
COMPUTER-AIDED PARALLELIZATION OF

APPLICATIONS

THÈSE No 2431 (2001)

PRÉSENTÉE AU DÉPARTEMENT D’INFORMATIQUE

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES TECHNIQUES

PAR

Marc MAZZARIOL

Ingénieur informaticien diplômé EPF
originaire de Genève

Jury de thèse:

Prof. R. D. Hersch, directeur de thèse
Prof. R. Guerraoui, rapporteur
Dr B. Gennart, rapporteur
Dr M. Snir, rapporteur

Lausanne, EPFL
2001

Ù

A mon père

Ù

“No Brain, No Headache”

Ann O'Nym

Acknowledgements

First and foremost, I am especially grateful to my research director, Professor Roger David

Hersch, who offered me a challenging and interesting research area, who gave me guidance and

support throughout this research, and spent hours reading and commenting on earlier drafts of

this dissertation. His continuous support and guidance were an incomparable stimulation and

helped me to focus my attention on the essentials to reach my objectives.

I am particularly indebted to Dr. Benoît Gennart and Dr. Vincent Messerli for their technical

expertise and for the enlightening discussions we had, which helped me clarify my ideas and led

me to new ideas. Dr. Benoît Gennart and Dr. Vincent Messerli are the main authors of the

CAP/PS2 parallelization framework. The present thesis wouldn’t have been possible without

their own work.

I would like to thank the members of the Peripheral System Laboratory, among them Oscar

Figueiredo, Jean-Christophe Bessaud, Joaquín Táraga, Emin Gabrielyan, Sebastian Gerlach,

Olivier Courtois, Itzhak Amidror, Yvette Fishman, Fabienne Allaire, and all the LSP staff for

making the LSP such a nice place to work in. They made this research enjoyable on a day-to-

day basis providing encouragement and motivation.

I am also thankful to my previous teachers and all the people who helped me to develop my

curiosity, and who gave me a taste for research. In particular, I would like the thank Olivier Fis-

cher, Xavier Montet and Laurent Herrmann.

I am especially grateful to all my family, my friends, and all those I met during my sport activ-

ities. All of them supported me and helped along the years, sometimes without knowing how

much!

Finally I thank the Swiss National Fund and the EPFL for funding this research.

Summary

Within the scope of this thesis, we are interested in running high-performance parallel appli-

cations on clusters of commodity components, i.e. PCs or workstations. Creating parallel

applications remains a difficult task. Moreover, creating efficient pipelined parallel schedules

where communication, computation and I/O are carried out simultaneously is a real challenge.

We use the Computer-Aided Parallelization (CAP) framework developed at EPFL in order to

facilitate the design and development of pipelined parallel applications. The CAP based paral-

lelization approach differs from other parallelization approaches by freeing the programmer

from low-level issues such as thread management, protocol management and synchronization.

The programmer can concentrate his efforts on building efficient parallel schedules. Applica-

tion programmers express separately the serial program parts and the parallel behavior of the

program at a high level of abstraction, i.e. as a parallel schedule. The parallel schedule deter-

mines the flow of data and parameters between operations running on the same or on different

processors. CAP offers asynchronous processing capabilities allowing to carry out simulta-

neously I/O operations, communications and computations.

In this thesis, we show how parallel applications from various domains can be developed by

taking advantage of CAP: parallel linear algebra algorithms such as matrix multiplication and

LU decomposition, parallel image filtering, parallel cellular automata and parallel discrete opti-

mization algorithm such as Branch and Bound. We are also interested in the parallelization of

industrial applications, such as the Radiocontrol application aiming at computing in parallel the

listening quotes of radio stations.

The contributions of this thesis are (1) to validate the CAP C++ language extension by dem-

onstrating its capability of synthesizing parallel programs, and (2) to show that the CAP based

parallelization approach yields efficient parallel programs in different application fields.

The reader is introduced to the CAP philosophy and to the formulation of parallel schedules.

We discuss flow-control and load balancing issues and propose appropriate CAP constructs. In

several parallel applications, we demonstrate the compositionality of CAP and its benefits. In

order to demonstrate the performance offered by CAP, we create for most applications a perfor-

mance model and verify it by experimental measurements. Finally, we describe the perspectives

and give ideas for pursuing this research.

