT
15 {
16 int VirtualDiskIndex;
17 int ExtentFileDescriptor;
18 int ExtentIndex;
19 ExtentT Extent;
20 }; // end token WriteExtentIT
21
22 token WriteExtentOT
23 {
24 int ErrorCode;
25 }; // end token WriteExtentOT
26 ---

27 token DeleteExtentIT
28 {
29 int VirtualDiskIndex;
30 int ExtentFileDescriptor;
31 int ExtentIndex;
32 }; // end token DeleteExtentIT
33
34 token DeleteExtentOT
35 {
36 int ErrorCode;
37 }; // end token DeleteExtentOT
5-105

file descriptors are merged, the successor is called. If one of the extent files has not been successfully opened
(partial open), then, for maintaining the parallel file system consistency, all successfully open extent files are
closed using a same indexed parallel CAP construct. Finally, the InterfaceServerT::Stage3 sequential operation
performed by the InterfaceServer thread unlocks the parallel file (Program 5-9), which may resume another
parallel file directory operation waiting for this parallel file to become unlocked (by calling the capCallSuccessor
CAP-library function).

Program 5-16 shows the CAP specification of the parallel ps2Server::OpenParallelFile operation corresponding
to the DAG in Figure 5-9. Split and merge functions are not shown for the sake of simplicity.

Figure 5-9. Graphical CAP specification of the parallel Ps2ServerT::OpenParallelFile operation

Program 5-16. CAP specification of the parallel Ps2ServerT::OpenParallelFile operation

Ps2ServerT::OpenParallelFile
OpenParallelFileIT

?

OpenParallelFileOT

Locate
Parallel

File
Stage1

Open
Extent

File

Open
Extent

File

Stage2 Stage3

Close
Extent

File

Close
Extent

File

? ? ?

error ?

error ¦¦
not first
open?

n

y

error ? error ?

y y n

n n y

1 operation Ps2ServerT::OpenParallelFile
2 in OpenParallelFileIT* InputP
3 out OpenParallelFileOT* OutputP
4 {
5 InterfaceServer.Stage1 // Locks the parallel file
6 >->

7 if (thisTokenP->ErrorCode == 0)
8 (
9 InterfaceServer.Stage2 // Parallel file is already open ?
10 >->

11 if ((thisTokenP->ErrorCode == 0) && (thisTokenP->FirstOpen))
12 (// Lines 13-20: design pattern for incorporating an operation into the schedule
13 parallel (InterfaceServer, remote OpenParallelFileIOT Result1(*thisTokenP))
14 (
15 (
16 GenerateLocateParallelFileRequest, // Split routine
17 LocateParallelFile, // Incorporated operation
18 MergeLocateParallelFileAnswer // Merge routine
19) // end parallel branch
20) // end parallel
21 >->

22 if (thisTokenP->Error == 0)
23 (
24 indexed

25 (int ExtentFileIndex = 0; ExtentFileIndex < thisTokenP->VirtualDiskIndex.Size(); ExtentFileIndex++)
26 parallel

27 (
28 GenerateOpenExtentFileRequest, MergeOpenExtentFileAnswer,
29 InterfaceServer, remote OpenParallelFileIOT Result2(*thisTokenP)
30)
31 (
32 VirtualDiskServer[
33 ToVirtualDiskServerIndex(parallelInputTokenP->VirtualDiskIndex[ExtentFileIndex])
34].ExtentFileServer.OpenExtentFile
35) // end indexed parallel
36 >->

37 if (thisTokenP->Error != 0)
38 (
39 indexed

40 (int ExtentFileIndex = 0; ExtentFileIndex < thisTokenP->VirtualDiskIndex.Size(); ExtentFileIndex++)
41 parallel

42 (
43 GenerateCloseExtentFileRequest, MergeCloseExtentFileAnswer,
44 InterfaceServer, remote OpenParallelFileIOT Result3(*thisTokenP)
45)
46 (
47 VirtualDiskServer[
48 ToVirtualDiskServerIndex(parallelInputTokenP->VirtualDiskIndex[ExtentFileIndex])
49].ExtentFileServer.CloseExtentFile
50) // end indexed parallel
51) // end if
52) // end if
53) // end if
54) // end if
55 >->

56 InterfaceServer.Stage3; // Unlock the parallel file
57 } // end operation Ps2ServerT::OpenParallelFile
5-106

The extent files are opened in parallel using an indexed parallel CAP construct (Program 5-16, lines 24-35). Open
extent file requests are routed to the appropriate ExtentFileServer threads (lines 32-34), i.e. where the extent files
reside, using the ToVirtualDiskServerIndex macro (Program 5-3) which converts a virtual disk index to a virtual
disk server index (line 33). The index of the virtual disk where a particular extent file resides is retrieved using the
table of virtual disk indices returned by the parallel Ps2ServerT::LocateParallelFile operation (Program 5-7,
LocateParallelFileOT output token). This VirtualDiskIndex table converts an extent file index to a virtual disk
index where this particular extent file resides, i.e. the VirtualDiskIndex[k] value corresponds to the index of the

virtual disk where the (k+1)th extent file resides. The two mappings, from an extent file index to a virtual disk
index, and from a virtual disk index to a virtual disk server index, enable a parallel file to be created on a subset of
virtual disks and to mix up extent files making a parallel file amongst the virtual disks.

All other parallel file directory operations, e.g. Ps2ServerT::CreateParallelFile, Ps2ServerT::CloseParallelFile,
etc, are designed using the same pattern. ExtentFileServerT::CreateExtentFile,
ExtentFileServerT::CloseExtentFile, etc, performed by the ExtentFileServer threads are programmed using an
indexed parallel CAP construct.

5.10 Design and implementation of a single-disk extent-oriented file

system: the EFS extent file system

The extent file system is a single-disk extent-oriented file system. It provides a portable abstraction of extent files
above a native file system, e.g. the Windows NT file system. EFS comprises a write-through cache of extents with
a least recently used (LRU) replacement policy. For improved flexibility and customization, the extent cache may
be disabled at each extent request, e.g. at each extent reading request.

Many single-disk file systems perform some kind of prefetching, i.e. data is read from the disk into the buffer
cache before any process actually requests it. Prefetching is an attempt to reduce the latency of file access
perceived by the process. EFS does not attempt to prefetch extents into the extent cache for two reasons. First,
indiscriminate prefetching can cause thrashing in the extent cache [Nitzberg92]. Second, prefetching is based on
the assumption that the system can intelligently guess what an application is going to request next. However, with
parallel I/O- and compute- intensive operations developed with the CAP computer-aided parallelization tool and

the PS2 low-level parallel file system components, there is no need for EFS to make guesses about their
behaviour. Thanks to the two split-merge CAP constructs (Sections 3.8.6 and 3.8.7) and to the pipelining inherent
to CAP (Section 3.8.1), parallel operations automatically perform a sort of prefetching (Figure 5-10); the
ComputeServer threads perform computation on extents while the ExtentServer threads read the next extents from
the extent files (read pipeline). Moreover, with flow-controlled split-merge constructs (Section 3.10) and their
filling factors, one can easily control the number of “prefetched” extents.

Figure 5-10. Thanks to the pipelined parallel execution of PS2 operations, the ExtentServer threads are able

to perform a sort of intelligent or informed extent prefetching from multiple virtual disks enabling a PS2

operation to behave as if extents are read from memory with no delay (as long as the PS2 server

architecture contains enough disks to meet the I/O throughput requirement of the operation)

ExtentServer

ComputeServer

ExtentServer

ComputeServer

client thread

SP
node

read extents in
parallel from multiple

virtual disks

process extents in
parallel on multiple

processors

read extents in
parallel from multiple

virtual disks

process extents in
parallel on multiple

processors

serially merges
processed data into an

application’s buffer

SP
node

The ExtentServer thread
“prefetches” extents

The ExtentServer thread
“prefetches” extents
5-107

Program 5-17 shows the application programmer interface of EFS. The ExtentFileSystemT class implements all
the methods manipulating extent files and extent file directories, e.g. open extent file, create extent file directory
(lines 28-42). The ExtentFileSystemT::OpenExtentFile method (lines 31-32) returns an ExtentFileT extent file
object from its path name. The ExtentFileT class implements all the extent access methods, i.e. read extent, write
extent, and delete extent (lines 13-19). Each of these 3 methods is asynchronous, i.e. the I/O request is initiated
and the method returns immediately. Once the I/O is completed, e.g. the extent is written, the completion routine
is called. Each asynchronous I/O method (lines 16-18) features a single argument called the IORequestP packet
comprising the pointer to the completion routine (line 8) and a flag (line 5) indicating whether to process this
extent access request with the extent cache disabled or not.

All the extent file directory operations offered by an ExtentFileServer thread (Program 5-12) and all the extent
access operations offered by an ExtentServer thread (Program 5-14) are implemented using EFS (Program 5-17).

Program 5-18 shows the C/C++ specification of the ExtentServerT::ReadExtent sequential operation based on the
asynchronous ExtentFileT::ReadExtent method. At line 19, the VirtualDiskT virtual disk object (Program 5-11) is
retrieved using the virtual disk index of the read extent request. capParentP is the pointer to the parent process in
the hierarchy, i.e. the pointer to the VirtualDiskServer hierarchical process. Since the virtual disks are evenly
distributed between the VirtualDiskServer hierarchical processes (i.e. the same number of virtual disks is assigned
to each VirtualDiskServer process), the virtual disk index modulo the number of virtual disks per virtual disk
server gives the local virtual disk index (line 19). At line 29, the capDoNotCallSuccessor CAP-library function is
applied on the output token for suspending the execution of the ExtentServerT::ReadExtent operation, i.e. the
successor will not be automatically called by the CAP runtime system at the end of the sequential operation. At
line 31, the asynchronous ExtentFileT::ReadExtent method is called. Once the extent is read, the
::ReadCompletion routine (line 1) is called and the capCallSuccessor CAP-library function is applied on the
output token resuming the execution of the parallel ExtentServerT::ReadExtent operation, i.e. the successor is
explicitly called (line 9).

5.10.1 Extent file structure

When creating an extent file, one does not have to specify its size, i.e. the number of extents and their sizes. An
extent file grows as we write extents and shrinks as we delete extents. Since extents in a same extent file may have
different header and body sizes, each extent, apart from the extent’s data, must store the size of the extent’s header
and the size of the extent’s body. Therefore, to efficiently and easily implement dynamic growing and shrinking
extent files, two NTFS regular files are used per extent file. The first NTFS file is used for storing the extents
(data headers and data bodies) and the second is used for storing the table of extent addresses and extent sizes, i.e.
a table containing for each stored extent its position in the first NTFS file and its header and body size. The first
NTFS file is called the extent data file and the second NTFS file is called the extent address table file. Figure 5-11
shows the internal structure of an extent address table file and an extent data file.

Program 5-17. Application programming interface of EFS

1 typedef void (*CompletionRoutineT) (void* IORequestP);
2
1 struct IORequestT
2 {
3 public:
4 void* InfoP; // Private data for user
5 bool ExtentCacheOn; // Enable the extent cache
6 int ExtentIndex; // Local extent index
7 ExtentT Extent; // Extent
8 CompletionRoutineT CompletionP; // Completion routine
9 int Reason; // Reason completion called
10 }; // end struct IORequest
11
12
13 class ExtentFileT
14 {
15 public:
16 void DeleteExtent(IORequestT* IORequestP);
17 void ReadExtent(IORequestT* IORequestP);
18 void WriteExtent(IORequestT* IORequestP);
19 }; // end class ExtentFileT

20 struct DirEntryT
21 {
22 PathT PathName;
23 int ExtentFileIndex;
24 int StripeFactor;
25 }; // end struct DirEntryT
26
27
28 class ExtentFileSystemT
29 {
30 public:
31 int OpenExtentFile(const PathNameT& pathName,
32 ExtentFileT* &extentFileP);
33 int CloseExtentFile(ExtentFileT* &extentFileP);
34 int CreateExtentFile(const PathNameT& pathName,
35 const int extentFileIndex,
36 const int stripeFactor);
37 int DeleteExtentFile(const PathNameT& pathName);
38 int CreateDirectory(const PathNameT& pathName);
39 int DeleteDirectory(const PathNameT& pathName);
40 int ListDirectory(const PathNameT& pathName,
41 ArrayT<DirEntryT>& list) const;
42 }; // end class ExtentFileSystemT
5-108

Internal structure of an extent address table file

The first 2048 bytes of an extent address table file are reserved as header for storing the metadata, i.e. the file
signature specifying that the NTFS file is an extent address table file, the version of the extent address table file,
the endian code specifying which endian mode (little or big endian) is used in this file for storing 32-bit value, the
index of this extent file, and the striping factor of the parallel file. The table of extent addresses starts at the offset
2048 bytes. Each entry of the table is made of 4 32-bit values. The first two values contain the size of the extent’s
header and the size of the extent’s body in bytes. The last two values of an entry contain the byte offset within the
extent data file of the block where the extent’s data is stored (ExtentPosition field), i.e. the address of the extent,
and the size of this block (OriginalSize field), i.e. the space reserved in the extent data file for storing the extent.
Of course, the size of a block where an extent is stored must be greater than or equal to the size of the extent’s
header plus the size of the extent’s body, i.e. OriginalSize >= HeaderSize + BodySize. The extent address table is

organized so as to have the address and the size of the ith extent stored in the ith entry enabling to quickly find the
address of an extent.

Internal structure of an extent data file

The first 2048 bytes of an extent data file are reserved as header for storing the metadata, i.e. the file signature
specifying that the NTFS file is an extent data file, the version of the extent data file, the endian code specifying
which endian mode (little or big endian) is used in this file for storing 32-bit value, the index of this extent file, the
striping factor of the parallel file, and the position of the first hole. Extents are stored in the extent data file in the
order they are written and the space reserved for an extent, i.e. the OriginalSize field in the extent address table
file, is always a multiple of 2048 bytes so as to be able to read extent data files residing on CD’s where the block
size is 2048 bytes (remember that for performance EFS disables the NTFS cache forcing to align data accesses in
NT files, i.e. the position and the size of an I/O request must be multiple of the block size of the device). The
header and the body of an extent are always contiguously stored within an extent data file, i.e. with a single NTFS
I/O request, both the header and the body are read or written. Since we can delete extents from an extent file, an
extent data file can contain holes. A hole is created whenever an extent is deleted. Each extent data file contains a
list of holes where each hole contains its size and the position of the next hole in the list. The last hole in the list
contains a null pointer as position of the next hole. An extent data file grows as we write extents and shrinks as we
delete extents.

Program 5-18. Asynchronous programming of the ExtentServerT::ReadExtent sequential operation using

the capDoNotCallSuccessor and capCallSuccessor CAP-library functions

1 static void ReadCompletion(IORequestT* IORequestP)
2 {
3 ReadExtentOT* OutputP = (ReadExtentOT*) IORequestP->InfoP;
4
5 OutputP->Extent = IORequestP->Extent;
6 OutputP->ErrorCode = IORequestP->Reason;
7 delete IORequestP;
8
9 capCallSuccessor(OutputP);
10 } // end ReadCompletion
11
12 leaf operation ExtentServer::ReadExtent
13 in ReadExtentIT* InputP
14 out ReadExtentOT* OutputP
15 {
16 VirtualDiskT* VirtualDiskP;
17 IORequestT* IORequestP;
18
19 VirtualDiskP = capParentP->VirtualDisk[InputP->VirtualDiskIndex % NumberOfVirtualDisksPerVirtualDiskServer];
20 IORequestP = new IORequestP;
21
22 IOPRequestP->InfoP = OutputP;
23 IORequestP->ExtentCacheOn = VirtualDiskP->ExtentFileTable[InputP->ExtentFileDescriptor].ExtentCacheOn;
24 IORequestP->ExtentIndex = InputP->ExtentIndex;
25 IORequestP->Extent = NULL;
26 IORequestP->IOCompletion = ::ReadCompletion;
27 IORequestP->Reason = 0; // No error
28
29 capDoNotCallSuccessor(OutputP);
30
31 VirtualDiskP->ExtentFileTable[InputP->ExtentFileDescriptor].ExtentFileP->ReadExtent(IORequestP);
32 } // end leaf operation ExtentServer::ReadExtent
5-109

5.10.2 Internal organization of EFS

For each open extent file there is a write-back 320KB1 extent address cache keeping in memory most recently
used extent address entries. EFS divides an extent address table into segments of 1024 entries, i.e. by chunk of 16
KBytes. Each time an extent is accessed (read, written or deleted), the extent address cache is consulted and if the
required entry is not found, then the whole 16KB segment containing the required entry is read from the extent
address table file into the extent address cache. When the extent address cache becomes full, the least recently
used 16KB segment (LRU replacement policy) is replaced and the segment is possibly written back to the extent
address table file in the case that at least one entry was modified (write-back cache). In the current release of EFS,
reading and writing segments from extent address table files are done synchronously, i.e. during an extent address
miss, the ExtentServer thread is blocked reading (and also possibly writing) an extent address 16KB segment.
Meanwhile the ExtentServer thread cannot serve other extent access requests directed to different virtual disks

Figure 5-11. Internal structure of an extent file

1. If we assume, for example, that an extent file contains extents of 50 KBytes each, then an extent address
cache of 320 KBytes enables to keep in memory 20’480 extent positions corresponding to an extent data
file of 20’480 extents x 50 KBytes = 1’000 MBytes.

ExtentPositionHeaderSize BodySize OriginalSize2048

2064

2080

2096

2112

247792

247776

15359

15358

0

1

2

3

4

Byte offset Extent

Header

Body

Extent #15359

Body

Extent #2

Header

Body

Extent #3

Header

Body
Extent #1

Header

Extent #15358

Header

Body
Extent #0

Header

Body

Extent #4

Hole

NextHoleHoleSize

Hole

NextHoleHoleSize

Hole

NextHoleHoleSize

Hole

NextHoleHoleSize

EndianCode

Signature

Version

ExtentFileIndex

StripingFactor

HoleList

Pad

EndianCode

Signature

Version

ExtentFileIndex

StripingFactor

Pad

ExtentPositionHeaderSize BodySize OriginalSize

ExtentPositionHeaderSize BodySize OriginalSize

ExtentPositionHeaderSize BodySize OriginalSize

ExtentPositionHeaderSize BodySize OriginalSize

ExtentPositionHeaderSize BodySize OriginalSize

ExtentPositionHeaderSize BodySize OriginalSize

Extent Address Table File

Extent Data File

OriginalSize
5-110

located on the same SP node. This feature can be seen when a parallel file is freshly opened and all the extent
address caches are empty. When the application start issuing extent access requests to the ExtentServer threads
(one ExtentServer thread per SP node), disks located on a same SP node are accessed sequentially (for reading
extent address segments) and not in parallel. For an improved version of EFS, this issue should be addressed.

