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Résumé

Cet article présente l'architecture d'un système de fichiers distribué (SFIO) pour la ges-
tion des entrées/sorties parallèles dans un environment MPI. Différentes techniques 
d'optimisation des communications et d'accès aux disques sont présentées. A l’aide de 
types dérivés MPI, on peut transmettre sur le réseau des données fragmentées à écrire 
sur disque à l'aide d'une seule commande MPI. Nous présentons les performances 
d'entrée/sorties du système de fichiers distribué sur le superordinateur Swiss-Tx formé 
de noeuds de calcul et E/S de type DEC Alpha.
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Abstract

This paper presents the design and evaluation of a Striped File I/O (SFIO) library for 
parallel I/O in an MPI environment. We present techniques for optimizing communica-
tions and disk accesses for small striping factors. Using MPI derived datatype capabili-
ties, we transmit fragmented data over the network by single MPI transfers. We present 
first results regarding the I/O performance of the SFIO library on DEC Alpha clusters, 
both for the Fast Ethernet and for the TNet Communication networks.

1. Motivation/Introduction

For I/O bound parallel applications, parallel file striping is an alternative to Storage 
Area Networks (SAN). In particular, parallel file striping offers high throughput I/O 
capabilities at a much cheaper price, since it does not require a special network for 
accessing the mass storage sub-system [6].
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Important aspects of parallel I/O systems 
are highly concurrent access capabilities to 
the common datafiles by all parallel appli-
cation processes and linear increase in per-
formance when increasing  the number of 
I/O nodes and processors. Parallelism for 
input/output operations can be achieved by 
striping the data accross multiple disks so 
that read and write operations occur in par-
allel (see Fig. 1). A number of parallel file 
systems where designed ([1], [2], [3], [5]), 
which make use of the parallel file striping 
paradigm.

MPI is currently the most used standard 
framework for creating parallel applications running on various types of parallel com-
puters. A well known implementation of MPI [9], called MPICH, has been developed 
by Argone National Laboratory. MPICH is used on different platforms and incorpo-
rates MPI-1.2 operations [10] as well as the MPI-I/O subset of MPI-II ([11], [12], 
[13]). MPICH is most popular for cluster architecture supercomputers, based on Fast or 
Gigabit Ethernet networks. MPICH’s MPI-I/O underlying I/O implementation is com-
pletely sequential and is based on NFS ([4], [14]).

Due to the locking mechanisms needed to avoid simultaneous multiple accesses to the 
shared NFS file, MPICH MPI-I/O write operations can be carried out only at a very 
slow throughput1.

Other factor reducing peak performance is the read-modify-write operations useful for 
writing fragmented data to the target file. Read-modify-write requires sending the full 
data covering the written data fragment over the network, modifying it and  transmit-
ting it back. In the case of high data fragmentation, i.e. small chunks of data spread 
over a large dataspace in the file, network access overhead may become dominant.

To be able to provide the highest level of parallelization of access requests as well as a 
good load balance, small striping units are required. However low stripe unit size 
increases the communication and disk access cost. Our SFIO parallel file striping 
implementation integrates the relevant optimizations by merging sets of network mes-
sages and disk accesses into single messages and single disk access requests. The 
merging operation makes use of MPI derived datatypes. 

The SFIO library interface does not provide nonblocking operations, but internally, 
accesses to the network and disks are made asynchronously.

Section 2 presents the overall architecture of the SFIO implementation as well as the 
software layers in order to provide an MPI-I/O interface on top of SFIO. The SFIO 
interface description, small examples as well as the details of the system design, cach-
ing techniques and other optimisations are presented in Section 3. First performance 

1.  When 7 compute nodes access one shared NFS file in an interleaved maner, write throughput per-
formance on MPICH MPI-IO is 35 KB/s per node.
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results are given for various configurations of the  Swiss-Tx supercomputer [7]. Sec-
tion 5 presents the conclusions and future work.

2. Global Architecture

The SFIO library is implemented using MPI-1.2 mes-
sage passing calls. It is therefore as  portable as MPI-
1.2. The local disk access calls, which depend on the 
underlying operating system are non-portable. How-
ever, they are separately integrated into the source for 
Unix and Windows-NT versions.

The SFIO parallel file striping library offers a simple 
Unix like interface. We also intend to provide an MPI-
I/O interface on top of SFIO. The intermediate level of 
MPICH’s MPI-I/O implementation is ADIO [14]. We 
successfully modified the ADIO layer of MPICH to 
route calls to the SFIO interface.

On the Swiss-T1 machine, SFIO can run on top of 
MPICH as well as on top of FCI-MPI using the low 
latency and high throughput network Tnet [8].