Résumé

Dans le cadre de cette thèse, nous avons étudié la réalisation d'applications parallèles sur un

ensemble d'ordinateurs communément disponibles sur le marché (PCs ou stations de travail).

La création d'applications parallèles reste à ce jour une tâche difficile et fastidieuse. En particu-

lier, la mise en oeuvre d'ordonnancements parallèles performants où les communications, le

calcul et les entrées/sorties s'exécutent simultanément est un défi.

L’environnement de parallélisation CAP développé à l'EPFL facilite la réalisation d'applica-

tions parallèles complexes. La méthodologie de parallélisation CAP se distingue des autres

outils de parallélisation en libérant le programmeur de l’implémentation de tâches de bas niveau

tels que la gestion des threads, la gestion de protocol et la synchronisation. Le programmeur

peut se concentrer spécifiquement sur la création d'ordonnancements parallèles complexes et

efficaces. Le programmeur exprime l'ordonnancement parallèle des tâches indépendamment de

la partie sérielle de l'application. Afin d'offrir un maximum de souplesse, CAP permet

d'exprimer les ordonnancements parallèles avec un niveau d'abstraction suffisant. De ces ordon-

nancements sont déduis les dépendances et flux de données entre les tâches s'exécutant sur les

différents processeurs. Afin de permettre la réalisation de schéma d'exécution où les communi-

cations, le calcul et les entrées/sorties s'effectuent simultanément, CAP offre la possibilité

d'exécuter des opérations de façon asynchrone.

Au travers de cette thèse, nous montrons comment des applications parallèles de différents

domaines peuvent bénéficier de la méthodologie de parallélisation CAP. En particulier nous

étudions le développement d'algorithmes parallèles d'algèbre linéaire (multiplication

matricielle, décomposition LU), de filtrage d'image, d'automate cellulaire et d'optimisation

combinatoire (Branch and Bound). Nous présentons aussi la parallélisation d'une application

industrielle (Radiocontrol) qui a pour objectif d'établir l'audimat des stations radio.

La contribution de cette thèse est (1) de valider le langage de parallélisation CAP (extension

du C++) en démontrant sa capacité à formuler de façon synthétique des programmes parallèles,

et (2) de montrer que la méthodologie de parallélisation CAP permet de paralléliser efficace-

ment des applications de différents domaines.

Au travers de cette thèse, le lecteur est d’abord initié à la philosophie CAP et à la formulation

d’ordonnancements parallèles. Nous étudions les problèmes de contrôle de flux de données et

d’équilibrage de charge de travail entre processeurs et proposons des constructions adéquates

en CAP. Au travers de plusieurs applications, nous montrons l’aspect compositionnel de CAP

et ses avantages. Afin de démontrer les performances de CAP, pour la plupart des applications,

nous créons un modèle de performances et le vérifions expérimentalement. Nous concluons, en

indiquant les perspectives et les suites à donner à cette recherche.