When an extent file is opened, EFS reads the extent data file’s hole list and builds an in-memory list enabling to
efficiently manage and query the list. When writing a new extent, before expanding the extent data file and
writing the extent at the end of the extent data file, EFS first searches for a hole in the in-memory list that is
greater or equal to the extent size (best fit algorithm). When deleting an extent, EFS inserts the newly created hole
in the in-memory hole list and possibly coalesces contiguous holes. Of course, if one intensively writes and
deletes various-sized extents from an extent file, the extent data file might become fragmented, i.e. it may contain
many small holes that cannot be reused and consume lots of disk space. Therefore, this issue should be addressed
in a future version of EFS.

5.11 PS2 configuration files

To run a PS2 application on distributed memory PC’s, two configuration files must be provided. One for the CAP

runtime system specifying the mapping of threads to Windows NT processes (Section 3.6) and one for PS2

specifying the NTFS root directories of each virtual disk in the parallel storage and processing server.

Program 5-19 shows a CAP configuration file for a 3-SP-node PS2 server configuration (Figure 5-8). The
InterfaceServer thread is generally mapped onto the user’s PC where the application’s front end runs. Three
ComputeServer threads are mapped per SP node so as to benefit from dual processor PC’s and a single DiskServer
hierarchical process is mapped per SP node, i.e. an ExtentFileServer thread and an ExtentServer thread.

Program 5-20 shows the PS2 configuration file for a 27 disk PS2 server configuration. A PS2 configuration file,
often named the ServerDisk.txt file, gives the NTFS root directories of each virtual disk. Each path name
corresponds to an NTFS directory of a virtual disk, which is accessible from the assigned VirtualDiskServer
hierarchical process, i.e. from the VirtualDiskServer process to which this virtual disk is assigned. Remember that

PS2 evenly assigns the virtual disks to the VirtualDiskServer processes, i.e. the virtual disks 0 to 8 are assigned to
the VirtualDiskServer[0] hierarchical process, the virtual disks 9 to 17 are assigned to the VirtualDiskServer[1]
hierarchical process, and the virtual disks 18 to 26 are assigned to the VirtualDiskServer[2] hierarchical process.

Program 5-21 shows how to start a PS2 application on a 3-SP-node PS2 server with a CAP configuration file and

a PS2 ServerDisk.txt configuration file. The following switches are automatically defined for a PS2 application:
• The ‘-cnf’ switch specifies the CAP configuration file.
• The ‘-nod’ switch specifies the number of virtual disks.
• The ‘-ro’ switch specifies whether the virtual disks are read only or not.

Program 5-19. CAP configuration file mapping the InterfaceServer thread onto the user’s PC, three

ComputeServer threads per SP node, one ExtentFileServer thread per SP node, and one ExtentServer thread

per SP node

1 configuration {
2 processes:
3 A ("user") ;
4 B ("128.178.75.65", "\\FileServer\SharedFiles\Ps2Executable.exe") ;
5 C ("128.178.75.66", "\\FileServer\SharedFiles\Ps2Executable.exe") ;
6 D ("128.178.75.67", "\\FileServer\SharedFiles\Ps2Executable.exe") ;
7
8 threads:
9 "InterfaceServer" (A) ;
10 "ComputeServer[0]" (B) ;
11 "ComputeServer[1]" (B) ;
12 "ComputeServer[2]" (B) ;
13 "ComputeServer[3]" (C) ;
14 "ComputeServer[4]" (C) ;
15 "ComputeServer[5]" (C) ;
16 "ComputeServer[6]" (D) ;
17 "ComputeServer[7]" (D) ;
18 "ComputeServer[8]" (D) ;
19 "VirtualDiskServer[0].ExtentFileServer" (B) ;
20 "VirtualDiskServer[0].ExtentServer" (B) ;
21 "VirtualDiskServer[1].ExtentFileServer" (C) ;
22 "VirtualDiskServer[1].ExtentServer" (C) ;
23 "VirtualDiskServer[2].ExtentFileServer" (D) ;
24 "VirtualDiskServer[2].ExtentServer" (D) ;
25 }; // end of configuration file
5-111

• The ‘-nods’ switch specifies the number of VirtualDiskServer processes that the CAP runtime system must

create, i.e. the number of ExtentFileServer threads and the number of ExtentServer threads. PS2 imposes that
the number of VirtualDiskServer processes be multiple of the number of virtual disks (Program 5-3).

• The ‘-nocs’ switch specifies the number of ComputeServer threads that the CAP runtime system must create.

PS2 imposes that the number of ComputeServer threads be multiple of the number of virtual disks (Program
5-4).

• The ‘-sdps’ switch specifies the PS2 ServerDisk.txt configuration file.

Once all the threads are launched on a PS2 server (Section 3.6), PS2 parses the ServerDisk.txt configuration file
and for each virtual disk, a MountExtentFileSystem request (Program 5-12) is sent to the appropriate
ExtentFileServer thread for mounting the NTFS root directory onto the virtual disk.

5.12 Summary

This chapter has described our PS2 framework for developing parallel I/O- and compute- intensive applications.

We have seen that PS2 is not a conventional parallel storage system intended to directly meet the specific need of
every applications. Our approach has been to design an extensible parallel I/O-and-compute framework for
developing C/C++ high-level libraries, each of which designed to meet the needs of a specific community of
applications by providing specific abstractions of files, e.g. 2D images or matricies. The trend in parallel storage
systems is to provide flexible I/O systems where library programmers are free to modify the declustering strategy,
the prefetching mechanism, the caching strategy, and even to program their own I/O interfaces on declustered

files. However PS2 goes a step further by providing not only a flexible parallel storage system, but also an
extensible parallel processing system where the two systems are deeply integrated into a same framework. This
enables application programmers to rapidly and easily develop pipelined parallel I/O-and-compute operations on
declustered files that are incorporated into C/C++ high-level libraries.

In this chapter we have seen that a PS2 server architecture, i.e. the parallel architecture on which PS2 applications
execute, comprises a number of server PC’s connected to a Fast Ethernet network and offering data storage and

processing services to application threads located over the network on a number of client PC’s. PS2 breaks away
the distinction between I/O nodes and compute nodes, by executing on the server PC’s both extent access

operations and processing operations. Therefore, in the PS2 terminology, we call these server PC’s, storage and
processing nodes (SP nodes).

This chapter has presented the PS2 two-dimensional extent-oriented parallel file structure giving library
programmers the ability to control both how data is distributed across the disks, and the degree of parallelism

exercised on every subsequent access. The extensible PS2 server CAP process hierarchy has been described. It
mainly consists of a set of storage threads offering low-level parallel file access components and a set of compute

Program 5-20. PS2 configuration file specifying the NTFS root directories of each virtual disk

Program 5-21. Starting a PS2 application with a CAP configuration file and a PS2 configuration file at DOS

prompt

1 H:\PsPs
2 I:\PsPs
3 J:\PsPs
4 K:\PsPs
5 L:\PsPs
6 M:\PsPs
7 N:\PsPs
8 O:\PsPs
9 P:\PsPs
10
11 H:\PsPs
12 I:\PsPs
13 J:\PsPs
14 K:\PsPs
15 L:\PsPs

16 M:\PsPs
17 N:\PsPs
18 O:\PsPs
19 P:\PsPs
20
21 H:\PsPs
22 I:\PsPs
23 J:\PsPs
24 K:\PsPs
25 L:\PsPs
26 M:\PsPs
27 N:\PsPs
28 O:\PsPs
29 P:\PsPs

1 Ps2Executable.exe -cnf \\FileServer\SharedFiles\ConfigurationFile.txt -nod 27 -ro 1 -nods 3 -nocs 9
2 -sdps \\FileServer\SharedFiles\ServerDisk.txt
5-112

threads fully extensible by application programmers. Thanks to a CAP configuration file, these threads are

mapped onto a PS2 server architecture so as at least one storage thread and one compute thread run per SP node.
Thanks to the CAP formalism, application programmers are able to extend the functionalities of the compute
threads by incorporating application-specific processing operations. These application-specific processing
operations execute on the SP nodes and can, therefore, perform computations on locally stored data thus avoiding
superfluous data communication. In order to access disks through local native file system calls (NTFS), disk
access requests are directed to the storage thread located on the SP node where data resides, i.e. on which the disk
is hooked. Similarly, in order to process locally stored data, processing requests are directed to the compute thread
located on the SP node where its companion storage thread executes, i.e. where data resides. Thanks to CAP, new
parallel I/O- and compute- intensive operations can be conceived by combining the predefined low-level parallel
file access components offered by the storage threads with the application-specific processing operations offered
by the compute threads. These new processing operations on parallel files can be incorporated into high-level
C/C++ libraries offering application-specific abstractions of files.

We have seen how parallel file directory operations are synthesized using CAP. PS2 incorporates an interface
server thread coordinating parallel file directory operations and resolving race conditions on parallel files.

The end of the chapter has presented the single-disk extent-oriented file system (EFS) providing PS2 with a
portable abstraction of extent file on top of native file systems, e.g. the Windows NT file system. EFS comprises a
write-through cache of extents with a least recently used (LRU) replacement policy. We have described how
parallel file access operations are programmed using the asynchronous extent access routines of EFS and the
capDoNotCallSuccessor and capCallSuccessor CAP-library functions.

Finally, we have seen how to launch a PS2 application with a CAP configuration file and a PS2 configuration file.

The CAP configuration file gives the mapping of threads to SP nodes. The PS2 configuration file gives the

(NTFS) root path names of each disk presents in the PS2 architecture.
5-113

5-114

Chapter 6

Developing Parallel I/O- and Compute- Intensive

Applications using PS2

6.1 Introduction

This chapter presents examples of high-level libraries and applications based on the PS2 framework. Section 6.2
describes how to develop a C/C++ high-level library offering the abstraction of 2D images along with parallel

imaging operations. Section 6.3 demonstrates the applicability and the performances of the PS2 tools on a real
parallel 3D image slice extraction application. This application enables clients to specify, access in parallel, and
visualize image slices having any orientation and position. The image slices are extracted from huge 3D images
declustered across multiple disks distributed between several SP nodes. The end of Section 6.3 analyses the
performances of the pipelined parallel slice extraction and visualization operation.

6.2 Synthesizing parallel imaging operations using PS2

This section describes how to develop parallel imaging operations using PS2. The presented examples
demonstrate how the CAP tool enables application programmers to easily and efficiently combine library-specific
operations with the reusable parallel file system components offered by the customizable parallel file system

(PS2) in order to yield pipelined parallel I/O and compute intensive imaging operations. The flexibility of the
CAP tool is also shown. Indeed, CAP enables programmers to rapidly modify the schedule of operations, i.e.
processing operations and I/O access operations, and to incorporate new operations in a reading or writing
pipeline.

Section 6.2.1 presents a 2D image file declustering strategy dividing large 2D image files in rectangular tiles and
storing independently these tiles on multiple disks. This declustering strategy ensures that for most imaging
applications, disks and SP node accesses are close to uniformly distributed, i.e. the I/O load is balanced between
disks and the computation load is balanced between SP node processors.

Parallel imaging operations can be divided in two categories: neighbourhood independent operations and
neighbourhood dependent operations. A neighbourhood independent operation is an operation where processing
an image part, i.e. a 2D tile, can be done without requiring neighbouring tiles. Such operations may include
compression, zooming, linear filtering operations and saving the image to disks. On the other hand,
neighbourhood dependent operations requires fetching the 8 tile borders. Non-linear filtering operations such as
morphological operations (erosion, dilatation) are typically neighbourhood dependent.

Section 6.2.2 describes neighbourhood independent imaging operations using PS2. First, a parallel write window
access operation without processing operation is described. Thanks to the CAP formalism, a compression stage is
easily incorporated into the parallel operation enabling to write compressed tiles. Finally, we present an improved
version of the parallel compress-and-write window operation requiring less communication. Section 6.2.3

describes neighbourhood dependent imaging operation using PS2. This example demonstrates the ability of the

CAP tool and the PS2 framework to program complicated parallel operations requiring communications between
SP nodes.

6.2.1 2D image file declustering strategy

Large 2D images are often divided into square or rectangular tiles which are independently stored on multiple
disks. Pixmap image tiling is routinely used for internal representation of images in software packages such as
PhotoShop. Rectangular tiles enable programmers to access image windows efficiently and to apply parallel
processing operations on large 2D images, e.g. zooming, rotating, filtering, etc, with good data locality
[Hersch93]. A tile represents the unit of I/O access, i.e. a tile is stored as a contiguous disk block. A tile represents
6-115

also the unit of processing, i.e. a parallel imaging operation is decomposed into sequential operations performing
elementary processing on tiles which are then combined in a pipelined parallel manner. For example, a parallel
image rotation operation consists of performing in parallel a rotation on each tile making up the 2D window
specified by a user and of sequentially merging the rotated tiles into an application’s buffer.

Concerning the size of the rectangular tiles a trade off between data locality when applying imaging operations
and the effective sustained I/O throughput needs to be found. As far as data locality is concerned, a tile should be
as small as possible so that only the required part of a 2D image file is read from disks, e.g. when zooming a
visualization window only the image data covering the visualization window needs to be actually read from disks
(Figure 6-1). On the other hand, in order to maximize the effective sustained I/O throughput, a tile should be as
large as possible so as to reduce the time lost in head displacement, i.e. the disk latency becomes small compared
to the disk data transfer time. Previous works [Gennart94] shows that a good tile size for a wide variety of parallel
imaging applications can be achieved when the disk latency time is similar to the disk transfer time. For example,
for the IBM DPES-31080 disk drive, which have a measured latency of 13.77 ms and a measured throughput of
3.5 MBytes/s (Section 4.2.1), the appropriate tile size is around 47 KBytes.

The effective transfer time is given by Equation 6-1. An optimal tile size may be computed for a given window
size. However this is not very critical since window sizes considerably vary.

(6-1)

In order to decluster large 2D image files across several disks and to develop parallel imaging operations using the

PS2 customizable parallel file system, rectangular tiles of a 2D image are distributed between the extent files
making up a parallel file. Tiles are stored in extents (one extent per tile) and the extents are distributed between
the extent files residing on different virtual disks mapped to different physical disks (i.e. one extent file per
physical disk). The declustering strategy is the function that distributes tiles of a 2D image between the extent
files of a parallel file. This strategy must be devised so that when performing a parallel processing operation on a
declustered 2D image file, the I/O load is balanced between the physical disks and the processing load is balanced
between the SP nodes.

Figure 6-1. For a good data locality when applying an imaging operation on a tiled 2D image, the tile size

should be as small as possible in order to reduce the amount of superfluous image data read from disks

visualization window visualization windowsuperfluous image data
read from disks

2D image with large
rectangular tiles

2D image with small
rectangular tiles

more superfluous image data
are read from disks

less superfluous image data
are read from disks

better data localitypoor data locality

EffectiveDiskTransferTime DiskLatencyTime
TileSize

DiskThroughput
---------------------------------------+=
6-116

The distribution of tiles to extent files is made so as to ensure that direct 2D tile neighbours reside on different
extent files located on physical disks hooked on different SP nodes. We achieve such a distribution by storing, in
a round-robin manner, 2D tiles on successive extent files. Successive extent files reside on physical disks hooked
on successive SP nodes. We introduce between two successive rows of 2D tiles an extent file offset
(ExtentFileOffsetY) which is prime to the number of extent files (NExtentFiles) making up the parallel image file.

Since the extent files reside on different virtual disks mapped to different physical disks, the extent file offset
corresponds to a physical disk offset and the number of extent files corresponds to the number of physical disks
across which the parallel image file is declustered. Figure 6-2 shows an image divided in tiles, as well as a
visualization window covering part of the image. Figure 6-2 also shows the distribution of the image tiles among
the extent files, assuming the image is striped over 4 extent files (4 physical disks) and the extent file offset is 3
disks. The allocation index consists of the extent file index (ExtentFileIndex) as well as the local extent index
(ExtentIndex) on that extent file. For example, the bottom right tile in Figure 6-2 is allocated on the extent file 1,

and is the 17th tile (or extent) on that extent file.

The declustering strategy shown in Figure 6-2 ensures that for most parallel imaging applications, disk and SP
node accesses are close to uniformly distributed. Equation 6-2 gives the distribution of tiles to extent files (or
physical disks) where TilePositionX, and TilePositionY are the tile coordinate, and NTilesX is the number of tiles

per row. Equation 6-3 gives the distribution of tiles within a particular extent file computed using Equation 6-2
(all divisions are integer divisions). Therefore a particular tile (or extent) is uniquely identified with its
ExtentFileIndex specifying on which extent file the tile resides and its ExtentIndex specifying the local extent
index within the set of extents stored on that particular extent file.

(6-2)

(6-3)

The C/C++ specification of the 2D image file declustering strategy (Equations 6-2 and 6-3) is shown in Program
6-1. The EXTENT_FILE_OFFSET_Y table (line 1) gives the ExtentFileOffsetY value according to the number of
extent files across which the 2D image file is declustered.

6.2.2 Neighbourhood independent imaging operations

This section describes how we customize the PS2 parallel storage and processing server (Section 5.8.1) to
incorporate in it a new pipelined parallel operation that writes a 2D image window into a parallel image file. For
the sake of simplicity, the operation described in this section only enables windows that span multiple tiles to be
written, i.e. window boundaries correspond with tile boundaries (Figure 6-3).