3. Unix like interface for parallel striped file I/O

Interface

Two functions, mopen and mclose are provided to open and close a striped file. Note 
that a file should be opened by all compute nodes irrespectively of whether that node 
uses the file or not. This restriction is placed in order to ensure correct behavior of 
future collective parallel I/O functions. Additionally, the operation of opening as well 
as of closing a file, implies a global synchronization point in the program. The generic 
functions to read and write to a file are respectively mreadc and mwritec. 

The multiple I/O request specification interface allows an application program to spec-
ify multiple I/O requests within one call. This permits optimizations which otherwise 
would not be possible. The multiple I/O request operations are mreadb and mwriteb.

The following source gives a simple SFIO example. The striped file with a stripe unit 
size of 5 bytes consists of two sub-files. A single compute node accesses the striped 
file. It is assumed that the program is launched with one compute node MPI process. 
#include <mpi.h>
#include "mio.h"
int _main(int argc, char *argv[])
{

MFILE *f;
f=mopen
(

"t0-p1,/tmp/a1.dat;"
"t0-p2,/tmp/a2.dat;"
,5
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);
mwritec(f,0,"Hello World",11);
mclose(f);

}

Below is an example of multiple compute nodes accessing a striped file. Again the 
striped file with a stripe unit size of 5 bytes consists of two subfiles. It is accessed by 
three compute nodes. Each of them writes at different positions simultaneously.
#include <mpi.h>
#include "../mpi/sfio/mio.h"
int _main(int argc, char *argv[])
{

MFILE *f;
f=mopen
(

"t0-p1,/tmp/a1.dat;"
"t0-p2,/tmp/a2.dat;"
,5

);
if(rank()==0)
{

mwritec(f,0,"Hello*World,*",13);
}
else if(rank()==1)
{

mwritec(f,13,"I*am*a*program*",15);
}
else if(rank()==2)
{

mwritec(f,28,"written*with*SFIO.",18);
}
mclose(f);

}

We assume that the program is 
launched with three compute 
and two I/O MPI processes. 
The end the global file con-
tains the text combined from 
the fragments written by the 
first, second and third compute 
nodes, i. e. 
“Hello*World,*I*am*a*pro
gram*written*with*SFIO.” 
The text is distributed accross 

the two sub-files. The first sub-file contains “Hellod,*I*progritten*SFIO” and the 
second “*Worlam*a*am*wr*with.” (Fig. 3)

Function Calls

In this sub-section we present the SFIO library application programmer interface.

File management operations are mopen, mclose, mchsize, mdelete and mcreate.
MFILE* mopen(char *name, int chunk);
void mclose(MFILE *f);

Hello*World,*I*am*a*program*written*with*SFIO.

Hellod,*I*progritten*SFIO

*Worlam*a*am*wr*with.

Fig. 3. Distribution of striped file accross sub-files



void mchsize(MFILE *f, long size);
void mdelete(char *name);
void mcreate(char *name);

All the presented file management operations are collective. Operation mopen returns 
to the compute node a pointer to the logical striped file descriptor. The striped file 
name, required for the mopen, mdelete, mcreate commands is a string containing the 
full specification of the number, sequence, locations and paths of sub-files representing 
the global striped file. The format of the name is a sequence of sub-files, spearated by 
“;”: “<host>,<path>;<host>,<path>;<host>,<path>...”. For example 
“t0-p1,/tmp/a1.dat;t0-p2,/tmp/a2.dat;”

There are single block and multi-block data access requests.
void mread(MFILE *f, long offset, char *buffer, unsigned size);
void mwrite(MFILE *f, long offset, char *buffer, unsigned size);
void mreadc(MFILE *f, long offset, char *buffer, unsigned size);
void mwritec(MFILE *f, long offset, char *buffer, unsigned size);
void mreadb(MFILE *f, unsigned blknum,

long offsets[], char *buffers[], unsigned sizes[]);
void mwriteb(MFILE *f, unsigned blknum,

long offsets[], char *buffers[], unsigned sizes[]);

The data access requests are blocking and non-collective. mreadc and mwritec func-
tions are the optimized versions of the mread and mwrite functions. 

Error management functions are given by merror and its collective counterprt merrora. 
void merrora(unsigned long *ioerr);
void merror(unsigned long *ioerr);
void prioerrora();

merror and merrora return an array of error statistic accumulated on all the I/O nodes. 
At the same time, they reset the error counters on all the I/O nodes. Statistics are accu-
mulated for operating system I/O calls and listed according to open, close, creat, 
unlink, ftruncate, lseek, write and read functions. prioerrora is a collective operation 
which prints the error statistic to the standart output of the application.