Ù

Table of Contents

Acknowledgements vii

Summary ix

Résumé xi

Table of Contents xiii

1 Introduction and Related Work .. 1

2 Basic notions and parallelization fundamentals ... 7

2.1. Performance Measurements.. 7

2.1.1. Speedup

2.1.2. Efficiency

2.1.3. Amdahl’s law

2.2. Granularity .. 11

2.3. Parallel processing and pipelining .. 12

2.4. Master-slave or distributed system ... 16

2.5. Load balancing.. 18

2.6. Asynchronous behaviour .. 18

2.7. Flexibility.. 19

2.8. Reliability and error handling ... 19

2.9. Summary ... 20

3 The CAP Computer-Aided Parallelization Tool .. 21

3.1. Introduction... 21

3.2. Tokens... 25

3.3. Process hierarchy .. 25

3.3.1. Configuration file

3.4. Operations... 29

3.4.1. Leaf operations

3.4.2. Parallel operations

3.5. Parallel CAP constructs .. 32

3.5.1. The pipeline CAP construct

3.5.2. The indexed parallel CAP construct

3.6. Summary ... 39

4 CAP flow-control and load balancing issues.. 41

4.1. Introduction... 41

4.2. CAP flow-control issues ... 42

4.3. Issues of load balancing in a pipelined parallel execution.. 47

4.4. Summary ... 51
xiii

5 CAP Message passing and Serialization ...53
5.1. The CAP token-oriented Message-Passing System (MPS)...53

5.2. Serialization of CAP tokens ..56

5.3. Automatic serialization of CAP tokens ...60

5.4. Integration ...62

5.5. Summary ...63

6 Parallel linear algebra algorithm ...65
6.1. Introduction ...65

6.2. Matrix Multiplication ..65

6.2.1. Notations and problem formulation

6.2.2. Dynamic parallel algorithm

6.2.3. Dynamic parallel algorithm: theoretical analysis

6.2.4. CAP specification of the matrix multiplication

6.3. LU factorization ..69

6.3.1. Problem description

6.3.2. Parallelization

6.4. Performance measurements...74

6.4.1. Dynamic matrix multiplication

6.4.2. LU factorization

6.4.3. Analysis of results

6.5. Summary ...77

7 Parallel Imaging ..79
7.1. Introduction ...79

7.2. System support for managing large images ..80

7.2.1. Hardware architecture

7.2.2. Software architecture

7.3. The parallel process-and-gather operation ..82

7.3.1. Problem description

7.3.2. Modelled single-PC execution schedule

7.3.3. Modelled multiple-PC execution schedule

7.3.4. Theoretical performance analysis

7.3.5. CAP specification of the process-and-gather operation

7.4. The exchange-process-and-store operation ...86

7.4.1. Problem description

7.4.2. Theoretical performance analysis

7.4.3. CAP specification

7.5. Performance results ...92

7.6. Summary ...94

8 Parallel Cellular Automata..97
8.1. Introduction ...97

8.2. Image skeletonization algorithm ...98

8.2.1. Improvement of the image skeletonization algorithm

8.3. Parallel skeletonization with static load distribution...100

8.4. Dynamic load balanced parallel scheme ...102

8.5. CAP specification..105
 xiv

Ù

8.6. Performance measurement.. 106

8.7. Summary ... 109

9 Parallel Computation of Radio Listening Rates ... 111

9.1. Introduction... 111

9.2. The matching problem.. 112

9.2.1. Storage

9.2.2. Serial correlation algorithm

9.2.3. Serial performance analysis/measurements

9.3. Parallelization ... 116

9.3.1. The Computer-Aided Parallelization (CAP) framework

9.3.2. Parallel correlation algorithm

9.3.3. CAP program specification

9.3.4. Parallel performance analysis/measurements

9.4. Graceful degradation in case of failure... 121

9.5. Summary ... 122

10 Discrete Optimization Problems... 125

10.1. Parallelization of hard nonnumeric problems... 125

10.2. Discrete optimization problems .. 125

10.3. Heuristics .. 127

10.4. Sequential search algorithms .. 128

10.4.1. Depth-first search

10.4.2. Breath-first search

10.4.3. Best-first search

10.4.4. Branch and bound

10.4.5. Generic sequential search

10.5. Parallel search ... 133

10.6. Travelling Salesman Problem: A didactical solution ... 134

10.6.1. Process hierarchy

10.6.2. Sequential part of the algorithm

10.6.3. Parallel part of the algorithm

10.7. Summary ... 141

11 Conclusion.. 143

Bibliography... 145

Biography 153
xv

Ù

1 Introduction and Related Work

What is parallel computing? Let us answer this question by drawing an analogy to a real-world

scenario. Consider the problem of delivering letters in a village. If the post office hires only a

single postman, he cannot accomplish the task faster than a certain rate. This process can be

speeded up by employing more than one postman. One simple way to assign the task to the post-

men is to divide the letters equally among them. Each postman starts then the delivery of his set

of letters. However, this division of work may not be the most efficient way to accomplish the

task, since each postman must walk all over the whole village. An alternate way to divide the

work is to assign disjoint regions of the village to each postman. As before, each postman is

assigned an equal number of letters arbitrarily. If a postman finds a letter that belongs to the

region of the village assigned to him, he delivers that letter. Otherwise, he passes it on to the

postman responsible for the region of the village it belongs to. The second approach requires

less effort from individual postmen.