Figure 6-2. 2D image tiling and the declustering strategy

(03,00)

03,00
(04,00)

00,01
(05,00)

01,01
(06,00)

02,01
(07,00)

03,01
(08,00)

00,02
(00,00)

00,00
(01,00)

01,00
(02,00)

02,00

(03,01)

02,03
(04,01)

03,04
(05,01)

00,04
(06,01)

01,04
(07,01)

02,04
(08,01)

03,05
(00,01)

03,03
(01,01)

00,03
(02,01)

01,03

(03,02)

01,06
(04,02)

02,07
(05,02)

03,07
(06,02)

00,07
(07,02)

01,07
(08,02)

02,08
(00,02)

02,06
(01,02)

03,06
(02,02)

00,06

(09,00)

01,02

(09,01)

00,05

(09,02)

03,08

(03,03)

00,09
(04,03)

01,10
(05,03)

02,10
(06,03)

03,10
(07,03)

00,10
(08,03)

01,11
(00,03)

01,09
(01,03)

02,09
(02,03)

03,09
(09,03)

02,11

(03,04)

03,12
(04,04)

00,13
(05,04)

01,13
(06,04)

02,13
(07,04)

03,13
(08,04)

00,14
(00,04)

00,12
(01,04)

01,12
(02,04)

02,12
(09,04)

01,14

(03,05)

02,15
(04,05)

03,16
(05,05)

00,16
(06,05)

01,16
(07,05)

02,16
(08,05)

03,17
(00,05)

03,15
(01,05)

00,15
(02,05)

01,15
(09,05)

00,17

(09,00)

01,02

(TilePositionX, TilePositionY)

(ExtentFileIndex, ExtentIndex)

2D tile:

d
eclu

sterin
g
 strateg

y

E
x
ten

tF
ileO

ffset
Y

visualization window

ExtentFileIndex TilePosition
Y

ExtentFileOffsetY⋅ TilePosition
X

+() mod NExtentFiles=

ExtentIndex TilePosition
Y

1
NTilesX 1–

NExtentFiles
-------------------------------+ 

 ⋅
TilePosition

X

NExtentFiles
------------------------------------+=
6-117

Figure 6-4 shows the DAG of the parallel Ps2ServerT::WriteWindow operation. The operation consists in dividing
the 2D image window in tiles and for each tile sending an extent writing request to the appropriate ExtentServer
thread based on the declustering strategy shown in Section 6.2.1. The operation completes when all the tiles
making up the 2D image window are written, i.e. when all ExtentServerT::WriteExtent’s output tokens are
merged. Both the split and the merge functions are performed by the Client thread, i.e. the thread who initiates the
parallel PS2ServerT::WriteWindow operation.

Program 6-1. Declustering function converting a tile coordinate (TilePositionX, TilePositionY) into an

extent location (ExtentFileIndex, ExtentIndex)

Figure 6-3. Parameters needed for writing a window into a full declustered 2D image file

Figure 6-4. Graphical CAP specification of the parallel Ps2ServerT::WriteWindow operation

1 int EXTENT_FILE_OFFSET_Y[] = // table giving the ExtentFileOffsetY according to
2 {0, // the number of extent files making up the parallel image file
1 1, /* 1 extent file */
1 1, /* 2 extent files */
1 1, /* 3 extent files */
2 ...
3 };
4
5 void DeclusteringFunction(const int NExtentFiles,
6 const int NTilesX,
7 const int NTilesY,
8 const int TilePositionX,
9 const int TilePositionY,
10 int& ExtentFileIndex,
11 int& ExtentIndex)
12 {
13 int ExtentFileOffsetY = EXTENT_FILE_OFFSET_Y[NExtentFiles];
14
15 ExtentFileIndex = (TilePositionY * ExtentFileOffsetY+ TilePositionY) % NExtentFiles;
16 ExtentIndex = TilePositionY * (1+(NTilesX-1)/NExtentFiles) + TilePositionX/NExtentFiles;
17 } // end DeclusteringFunction

ImageSizeX

Im
ag
eS
ize

Y

WindowOffsetX

W
in
d
o
w
O
ffset

Y

WindowSizeX

W
in
d
o
w
S
ize

Y

TileSizeX

T
ileS

ize
Y

full 2D image

window to write

Ps2ServerT::WriteWindow

ExtentServerT::WriteExtent

ExtentServerT::WriteExtent

WriteWindowIT WriteWindowOT

WriteWindowIT WriteWindowOTWriteExtentIT WriteExtentOT

d
iv
id
es w

in
d
o
w
 in
 tiles; fo

r each
 tile

g
en
erates an

 ex
ten

t w
ritin

g
 req

u
est

sy
n
ch
ro
n
ize ex

ten
t w

ritin
g
 req

u
ests

Client ClientExtentServer[]

ExtentServer[]
6-118

Program 6-2 shows the declaration of Ps2ServerT::WriteWindow’s input and output tokens. The input token (lines
7-20) comprises the pointer to the window data buffer (line 9), the size of the full 2D image in tiles (lines 10-11),
the size of a tile in bytes (lines 12-13), the size of the image window to write in tiles (lines 14-15), the position of
the image window from the upper left corner of the full 2D image (lines 16-17), the indices of the virtual disks
where the extent files making up the parallel image file reside (line 18), and their extent file descriptors (line 19).
The output token (lines 22-25) merely comprises an error code indicating whether the operation completes
successfully or not (line 24).

Program 6-3 shows the CAP specification of the parallel Ps2ServerT::WriteWindow operation. In order to extend

the functionalities of the PS2 server, i.e. to incorporate a new library-specific parallel operation into the
Ps2ServerT hierarchical process, we use an additional CAP operation declaration (Program 3-7). Lines 42-44
show the declaration of the new parallel Ps2ServerT::WriteWindow operation outside the scope of the Ps2ServerT
process declaration (Program 5-6).

The parallel Ps2ServerT::WriteWindow operation (Program 6-3) consists of a single flow-controlled indexed
parallel CAP construct (lines 50-58) that sends an extent writing request to the appropriate ExtentServer thread
(line 57) for each tile of the 2D window, i.e. WindowSizeX tiles per WindowSizeY tiles (lines 52-53). The
GenerateExtentWritingRequest split function (lines 1-28) first converts an absolute tile coordinate (lines 11-12)
into an extent coordinate (lines 13-14), i.e. a local extent index within an extent file, using the declustering
strategy in Program 6-1. Using the VirtualDiskIndex mapping table (Section 5.7), the index of the virtual disk
where the selected extent file, i.e. whose index is ExtentFileIndex, resides is retrieved (line 18). The CopyTile
function (lines 22-27) copies the current tile from the data window buffer into the extent writing request. Once an
extent writing request is generated by the GenerateExtentWritingRequest split function, it is redirected to the
appropriate ExtentServer thread (line 57) using the ToVirtualDiskServerIndex macro (Program 5-3) converting a
virtual disk index into a virtual disk server index. The ExtentServerT::WriteExtent’s output tokens are merged by
the MergeWriteExtentAnswer merge function (lines 30-39) that merely propagates the first extent writing error.

As already mentioned in Section 5.2, the PS2 framework is mainly used for developing high-level C/C++ libraries
providing application-specific abstraction of files, e.g. matrices, images, etc, with appropriate parallel storage and
processing operations on that abstraction, e.g. multiplying two out-of-core matrices or zooming a visualization
window from a huge 2D image.

Program 6-4 shows how the parallel Ps2ServerT::WriteWindow operation (Program 6-3) is incorporated into a
high-level C/C++ image library using the call CAP instruction (Program 3-8). The first argument of the
WriteWindow function (line 25) is the descriptor of the image returned when the image file was first opened using
the OpenImage function (lines 13-14). The OpenImage function opens the corresponding parallel file (line 18),
reads the extent containing the image metadata from the first extent file (line 21), i.e. the size of the image, the
size of a tile, etc, and fills a new ImageDescriptorT (lines 1-9) entry of the ImageFileTable table (line 11). The
second and third arguments of the WriteWindow function (lines 26-27) are the window sizes in tiles and the next
two arguments (lines 28-29) are the positions of the window from the upper left corner of the full 2D image. The
last argument (line 30) is the window data buffer. The WriteWindow function first creates the WriteWindowIT

input token (line 35) and fills the token with the user’s provided arguments and the image’s metadata (lines
36-46). The parallel Ps2ServerT::WriteWindow operation is called at line 48. At line 52, the error code of the
parallel operation (line 49) is returned back to the caller.

Program 6-2. Declaration of the input and output tokens of the parallel Ps2ServerT::WriteWindow

operation

1 class BufferT
2 {
3 public:
4 char* BufferP;
5 }; // end class BufferT
6

7 token WriteWindowIT
8 {
9 BufferT WindowP;
10 int ImageSizeX;
11 int ImageSizeY;
12 int TileSizeX;
13 int TileSizeY;
14 int WindowSizeX;
15 int WindowSizeY;
16 int WindowOffsetX
17 int WindowOffsetY;
18 ArrayT<int> VirtualDiskIndex;
19 ArrayT<int> ExtentFileDescriptor;
20 }; // end token WriteWindowIT
21
22 token WriteWindowOT
23 {
24 int ErrorCode;
25 }; // end token WriteWindowOT
6-119

Thanks to the CAP formalism and to the customizable PS2 framework, it is easy to combine the PS2 reusable
parallel file system components (e.g. WriteExtent in Program 6-3, line 57) in a pipelined parallel manner. For
example, in the parallel Ps2ServerT::WriteWindow operation (Program 6-3) we can elegantly insert an extent
compression stage within the writing pipeline, i.e. just before writing the extent. Figure 6-5 shows the modified
DAG of the parallel Ps2ServerT::WriteWindow operation incorporating a new compression stage. Note that the
compression operation is performed on the SP nodes where the extents are actually written so as to perform the
compression in parallel on several SP nodes.

In the DAG of Figure 6-5, pipelining is achieved at three levels
• the ExtentServer thread writes a compressed extent while its companion ComputeServer thread located on the

same SP node compresses the next extents,
• The ComputeServer thread compresses an extent while the same ComputeServer thread asynchronously

receives from the network the next extents to be compressed and written,
• the Client thread asynchronously sends an extent to a ComputeServer thread while the same Client thread

continues to divide the 2D window in rectangular tiles and to generate the next extent writing requests.

And the parallelization occurs at two levels:
• several extents are written simultaneously from different disks; the number of disks can be increased to

improve I/O throughput,

Program 6-3. CAP specification of the parallel PS2ServerT::WriteWindow operation

1 void GenerateExtentWritingRequest(WriteImageIT* inputP,
2 WriteExtentIT* &subtokenP,
3 int TileRelativePositionY,
4 int TileRelativePositionX)
5 {
6 int ExtentFileIndex, ExtentIndex;
7
8 DeclusteringFunction(inputP->VirtualDiskIndex.Size(),
9 inputP->ImageSizeX,
10 inputP->ImageSizeY,
11 inputP->WindowOffsetX + TileRelativePositionX,
12 inputP->WindowOffsetY + TileRelativePositionY,
13 ExtentFileIndex,
14 ExtentIndex);
15
16 subtokenP = new WriteExtentIT;
17
18 subtokenP->VirtualDiskIndex = inputP->VirtualDiskIndex[ExtentFileIndex];
19 subtokenP->ExtentFileDescriptor = inputP->ExtentFileDescriptor[ExtentFileIndex];
20 subtokenP->ExtentIndex = ExtentIndex;
21
22 CopyTile(subtokenP->Extent,
23 inputP->WindowP,
24 inputP->TileSizeX,
25 inputP->TileSizeY,
26 TileRelativePositionX,
27 TileRelativePositionY);
28 } // end GenerateExtentWritingRequest
29
30 void MergeWriteExtentAnswer(WriteWindowOT* outputP,
31 WriteExtentOT* subtokenP,
32 int TileRelativePositionY,
33 int TileRelativePositionX)
34 {
35 if ((subtokenP->ErrorCode != 0) && (outputP->ErrorCode == 0))
36 {
37 outputP->ErrorCode = subtokenP->ErrorCode;
38 } // end if
39 } // end MergeWriteExtentAnswer
40
41
42 operation ps2ServerT::WriteWindow // Extending the functionalities of the Ps2Server:
43 in WriteWindowIT* InputP // declaring an additional parallel operation
44 out WriteWindowOT* OutputP;
45
46 operation ps2ServerT::WriteWindow // Definition of the additional parallel operation
47 in WriteWindowIT* InputP
48 out WriteWindowOT* OutputP
49 {
50 flow_control(100)
51 indexed

52 (int TileRelativePositionY = 0; TileRelativePositionY < thisTokenP->WindowSizeY; TileRelativePositionY++)
53 (int TileRelativePositionX = 0; TileRelativePositionX < thisTokenP->WindowSizeX; TileRelativePositionX++)
54 parallel

55 (GenerateExtentWritingRequest, MergeWriteExtentAnswer, Client, local WriteWindowOT Result())
56 (
57 VirtualDiskServer[ToVirtualDiskServerIndex(thisTokenP->VirtualDiskIndex)].ExtentServer.WriteExtent
58); // end indexed parallel
59 } // end operation ps2ServerT::WriteWindow
6-120

• compression of extents is done in parallel by several processors; the number of processors per SP node and
the number of SP nodes can be increased to improve the extent compression performance.

Program 6-4. Incorporating the parallel Ps2ServerT::WriteWindow operation into a C/C++ image

processing library

Figure 6-5. Thanks to the CAP formalism is very easy to incorporate a processing stage within the writing

pipeline, e.g. an extent compression operation

1 struct ImageDescriptorT // An ImageDescriptorT object contains all the metadata
2 { // related to an image file.
3 int ImageSizeX; // Number of tiles along the X axis
4 int ImageSizeY; // Number of tiles along the Y axis
5 int TileSizeX; // Size of a tile along the X axis (number of bytes)
6 int TileSizeY; // Size of a tile along the Y axis (number of bytes)
7 ArrayT<int> VirtualDiskIndex; // Virtual disks across which the image is striped
8 ArrayT<int> ExtentFileDescriptor; // Descriptors of the extent files making up the image file
9 }; // end ImageDescriptorT
10
11 ImageDescriptorT ImageFileTable[MAX_OPEN_IMAGES]; // Image descriptor of each open image
12
13 int OpenImage(PathNameT pathName, // in: Path name of the image to open
14 int& imageDescriptor) // out: Image descriptor, i.e. an index within the ImageFileTable
15 {
16 // ...
17 // Opens the parallel image file
18 call Ps2Server.OpenParallelFile in ... out ...;
19 // ...
20 // Reads the extent containing the image metadata in the first extent file
21 call Ps2Server.VirtualDiskServer[VirtualDiskIndex[0]].ExtentServer.ReadExtent in ... out ...;
22 // ...
23 } // end OpenImage;
24
25 int WriteWindow(int imageDescriptor, // in: Image descriptor, i.e. the index within the ImageFileTable
26 int windowSizeX, // in: Size of the window along the X axis (number of tiles)
27 int windowSizeY, // in: Size of the window along the Y axis (number of tiles)
28 int windowOffsetX, // in: Position of the window from the upper left corner of the image
29 int windowOffsetY, // in: Position of the window from the upper left corner of the image
30 BufferT windowP) // in: Window data buffer
31 {
32 WriteWindowIT* InputP;
33 WriteWindowOT* OutputP;
34
35 InputP = new WriteWindowIT;
36 InputP->WindowP = windowP;
37 InputP->ImageSizeX = ImageFileTable[imageDescriptor]->ImageSizeX;
38 InputP->ImageSizeY = ImageFileTable[imageDescriptor]->ImageSizeY;
39 InputP->TileSizeX = ImageFileTable[imageDescriptor]->TileSizeX;
40 InputP->TileSizeY = ImageFileTable[imageDescriptor]->TileSizeY;
41 InputP->WindowSizeX = windowSizeX;
42 InputP->WindowSizeY = windowSizeY;
43 InputP->WindowOffsetX = windowOffsetX;
44 InputP->WindowOffsetY = windowOffsetY;
45 InputP->VirtualDiskIndex = ImageFileTable[imageDescriptor]->VirtualDiskIndex;
46 InputP->ExtentFileDescriptor = ImageFileTable[imageDescriptor]->ExtentFileDescriptor;
47
48 call Ps2Server.WriteWindow in InputP out OutputP; // Synchronously calls the parallel WriteWindow operation
49 ErrorCode = OutputP->ErrorCode;
50 delete OutputP;
51
52 return ErrorCode;
53 } // end WriteWindow

Ps2ServerT::WriteWindow

ExtentServerT::
WriteExtent

WriteWindowIT WriteWindowOT

WriteWindowIT WriteWindowOTWriteExtentIT WriteExtentOT

d
iv
id
es w

in
d
o
w
 in
 tiles; fo

r each
 tile

g
en
erates an

 ex
ten

t w
ritin

g
 req

u
est

sy
n
ch
ro
n
ize ex

ten
t w

ritin
g
 req

u
ests

Client ClientExtentServer[]

ComputeServerT::
CompressExtent

ExtentServerT::
WriteExtent

ExtentServer[]

ComputeServerT::
CompressExtent

ComputeServer[]

ComputeServer[]

SP node

SP node
6-121

The CAP specification of the pipelined parallel Ps2ServerT::WriteWindow operation corresponding to the DAG
of Figure 6-5 is shown in Program 6-5. At lines 1-3, thanks to the CAP additional operation declaration (Program
3-7), we elegantly extend the functionalities of the ComputeServer threads by declaring an additional
library-specific extent compression operation. The C/C++ definition of the sequential
ComputeServerT::CompressExtent operation is provided at line 5. Finally, this custom processing operation is
efficiently incorporated into the writing pipeline of the parallel Ps2ServerT::WriteWindow operation at lines
19-20. Thanks to the CAP formalism, a minor modification of Program 6-3 enables the new enhanced
Ps2ServerT::WriteWindow operation (Figure 6-5 and Program 6-5) to be generated.

In Program 6-5, the selection of the ComputeServer thread performing the extent compression operation (line 19)
is based on the ToComputeServerIndex macro (Program 5-4). The ToComputeServerIndex macro ensures that the
selected ComputeServer thread performing the extent compression at line 19 is in the same address space as the
ExtentServer thread writing the compressed extent at line 21 (Section 5.7).

