
SFIO, Système de fichiers distribués pour MPI-I/O

Emin Gabrielyan

EPFL, Département d’informatique
Laboratoire de Systèmes Périphériques

Emin.Gabrielyan@epfl.ch

Résumé

Cet article présente l'architecture d'un système de fichiers distribué (SFIO) pour la ges-
tion des entrées/sorties parallèles dans un environment MPI. Différentes techniques
d'optimisation des communications et d'accès aux disques sont présentées. A l’aide de
types dérivés MPI, on peut transmettre sur le réseau des données fragmentées à écrire
sur disque à l'aide d'une seule commande MPI. Nous présentons les performances
d'entrée/sorties du système de fichiers distribué sur le superordinateur Swiss-Tx formé
de noeuds de calcul et E/S de type DEC Alpha.

SFIO, Parallel File Striping for MPI-I/O

Emin Gabrielyan

EPFL, Computer Science Dept.
Peripheral Systems Lab.

Emin.Gabrielyan@epfl.ch

Abstract

This paper presents the design and evaluation of a Striped File I/O (SFIO) library for
parallel I/O in an MPI environment. We present techniques for optimizing communica-
tions and disk accesses for small striping factors. Using MPI derived datatype capabili-
ties, we transmit fragmented data over the network by single MPI transfers. We present
first results regarding the I/O performance of the SFIO library on DEC Alpha clusters,
both for the Fast Ethernet and for the TNet Communication networks.

1. Motivation/Introduction

For I/O bound parallel applications, parallel file striping is an alternative to Storage
Area Networks (SAN). In particular, parallel file striping offers high throughput I/O
capabilities at a much cheaper price, since it does not require a special network for
accessing the mass storage sub-system [6].

Published in “EPFL Supercomputing Review” No. 12 - Nov. 2000, pp. 17-21, http://sawww.epfl.ch/SIC/SA/publications/SCR00/scr12-page17.html

Important aspects of parallel I/O systems
are highly concurrent access capabilities to
the common datafiles by all parallel appli-
cation processes and linear increase in per-
formance when increasing the number of
I/O nodes and processors. Parallelism for
input/output operations can be achieved by
striping the data accross multiple disks so
that read and write operations occur in par-
allel (see Fig. 1). A number of parallel file
systems where designed ([1], [2], [3], [5]),
which make use of the parallel file striping
paradigm.

MPI is currently the most used standard
framework for creating parallel applications running on various types of parallel com-
puters. A well known implementation of MPI [9], called MPICH, has been developed
by Argone National Laboratory. MPICH is used on different platforms and incorpo-
rates MPI-1.2 operations [10] as well as the MPI-I/O subset of MPI-II ([11], [12],
[13]). MPICH is most popular for cluster architecture supercomputers, based on Fast or
Gigabit Ethernet networks. MPICH’s MPI-I/O underlying I/O implementation is com-
pletely sequential and is based on NFS ([4], [14]).

Due to the locking mechanisms needed to avoid simultaneous multiple accesses to the
shared NFS file, MPICH MPI-I/O write operations can be carried out only at a very
slow throughput1.

Other factor reducing peak performance is the read-modify-write operations useful for
writing fragmented data to the target file. Read-modify-write requires sending the full
data covering the written data fragment over the network, modifying it and transmit-
ting it back. In the case of high data fragmentation, i.e. small chunks of data spread
over a large dataspace in the file, network access overhead may become dominant.

To be able to provide the highest level of parallelization of access requests as well as a
good load balance, small striping units are required. However low stripe unit size
increases the communication and disk access cost. Our SFIO parallel file striping
implementation integrates the relevant optimizations by merging sets of network mes-
sages and disk accesses into single messages and single disk access requests. The
merging operation makes use of MPI derived datatypes.

The SFIO library interface does not provide nonblocking operations, but internally,
accesses to the network and disks are made asynchronously.

Section 2 presents the overall architecture of the SFIO implementation as well as the
software layers in order to provide an MPI-I/O interface on top of SFIO. The SFIO
interface description, small examples as well as the details of the system design, cach-
ing techniques and other optimisations are presented in Section 3. First performance

1. When 7 compute nodes access one shared NFS file in an interleaved maner, write throughput per-
formance on MPICH MPI-IO is 35 KB/s per node.

98
76

54
32 Sub-file 1

Global L
ogical

 File
Strip

e U
nit

Fig.1. File striping

results are given for various configurations of the Swiss-Tx supercomputer [7]. Sec-
tion 5 presents the conclusions and future work.

2. Global Architecture

The SFIO library is implemented using MPI-1.2 mes-
sage passing calls. It is therefore as portable as MPI-
1.2. The local disk access calls, which depend on the
underlying operating system are non-portable. How-
ever, they are separately integrated into the source for
Unix and Windows-NT versions.