The preceding example shows how a task can be accomplished faster by dividing it into a set

of sub-tasks assigned to multiple postmen. Postmen cooperate, pass the letters to each other

when necessary, and accomplish the task in unison. Parallel processing works on precisely the

same principles. Dividing a task among postmen by assigning them a set of letters is an instance

of task partitioning. Passing letters to each other is an example of communication between sub-

tasks. Task partitioning and communication are the main issues of parallel processing. Synchro-

nization between tasks is also a critical point, but it can be considered as part of the

communication.

Problems are parallelizable to different degrees. For some problems, assigning portions to

other processors might be more time-consuming than performing the tasks locally. Other prob-

lems can be carried out only serially. For example, consider the task of hammering a nail.

Although one person can hammer a nail in a certain amount of time, employing more people

does not reduce this time. Because it is impossible to partition this task, it is poorly suited to

parallel processing. All problems are not equally amenable to parallel processing and moreover,

a problem may have different parallel formulations, which result in varying benefits [Kumar94].

Parallelism appears in various domains as a natural way to improve the performance. If you

are cooking in your kitchen and you want to accelerate this process, you will ask someone to

help you. By communicating together you will be able to cooperate efficiently and reduce cook-

ing time. More generally, the organization of our society could be considered as a huge parallel

process with several (hierarchical) communication layers. From the biological point of view,

our brain or any multi cellular organism could be seen as a parallel system. The cells collaborate

together to coordinate their work. The multi cellular system seems well organized. This collab-

oration is ensured by several biological mechanisms (hormones, neurotransmitters, etc.).
1

Introduction and Related Work
1

Figure 1.1 plots the top performance per year of workstations between 1987 and

1997 [Patterson97]. The performance of a computer depends directly on the time required to

perform a basic operation and the number of these basic operations that can be performed con-

currently. The time to perform a basic operation is ultimately limited by the clock cycle of the

processor, that is, the time required to perform the most primitive operation. However, clock

cycle times will not decrease indefinitely due to physical limitations. To circumvent these lim-

itations, the designer may attempt to utilize internal concurrency in a chip, for example, by

implementing pipelining, or by operating simultaneously on all 64 bits of two numbers that are

to be multiplied. However, a fundamental result in Very Large Scale Integration (VLSI) com-

plexity theory says that this strategy is expensive. Building individual components operating

faster is difficult. It may be cheaper and more efficient to connect together slower components

[Foster94]. Another important trend that is changing the face of computing is the enormous

increase in the capabilities of networks that connect computers. Not long ago, high-speed net-

works ran at 1.5 Mbits/s; currently 100 Mbits/s and soon 1Gbits/s are commonplace.

Considering the evolution of computer technologies, parallel computing appears as a natural

way to circumvent the future limitation of computing power.

Figure 1.2 represents typical cost-performance curves of serial computers over the last few

decades. Beyond a certain point, each curve starts to saturate, and even small gains in perfor-

mance come at an exorbitant increase in cost. Furthermore, this transition point has become

sharper with the passage of time. By connecting only a few commodity computers together to

form a parallel computer, it is possible to obtain raw computing power comparable or even

Fig. 1.1 Performance increase of workstations, 1987-1997. Here performance is

given as approximately the number of times faster than the VAX-11/780, which was a

commonly used yardstick. The rate of performance improvement is about 1.54 per

year, or doubling every 1.6 years. These performance numbers are from the integer

SPEC92 benchmarks (SPECbase_int92) except the two later machines based on the

SPECin95base and multiplied by a factor to estimate SPECbase92 performance.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

P
e
r
fo
r
m
a
n
c
e

SUN-4
260

MIPS
M/120

MIPS
M2000

IBM
RS6000

HP 9000/750
DEC AXP/500

IBM POWER 100
DEC Alpha 4/266

DEC Alpha 5/300

DEC Alpa 5/500

DEC Alpha 21264/600
2

Introduction and Related Work

Ù

higher than the fastest serial computers. Typically, the cost of such a parallel computer is con-

siderably lower. From the economical point of view, parallel computing appears also as a

natural solution to improve performances with reasonable costs.