Programs 6-3 and 6-5 feature a major drawback. Numerous extent writing answers, i.e. WriteExtentOT output
tokens, have to be sent from the SP nodes to the client PC creating an unnecessary load on the network interfaces
and processors of both the client and the SP nodes (although the WriteExtentOT tokens are tiny). A solution
reducing the amount of messages transferred between the SP nodes and the client consists in performing a partial
merge on each SP node and to send only a single extent writing answer to the client per SP node. Again, thanks to
CAP, a minor modification of Program 6-5 enables the programmer to generate the new optimized parallel
PS2ServerT::WriteWindow operation (Figure 6-6 and Program 6-6).

Comparing the first version in Program 6-5 with the improved specification of Program 6-61, only 4 lines (lines
25-28) have been added to the pipelined-parallel Ps2ServerT::WriteWindow operation. For each ComputeServer
thread located on a different SP node (line 26), the WriteWindowIT request is duplicated by the
DuplicateWriteWindowRequest routine and then split into slice writing requests by the GenerateWritingRequest

routine as in the first version of the program (Program 6-5). Since there is a GenerateWritingRequest split routine

Program 6-5. Thanks to the CAP formalism, a minor modification of Program 6-3 enables compressed tiles

to be written

1. For CAP specialists. In Program 6-6 note the keyword ‘local’ at line 34 instructing the CAP runtime
system to initialize the indexed parallel CAP construct’s output token in the current address space, i.e. in
the client address space, and to send the WriteWindowOT output token in the address space where the
merge routine is executed, i.e. in the ComputeServer[ComputeServerIndex] thread’s address space (line
34). On the other hand, if we had used the keyword ‘remote’, the indexed parallel CAP construct’s input
token, i.e. the WriteWindowIT input token (line 22), would have been sent to the
ComputeServer[ComputeServerIndex] thread’s address space for initializing the indexed parallel CAP
construct’s output token leading to transfer an unnecessary large amount of data, i.e. the window data
buffer (Program 6-2, WriteWindowIT token), from the client address space to the ComputeServer thread
address spaces.

1 leaf operation ComputeServerT::CompressExtent // Extending the functionalities of the ComputeServer threads:
2 in WriteExtentIT* InputP // declaring an additional sequential operation
3 out WriteExtentIT* OutputP;
4
1 leaf operation ComputeServerT::CompressExtent // Definition of the additional sequential operation
2 in WriteExtentIT* InputP
3 out WriteExtentIT* OutputP
4 {
5 // C/C++ code (compresses the extent)
6 } // end leaf operation ComputeServerT::CompressExtent
7
8 operation ps2ServerT::WriteWindow
9 in WriteWindowIT* InputP
10 out WriteWindowOT* OutputP
11 {
12 flow_control(100)
13 indexed

14 (int TileRelativePositionY = 0; TileRelativePositionY < thisTokenP->WindowSizeY; TileRelativePositionY++)
15 (int TileRelativePositionX = 0; TileRelativePositionX < thisTokenP->WindowSizeX; TileRelativePositionX++)
16 parallel

17 (GenerateExtentWritingRequest, MergeWriteExtentAnswer, Client, local WriteWindowOT Result())
18 (
19 ComputeServer[ToComputeServerIndex(thisTokenP->VirtualDiskIndex)].CompressExtent
20 >->

21 VirtualDiskServer[ToVirtualDiskServerIndex(thisTokenP->VirtualDiskIndex)].ExtentServer.WriteExtent
22); // end indexed parallel
23 } // end operation ps2ServerT::WriteWindow
6-122

Figure 6-6. Graphical representation of the improved parallel PS2ServerT::WriteWindow operation

requiring much less communication between the SP nodes and the client node

Program 6-6. Improved CAP specification requiring less communication between the SP nodes and the

client node

Ps2ServerT::WriteWindow

ExtentServerT::
WriteExtent

WriteWindowIT WriteWindowOT

Write
WindowIT

Write
WindowOT

Write
WindowIT

Write
ExtentOT

d
u
p
licate w

rite w
in
d
o
w
 req

u
est

Client

ExtentServer[]

ComputeServerT::
CompressExtent

ComputeServer[]

SP node

d
iv
id
es w

in
d
o
w
 in
 tiles; fo

r
each

 tile g
en
erates an

 ex
ten

t
w
ritin

g
 req

u
est

d
iv
id
es w

in
d
o
w
 in
 tiles; fo

r
each

 tile g
en
erates an

 ex
ten

t
w
ritin

g
 req

u
est

p
artial m

erg
e o

f ex
ten

t w
ritin

g

an
sw

ers

sy
n
ch
ro
n
ize p

artial m
erg

in
g
s

ExtentServerT::
WriteExtent

ExtentServer[]

ComputeServerT::
CompressExtent

ComputeServer[]

p
artial m

erg
e o

f ex
ten

t w
ritin

g

an
sw

ers

SP node

Client

Client ComputeServer[]

ComputeServer[] Client

1 void GenerateExtentWritingRequest(WriteImageIT* inputP,
2 WriteExtentIT* &subtokenP,
3 int TileRelativePositionY,
4 int TileRelativePositionX,
5 int ComputeServerIndex)
6 {
7 int ExtentFileIndex, ExtentIndex;
8
9 DeclusteringFunction(...);
10
11 // Only generates an extent writing request for that particular compute server thread
12 if (ToComputeServerIndex(inputP->VirtualDiskIndex[ExtentFileIndex]) == ComputeServerIndex)
13 {
14 subtokenP = new WriteExtentIT;
15 ...
16 } else {
17 subtokenP = (WriteExtentIT*) NULL;
18 } // end if
19 } // end GenerateExtentWritingRequest
20
21 operation ps2ServerT::WriteWindow
22 in WriteWindowIT* InputP
23 out WriteWindowOT* OutputP
24 {
25 indexed

26 (int ComputeServerIndex = 0; ComputeServerIndex < NumberOfComputeServers; ComputeServerIndex++)
27 parallel (DuplicateWriteWindowRequest, SynchronizePartialMerging, Client, local WriteWindowOT Result())
28 (
29 flow_control(3, 10)
30 indexed

31 (int TileRelativePositionY = 0; TileRelativePositionY < thisTokenP->WindowSizeY; TileRelativePositionY++)
32 (int TileRelativePositionX = 0; TileRelativePositionX < thisTokenP->WindowSizeX; TileRelativePositionX++)
33 parallel

34 (GenerateWritingRequest, MergeWriteAnswer, ComputeServer[ComputeServerIndex], local WriteWindowOT Result())
35 (
36 ComputeServer[ComputeServerIndex].CompressExtent
37 >->

38 VirtualDiskServer[ToVirtualDiskServerIndex(thisTokenP->VirtualDiskIndex)].ExtentServer.WriteExtent
39) // end indexed parallel
40); // end indexed parallel
41 } // end operation ps2ServerT::WriteWindow
6-123

dividing the 2D window in tiles per ComputeServer thread, this split routine should only generate tile writing
requests for tiles that are written on the virtual disks hooked on the SP node where the ComputeServer thread runs
(line 12).

6.2.3 Neighbourhood dependent imaging operations

This section describes how the PS2 parallel storage and processing server can be customized for developing
neighbourhood dependent operations, i.e. a pipelined-parallel operations requiring to fetch the 8 borders of a tile
for processing that tile. For example, 2D image filtering operations are neighbourhood dependent operations.

We consider the situation where the source image is declustered across multiple virtual disks using the strategy
described in Section 6.2.1 and where the virtual disks are evenly distributed between the SP nodes. The target
image, i.e. the result of the neighbourhood dependent image processing operation, is written to disks using exactly
the same distribution and the same virtual disks. Before filtering can be performed on a tile, tile sides must be
fetched, i.e. a tile must receive pixels from its 8 neighbouring tiles. The width of the fetched borders is defined in
the border reading request and depends on the filtering operation (Figure 6-7).

The declustering strategy in Section 6.2.1 (Equations 6-2 and 6-3) ensures a proper load-balancing, i.e. disk and
SP node accesses are close to uniformly distributed. Figure 6-7 shows the distribution of tiles across 4 virtual
disks (ExtentFileIndex). Since consecutive virtual disks are mapped to physical disks hooked on different SP
nodes, adjacent tiles on a same row are processed by different SP nodes.

In the proposed execution schedule, all SP nodes work in parallel, i.e. each SP node independently filters tiles

residing on its local virtual disks. Tiles are scanned as a serpentine1 so as to make a better use of the extent caches
[Gennart98a]. Each SP node performs a four-step pipeline for filtering a particular tile. The first step consists of
reading the tile from a local virtual disk (or from the corresponding local extent cache) and, in parallel, the 8
neighbouring tile’s borders from the other SP nodes. During the second pipeline step, the SP node computes the
central part of the tile. During the third pipeline step, the SP node computes the border of the tile after having
received the 8 neighbouring tile’s borders. During the fourth pipeline step, the SP node writes the computed tile
back to the virtual disk. The tile central part is defined as the part of the tile that is not affected by the
neighbouring tile sides. The tile border is defined as the part of the tile that is affected by the 8 neighbouring tile
sides. This four-step pipeline is repeatedly performed on all tiles in a pipelined manner.

Figure 6-8 shows the graphical CAP specification of the parallel Ps2ServerT::NeighbourhoodDependent image
processing operation. The process window request, i.e. the ProcessImageIT input token, is first duplicated by the
Client thread and sent to all SP nodes, i.e. ComputeServer threads. Each SP node iteratively traverses its tiles, i.e.
the tiles intersecting the image window and residing on the local virtual disks, and for each tile generates a tile
processing request. This request is redirected to the parallel PS2ServerT::ProcessTile operation where the tile and
its 8 borders are read and filtered. The Ps2ServerT::ProcessTile’s output token, i.e. the filtered tile, is redirected to
the ExtentServerT::WriteExtent operation writing the tile back to the target image file. Once all the tiles making

Figure 6-7. During a neighbourhood dependent imaging operation the borders of a tile are fetched from the

neighbouring SP nodes

1. Serpentine scanning: left to right on first row, right to left on second row, left to right on third row, etc.

03,07 00,07 01,07

00,10

01,13 02,13 03,13

02,1001,10

01,07

ExtentFileIndex ExtentIndex
6-124

up the window part of a SP node are filtered, an answer is sent back to the Client thread comprising an error code,
i.e. a WriteExtentOT output token. When the Client thread has received an acknowledge from all the SP nodes, i.e.
the full 2D image has been filtered, the ProcessImageOT output token is passed to the next operation.

In the DAG of Figure 6-8, pipelining is achieved at two levels:
• the ExtentServer thread writes a filtered tile while its companion ComputeServer thread located on the same

SP node processes the next tiles,

• the ComputeServer thread processes a tile1, while the same ComputeServer thread continues to divide its
image part into tiles and to generate tile processing requests.

And the parallelization occurs at two levels:
• several tiles are read and written simultaneously to and from different disks; the number of disks can be

increased to improve I/O throughput,
• tile filtering is done in parallel by several processors; the number of processors per SP node (processors

sharing a common memory) and the number of SP nodes can be increased to improve the tile filtering
performance.

Figure 6-9 shows the graphical CAP specification of the parallel Ps2ServerT::ProcessTile operation. This
pipelined-parallel operation consists in reading in parallel the tile and its 8 border tiles from multiple virtual disks.
Once a border tile is read (if CAP construct) by an ExtentServer thread, its companion ComputeServer thread, i.e.
the ComputeServer thread residing in the same address space as the ExtentServer thread that read the border tile,
extracts the required border from the tile using the ComputeServerT::ExtractBorderFromTile sequential
operation. Then, the 8 borders are possibly transfered across the network (from one SP node to another SP node)
to the ComputeServer thread where the central tile resides. Finally, the central tile and its 8 borders are filtered by
the ComputeServer thread using the ComputeServerT::FilterTile sequential operation. Once the tile is filtered, an
extent writing request (WriteExtentIT token) is generated and redirected to the next operation. Remark that during
the whole process the central tile is never transfered across the network. Only the 8 borders are possibly transfered
from the neighbouring SP nodes to the SP node where the central tile resides.

Figure 6-8. Graphical CAP specification of the neighbourhood dependent imaging operation

1. Remember that processing a tile involves reading asynchronously the tile and its 8 borders from other SP
nodes.

Ps2ServerT::
NeighbourhoodDependent

ExtentServerT::
WriteExtent

ProcessImageIT ProcessImageOT

Process
ImageIT

Process
ImageOT

Process
ImageIT

Write
ExtentOT

d
u
p
licates p

ro
cess im

ag
e req

u
est

Client

ExtentServer[]

Ps2ServerT::
ProcessTile

SP node

d
iv
id
es im

ag
e in

 tiles; fo
r

each
 tile g

en
erates a p

ro
cess

tile req
u
est

d
iv
id
es im

ag
e in

 tiles; fo
r

each
 tile g

en
erates a p

ro
cess

tile req
u
est

p
artial m

erg
e o

f ex
ten

t w
ritin

g

an
sw

ers

sy
n
ch
ro
n
ize S

P
 n
o
d
es

ExtentServerT::
WriteExtent

ExtentServer[]

p
artial m

erg
e o

f ex
ten

t w
ritin

g

an
sw

ers

SP node

ComputeServer[]

ComputeServer[] ComputeServer[]

ComputeServer[] Client

Ps2ServerT::
ProcessTile

Filtered
TileOT

Filtered
TileOT

ComputeServer
threads

ComputeServer
threads
6-125

Program 6-7 shows the CAP specification of the pipelined-parallel Ps2ServerT::NeighbourhoodDependent
operation (lines 25-51). The input token is an image description (parallel image file descriptor, image size, tile
size) and a filter description (filter size, filter values) but no data. The output token merely comprises an error
code, since the filtered image is directly stored on the virtual disks without producing any output. The first
indexed parallel CAP construct (lines 29-31) duplicates the image processing request for each ComputeServer
threads (line 30) located on different SP nodes. Then, each ComputeServer thread (line 33) independently and in
parallel performs the second indexed parallel CAP construct that scans tiles of the 2D image in serpentine (lines
37-42). The first loop (lines 37-39) iterates on successive image tile rows and the second loop (lines 40-42)
iterates on all tiles of one input image tile row. For each local tile, i.e. for tiles stored on virtual disks hooked on
the SP node where the ComputeServer[ComputeServerIndex] thread at line 33 resides, a tile processing request is
generated by the GenerateTileProcessingRequest routine which is redirected to the parallel
Ps2ServerT::ProcessTile operation. The output of the Ps2ServerT::ProcessTile operation (line 46), which is a
filtered tile, is redirected to the ExtentServerT::WriteExtent operation (line 48) performed by the companion
ExtentServer thread residing in the same address space as the ComputeServer[ComputeServerIndex] thread (line
33).

The parallel Ps2ServerT::ProcessTile operation is made of a single indexed parallel CAP construct (lines 9-12)
that generates a border processing request (GenerateBorderProcessingRequest routine) for the central tile and its
8 borders (line 10). The 9 processing requests are redirected to the appropriate ExtentServer threads reading in
parallel the 9 tiles (line 14). Then, if it is a border (line 16), the border is extracted from the read tile (line 18) by
the companion ComputeServer thread, i.e. the ComputeServer thread residing in the same address space as the
ExtentServer thread that read the tile at line 14. The extracted borders and the central tile are redirected (and
possibly transfered across the network) to the ComputeServer thread (line 21) who initiates the parallel
Ps2ServerT::ProcessTile operation, i.e. where resides the central tile. The ComputeServerT::FilterTile sequential
operation is performed on the central tile and its 8 borders. Finally, once the 9 processing requests are merged by
the MergeBorderProcessingAnswer routine, i.e. the entire tile is filtered, the extent writing request, i.e. the
WriteExtentIT output token (line 7), is redirected to the next operation.

By being able to direct at execution time the ExtentServerT::ReadExtent and
ComputeServerT::ExtractBorderFromTile operations to the SP node where the tiles reside, operations are
performed only on local data and superfluous data communications over the network are completely avoided.

6.3 The Visible Human slice server application

This section demonstrates the applicability and the performances of the CAP tool and the PS2 framework on real
applications with a parallel 3D image slice extraction server application. This application, developed using the

PS2 methodology, enables clients to specify, access in parallel, and visualize image slices having any desired

Figure 6-9. Graphical CAP specification of the parallel Ps2ServerT::ProcessTile operation

Ps2ServerT::
ProcessTile

ExtentServerT::
ReadExtent

ProcessTileIT WriteExtentIT

Process
TileIT

Write
ExtentIT

g
en
erates an

 ex
ten

t read
in
g
 req

u
est fo

r each

b
o
rd
er o

f th
e tile an

d
 fo

r th
e tile itself

ComputeServer[]

ExtentServer[]

ComputeServer[]

ComputeServerT::
ExtractBorderFromTile

ComputeServer[]

ComputeServerT::
FilterTile

ComputeServer[]Border?

1

0

ExtentServerT::
ReadExtent

ExtentServer[]

ComputeServerT::
ExtractBorderFromTile

ComputeServer[]

ComputeServerT::
FilterTile

ComputeServer[]Border?

1

0

S
y
n
ch
ro
n
izes b

o
rd
ers an

d
 cen

ter filterin
g

6-126

position and orientation. The image slices are extracted from the 3D Visible Human Male declustered across
multiple disks distributed on several SP nodes. Users located over the local area network interact with the
underlying parallel image slice extraction server with a graphical interface developed in Borland Delphi.

Moreover, in order to demonstrate the applicability of our tools (CAP and PS2) to build parallel Web server on
distributed memory PC’s, we have interfaced this parallel image slice extraction engine to a Microsoft IIS Web
server using the ISAPI protocol. A Java 1.1 applet runs on Web clients and enables users to specify slice position
and orientation and generate image slice extraction requests. Replies of the Web server are compressed using the
JPEG standard and send back to the Web client for display. The Web interface is operational at
http://visiblehuman.epfl.ch [Vetsch98].

Such complex client parallel-server applications require several software components developed using different

tools and technologies (CAP, PS2, Microsoft Visual C/C++, DLL libraries, Borland Delphi, ISAPI protocol,
Borland Java Builder, Microsoft IIS Web server) that must be properly assembled. For the Windows NT

application, the parallel image slice extraction engine, developed using the PS2 framework, has been interfaced to
a Borland Delphi graphical interface using a dynamic linked library (DLL). For the Web application, the parallel
image slice extraction engine (a Microsoft Visual C/C++ DLL library) has been interfaced to the Microsoft IIS
Web server using an ISAPI dynamic linked library developed in Borland Delphi. This demonstrates the ability of

PS2-generated programs to be incorporated in a wide variety of applications.