Implementation details

In our programming model, we assume a set of compute nodes and an I/O subsystem. 
The I/O subsystem is represented as set of I/O nodes running I/O listener processes. 
Both compute nodes and I/O listeners are MPI processes within a single MPI program. 
This allows the I/O subsystem to optimize the data transfers between compute nodes 
and I/O nodes using MPI derived datatypes. The user is allowed to directly use MPI 
operations only across the compute nodes for computation purposes. The I/O nodes are 
available to the user only through the SFIO interface.

When a compute node invokes an I/O operation, the SFIO library takes control of that 
compute node. The library routes the requests to the corresponding I/O listener proxy 
on the compute node, caches the routed requests and does an optimisation of requests 
queued for each I/O node in order to minimize the cost of disk accesses and network 
communications. After actual transmission of the messages, the I/O listener(s) prepares 
a reply which is sent back to the compute node.



Optimisation

In order to optimize the disk 
accesses on the remote I/O node, 
the algorithm implemented on 
the compute node tries to com-
bine all overlapping or consecu-
tive I/O requests collected in the 
cache (Fig. 4). Requests queued 
for each I/O node are sorted 
according of their offsets on the 
remote disk subfile.

Queued I/O node access requests 
cached on the compute node are 
launched either at the end of the 

function call or when the buffer size reserved on the remote I/O listener for data recep-
tion may become full. Memory is not a problem on the compute node, since data 
always stays in user memory and is not buffered. When launching I/O requests, the 
SFIO library performs a single data transmission to each of the I/O nodes. It creates 
dynamically a derived datatype which points to the set of pieces in user space memory 
related to the given I/O node and transmits the data in a single stream without addi-
tional copy. The I/O listener at the same time receives the  data as a contiguous block.

4. Performance results

Let us explore the scalability of our parallel I/O 
implementation (SFIO) as a function of the 
number of  contributing I/O nodes. Performance 
results have been measured on the Swiss-T1 
machine [7]. Swiss-T1 consists of 64 Alpha 
processors grouped in 32 nodes. Two types of 
networks are used, Tnet and Fast Ethernet. To 
have an idea about the network capabilities, 
throughput as a function of number of nodes is 
measured by a simple MPI program for both net-
works. The nodes are equally divided into trans-
mitting and receiving nodes and maximal all-to-

all traffic is created.
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Fig. 5 demonstrates cluster throughput scalabil-
ity with a Fast Ethernet Network and Fig. 6. 
with TNet. With Fast Ethernet, each node is 
connected to a Fast Ethernet crossbar switch. 
The underlying topology of TNet consists of 
eight 12-port full crossbar switches. The blue 
graphs show the peak performances and the 
green graphs the average performances.

-

-

Let us now analyze the performances 
of the SFIO library on the Swiss-T1 
machine for  MPICH on Fast Ether-
net and FCI-MPI on TNet. Let us 
assign the first processor of each 
compute node to a compute process 
and the second processor to an I/O 
listener (Fig. 7). 

SFIO performance is measured for 
concurent write access from all com-
pute nodes to all I/O nodes, the 

striped file being distributed over all I/O nodes. The number of I/O nodes is equal to 
the number of compute nodes.

The size of the striped file is 
2Gbyte and the striped unit 
size is 200 bytes only. The 
application’s I/O perform-
ance as a function of the 
number of compute and I/O 
nodes is measured on both 
Fast Ethernet and TNet and 
presented in Fig. 8 and Fig. 
9. The blue graphs show the 
peak performances and the 
green graphs the average 
performances. We are very 
surprised with the perform-
ance results of SFIO on top of MPICH. This result needs further investigation.
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With MPI-FCI the situation 
is much better. It is highly 
scalable. When more than 
23 nodes participate in the I/
O operations, the speed-up 
may slightly vary due to 
TNet’s particular communi-
cation topology. The effect 
of topology on the I/O per-
formance will be further 
studied. 

5. Conclusion and 
future work

SFIO is a cheap alternative to Storage Area Networks. It is a light-weight portable par-
allel I/O system available for MPI programmers. Integrated into standard MPI-I/O, 
SFIO may become a high performance portable MPI-I/O solution for the MPI commu-
nity. 

We plan to realize SFIO benchmarking and check scalability for larger numbers of 
processors on large supercomputers, e.g. at Sandia National Laboratory. 

We intend to implement nonblocking parallel I/O function calls. Disk access optimisa-
tions may also be further improved.

Finally we are planning to implement the collective operations as follows: collective 
operations assume that all compute nodes issue an I/O request at the same logical step 
in the program. The compute nodes, under control of SFIO library, consult each other 
to arrive at a common I/O strategy.  The I/O nodes are informed about the strategy by 
the compute nodes and SFIO creates the optimized data flow.
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