The previous considerations show us that the idea of parallel processing is a reality imposing

itself naturally in the computer sciences. The concept of a computing system consisting of mul-

tiple processors working in parallel on different problems or different parts of the same problem

is not new. Discussions of parallel computing machines are found in the literature at least as far

back as the 1920s [Crichlow97][Denning86]. Throughout the years, there has been a continuing

research effort to understand parallel computation. In the 1980s, technical developments (VLSI,

large memories, parallel and pipeline ALUs, etc.) reduced the costs of producing computer

components while at the same time increasing performance in terms of processing time, quan-

tity of data processed and reliability [DeCegama89]. During the 1980s, the appearance of

personal computers enhanced the productivity of individuals, and in turn, the productivity of

companies. Since large companies are made up of individuals, the productivity improvement of

individuals using stand-alone computers was too compelling to ignore. PCs soon became per-

vasive [Lewis92]. The 1990 decade is to parallel computing what the 1980 decade was to

personal computing. Since the early 1990 there has been an increasing trend to move away from

expensive and specialized proprietary parallel supercomputers towards networks of worksta-

tions or PCs. Among the driving forces that have enabled this transition has been the rapid

improvement in the availability of commodity high performance components for workstations

and networks. These technologies are making networks of computers an appealing vehicle for

parallel processing, and this is consequently leading to low-cost commodity supercomputer.

Let us focus on the effervescence of workstation networks. Why did they become so popular?

What are their main advantages compared to a specialized proprietary parallel supercomputer?

We already saw that workstation clusters are cheaper and readily available. Their exploitation

and maintenance are also less expensive. Workstation clusters are easy to integrate into existing

networks. In terms of performance, individual workstations are becoming increasingly power-

ful. The communication bandwidth between workstations is increasing and latency is

decreasing as new networking technologies and protocols are implemented in a LAN (Fast Eth-

ernet, Gigabit Ethernet, Myrinet, FDDI). From an other point of view, the development tools for

Fig. 1.2 Cost versus performance curve and its evolution over the decades

Cost

P
e
rf
o
rm

a
n
c
e

1960s

1970s

1980s

1990s
3

Introduction and Related Work
1

workstations are more mature compared to proprietary solutions for parallel computers, mainly

due to the nonstandard nature of parallel computers [Buyya99]. Cluster of workstations benefit

from the explosion of Internet and the necessity for small businesses to acquire reliable and effi-

cient parallel WWW servers. For many customers and applications, 100 processors provide

sufficient computing power. In 1997, most multiprocessor systems were in the range of 8 to 16

processors, with the number moving up slowly. Cluster based solutions correspond to current

market necessities.

Traditionally, in science and industry, a workstation referred to a UNIX platform. There has

been, however, a rapid convergence in processor performance and kernel-level functionality of

UNIX workstations and PC-based machines in the last years. This can be attributed to the intro-

duction of high performance Pentium-based machines and the apparition of operating systems

such as Linux, Windows NT and Windows 2000. This convergence has led to an increased level

of interest in utilizing PC-based systems as a cost-effective computational resource for parallel

computing. This factor coupled with the comparatively low cost of PCs and their widespread

availability in both academia and industry has helped to initiate a number of software projects

whose primary aim is to harness these resources in some collaborative way [Buyya99].

The next generation of parallel computers is based on clusters of PCs. All the hardware com-

ponents (processor, network, storage disk) are commodity components. Developing efficient

parallel applications on non-dedicated hardware becomes a main research topic. The emergence

of distributed memory systems connected through standard high latency networks has a major

impact on the conception of parallel applications. Explicit parallelization programming models

seem to offer better performance than implicit ones. Implicit parallelization models are based

on compiler parallelization which suffers from the difficulties for the compiler to determine the

most suitable way to automatically convert sequential programs into efficient parallel ones