Section 6.3.1 introduces the image slice extraction and visualization application. It presents the 14GByte Visible
Human Male and how it is striped between multiple disks using the declustering strategy of Section 6.2.1. Section

6.3.2 presents the parallelization of the extraction algorithm using PS2. In order to demonstrate the flexibility of
CAP, we present a first naive solution featuring superfluous communications. Then, we easily modify the
schedule of the first solution leading to an application requiring much less data transfer. Section 6.3.3

Program 6-7. CAP specification of the neighbourhood dependent imaging operation

1 enum NeighbourhoodT {CENTER, NORTH_EAST, NORTH, NORTH_WEST, EAST, WEAST, SOUTH_EAST, SOUTH, SOUTH_WEST };
2
3 operation ps2ServerT::ProcessTile(int computeServerIndex,
4 int tilePositionX,
5 int tilePositionY)
6 in ProcessTileIT* InputP
7 out WriteExtentIT* OutputP
8 {
9 indexed

10 (NeighbourhoodT Neighbour = CENTER; Neighbour >= SOUTH_WEST; Neighbour++)
11 parallel (GenerateBorderProcessingRequest, MergeBorderProcessingAnswer(tilePositionX, tilePositionY),
12 ComputeServer[computeServerIndex], local WriteExtentIT Result(*thisTokenP))
13 (
14 VirtualDiskServer[ToVirtualDiskServerIndex(thisTokenP->VirtualDiskIndex)].ExtentServer.ReadExtent
15 >->

16 if (Neighbour != CENTER)
17 (
18 ComputeServer[SelectComputeServer(tilePositionX, tilePositionY, Neighbour)].ExtractBorderFromTile(Neighbour)
19) // end if
20 >->

21 ComputeServer[computeServerIndex].FilterTile(Neighbour)
22); // end indexed parallel
23 } // end operation ps2ServerT::ProcessTile
24
25 operation ps2ServerT::NeighbourhoodDependent
26 in ProcessImageIT* InputP
27 out ProcessImageOT* OutputP
28 {
29 indexed

30 (int ComputeServerIndex = 0; ComputeServerIndex < NumberOfComputeServers; ComputeServerIndex++)
31 parallel (DuplicateProcessImageRequest, SynchronizePartialMerging, Client, local ProcessImageOT Result())
32 (
33 ComputeServer[ComputeServerIndex].{ } // Redirect a process image request to each SP node
34 >->

35 flow_control(3, 10)
36 indexed // doubly indexed
37 (int TilePositionY = FirstTilePositionY(thisTokenP);
38 IsNotLastRow(TilePositionY, thisTokenP);
39 TilePositionY++)
40 (int TilePositionX = FirstTilePositionX(TilePositionY, thisTokenP);
41 IsNotLastTileInRow(TilePositionX, TilePositionY, thisTokenP);
42 TilePositionX = NextTilePositionX(TilePositionX, TilePositionY))
43 parallel (GenerateTileProcessingRequest(ComputeServerIndex), MergeTileProcessingAnswer,
44 ComputeServer[ComputeServerIndex], local ProcessImageOT Result())
45 (
46 ProcessTile(ComputeServerIndex, TilePositionX, TilePositionY)
47 >->
48 VirtualDiskServer[ToVirtualDiskServerIndex(thisTokenP->VirtualDiskIndex)].ExtentServer.WriteExtent
49) // end indexed parallel
50); // end indexed parallel
51 } // end operation ps2ServerT::NeighbourhoodDependent
6-127

experimentally analyses the performances of the image slice extraction and visualization application for various

PS2 server configurations and demonstrates that the obtained image slice throughputs are close to the
performances of the underlying hardware.

6.3.1 Description of the image slice extraction and visualization

application

The 24-bit Visible Human Male created by the National Library of Medicine at Bethesda Maryland USA
[Ackerman95, Spitzer96] reaches a size of 2048x1216x1878 voxels, i.e. 13 GBytes RGB. The width (X) and
height (Y) resolutions are 3 pixels per millimetre. The axial anatomical images (Z) where obtained at 1.0
millimetre intervals. For enabling parallel storage and access, the 3D Visible Human Male data set is segmented
into 3D volumic extents of size 32x32x17 voxels, i.e. 51 KBytes, distributed over a number of disks.

The distribution of volumic extents to disks is made so as to ensure that direct volumic extent neighbours reside
on different disks hooked on different SP nodes. We achieve such a distribution by extending the declustering
strategy presented in section 6.2.1 to a third dimension (Z), i.e. by introducing between two successive planes of
volumic extents an extent file offset (ExtentFileOffsetZ) which is also prime to the number of extent files

(NExtentFiles) making up the parallel 3D image file. This ensures that for nearly all extracted slices, disk and SP
node accesses are close to uniformly distributed. Equation 6-4 gives the distribution of volumic extents to disks
where ExtentPositionX, ExtentPositionY and ExtentPositionZ are the volumic extent coordinate, and NExtentX and

NExtentY are the numbers of volumic extents per row and per column. Equation 6-5 gives the distribution of

volumic extents within a particular disk, or extent file, computed using Equation 6-4 (all divisions are integer
divisions). Therefore a particular volumic extent is uniquely identified with its ExtentFileIndex specifying on
which extent file the extent resides and its ExtentIndex specifying the local extent index within the set of extents
stored on that particular extent file.

(6-4)

(6-5)

Visualization of 3D medical images by slicing, i.e. by intersecting a 3D tomographic image with a plane having
any desired position and orientation is a tool of choice in diagnosis and treatment. In order to extract a slice from
the 3D image, the volumic extents intersecting the slice are read from the disks and the slice parts contained in
these volumic extents are extracted and resampled (Figure 6-10).

Figure 6-10. Extraction of slice parts from volumic file extents

ExtentFileIndex ExtentPosition
Z

ExtentFileOffsetZ⋅ ExtentPosition
Y

ExtentFileOffsetY⋅
 ExtentPosition

X

+ +(
) mod NExtentFiles

=

ExtentIndex ExtentPosition
Z

NExtentsY 1
NExtentsX 1–

NExtentFiles
----------------------------------+ 

 ⋅⋅

 ExtentPosition
Y

1
NExtentsX 1–

NExtentFiles
----------------------------------+ 

 ⋅
ExtentPosition

X

NExtentFiles

+

+

=

Extraction slice
specification

Extraction of the digital slice
from the 3D image

Extracted slice
parts

Projected slice parts
merged into the final

displayable slice

volumic extent
6-128

Since the resolution along the Z-axis is three times lower than the resolution in X and Y, non isometric 3D volume
interpolation is applied for the extraction of slice parts. To avoid non-isometric interpolation across extent
boundaries, i.e. dependences between interpolation operations which after parallelization, may be executed in
different address spaces, the volumic extents we store on disks have overlapping boundaries in Z-direction, i.e.
vertically adjacent extents have one axial anatomical image in common.

The sequential algorithm of the extraction of image slices from 3D tomographic images has been created by Oscar
Figueiredo based on his research on discrete planes [Figueiredo99].

Users are asked to specify a slice located at a given position within a 3D image and having a given orientation.
The client's user interface displays enough information (a miniaturized version of the 3D image, as in [North96])
to enable the user to interactively specify the desired image slice (Figure 6-11).

The parameters defining the user selection are sent to the server application. The server application consists of a
proxy residing on the client's site and of server processes running on the server's parallel processors. The proxy
interprets the slice location and orientation parameters and determines the image extents which need to be
accessed. It sends to the concerned servers (servers whose disks contain the required extents) the extent reading
and image slice extraction and projection requests. These servers execute the requests and transfer the resulting
slice parts to the server proxy residing on the client site, which assembles them into the final displayable image
slice (Figure 6-12).

6.3.2 Parallelizing the image slice extraction and visualization

application using PS2

This section shows how the image slice extraction and visualization operation has been parallelized using the
CAP Computer-Aided Parallelization tool and how it executes on a multi-PC environment using a configuration
map specifying the layout of threads on the available PC’s.

The first step when creating a pipelined-parallel operation using CAP is to devise its macro data flow, i.e. to
decompose the problem into a set of sequential operations, and to specify the operations input and output data
types (tokens). This enables the application to be decomposed into basic independent sub-tasks that may be
executed in a pipelined-parallel manner.

From Section 6.3.1, we identify the five basic independent sequential sub-tasks that compose the slice extraction
and visualization application:
• compute the extents intersecting the slice from the slice orientation parameters and from the 3D image file

distribution parameters,
• read an extent from a single disk (a predefined CAP operation available in a library of reusable components),
• extract a slice part from an extent and project it onto the display space (possibly combined with zoom),

Figure 6-11. Selecting an image slice within a 3D tomographic image
6-129

• merge the extracted and projected slice parts into the full image slice,
• display the extracted full slice on the client computer.

The macro data flow specifying the schedule of these five basic operations is shown in Figure 6-13.

Figure 6-12. Sending the extraction requests and receiving the slice parts

Figure 6-13. Graphical representation of the pipelined-parallel slice extraction and visualization operation

Client

SP Node[N-1]SP Node[0] SP Node[1]

Local Area
Network

Parallel Storage
&

Processing Server

extraction requests

slice parts

extent
data

slice
part

extent
reading
request

Co
mp

ut
e

Se
rv
er
[]

Ex
ten

t

Se
rv
er
[]

SP node

read extent
from disk

extract slice part from
extent, project onto

display space

m
erg

e p
ro
jected

slice p
arts in

to
 a fu

ll slice

pointer to
extracted
full slice

Cl
ie
nt

slice
orientation
parameters,
image file
descriptor

co
m
p
u
te ex

ten
ts in

tersectin
g

th
e slice

Cl
ie
nt

extent
data

slice
part

extent
reading
request

SP node

read extent
from disk

extract slice part from
extent, project onto

display space

Ex
ten

t

Se
rv
er
[]

Co
mp

ut
e

Se
rv
er
[]

pointer to
extracted
full slice

extract image
slice

Cl
ie
nt

visualize
extracted full

slice

slice
orientation
parameters,
image file
descriptor void
6-130

The pipelined-parallel slice extraction and visualization operation is nothing else than the pipelining of the
parallel ExtractSlice operation and the sequential VisualizeSlice operation (Figure 6-13). The input token of the
first stage is a SliceExtractionRequest comprising the slice orientation parameters and the 3D tomographic image
file descriptor. The output token is the extracted and projected Slice which is the input token of the second stage
executed by the Client thread.

The ExtractSlice operation is defined as follows. Based on the SliceExtractionRequest, the Client thread first
computes all the extents intersecting the slice. For each of these extents a reading request is sent to an

ExtentServer[] located on the SP node where this extent resides1. Once an extent is read by the asynchronous
ReadExtent operation, it is fed to the ExtractAndProjectSlicePart operation performed by a ComputeServer[]
thread residing in the same computer as the ExtentServer thread. The resulting extracted and projected slice part is
sent back to the Client thread to be merged into the full image slice. When all the slice parts are merged, the full
image Slice is passed to the next operation.

Pipelining is achieved at four levels:
• slice extraction and projection is performed by the ComputeServer thread on one extent while the companion

ExtentServer thread reads the next extents,
• an extracted and projected slice part is asynchronously sent to the Client thread while the ComputeServer

thread extracts and projects the next slice parts,
• an extracted and projected slice part is merged by the Client thread into the full image slice while the next

slice parts are being asynchronously received,
• a full image slice is displayed by the Client thread while the next full image slices are being prepared (in the

case the user has requested a series of successive slices).

Parallelization occurs at two levels:
• several extents are read simultaneously from different disks; the number of disks can be increased to improve

I/O throughput,
• extraction of slice parts from extents and projection operations are done in parallel by several processors; the

number of processors can be increased to improve the slice part extraction and projection performance.

The CAP program of the pipelined-parallel slice extraction and visualization operation corresponding to the graph
of Figure 6-13 is shown in Program 6-8.

The parallel ExtractAndVisualizeSlice operation (line 44) is decomposed into two sub operations ExtractSlice and
VisualizeSlice that are executed in pipeline. The slice extraction request input argument comprises the slice
orientation parameters and the 3D tomographic image file descriptor.

The input of the parallel Ps2ServerT::ExtractSlice operation (line 24) performed by the Client thread is a
SliceExtractionRequestT request. Using a parallel while CAP construct, this request is divided by the
SplitSliceRequest routine (line 13) that incrementally computes the extents intersecting the slice. Each time it is
called, it generates an extent reading request and returns a boolean specifying that the current request is not the
last request (end of the while loop). The ExtentServer threads with index thisTokenP->ExtentServerIndex running
the ReadExtent operation (line 1) read the required 3D extents from the disks and feed the extent data to their
companion ComputeServer threads. The ComputeServer threads running the ExtractAndProjectSlicePart (line 5)
extract the slice parts from the received extents, project them into display space, and return them to the Client
thread who originally started the operation. The Client thread merges the projected slice parts into a single SliceT
full slice using the MergeSlicePart routine (line 20).

The sequential ClientT::VisualizeSlice operation (line 36) is a standard C/C++ sequential routine that displays the
input 24-bit color bitmap on the screen using the Win32 application programming interface.

Each ExtentServer thread and its companion ComputeServer thread work in pipeline; multiple pairs of
ExtentServer and ComputeServer threads may work in parallel if the configuration map specifies that different
ExtentServer/ComputeServer threads are mapped onto different processes running on different computers.

1. When a parallel file is opened, the client thread obtains information how the global file is striped into
subfiles and on which disk and processing node each subfile resides. This enables the index of the
processing node whose disk contains the desired volumic file extent to be computed.
6-131

The program shown in Figure 6-13 features a major drawback. Numerous extent reading requests have to be sent
from the client PC to the SP nodes creating an important load on both the client and server network interfaces and
processors. To give a figure, with 5 SP nodes, each with one disk and an enabled extent cache, 4.8 512x512 image
slices per second are visualized. Since each slice perpendicular to the volume’s main diagonal intersects on
average 437 volumic extents, extracting a slice requires on average 437 extent reading requests. The client PC
must therefore sustain an output network throughput of 4.8 x 437 = 2'098 extent reading requests per second.

A solution reducing heavily the amount of messages transfered between the client and SP nodes consists in
sending a full slice access request to all the SP nodes. The SP nodes segment themselves the slice access request
into local extent reading requests. Thanks to CAP, a minor modification of the program shown in Figure 6-13
enables the new optimized application (Figure 6-14 and Program 6-9) to be generated.

Comparing the first version in Program 6-8 and the improved specification in Program 6-9, only 5 lines (line 13
through line 17) have been added to the pipelined-parallel Ps2ServerT::ExtractSlice operation. For each SP node
(line 13), the SliceExtractionRequestT request is duplicated by the DuplicateSliceExtractionRequest routine (line
1) and sent to a ComputeServer thread located on that particular SP node (line 16) where the slice extraction
request is divided into extent reading requests (lines 18 and 19) as in the first version of the program (Figure 6-8).
Line 16 forces the SliceExtractionRequestT request to be sent from the client PC to a SP node where the
SplitSliceRequest routine will be executed.

By being able to direct at execution time the ExtentServerT::ReadExtent and
ComputeServerT::ExtractAndProjectSlicePart operations to the SP node where the extents resides, operations are
performed only on local data and superfluous data communications over the network are completely avoided.
Load-balancing is ensured by distributing volumic extents onto the disks according to Equations 6-4 and 6-5.