The SFIO parallel file striping library offers a simple
Unix like interface. We also intend to provide an MPI-
I/O interface on top of SFIO. The intermediate level of
MPICH’s MPI-I/O implementation is ADIO [14]. We
successfully modified the ADIO layer of MPICH to
route calls to the SFIO interface.

On the Swiss-T1 machine, SFIO can run on top of
MPICH as well as on top of FCI-MPI using the low
latency and high throughput network Tnet [8].

3. Unix like interface for parallel striped file I/O

Interface

Two functions, mopen and mclose are provided to open and close a striped file. Note
that a file should be opened by all compute nodes irrespectively of whether that node
uses the file or not. This restriction is placed in order to ensure correct behavior of
future collective parallel I/O functions. Additionally, the operation of opening as well
as of closing a file, implies a global synchronization point in the program. The generic
functions to read and write to a file are respectively mreadc and mwritec.

The multiple I/O request specification interface allows an application program to spec-
ify multiple I/O requests within one call. This permits optimizations which otherwise
would not be possible. The multiple I/O request operations are mreadb and mwriteb.

The following source gives a simple SFIO example. The striped file with a stripe unit
size of 5 bytes consists of two sub-files. A single compute node accesses the striped
file. It is assumed that the program is launched with one compute node MPI process.
#include <mpi.h>
#include "mio.h"
int _main(int argc, char *argv[])
{

MFILE *f;
f=mopen
(

"t0-p1,/tmp/a1.dat;"
"t0-p2,/tmp/a2.dat;"
,5

MPI-I/O Interface

Modified ADIO

Sockets

Ethernet

TCP/IP

MPICH
FCI

SFIO

MPI-I/O on SFIO

MPI

Fig. 2. Integration of SFIO

TNet

);
mwritec(f,0,"Hello World",11);
mclose(f);

}

Below is an example of multiple compute nodes accessing a striped file. Again the
striped file with a stripe unit size of 5 bytes consists of two subfiles. It is accessed by
three compute nodes. Each of them writes at different positions simultaneously.
#include <mpi.h>
#include "../mpi/sfio/mio.h"
int _main(int argc, char *argv[])
{

MFILE *f;
f=mopen
(

"t0-p1,/tmp/a1.dat;"
"t0-p2,/tmp/a2.dat;"
,5

);
if(rank()==0)
{

mwritec(f,0,"Hello*World,*",13);
}
else if(rank()==1)
{

mwritec(f,13,"I*am*a*program*",15);
}
else if(rank()==2)
{

mwritec(f,28,"written*with*SFIO.",18);
}
mclose(f);

}

We assume that the program is
launched with three compute
and two I/O MPI processes.
The end the global file con-
tains the text combined from
the fragments written by the
first, second and third compute
nodes, i. e.
“Hello*World,*I*am*a*pro
gram*written*with*SFIO.”
The text is distributed accross

the two sub-files. The first sub-file contains “Hellod,*I*progritten*SFIO” and the
second “*Worlam*a*am*wr*with.” (Fig. 3)

Function Calls

In this sub-section we present the SFIO library application programmer interface.

File management operations are mopen, mclose, mchsize, mdelete and mcreate.
MFILE* mopen(char *name, int chunk);
void mclose(MFILE *f);

Hello*World,*I*am*a*program*written*with*SFIO.

Hellod,*I*progritten*SFIO

*Worlam*a*am*wr*with.

Fig. 3. Distribution of striped file accross sub-files

void mchsize(MFILE *f, long size);
void mdelete(char *name);
void mcreate(char *name);

All the presented file management operations are collective. Operation mopen returns
to the compute node a pointer to the logical striped file descriptor. The striped file
name, required for the mopen, mdelete, mcreate commands is a string containing the
full specification of the number, sequence, locations and paths of sub-files representing
the global striped file. The format of the name is a sequence of sub-files, spearated by
“;”: “<host>,<path>;<host>,<path>;<host>,<path>...”. For example
“t0-p1,/tmp/a1.dat;t0-p2,/tmp/a2.dat;”

There are single block and multi-block data access requests.
void mread(MFILE *f, long offset, char *buffer, unsigned size);
void mwrite(MFILE *f, long offset, char *buffer, unsigned size);
void mreadc(MFILE *f, long offset, char *buffer, unsigned size);
void mwritec(MFILE *f, long offset, char *buffer, unsigned size);
void mreadb(MFILE *f, unsigned blknum,

long offsets[], char *buffers[], unsigned sizes[]);
void mwriteb(MFILE *f, unsigned blknum,

long offsets[], char *buffers[], unsigned sizes[]);

The data access requests are blocking and non-collective. mreadc and mwritec func-
tions are the optimized versions of the mread and mwrite functions.