(compilers for several parallel architectures and languages exists, e.g. Fortran

[Koelbel94][Wolfe82]). The difficulties are due to the fact that the compiler must analyze and

understand the dependencies in different parts of the sequential code in order to ensure an effi-

cient mapping onto a parallel computer. The explicit parallel programming model requires a

parallel algorithm which explicitly specifies how the processors cooperate in order to solve a

specific problem. The compiler’s task becomes straightforward. However, the programmer’s

task is quite difficult. Explicit parallelization programming models on distributed memory sys-

tems are mostly based on message passing models [Crichlow97], e.g. Concurrent Pascal

[Hansen75], Occam [Inmos85][Galletly96]. In order to offer better code portability, architec-

ture independent message passing libraries such as MPI [MPI94] and PVM [Sunderam90] have

been developed. However, programs are usually still difficult to understand, debug, and main-

tain. The direction in language development has been towards making a program more and more

a collection of classes, with their private lives separated from their public lives, i.e. object ori-

ented programming [Ghezzi82][Ghezzi85]. The history of programming languages shows a

discernible trend towards higher levels of abstraction [Watt90]. We believe that this point is

essential in parallel programming languages. This philosophy is shared with many other

researchers [Beguelin92][Hatcher91][Shu91]. In order to provide a higher-level language inter-
4

Introduction and Related Work

Ù

face simplifying parallel application development new language extensions such as like CAP or

MENTAT [Grimshaw93b] have appeared.

The CAP Computer-Aided Parallelization tool has been created by Dr. Benoît Gennart at the

Peripheral System Laboratory (LSP) of EPFL. The application programmers express separately

the serial program parts and the parallel behavior of the program at a high level of abstraction.

This high-level parallel CAP program description specifies a macro-dataflow, i.e. a flow of data

and parameters between operations running on the same or on different processors. CAP fea-

tures also asynchronous processing allowing to handle efficiently I/O bound parallel

applications. The CAP framework and its associated parallel file striping services (PS2) are

described in [Gennart98a][Messerli99a].

Within the scope of this thesis we are interested in running high-performance parallel appli-

cations on clusters of commodity components, i.e. PCs or workstations. By cluster, we mean a

collection from 2 to 50 computers. We are not interested in massively parallel architectures but

in small/medium ones. This kind of architectures corresponds to current market necessities. Par-

allel computing appears from many point of views (computing power, costs, scalability,

simplicity, flexibility) as offering potentially efficient solutions. Nevertheless, exploiting this

potential remains a difficult task. Building efficient parallel schedules is an art. In this thesis,

we present the development of several parallel applications from different domains. We use the

CAP framework in order to facilitate the design and development of these parallel applications.

The CAP based parallelization approach differs from other parallel frameworks in that it lets the

programmer concentrate his efforts on building efficient parallel schedules. However, the fun-

damental concepts could be transposed to any other parallel language. Within this thesis, we

describe our methodology which leads to the development of efficient parallel solutions.

Chapter 2 introduces the reader to the basic parallel notions. We introduce the notion of

speedup and analyze theoretical limitations. We present several techniques such as pipelining,

load balancing, and asynchronous execution behavior, allowing to improve parallel algorithms.

We treat also the problem of reliability of parallel applications. All these considerations are the

fundamentals of the CAP based parallelization approach. This chapter presents the underlying

philosophy, concepts, and motivations of the CAP framework, without entering into the syntac-

tical details of the CAP language extension. Chapter 3, instead, presents the CAP language from

the syntactical point of view. We present the major parallel constructions of CAP. We present

how parallel-pipeline execution schemes can be expressed within the CAP language. Chapter 4

presents advanced CAP features such as load balancing and resource handling in order to imple-

ment efficient parallel programs. Chapter 5 is dedicated to the CAP runtime system and in

particular to the CAP Message-Passing System (MPS) and the serialization tool. Chapters 3 to

5 should allow the reader to familiarize itself with the CAP framework and understand the CAP

programs presented in the following chapters. Chapter 6 is dedicated to parallelization of linear

algebra algorithms. In particular, we focus on the parallelization of the well-known BLAS rou-

tines [Anderson95]. In Chapter 7, we solve the problem of parallel filtering of large images.