Program 6-8. CAP specification of the pipelined-parallel slice extraction and visualization operation

1 external leaf operation ExtentServerT::ReadExtent

2 in ReadExtentIT* InputP

3 out ReadExtentOT* OutputP; // Taken from the library of reusable low-level parallel file system components

4

5 leaf operation ComputeServerT::ExtractAndProjectSlicePart

6 in ReadExtentOT* InputP

7 out SlicePartT* OutputP

8 {

9 OutputP = new SlicePartT;

10 ...C++ sequential code

11 }

12

13 bool SplitSliceRequest(SliceExtractionRequestT* FromP,

14 ReadExtentIT* PreviousP, ReadExtentIT* &ThisP) {

15 ThisP = new ReadExtentIT;

16 ...C++ sequential code

17 return (IsNotLastExtentReadingRequest);

18 }

19

20 void MergeSlicePart(SliceT* IntoP, SlicePartT* ThisP) {

21 ...C++ sequential code

22 }

23

24 operation Ps2ServerT::ExtractSlice

25 in SliceExtractionRequestT* InputP

26 out SliceT* OutputP

27 {

28 parallel while (SplitSliceRequest, MergeSlicePart, Client, SliceT Output)

29 (

30 VirtualDiskServer[thisTokenP->VirtualDiskServerIndex].ExtentServer.ReadExtent

31 >->

32 ComputeServer[thisTokenP->ComputeServerIndex].ExtractAndProjectSlicePart

33);

34 }

35

36 leaf operation ClientT::VisualizeSlice

37 in SliceT* InputP

38 out capTokenT* OutputP

39 {

40 OutputP = new capTokenT;

41 ...C++ sequential code

42 }

43

44 operation Ps2ServerT::ExtractAndVisualizeSlice

45 in SliceExtractionRequestT* InputP

46 out capTokenT* OutputP

47 {

48 ExtractSlice

49 >->

50 Client.VisualizeSlice;

51 }

split function

merge function

thread where
MergeSlicePart is executed

output token of the
parallel while construct
6-132

6.3.3 Performances and scalability analysis of the image slice extraction

and visualization application

The server architecture we consider comprises 5 200MHz Bi-PentiumPro PC's interconnected by a 100 Mbits/s
switched Fast Ethernet network (Figure 6-12). Each SP node runs the Windows NT Workstation 4.0 operating
system, and incorporates 12 SCSI-2 disks divided into 4 groups of 3 disks, each hooked onto a separate SCSI-2
string. We use IBM-DPES 31080, IBM-DCAS 32160, CONNER CFP1080S, SEAGATE ST52160N and

Figure 6-14. Graphical representation of the improved operation requiring much less communication

between the client PC and the SP nodes

Program 6-9. Improved CAP specification requiring much less communication between the client PC and

the SP nodes

pointer to
extracted
full slice

extract image
slice

Cl
ie
nt

visualize
extracted full

slice

slice
orientation
parameters,
image file
descriptor void

slice
orientation
parameters,
image file
descriptor

d
u
p
licate im

ag
e slice ex

tractio
n

req
u
est

p
artial m

erg
e o

f p
ro
jected

slice p
arts in

to
 a fu

ll slice
sync

message

extent
data

slice
part

Cl
ie
nt Cl

ie
nt

extent
reading
request

slice
orientation
parameters,
image file
descriptor

Cl
ie
nt

Co
mp

ut
e

Se
rv
er
[]

read
extent

from disk

co
m
p
u
te ex

ten
ts

in
tersectin

g
 th
e slice

Co
mp

ute

Se
rv
er
[]

Ex
ten

t

Se
rv
er
[]

slice
orientation
parameters,
image file
descriptor

p
artial m

erg
e o

f p
ro
jected

slice p
arts in

to
 a fu

ll slice

extent
data

slice
part

Cl
ie
nt

extent
reading
request

Co
mp

ut
e

Se
rv
er
[]

read
extent

from disk

extract slice
part from

extent, project
onto display

space

co
m
p
u
te ex

ten
ts

in
tersectin

g
 th
e slice

Co
mp

ute

Se
rv
er
[]

Ex
ten

t

Se
rv
er
[]

extract slice
part from

extent, project
onto display

space

SP node

SP node

sy
n
ch
ro
n
ize slice p

artial m
erg

in
g
s

sync
message

pointer to
extracted

full
slice

1 void DuplicateSliceExtractionRequest(SliceExtractionRequestT* FromP,
2 SliceExtractionRequestT* &ThisP,
3 int ServerPC) {
4 ThisP = new SliceExtractionRequesT(FromP);
5 }
6
7 void SynchronizeSPNodes(SliceT* IntoP, SliceT* ThisP) { ...C++ sequential code }
8
9 operation Ps2ServerT::ExtractSlice
10 in SliceExtractionRequestT* InputP
11 out SliceT* OutputP
12 {
13 indexed (int SPNode = 0; SPNode < NSPNODES; SPNode++)
14 parallel (DuplicateSliceExtractionRequest, SynchronizeSPNodes, Client, SliceT Output)
15 (
16 ComputeServer[ThisTokenP->ComputeServerIndex].{ }
17 >->
18 parallel

19 while (SplitSliceRequest, MergeSlicePart, Client, SliceT Output)
20 (
21 VirtualDiskServer[ThisTokenP->VirtualDiskServerIndex].ExtentServer.ReadExtent
22 >->
23 ComputeServer[ThisTokenP->ComputeServerIndex].ExtractAndProjectSlicePart
24)
25);
26 }
6-133

SEAGATE ST32155N disks which have a measured mean read data transfer throughput of 3.5 MBytes/s and a
mean latency time, i.e. seek time + rotational latency time, of 12.2 ms [Messerli97]. Thus, when accessing 51
KBytes blocks, i.e. 32x32x17 RGB extents, located at random disk locations, an effective throughput of 1.88
MBytes/s per disk is reached.

In addition to the SP nodes, one client 333MHz Bi-PentiumII PC located on the network runs the 3D tomographic
image visualization task (Figure 6-12) which enables the user to specify interactively the desired slice access
parameters (position and orientation) and interacts with the server proxy to extract the desired image slice. The
server proxy running on the client sends the slice extraction requests to the SP nodes, receives the slice parts and
merges them into the final image slice, which is passed to the 3D tomographic image visualization task to be
displayed (Figure 6-11).

The present application comprises several potential bottlenecks: insufficient parallel disk I/O bandwidth,
insufficient parallel server processing power for slice part extraction and projection, insufficient network
bandwidth for transferring the slice parts from SP nodes to the client PC, insufficient bandwidth of the network
interface at the client PC and insufficient processing power at the client PC for receiving many network packets,
for assembling slice parts into the final image slice and for displaying the final image slice on the user's window.

To measure the image slice extraction and visualization application performances, the experiment consists of
requesting and displaying successive 512x512 RGB image slices, i.e. 768 KBytes, orthogonal to one of the
diagonals traversing the Visible Human's rectilinear volume.

Zoom factor 1, extent cache disabled

We first consider the case of a zoom factor of 1, i.e. each extracted image slice is displayed without reduction,
where 1 slice extraction request of 120 Bytes is sent per SP node, 437 extents, i.e. 437 x 51KB = 22 MBytes, are
read in average from disks and 437 slice parts of 3.8 KBytes each are sent to the client for each extracted 512x512
image slice. Figure 6-15 shows the performances obtained, in number of image slices per second, as a function of
the number of contributing SP nodes and a function of number of disks per contributing SP node. In order to test
the worst case behaviour, i.e. the general case where successive requests are directed towards completely different
extents, no disk caching is allowed.

When disabling the extent caches, with up to 12 disks per SP node, disk I/O bandwidth is always the bottleneck.
Therefore increasing either the number of disks per SP node or the number of SP nodes (assuming each PC
incorporates an equal number of disks) increases the number of disks and offers a higher extracted image slice
throughput (Figure 6-15). With the 5 SP node 60 disk server configuration an aggregate disk I/O throughput of
4.8[image slices/s] x 437[extents/image slice] x 51[KBytes/extent] = 104 MBytes/s, i.e. 1.74 MBytes/s per disk,
is reached. This shows that the disks are the bottleneck since they have a measured I/O mean throughput of 1.88
MBytes/s.

Each time you add a group of 3 disks to a single SP node the aggregate disk I/O throughput increases by ~5.2
MBytes/s, the server processor utilization increases by ~20%, the client processor utilization increases by ~4%,
and the extracted image slice throughput increases by 5.2[MBytes/s] / 22[MBytes/slice] = ~0.24 image slices/s.

Figure 6-15. Performances at zoom factor 1, with the extent cache disabled on each SP node

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of disks per S/P node

[E
xt

ra
ct

ed
im

ag
e

sl
ic

es
/s

]

1 S/P node
2 S/P nodes
3 S/P nodes
4 S/P nodes
5 S/P nodes

0
10
20
30
40
50
60
70
80
90

100

Pr
oc

es
so

r
ut

ili
za

tio
n

[%
]

1 PC with 12
disks

2 PC's each
with 12 disks

3 PC's each
with 12 disks

4 PC's each
with 12 disks

5 PC's each
with 12 disks

Server
configurations:

Read 3D extent from disks

Compute extents intersecting the
slice, extract and project slice part

Visualize full image slice Network
and system
activities

Generate slice extraction requests,
merge slice parts into a full slice

Client

S/P nodes
6-134

Each time the extracted image slice throughput increases by 1 image slice/s, the server processor utilization
increases by 20[%] / 0.24[slices/s] = 83% and the client processor utilization increases by 4[%] / 0.24[slices/s] =
17%.

The maximum number of disks that a single SP node can handle is 15 disks per SP node and the extracted image
slice throughput is (15/3) x 0.24[slices/s] = ~1.2 image slices/s. From 15 disks on, the server processor is the
bottleneck. This represents the first scalability limit. On the other hand, the client PC can handle up to 5 SP nodes
each with 15 disks and the extracted image slice throughput is (75/3) x 0.24[slices/s] = 6 image slices/s. From 5
SP nodes each with 15 disks the client processor is the bottleneck. This represents the maximum sustainable
extracted and visualized image slice throughput assuming that only the disks, the server processors and the client
processor are potential bottlenecks.

Zoom factor 1, extent cache enabled

In the present experiment, where we browse through successive image slices having identical orientations, there is
a high probability that the next image slice requires data from the same volumic extents as the previous image
slice. Therefore, when enabling the SP node’s extent caches, the bottleneck shifts quickly from the disks to the
limited processing power available on the SP nodes (Figure 6-16). This shows the efficiency of the extent caches
when browsing through the Visible Human.

Figure 6-16 shows that with up to 3 SP nodes the slice part extraction and projection operation running on the SP
nodes is the bottleneck. Since the extent cache comprises 25 MBytes per SP node and the amount of extents that
must be read for extracting a single 512x512 image slice is 22 MBytes, the maximum extent cache efficiency, i.e.
the case when each extent is read only once from a disk, is already reached with a single SP node. At this
maximum cache hit rate, 97.9% of the accessed extents are read from the extent caches, i.e. 1 of 50 extents is read
from disks. This is correct since an extent contains along its vertical axis (Z) 17 x 3 = 51 slice parts.

A single SP node with a single disk and an enabled extent cache is able to extract and project 1.5 image slices/s.
Without the extent cache, it sustains with 15 disks a maximum of 1.2 image slices/s. This difference is due to the
fact that reading extents from disks require more processing power than reading extents from extent caches.

The next bottleneck is not the client processor but resides in the limited bandwidth of its Fast Ethernet network
interface (Figure 6-16, 4 and 5 SP nodes), which saturates at the reception of 5.3[image slices/s] x 437[slice
parts/image slice] = 2’316 slice parts/s corresponding to a network throughput of 2’316[slice parts/s] x
3.8[KBytes/slice part] = 8.6 MBytes/s.

Figure 6-16. Performances at zoom factor 1, with an extent cache of 25 MBytes per SP node

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of disks per S/P node

[E
xt

ra
ct

ed
im

ag
e

sl
ic

es
/s

]

1 S/P node

2 S/P nodes

3 S/P nodes

4 and 5 S/P nodes

0
10
20
30
40
50
60
70
80
90

100

Pr
oc

es
so

r
ut

ili
za

tio
n

[%
]

1 PC with 12
disks

2 PC's each
with 12 disks

3 PC's each
with 12 disks

4 PC's each
with 12 disks

5 PC's each
with 12 disks

Server
configurations:

Read 3D extent from disks

Compute extents intersecting the
slice, extract and project slice part

Visualize full image slice Network
and system
activities

Generate slice extraction requests,
merge slice parts into a full slice

S/P

Client
6-135

Zoom factor 2, extent cache disabled

At a zoom factor of 2, the server processors extract slice parts from their corresponding disk extents, and resample
them at a two by two times lower resolution, i.e. each slice part is reduced by a factor of 4 and sent to the client
PC. For each 512x512 visualized image slice, a 1024x1024 slice is extracted from the 3D volume where 1'615
extents, i.e. 1’615 x 51KB = 80 MBytes, are read in average from disks and 1’615 slice parts of 1 KBytes each are
sent to the client.

As figure 6-17 shows, with a zoom factor of 2, disk I/O throughput is the bottleneck for all considered
configurations. Comparing with the zoom factor 1, this assertion is correct, since 4 times more extents need to be
read for each extracted image slice.

As expected, the aggregate disk I/O throughputs are the same as with zoom factor 1 (Figure 6-15). For example,
with the 5 SP node 60 disk server configuration, a global disk I/O bandwidth of 1.3[image slices/s] x
1’615[extents/image slice] x 51[KBytes/extent] = 105 MBytes/s is obtained.

Each time you add a group of 3 disks to a single SP node the aggregate disk I/O throughput increases by ~5.2
MBytes/s (same as with zoom 1), the server processor utilization increases by ~16%, the client processor
utilization increases by ~2.5%, and the extracted image slice throughput increases by 5.2[MBytes/s] /
80[MBytes/slice] = ~0.065 image slices/s.

Each time the extracted image slice throughput increases by 1 image slice/s, the server processor utilization
increases by 16[%] / 0.065[slices/s] = 246% and the client processor utilization increases by 2.5[%] /
0.065[slices/s] = 38%. Comparing these values with the zoom factor 1 experiment (Figure 6-15), the server
processor utilization is 246[%] / 83[%] = ~3 times higher since 3.7 times more extents need to be read and a 2x2
reduction needs to be performed on the extracted and projected slice parts. The client processor utilization is
38[%] / 17[%] = ~2 times higher since the received slice parts are smaller (1 KBytes vs. 3.8 KBytes), and their
number is larger (1’615 vs. 437). The same amount of data packed into 3.7 times more tokens, requires more than
twice as much processing power. Receiving many small TCP/IP packets incurs a higher overhead.

The maximum number of disks that a single SP node can handle is 18 disks, the server processor utilization is 6 x
16[%] = ~96%, and the extracted image slice throughput is 6 x 0.065[image slices/s] = ~0.39 image slices/s. From
18 disks the server processor is the bottleneck. On the other hand, the client processor can handle up to 6 SP nodes
each with 18 disks, the client processor utilization is 36 x 2.5[%] = 90%, and the extracted image slice throughput
is 36 x 0.065 = ~2.3 image slices/s. From 6 SP nodes, each with 18 disks, the client processor is the bottleneck.
This represents the maximum sustainable extracted and visualized image slice throughput assuming that only the
disks, the server processors and the client processor are potential bottlenecks.

Zoom factor 2, extent cache enabled

As with zoom factor 1 (Figure 6-16), when enabling the extent caches the bottleneck shifts quickly from the disks
to the limited processing power available on the SP nodes (Figure 6-18).

Figure 6-17. Performances at zoom factor 2, with the extent cache disabled on each SP node

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of disks per S/P node

[E
xt

ra
ct

ed
im

ag
e

sl
ic

es
/s

]

1 S/P node
2 S/P nodes
3 S/P nodes
4 S/P nodes
5 S/P nodes

0
10
20
30
40
50
60
70
80
90

100

Pr
oc

es
so

r
ut

ili
za

tio
n

[%
]

1 PC with 12
disks

2 PC's each
with 12 disks

3 PC's each
with 12 disks

4 PC's each
with 12 disks

5 PC's each
with 12 disks

Server
configurations:

Read 3D extent from disks

Compute extents intersecting the
slice, extract and project slice part

Visualize full image slice Network
and system
activities

Generate slice extraction requests,
merge slice parts into a full slice

Client

S/P nodes
6-136

The extent caches become effective only from 2 SP nodes. With a single SP node we obtain exactly the same
performances as when the cache was disabled. This is due to cache thrashing.

As with zoom factor 1, i.e. reading extents from disks require more processing power than reading extents from
extent caches. A single SP node with an enabled extent cache sustains a maximum throughput of 3[image slices/s]
/ 5[SP nodes] = 0.6 image slices/s. With a disabled extent cache, it sustains only 0.39 image slices/s.

The efficiency of the extent caches reach their maximum, i.e. the case when each extent is read only once from a
disk, when their aggregate sizes is greater than 80 MBytes. This corresponds to the amount of extents that must be
read for each 512x512 image slice at zoom factor 2. 80 MBytes aggregate extent cache is available from 4 SP
nodes (each with 25 MBytes extent cache). 97.9% of accessed extents are read from the extent caches (as
expected, same hit rate as zoom factor 1). With 5 SP nodes a global I/O throughput of up to 3[slices/s] x
80[MBytes/slice] = 240 MBytes/s is obtained.

A surprising but deliberate effect that must be mentioned is that, for the same visualized image slice throughput,
the client processor is less loaded when the extent caches are enabled (Figure 6-18, 79[%] / 3[slices/s] = 26% for
a rate of 1 slice/s) than disabled (Figure 6-17, 50% / 1.3[slices/s] = 38% for a rate of 1 slice/s). This explains why
with the extent caches disabled, the client processor saturates at a rate of only 2.3 image slices/s (see above). This
difference is due to the fact that the SendToken primitive coalesces several tokens into a same TCP/IP packet so as
to reduce the overhead of sending and receiving many small tokens, e.g. 1 KByte slice parts (Section 4.5.3. The
efficiency of this technique depends on the output token rate which is higher when extent caches are enabled.
Without this clever technique, the client processor would have rapidly become the bottleneck.

6.4 Summary

In this chapter, we have shown that the CAP computer-aided parallelization tool and the PS2 framework offer
very flexible and efficient tools for developing parallel I/O- and compute- intensive applications or high-level
libraries. A high-level library provides applications with specific, therefore appropriate and efficient, file
abstractions and parallel processing operations on that abstractions, e.g. an image library provides the abstraction
of images along with parallel imaging operations, an out-of-core linear algebra library provides the abstraction of
out-of-core matrices along with parallel linear operations on matrices (multiplication, LU decomposition, etc).

The compositionality of CAP, i.e. the hierarchical specification of a parallel operation, has been demonstrated in
the neighbourhood dependent imaging operation (Section 6.2.3). A first parallel operation processing a single tile
has been independently devised. And then, thank to the compositionality of CAP, this parallel ProcessTile
operation has been incorporated into the schedule of another parallel operation processing a whole tiled 2D
image, i.e. performing the parallel ProcessTile operation on each tile and writing the processed tiles to disks. This
approach of developing hierarchical operations is similar to the approach of procedural languages where a routine
is treated as a black box performing a task that can be incorporated into another routine performing a more
complex task.

Figure 6-18. Performances at zoom factor 2, with an extent cache of 25 MBytes per SP node

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2

0 1 2 3 4 5 6 7 8 9 10 11 12

Number of disks per S/P node

[E
xt

ra
ct

ed
im

ag
e

sl
ic

es
/s

]

1 S/P node

2 S/P nodes

3 S/P nodes

5 S/P nodes

4 S/P nodes

0
10
20
30
40
50
60
70
80
90

100

Pr
oc

es
so

r
ut

ili
za

tio
n

[%
]

1 PC with 12
disks

2 PC's each
with 12 disks

3 PC's each
with 12 disks

4 PC's each
with 12 disks

5 PC's each
with 12 disks

Server
configurations:

Read 3D extent from disks

Compute extents intersecting the
slice, extract and project slice part

Visualize full image slice Network
and system
activities

Generate slice extraction requests,
merge slice parts into a full slice

Client

S/P nodes
6-137

Section 6.2 has described how to develop parallel imaging operations and how to incorporate them in a high-level

image library. We have demonstrated that with our new tools (CAP and PS2), we are able to rapidly and
efficiently develop neighbourhood independent parallel imaging operations as well as neighbourhood dependent
parallel imaging operations.