Error management functions are given by merror and its collective counterprt merrora.
void merrora(unsigned long *ioerr);
void merror(unsigned long *ioerr);
void prioerrora();

merror and merrora return an array of error statistic accumulated on all the I/O nodes.
At the same time, they reset the error counters on all the I/O nodes. Statistics are accu-
mulated for operating system I/O calls and listed according to open, close, creat,
unlink, ftruncate, lseek, write and read functions. prioerrora is a collective operation
which prints the error statistic to the standart output of the application.

Implementation details

In our programming model, we assume a set of compute nodes and an I/O subsystem.
The I/O subsystem is represented as set of I/O nodes running I/O listener processes.
Both compute nodes and I/O listeners are MPI processes within a single MPI program.
This allows the I/O subsystem to optimize the data transfers between compute nodes
and I/O nodes using MPI derived datatypes. The user is allowed to directly use MPI
operations only across the compute nodes for computation purposes. The I/O nodes are
available to the user only through the SFIO interface.

When a compute node invokes an I/O operation, the SFIO library takes control of that
compute node. The library routes the requests to the corresponding I/O listener proxy
on the compute node, caches the routed requests and does an optimisation of requests
queued for each I/O node in order to minimize the cost of disk accesses and network
communications. After actual transmission of the messages, the I/O listener(s) prepares
a reply which is sent back to the compute node.

Optimisation

In order to optimize the disk
accesses on the remote I/O node,
the algorithm implemented on
the compute node tries to com-
bine all overlapping or consecu-
tive I/O requests collected in the
cache (Fig. 4). Requests queued
for each I/O node are sorted
according of their offsets on the
remote disk subfile.

Queued I/O node access requests
cached on the compute node are
launched either at the end of the

function call or when the buffer size reserved on the remote I/O listener for data recep-
tion may become full. Memory is not a problem on the compute node, since data
always stays in user memory and is not buffered. When launching I/O requests, the
SFIO library performs a single data transmission to each of the I/O nodes. It creates
dynamically a derived datatype which points to the set of pieces in user space memory
related to the given I/O node and transmits the data in a single stream without addi-
tional copy. The I/O listener at the same time receives the data as a contiguous block.

4. Performance results

Let us explore the scalability of our parallel I/O
implementation (SFIO) as a function of the
number of contributing I/O nodes. Performance
results have been measured on the Swiss-T1
machine [7]. Swiss-T1 consists of 64 Alpha
processors grouped in 32 nodes. Two types of
networks are used, Tnet and Fast Ethernet. To
have an idea about the network capabilities,
throughput as a function of number of nodes is
measured by a simple MPI program for both net-
works. The nodes are equally divided into trans-
mitting and receiving nodes and maximal all-to-

all traffic is created.

User Block 1 User Block 2

Disk Access Optimization

Compute Node
I/O Node2 I/O calls on remote

subfile instead of 7

Fig. 4. Disk Optimisation

number of contributing nodesne
tw

or
k

th
ro

ug
hp

ut
 M

B
/s

T1 Ethernet

Fig. 5. Ethernet scalability
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

180
160
140
120
100
80
60
40
20
0

Fig. 5 demonstrates cluster throughput scalabil-
ity with a Fast Ethernet Network and Fig. 6.
with TNet. With Fast Ethernet, each node is
connected to a Fast Ethernet crossbar switch.
The underlying topology of TNet consists of
eight 12-port full crossbar switches. The blue
graphs show the peak performances and the
green graphs the average performances.

-

-

Let us now analyze the performances
of the SFIO library on the Swiss-T1
machine for MPICH on Fast Ether-
net and FCI-MPI on TNet. Let us
assign the first processor of each
compute node to a compute process
and the second processor to an I/O
listener (Fig. 7).

SFIO performance is measured for
concurent write access from all com-
pute nodes to all I/O nodes, the

striped file being distributed over all I/O nodes. The number of I/O nodes is equal to
the number of compute nodes.

The size of the striped file is
2Gbyte and the striped unit
size is 200 bytes only. The
application’s I/O perform-
ance as a function of the
number of compute and I/O
nodes is measured on both
Fast Ethernet and TNet and
presented in Fig. 8 and Fig.
9. The blue graphs show the
peak performances and the
green graphs the average
performances. We are very
surprised with the perform-
ance results of SFIO on top of MPICH. This result needs further investigation.