In Section 6.3, the applicability and the performances of the CAP tool and the PS2 framework on real applications
has been demonstrated with a parallel image slice extraction server application. This application enables clients to
specify, access in parallel, and visualize image slices having any desired position and orientation. The image
slices are extracted from the 14 GByte Visible Human Male striped over the available set of disks. We have shown

that on a 5 Bi-Pentium Pro PC PS2 server comprising 60 disks, the system is able to extract in parallel, resample
and visualize 4.8 512x512 colour image slices per second. At the highest load and when extent caches are
disabled, an aggregate I/O disk bandwidth of 104 MBytes/s has been obtained. When extent caches are enabled,
one obtains an I/O throughput of up to 240 MBytes/s. The obtained image slice access times shows that
performances are close to the best performance obtainable by the underlying hardware.

The development of this impressive Visible Human Slice Web server has required the expertise of several people
and students among them Dr. Benoit Gennart for his CAP tool and for being the head of the GigaServer research
group at the LSP laboratory, Vincent Messerli for having parallelized the algorithm and measuring the
performances, Oscar Figueiredo for his sequential image slice extraction algorithm, Samuel Vetsch for having
interfaced the parallel image slice extraction engine to the Microsoft IIS Web server and for his Java-based
browser, Laurent Bovisi for having developed an earlier parallel version of the application, WDS Technologies
SA and Luc Bidaut at the Hôpital Cantonal Universitaire de Genève for their various contributions to the project.
6-138

Chapter 7

Conclusion

This thesis proposes a new approach for developing parallel I/O- and compute- intensive applications on
distributed memory computers based on commodity components (e.g. PC’s, Fast Ethernet, SCSI-2 disks,
Windows NT). As mentioned in the introduction, there are many applications from different fields (e.g. scientific
applications, multimedia applications, information server applications) that need huge amounts of computing
power and high-performance storage systems. To fulfil these parallel I/O- and compute- intensive applications,

not only do we need parallel machines1 incorporating tens to hundreds of high-speed processors with hundreds of

independent disks connected by fast networks, but also we need appropriate systems2, libraries, and tools for
developing such consuming parallel applications.

Indeed, these new generation of parallel computers possess enormous raw computing powers and huge aggregate
disk I/O throughputs meeting the needs of most parallel I/O- and compute- intensive applications. Without
adequate parallel programming tools, parallel applications do generally not provide the expected speedup, i.e.
they do not utilize efficiently the underlying parallel architecture. Computing power and disk I/O bandwidth may
be wasted. These wasted resources can be due to the application itself, for example, non-optimized code,
superfluous data communications, superfluous disk accesses, synchronous communications, synchronous disk
accesses, poor load-balancing, a bad granularity of parallelism, waitings, or inefficient parallelization. Moreover,
depending on how an application interacts with a communication system or a parallel storage system,
performances may vary (or rather suffer), e.g. accessing many tiny chunks of data distributed in a declustered file
is likely to be inefficient, sending large messages may congest the communication system, etc.

This thesis proposes a computer-aided parallelization tool (CAP) based on a macro-dataflow computational

model along with a parallel storage-and-processing framework (PS2) for rapidly developing parallel I/O- and
compute- intensive applications that are efficient, i.e. applications that optimize the resources of the underlying

parallel hardware (disks, processors, network). The PS2 framework consists of an extensible parallel
storage-and-processing server along with a library of reusable low-level parallel file system CAP components.

Application or library programmers can, thanks to the CAP formalism, extend the functionalities of the PS2

framework, i.e. combine application-specific or library-specific processing operations with the predefined
low-level parallel file access operations, to yield highly pipelined parallel I/O- and compute- intensive programs.

The strength and the originality of the proposed tools (CAP and PS2) are the following:
• CAP alleviates the task of writing parallel programs on distributed memory architectures. Thanks to its

macro-dataflow computational model, the parallel behaviour of a program is expressed at a high-level of
abstraction, i.e. as a flow of data and parameters between operations running on the same or on different
processors.

• CAP offers a clean separation between parallel program parts and sequential program parts. Therefore, CAP
programs are easier to develop, debug, and maintain.

• CAP is a flexible tool enabling to easily modify the schedule of suboperations. This flexibility is needed
when enhancing an application or when extending a pre-existing application.

• Thanks to a configuration file, a CAP program may run on a variety of hardware configurations without
recompilation. This feature enables programmers to debug a CAP program first as a multi-thread
single-process single-PC application, second as a multi-thread multi-process single-PC application, and
finally as a multi-thread multi-process multi-PC application.

• CAP and PS2 are first and foremost optimized for developing parallel I/O- and compute- intensive programs
on distributed memory PC’s (PC’s, Windows NT, Fast Ethernet, SCSI-2 disks). Parallel architectures based
on commodity components offer affordable leading-edge parallel hardware for small- and medium- sized
companies.

1. We call them parallel I/O-and-compute systems.
2. Operating systems, parallel storage systems, communication systems.
7-139

• PS2 is based on top of a native file system, e.g. the NT file system. The use of the NT file system does not

affect performances. Therefore, PS2 is fully compatible with other Windows NT applications, e.g. one can

copy a PS2 parallel file using the ‘Explorer’ application.

• With PS2 processing operations are performed where data reside. There is no separation between I/O nodes

and compute nodes. PS2 uses the notion of storage and processing node (SP node) where computations and
disk I/O accesses take place, thus avoiding superfluous data communications.

• PS2 provides a customizable framework for developing high-level libraries. PS2 is not a parallel storage
system intending to directly meet the specific needs of every user by providing a general-purpose abstraction

of declustered files. Rather, PS2 has been designed as a framework for developing high-level libraries, each
of which was designed to meet the needs of a specific community of users by providing appropriate file
abstractions and I/O-and-compute interfaces.

• PS2-based programs overlap disk accesses and network communications with computations thus optimizing
the resources of the underlying parallel hardware (processors, disks, network).

By implementing a parallel image slice extraction server application, we have demonstrated the applicability of

CAP and PS2 on real complex applications requiring the interaction of different software components (graphical
interfaces, Web server interfaces, parallel I/O- and compute- intensive engines, etc) developed with various
programming environment (Microsoft Visual C/C++, Borland Delphi, Borland Java Builder, etc) in diverse
programming languages (C/C++, Object Pascal, Java, etc).

A number of other applications have been successfully developed using CAP [Gennart96, Mazzariol97]. We

expect CAP and PS2 to offer a high potential for developing powerful parallel I/O- and compute- intensive
applications, e.g. parallel Web servers and parallel I/O for distributed memory supercomputers running scientific
applications.

7.1 Limitations and future improvements

This section discusses the current limitations of PS2 as well as possible improvements and extensions that can be

incorporated to CAP and PS2.

(a) Filling factors in flow-controlled split-merge CAP constructs.

Performances of a CAP program highly depends on how well the flow-control mechanisms work, i.e. the
number of tokens circulating within a particular split-merge CAP construct (filling factors). Too small filling
factors reduce the parallelism. Too large filling factors raise a memory overflow condition. Based on my
experience, it is difficult to compute these filling factors giving the best performances and consuming the
least memory. Therefore, a solution should be found where CAP automatically adjusts, at execution time, the
filling factor of a flow-controlled split-merge CAP construct by monitoring the execution time and the
utilization of each stage within the split routine and the merge routine. Based on these informations, CAP
may be able to compute automatically the optimal values of the filling factors.

(b) Metafiles.

At the present time, PS2 does not rely on a metafile to locate the extent files making up a parallel file. Indeed,
each time a parallel file is opened, all the virtual disks are interrogated in order to locate the extent files. This
solution has two main drawbacks: it incorporates a potential scalability limit when increasing the number of
virtual disks and it imposes that each virtual disk has the same extent file directory tree. To overcome these

limitations and to increase the flexibility of PS2, the solution would be to have a metafile per parallel file
giving the (NTFS) path names of the extent files making up the parallel file. Therefore, when opening a

parallel file, its metafile is read and PS2 can dynamically assign the extent files making up the parallel file to
the extent server threads, i.e. to decide which extent server thread accesses which extent file. Moreover, this

solution ensures that PS2 is able to access the extent files whatever the PS2 server configuration is, i.e. the
number of extent server threads, their locations on the cluster of PC’s, the number of computer server threads,
their locations on the cluster of PC’s. Also this solution breaks away with the limitations imposed by the
static allocation of extent server threads (Program 5-3) and compute server threads (Program 5-4) based on a
virtual disk server index.
7-140

(c) Simultaneously running multiple applications.

Since PS2 is not a resident parallel file system providing applications with parallel storage services
(clients/server model), but an extensible parallel storage-and-processing framework for developing

applications, each PS2 application incorporates its own PS2 server process hierarchy. Therefore, when

executing several concurrent PS2 applications on the same cluster of PC’s, each PS2 application runs its own
interface server thread and its own set of compute server threads, extent file server threads, and extent server
threads wasting computing resources and precluding any optimization of disk arm motions, extent caches,

and extent address caches. The present version of PS2 supports a simple parallel application that executes on
a dedicated cluster of PC’s. Such applications include, for example, parallel Web servers and scientific
applications requiring all the computing resources of the parallel machine (memory, processors, network,
disks). To offer support for multiple concurrently running applications, CAP should incorporate new

mechanisms enabling a client CAP application to be connected to a pre-existing PS2 server process hierarchy.
This raises new open issues, such as how to dynamically extend the functionalities of the pre-existing

compute server threads, and how to protect the PS2 server from being corrupted.
7-141

7-142

Bibliography

Ackerman95 Michael J. Ackerman, Accessing the Visible Human Project, D-Lib Magazine: The
Magazine of the Digital Library Forum, October 1995,
http://www.dlib.org/dlib/october95/10ackerman.html.

Agerwala82 Tilak Agerwala, Arvind, “Data Flow Systems: Guest Editors’s Introduction,” IEEE
Computer, vol. 15, no. 2, pp. 10-13, February 1982.

Almasi94 George S. Almasi, Allan Gottlieb, Highly Parallel Computing, Second Edition, The
Benjamin/Cummings Publishing Company, 1994.

Amdahl67 G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” Proceedings AFIPS 1967 Spring Joint Computer Conference, pp.
483-485, Atlantic City, New Jersey, April 1967.

Bach86 Maurice J. Bach, The Design of the UNIX Operating System, Prentice-Hall International
Editions, 1986.

Beguelin90 Adam Beguelin, Jack Dongarra, Al Geist, Robert Manchek, Vaidy S. Sunderam, “A User’s
Guide to PVM Parallel Virtual Machine,” Oak Ridge National Laboratory Report
ORNL/TM-11826, July 1990.

Beguelin92 Adam Beguelin, Jack Dongarra, Al Geist, Robert Mancheck, Vaidy S. Sunderam, “HeNCE:
Graphical Development Tools for Network-Based Concurrent Computing,” Proceedings of
SHPCC-92, IEEE Computer Society Press, pp. 129-136, Los Alamitos, California, 1992.

Best93 Michael L. Best, Adam Greenberg, Craig Stanfill, Lewis W. Tucker, “CMMD I/O: A
Parallel Unix I/O,” Proceedings of the Seventh International Parallel Processing

Symposium, pp. 489-495, 1993.

Browne84a J. C. Browne, “Parallel Architectures for Computer Systems,” Physics Today, vol. 37, no. 5,
pp. 28-35, May 1984.

Browne84b J. C. Browne, “Parallel Architectures for Computer Systems,” Computer, vol. 17, no. ??, pp.
83-87, July 1984.

Carretero96a J. Carretero, F. Pérez, P. de Miguel, F. García, and L. Alonso, “ParFiSys: A Parallel File
System for MPP,” ACM SIGOPS, vol. 30, no. 2, pp. 74-80, April 1996.

Carretero96b J. Carretero, F. Pérez, P. de Miguel, F. García, and L. Alonso, “I/O Data Mapping in
ParFiSys: Support for High-Performance I/O in Parallel and Distributed Systems,”
Proceedings of the 1996 EuroPar Conference, Lecture Notes in Computer Science 1123,
Springer-Verlag, pp. 522-526, August 1996.

Carriero89a Nicholas Carriero, David Gelernter, “Linda in Context,” Communications of the ACM, vol.
32, no. 4, pp. 444-458, April 1989.

Carriero89b Nicholas Carriero, David Gelernter, “How to Write Parallel Programs: A Guide to the
Perplexed,” Journal of the ACM, vol. 21, no. 3, pp. 323-357, September 1989.

Chen95 Huang-Jen Chen, A Disk Scheduling Scheme and MPEG Data Layout Policy for Interactive

Video Access from a Single Disk Storage Device, Ph.D. thesis, Boston University, College of
Engineering, 1995.

Cohen98 Aaron Cohen, Mike Woodring, Win32 Multithreaded Programming, O’Reilly & Associates,
January 1998.
A-1

Corbett96 Peter F. Corbett, Dror G. Feitelson, “The Vesta Parallel File System,” ACM Transactions on

Computer Systems, vol. 14, no. 3, pp. 225-264, August 1996.

Cormen93 Thomas H. Cormen, David Kotz, “Integrating theory and practice in parallel file systems,”
Proceedings of the 1993 DAGS/PC Symposium on Parallel I/O and Databases, pp. 64-74,
Hanover, NH, June 1993.

Dennis75 J. Dennis, “First Version of a Data Flow Procedure Language,” MIT Technical Report

TR-673, MIT, Cambridge, Massachusetts, USA, May 1975.

Dibble88 Peter C. Dibble, Michael L. Scott, Carla Schlatter Ellis, “Bridge: A High-Performance File

System for Parallel Processors,” Proceedings of the 8th International Conference on
Distributed Computer Systems, IEEE Computer Society Press, pp. 154-161, San Jose,
California, June 1988.

Dibble89 Peter C. Dibble, Michael L. Scott, “Beyond Striping: The Bridge Multiprocessor File
System,” Computer Architecture News, vol. 17, no. 5, pp. 32-39, September 1989.

Feitelson95 Dror G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, Yarsun Hsu, “Parallel I/O
Subsystems in Massively Parallel Supercomputers,” IEEE Parallel & Distributed

Technology, pp. 33-47, Fall 1995.

Figueiredo99 Oscar Figueiredo, Advances in Discrete Geometry Applied to the Extraction of Planes and
Surfaces from 3D Volumes, Ph.D. thesis 1944, Département d’Informatique, École
Polytechnique Fédérale de Lausanne, February 1999.

Gennart94 Benoit A. Gennart, Bernard Krummenacher, Laurent Landron, Roger D. Hersch, “GigaView
Parallel Image Server Performance Analysis,” Proceedings of the World Transputer
Congress, Transputer Applications and Systems, IOS Press, pp. 120-135, Como, Italy,
September 1994.

Gennart96 Benoit A. Gennart, Joaquin Tarraga, Roger D. Hersch, “Computer-Assisted Generation of
PVM/C++ Programs using CAP,” Proceedings of EuroPVM’96, Lecture Notes in Computer
Science 1156, Springer-Verlag, pp. 259-269, Munich, Germany, Octobre 1996.

Gennart98a Benoit A. Gennart, Marc Mazzariol, Vincent Messerli, Roger D. Hersch, “Synthesizing
Parallel Imaging Applications using CAP Computer-Aided Parallelization Tool,”

IS&T/SPIE’s 10th Annual Symposium, Electronic Imaging’98, Storage & Retrieval for

Image and Video Database VI, pp. 446-458, San Jose, California, USA, January 1998.

Gennart98b Benoit A. Gennart, The CAP Computer Aided Parallelization Tool: Language Reference
Manual, July 1998.

Ghezzi82 Carlo Ghezzi, Mehdi Jazayeri, Programming Language Concepts, John Wiley, 1982.

Ghezzi85 Carlo Ghezzi, “Concurrency in programming languages: A survey,” Parallel Computing,
vol. 2, pp. 229-241, November 1985.

Gibson95 Garth A. Gibson, Daniel Stodolsky, Fay W. Chang, William V. Courtright II, Chris G.
Demetriou, Eka Ginting, Mark Holland, Qingming Ma, LeAnn Neal, R. Hugo Patterson,
Jiawen Su, Rachad Youssef, Jim Zelenka, “The Scotch Parallel Storage Systems,”

Proceedings of the 40th IEEE Computer Society International Conference (COMPCON 95),
pp. 403-410, San Francisco, March 1995.

Grimshaw93a Andrew S. Grimshaw, “The Mentat Computation Model – Data-Driven Support for
Dynamic Object-Oriented Parallel Processing,” Computer Science Technical Report

CS-93-30, University of Virginia, Charlottesville, Va., May 1993.

Grimshaw93b Andrew S. Grimshaw, “Easy to Use Object-Oriented Parallel Programming with Mentat,”
IEEE Computer, vol. 26, no. 5, pp. 39-51, May 1993.
A-2

Grimshaw96 Andrew S. Grimshaw, Jon B. Weissman, W. Timothy Strayer, “Portable Run-Time Support
for Dynamic Object-Oriented Parallel Processing,” ACM Transactions on Computer

Systems, vol. 14, no. 2, pp. 139-170, May 1996.

Halstead85 Robert H. Halstead Jr., “Multilisp: A Language for Concurrent Symbolic Computation,”
ACM Transactions on Programming Languages and Systems, vol. 7, no. 4, pp. 501-538,
October 1985.

Hansen75 Per Brinch Hansen, “The Programming Language Concurrent Pascal,” IEEE Transactions
on Software Engineering, vol. SE-1, no. 2, pp. 199-207, June 1975.

Hatcher91 P. J. Hatcher, M. J. Quinn, A. J. Lapadula, B. K. Seevers, R. J. Anderson, R. R. Jones,
“Data-Parallel Programming on MIMD Computers,” IEEE Transactions on Parallel and
Distributed Systems, vol. 2, no. 3, pp. 377-383, 1991.

Hennessy96 John L. Hennessy, David A. Patterson, Computer Architecture: A Quantitative Approach,
Second Edition, Morgan Kaufmann Publishers, Inc., San Francisco, California, 1996.

Hersch93 Roger D. Hersch, “Parallel Storage and Retrieval of Pixmap Images,” Proceedings of the

12th IEEE Symposium on Mass Storage Systems, IEEE Computer Society Press, pp.
221-226, Monterey, California, April 1993.

Huber95a James V. Huber, Jr., Christopher L. Elford, Daniel A. Reed, Andrew A. Chien, David S.
Blumenthal, “PPFS: A High Performance Portable Parallel File System,” Proceedings of the

9th ACM International Conference on Supercomputing, pp. 385-394, Barcelona, Spain, July
1995.