T1 TNet

Fig. 6. TNet scalability
number of contributing nodesne

tw
or

k
th

ro
ug

hp
ut

 M
B

/s

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

450
400
350
300
250
200
150
150
50
0

Fig. 7. SFIO Architecture on Swiss-T1

I/O

Com
pute

tonep0

I/O

Com
pute

I/O

Com
pute

I/O

Com
pute

tonep1 tonep2 tonep3

Network

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0

10

20

30

40

50

60

70

number of compute and I/O nodes

Pe
rf

or
m

an
ce

 M
B

/s

SFIO on top of MPICH

Fig. 8. SFIO all-to-all I/O performance on Fast Ethernet
0102030405060708091011121314151617181920212223242526272829303132

70
60
50
40
30
20
10
0

With MPI-FCI the situation
is much better. It is highly
scalable. When more than
23 nodes participate in the I/
O operations, the speed-up
may slightly vary due to
TNet’s particular communi-
cation topology. The effect
of topology on the I/O per-
formance will be further
studied.

5. Conclusion and
future work

SFIO is a cheap alternative to Storage Area Networks. It is a light-weight portable par-
allel I/O system available for MPI programmers. Integrated into standard MPI-I/O,
SFIO may become a high performance portable MPI-I/O solution for the MPI commu-
nity.

We plan to realize SFIO benchmarking and check scalability for larger numbers of
processors on large supercomputers, e.g. at Sandia National Laboratory.

We intend to implement nonblocking parallel I/O function calls. Disk access optimisa-
tions may also be further improved.

Finally we are planning to implement the collective operations as follows: collective
operations assume that all compute nodes issue an I/O request at the same logical step
in the program. The compute nodes, under control of SFIO library, consult each other
to arrive at a common I/O strategy. The I/O nodes are informed about the strategy by
the compute nodes and SFIO creates the optimized data flow.

References

[1] Sachin More, Alok Choudhray, Ian Foster, Ming Q. Xu. MTIO a multi-threaded
parallel I/O system, Proceedings of the 11th International Parallel Processing Sympo-
sium (IPPS '97), pages 368-373

[2] Ron Oldfield and David Kotz. The Armada Parallel File System, Dartmouth Col-
lege Dpt. of Compute Science, November 22, 1998, pages 1-14, http://www.cs.dart-
mouth.edu/~dfk/armada/design.html

[3] Benoit A. Gennart, Emin Gabrielyan, Roger D. Hersch, Parallel File Striping on the
Swiss-Tx Architecture, EPFL Supercomputing Review, Nov. 99, pp. 15-22, http://
sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page15.html

[4] Rajeev Thakur, William Gropp, Ewing Lusk, On Implementing MPI-IO Portably
and with High Performance, Sixth Workshop on I/O in Parallel and Distributed Sys-
tems, ACM, May 1999, pp. 23-32.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0

100

200

300

400

500

600

700

800

number of compute and I/O nodesSFIO on top of MPI-FCI

0102030405060708091011121314151617181920212223242526272829303132

800
700
600
500
400
300
200
100
0

Pe
rf

or
m

an
ce

 M
B

/s

Fig. 9. SFIO all-to-all I/O performance on TNet

[5] V. Messerli, O. Figueiredo, B. Gennart, R.D. Hersch, Parallelizing I/O intensive
Image Access and Processing Applications, IEEE Concurrency, Vol. 7, No. 2, April-
June 1999, pp. 28-37

[6] Martha Bancroft, Nick Bear, Jim Finlayson, Robert Hill, Richard Isicoff and Hoot
Thompson, Functionality and Performance Evaluation of File Systems for Storage
Area Networks (SAN), 17-th IEEE Symp. on Mass storage systems, University of
Maryland, March 2000, http://esdis-it.gsfc.nasa.gov/msst/conf2000/PAPERS/
A05PA.PDF

[7] Pierre Kuonen, Ralf Gruber, Parallel computer architectures for commodity com-
puting and the Swiss-T1 machine. EPFL Supercomputing Review, Nov 99, pp. 3-11.

[8] Stephan Brauss, Communication Libraries for the Swiss-Tx Machines. EPFL
Supercomputing Review, Nov 99, pp. 12-15.

[9] Peter S. Pacheco, Parallel Programming with MPI, by Morgan Kaufmann Publish-
ers, pages 137-178, 1997

[10] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra,
MPI - The Complete Reference, Volume 1, The MPI Core, MIT Press, pages 123-189,
1996

[11] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill
Nitzberg, William Saphir, Marc Snir, MPI - The Complete Reference, Volume 2, The
MPI Extensions, MIT Press, pages 185-274, 1998

[12] William Gropp, Ewing Lusk, Rajeev Thakur, Using MPI-2 Advanced Features of
the Message-Passing Interface, MIT Press, pages 51-118, 1999

[13] Message Passing Interface Forum, MPI-2 Extentions to the Message-Passing
Interface, University of Tennessee, pages 209-300, 1997

[14] Rajeev Thakur, William Gropp, Ewing Lusk “A Case for Using MPI’s Derived
Datatypes to Improve I/O Performance” http://www.supercomp.org/sc98/TechPapers/
sc98_FullAbstracts/Thakur447/, pages 1-9, 1998