Huber95b James Valentine Huber, Jr. PPFS: An Experimental File System for High Performance
Parallel Input/Output, Ph.D. thesis, Graduate College of the University of Illinois,
Urbana-Champaign, Illinois, February 1995.

Inmos85 Inmos Limited, Occam Programming Manual, 1985.

Jones85 Geraint Jones, “Programming in Occam, A Tourist Guide to Parallel Programming,”
Programming Research Group, Technical Monograph PRG-13, Oxford University
Computing Laboratory, 1985.

Karpovich93 John F. Karpovich, Andrew S. Grimshaw, James C. French, “Breaking the I/O Bottleneck at
the National Radio Astronomy Observatory (NRAO),” Technical Report CS-94-37,
University of Virginia, Department of Computer Science, CharlottesVille, Virginia,
September 1993.

Kotz91 David Kotz, Carla Schlatter Ellis, “Practical Prefetching Techniques for Parallel File
Systems,” Proceedings of the Conference on Parallel and Distributed Information Systems,
IEEE Computer Society Press, pp. 182-189, December 1991.

Kotz94a David Kotz, Nils Nieuwejaar, “Dynamic File-Access Characteristics of a Production Parallel
Scientific Workload,” Computer Science Technical Report PCS-TR94-211, Department of
Computer Science, Dartmouth College, Hanover, August 1994.

Kotz94b David Kotz, “Disk-directed I/O for MIMD Multiprocessors,” ACM Transactions on

Computer Systems, vol. 15, no. 1, pp. 41-74, February 1997.

Kotz95a David Kotz, “Exploring the use of I/O Nodes for Computation in a MIMD Multiprocessor,”
Proceedings of the Workshop for I/O in Parallel and Distributed Systems at IPPS’95, pp.
78-89, 1995.

Kotz95b David Kotz, “Expanding the Potential for Disk-Directed I/O,” Proceedings of the 1995 IEEE
Symposium on Parallel and Distributed Processing, pp. 490-495, IEEE Computer Society
Press, San Antonio, Texas, October 1995.
A-3

Kotz96 David Kotz and Nils Nieuwejaar, “Flexibility and Performance of Parallel File Systems,”
ACM Operating Systems Review, vol. 30, no. 2, pp. 63-73, 1996.

Krieger97 Orran Krieger, Michael Stumm, “HFS: A Performance-Oriented Flexible File System Based
on Building-Block Compositions,” ACM Transactions on Computer Systems, vol. 15, no. 3,
pp. 286-321, August 1997.

Loveman93 David B. Loveman, “High Performance Fortan,” IEEE Parallel & Distributed Technology,
vol. 1, no. 1, pp. 25-42, February 1993.

LoVerso93 Susan J. LoVerso, Marshall Isman, Andy Nanopoulos, William Nesheim, Ewan D. Milne,
Richard Wheeler, “sfs: A Parallel File System for the CM-5,” Proceedings of the 1993
Summer USENIX Technical Conference, pp. 291-305, Cincinnati, Ohio, June 1993.

Miller88 Phillip C. Miller, Charles E. St. John, Stuart W. Hawkinson, “FPS T Series Parallel
Processor,” in Robert G. Babb II, editor, Programming Parallel Processors,
Addison-Wesley, 1988.

Mazzariol97 Marc Mazzariol, Benoit A. Gennart, Vincent Messerli, Roger D. Hersch, “Performance of
CAP-Specified Linear Algebra Algorithms,” Proceedings of EuroPVM-MPI’97, LNCS
1332, Springer Verlag, pp. 351-358, Krakow, Poland, November 1997.

Messerli97 Vincent Messerli, Benoit A. Gennart, Roger D. Hersch, “Performances of the PS2 Parallel
Storage and Processing System for Tomographic Image Visualization,” Proceedings of the
1997 International Conference on Parallel and Distributed Systems, IEEE Computer
Society Press, pp. 514-522, Seoul, Korea, December 1997.

Microsoft96 Microsoft Corporation, Windows Sockets 2 Application Program Interface, 1996.

Mockapetris87a P. V. Mockapetris, Domain Names: Concepts and Facilities, Request For Comment 1034,
November 1987.

Mockapetris87b P. V. Mockapetris, Domain Names: Implementation and Specification, Request For
Comment 1035, November 1987.

Mogul93 J. C. Mogul, “IP Network Performance,” Internet System Handbook, eds. D. C. Lynch and
M. T. Rose, Addison-Wesley, Reading, Massachusetts, pp. 575-675, 1993.

MPI94 Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard,” The
International Journal of Supercomputer Applications and High Performance Compting, vol.
8, 1994.

MPI97 Message Passing Interface Forum, “MPI-2: Extensions to the Message-Passing Interface,”
Technical Report, July 1997, http://www.mpi-forum.org.

Nagle84 J. Nagle, Congestion Control in IP/TCP Internetworks, Request For Comment 896, January
1984.

Nieuwejaar94 Nils A. Nieuwejaar, David Kotz, “A Multiprocessor Extension to the Conventional File
System Interface,” Technical Report PCS-TR94-230, Department of Computer Science,
Dartmouth College, Hanover, September 1994.

Nieuwejaar96 Nils A. Nieuwejaar, Galley: A New Parallel File System For Scientific Workloads, Ph.D.
thesis, Department of Computer Science, Dartmouth College, Hanover, November 1996.

Nitzberg92 Bill Nitzberg, “Performance of the iPSC/860 Concurrent File System,” Technical Report
RND-92-020, NAS Systems Divisions, NASA Ames Research Center, Moffett Field,
California, December 1992.
A-4

North96 C. North, B. Shneiderman, C. Plaisant, “User-Controlled Overviews of an Image Library: A
Case Study of the Visible Human,” Proceedings of the 1996 ACM Digital Libraries

Conference, ACM Press, 1996.

Ousterhout85 John Ousterhout, Hervé Da Costa, David Harrison, John Kunze, Mike Kupfer, and James
Thompson, "A Trace Driven Analysis of the UNIX 4.2 BSD File System," Proceedings of
the Tenth ACM Symposium on Operating Systems Principles, pp. 15-24, December 1985.

Papadopoulos93 C. Papadopoulos, G. M. Parulkar, “Experimental Evaluation of SunOS IPC and TCP/IP
Protocol Implementation,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp.
429-440, August 1993.

Parasoft90 ParaSoft Corporation, Express C User’s Guide (Version 3.0), 1990.

Partridge93 C. Partridge, S. Pink, “A Faster UDP,” IEEE/ACM Transactions on Networking, vol. 1, no. 4,
pp. 429-440, August 1993.

Patterson88 David A. Patterson, Garth Gibson, Randy H. Katz, “A Case for Redundant Arrays of
Inexpensive Disks (RAID),” Proceedings of the International Conference on Management

of Data (SIGMOD), pp. 109-116, June 1988.

Patterson98 David A. Patterson, John L. Hennessy, Computer Organization & Design: The

Hardware/Software Interface, Second Edition, Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1998.

Patwardhan94 Tai Patwardhan, “ASA-II Extending the Power of Seagate’s Advanced SCSI Architecture,”
Seagate Advanced SCSI Architecture II Technology Paper, October 1994,
http://elm.eimb.rssi.ru/jwz/seagate/tech/asa2.shtml.

Pierce89 Paul Pierce, “A Concurrent File System for a Highly Parallel Mass Storage System,”
Proceedings of the Fourth Conference on Hypercubes, Concurrent Computers and

Applications, vol. 1, pp. 155-160, 1989.

Pool94 James Pool, “Preliminary survey of I/O intensive applications,” Technical report CCSF-38,
Caltech Concurrent Supercomputing Facilities, January 1994.

Postel80 J. B. Postel, User Datagram Protocol, Request For Comment 768, August 1980.

Postel81a J. B. Postel, Internet Protocol, Request For Comment 791, September 1981.

Postel81b J. B. Postel, Transmission Control Protocol, Request For Comment 793, September 1981.

Postel94 J. B. Postel, Internet Official Protocol Standards, Request For Comment 1600, March 1994.

Reed95 Dan Reed, Charles Catlett, Alok Choudhary, David Kotz, Marc Snir, “Parallel I/O: Getting
Ready for Prime Time,” IEEE Parallel & Distributed Technology, pp. 64-71, Summer 1995.

Rosario93 Juan Miguel del Rosario, Rajesh Bordawekar, Alok Choudhary, “Improved Parallel I/O via a
Two-phase Run-time Access Strategy,” Proceedings of the IPPS ’93 Workshop on
Input/Output in Parallel Computer Systems, pp. 56-70, 1993.

Seamons95 K. E. Seamons, M. Winslett, “A Data Management Approach for Handling Large
Compressed Arrays in High Performance Computing,” Proceedings of the Seventh
Symposium on the Frontiers of Massively Parallel Computations, pp. 119-128, February
1995.

Shu91 W. Shu, L. V. Kale, “Chare Kernel - A Runtime Support System for Parallel Computations,”
Journal of Parallel Distributed Computing, vol. 11, pp. 198-211, 1991.
A-5

Silberschatz95 Abraham Silberschatz, Peter B. Galvin, Operating System Concepts, Fourth Edition,
Addison-Wesley Publishing Company, January 1995.

Spitzer96 Victor Spitzer, Michael J. Ackerman, Ann L. Scherzinger, David Whitlock, “The Visible
Human Male: A Technical Report,” Journal of the American Medical Informatics

Association, vol. 3, no. 2, pp. 118-130, March/April 1996.

Srini86 V. P. Srini, “An Architectural Comparison of Dataflow Systems,” IEEE Computer, vol. 19,
no. 3, pp. 68-88, March 1986.

Stevens90 W. Richard Stevens, UNIX Network Programming, Prentice-Hall, Englewood Cliffs, N.J.,
1990.

Stevens96 W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley
Professional Computing Series, Reading, Massachusetts, December 1996.

Sunderam90 Vaidy S. Sunderam, “PVM: A Framework for Parallel Distributed Computing,”
Concurrency: Practice & Experience, vol. 2, no. 4, pp. 315-339, December 1990.

Sutton94 Tim Sutton, “Barracuda 2 2HP: Parallel Processing for Storage Devices,” Seagate
Barracuda 2 Technology Paper, October 1994,
http://elm.eimb.rssi.ru/jwz/seagate/tech/cuda2.shtml.

Veen86 A. H. Veen, “Dataflow Machine Architecture,” ACM Computing Survey, vol. 18, no. 4, pp.
365-396, December 1986.

Vetsch98 Samuel Vetsch, Vincent Messerli, Oscar Figueiredo, Benoit A. Gennart, Roger D. Hersch,
Laurent Bovisi, Ronald Welz, Luc Bidaut, “A Parallel PC-based Visible Human Slice Web
Server,” The Visible Human Project Conference Proceeding, Bethesda, Maryland, USA,
October 1998.

Watt90 David A. Watt, Programming Language Concepts and Paradigms, Prentice-Hall, 1990.

Weider92 C. Weider, J. K. Reynolds, S. Heker, Technical Overview of Directory Services Using the
X.500 Protocol, Request For Comment 1309, March 1992.

Wilson96 Gregory V. Wilson, Paul Lu (Eds), Parallel Programming Using C++, The MIT Press, 1996.

Wright95 Gary R. Wright, W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation,
Addison-Wesley Professional Computing Series, Reading, Massachusetts, January 1995.
A-6

Biography

Vincent Messerli was born in the international city of Geneva, Switzerland, on October the 30th 1969. At the age
of 14, he began the “École d’Ingénieur de Genève” where he obtained in June 1989 its diploma of technical
engineer. After a 4-month military service, he left his natal city and went to “Le Brassus” a little village in “le
Jura” where he worked for a small company for 1 year as a research and development engineer. He was assigned
to a team of 10 engineers developing security equipments and modems. In October 1990 he began the “École
Polytechnique Fédérale de Lausanne” where he obtained in April 1994 his diploma of computer science engineer.
Then, he left Switzerland and went to Torquay in England for 7 months. He followed English courses. On

December the 1st 1995, Vincent began his PhD at the Peripheral System Laboratory, Computer Science
department, “École Polytechnique Fédérale de Lausanne”. He pursued 4 years research on tools for developing
parallel I/O- and compute- intensive applications. His research interests include parallel file systems, parallel and
distributed computing, computer-aided parallelization tool, network programming, and design pattern in C++.

Publications:
• Benoit Gennart, Vincent Messerli, Roger D. Hersch, “Performances of Multiprocessor Multidisk

Architectures for Continuous Media Storage,” Storage and Retrieval for Still Image and Video Databases IV,
SPIE Proc. 2670, Sethi, Jain Editors, pp. 286-299, San Jose, California, February 1996.

• Vincent Messerli, Benoit A. Gennart, Roger D. Hersch, “Performances of the PS2 Parallel Storage and
Processing System for Tomographic Image Visualization,” Proceedings of the 1997 International Conference
on Parallel and Distributed Systems, IEEE Computer Society Press, pp. 514-522, Seoul, Korea, December
1997.

• Marc Mazzariol, Benoit A. Gennart, Vincent Messerli, Roger D. Hersch, “Performance of CAP-Specified
Linear Algebra Algorithms,” Proceedings of EuroPVM-MPI’97, LNCS 1332, Springer Verlag, pp. 351-358,
Krakow, Poland, November 1997.

• Benoit A. Gennart, Marc Mazzariol, Vincent Messerli, Roger D. Hersch, “Synthesizing Parallel Imaging

Applications using CAP Computer-Aided Parallelization Tool,” IS&T/SPIE’s 10th Annual Symposium,

Electronic Imaging’98, Storage & Retrieval for Image and Video Database VI, pp. 446-458, San Jose,
California, USA, January 1998.

• Samuel Vetsch, Vincent Messerli, Oscar Figueiredo, Benoit A. Gennart, Roger D. Hersch, Laurent Bovisi,
Ronald Welz, Luc Bidaut, “A Parallel PC-based Visible Human Slice Web Server,” The Visible Human
Project Conference Proceeding, Bethesda, Maryland, USA, October 1998.
B-7

B-8

	Acknowledgments
	Résumé
	Abstract
	Table of Contents
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7

	List of Figures
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7

	List of Programs
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7

	List of Tables
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7

	Chapter 1
	1.1 The IO/computation gap
	1.2 I/O- and compute- intensive applications that need parallel storage-and-processing systems
	1.3 Contribution of this research
	1.4 Outline of this thesis

	Chapter 2
	2.1 The Portable Parallel File System
	2.2 The Galley Parallel File System
	2.3 The Vesta Parallel File System

	Chapter 3
	3.1 Introduction
	3.2 The CAP macro dataflow computational model
	3.2.1 The four computational models
	3.2.2 The CAP primitive units of computation
	3.2.3 The CAP control mechanism
	3.2.4 The CAP communication mechanism and synchronization mechanisms

	3.3 The CAP computer-aided parallelization tool philosophy
	3.4 Tokens
	3.5 Process hierarchy
	3.6 Configuration file
	3.7 CAP operations
	3.7.1 Sequential operations
	3.7.2 Parallel operations

	3.8 Parallel CAP constructs
	3.8.1 The pipeline CAP construct
	3.8.2 The if and ifelse CAP construct
	3.8.3 The while CAP construct
	3.8.4 The for CAP construct
	3.8.5 The parallel CAP construct
	3.8.6 The parallel while CAP construct
	3.8.7 The indexed parallel CAP construct

	3.9 The first CAP program: The Sieve of Eratosthenes
	3.10 Issue of flow-control in a pipeline within a split-merge parallel while or indexed parallel ...
	3.11 Issue of load balancing in a pipelined parallel execution
	3.12 Summary

	Chapter 4
	4.1 Introduction
	4.2 Performance evaluation of a multi-SCSI disk array
	4.2.1 Performance measurement using a low-level SCSI-2 block interface
	4.2.2 Performance measurement using the native NT file system

	4.3 Microsoft Windows Sockets 2.0 application programming interface
	4.3.1 Definition of a socket
	4.3.2 Parameters of a socket
	4.3.3 Asynchronous gather send and asynchronous scatter receive

	4.4 The token-oriented message-passing system
	4.4.1 Serialization of CAP tokens

	4.5 Performance evaluation of the token-oriented message-passing system
	4.5.1 Theoretical maximum TCP/IP performance over a 100 Mbits/s Fast-Ethernet network
	4.5.2 The multi-PC environment
	4.5.3 Performance evaluation of the token-oriented message-passing system in terms of latency for...
	4.5.4 Performance evaluation of the token-oriented message-passing system in terms of throughput ...

	4.6 Summary

	Chapter 5
	5.1 Introduction
	5.2 Trends in parallel storage systems
	5.3 The PS2 philosophy
	5.4 PS2: a parallel storage and processing server based on commodity components
	5.5 Parallel file structure
	5.5.1 Extent files

	5.6 PS2 file tree and its internal representation
	5.7 The PS2 access structures
	5.8 Synthesizing the PS2 parallel storage and processing server using the CAP computer-aided para...
	5.8.1 CAP specification of the PS2 server
	5.8.2 CAP specification of the PS2 interface server
	5.8.3 CAP specification of the PS2 compute server
	5.8.4 CAP specification of the PS2 virtual disk server
	5.8.5 CAP specification of the PS2 extent file server
	5.8.6 CAP specification of the PS2 extent server

	5.9 CAP-based synthesis of the parallel file directory operations
	5.10 Design and implementation of a single-disk extent-oriented file system: the EFS extent file ...
	5.10.1 Extent file structure
	5.10.2 Internal organization of EFS

	5.11 PS2 configuration files
	5.12 Summary

	Chapter 6
	6.1 Introduction
	6.2 Synthesizing parallel imaging operations using PS2
	6.2.1 2D image file declustering strategy
	6.2.2 Neighbourhood independent imaging operations
	6.2.3 Neighbourhood dependent imaging operations

	6.3 The Visible Human slice server application
	6.3.1 Description of the image slice extraction and visualization application
	6.3.2 Parallelizing the image slice extraction and visualization application using PS2
	6.3.3 Performances and scalability analysis of the image slice extraction and visualization appli...

	6.4 Summary

	Chapter 7
	7.1 Limitations and future improvements

	Bibliography
	Biography