Chapter 8 treats the parallelization of cellular automata and the inherent dynamic load balancing

problem. In Chapter 9, we present the development of the Radiocontrol industrial application.
5

Introduction and Related Work
1

This application has been developed under industrial constraints; in particular we treat the prob-

lem of reliability. The last chapter is a didactical chapter dedicated to the parallelization of

discrete optimization problems.

This thesis is dedicated to the application of the CAP parallelization methodology, which is

based on the formulation of parallel schedules. The contribution of this thesis is (1) to validate

the CAP language extension by demonstrating its capability of handling parallel programs and

simplifying their development, and (2) to validate the CAP based parallelization approach by

presenting efficient parallel programs. Beyond the research work of this thesis, a large collabo-

rative effort with industrial partners has been performed. Currently the CAP framework and its

underlying parallelization techniques are used by several companies.
6

Ù

2 Basic notions and parallelization fundamentals

This chapter presents important issues in parallel processing. We focus our interest on the central

problem of achieving good performance in terms of scalability. Amdahl’s law is discussed in order

to explain the inherent difficulties of parallel processing. Then we introduce several concepts such

as pipelining, load balancing or asynchronous execution behavior, which need to be considered in

order to implement efficient parallel programs. These concepts are the fundamentals of the CAP

language extension. Without presenting the syntax of CAP, we explain the fundamental motiva-

tion of building a parallel framework such as CAP. This chapter introduces the art of building

parallel schedules.

2.1. Performance Measurements

In parallel programming, as in other engineering disciplines, the goal of the design process is

to optimize a solution in terms of execution time, memory requirements, implementation costs,

maintenance costs, etc. Such a design optimization involves tradeoffs between simplicity, per-

formance, portability, scalability, and other factors. The relative importance of these diverse

factors will vary according to the nature of the problem at hand.

In order to evaluate the performance of an algorithm, we need to provide several metrics. A

sequential algorithm is usually evaluated in terms of its execution time, expressed as a function

of the size of its input. To evaluate parallel algorithms, we must consider, in addition to the exe-

cution time, their scalability, the mechanisms by which data is generated, stored, transmitted

over networks, moved to and from disks, and passed between different stages of computations.

Diverse metrics, such as execution time, parallel efficiency, throughput and latency (network or

I/O), should be considered to evaluate the performance of parallel algorithms. Once the costs of

these metrics have been determined for a specific parallel algorithm, a performance model can

be established. These models can be used to compare the efficiency of different algorithms, to

evaluate scalability, and to identify bottlenecks and other inefficiencies. Performance models

can also be used to guide implementation efforts by showing where optimization is needed.

In this section, we introduce some metrics that are commonly used to measure the perfor-

mance of parallel systems.

2.1.1. Speedup

When evaluating a parallel system, we are often interested in knowing how much performance

gain is achieved by parallelizing a given application over a sequential implementation. Speedup

is a measure that captures the relative benefit of solving a problem in parallel. It is defined as

the ratio of the time taken to solve a problem on a single processor to the time required to solve

the same problem on a parallel computer with identical processors. Let us denote thep t
s

7

Basic notions and parallelization fundamentals

Performance Measurements2
sequential execution time, and by the parallel execution time. We define speedup by the func-

tion :

(2-1)

For a given problem, several sequential algorithms may be available, but all of these may not

be equally suitable for parallelization. When a serial computer is used, it is natural to use the

sequential algorithm that solves the problem in the least amount of time. Given a parallel algo-

rithm, it is fair to judge its performance with respect to the fastest sequential algorithm for

solving the same problem on a single processor1. As a consequence, the sequential time used

in the speedup definition of equation (2-1) has to be the time taken by the best known serial

algorithm.

When looking at the speedup we are in general interested in the evolution of according

to increasing values of , rather than in a single value of the speedup function. This informs us

about the scalability of the parallel algorithm. Several terminologies are used to characterize the

speedup function. The speedup is ideal if . The speedup is said superlinear (resp. sub-

linear) if, for some , (resp.). We speak about linear speedup when

 (for some), i.e. when the parallel program is scalable. In general, all those char-

acterizations are valid on a specific parallel architecture and within a given range of . Both the

parallel architecture and the considered range of values must be clearly specified when speak-

ing about speedups.

The parallel algorithm spends some execution time for communication and synchronization

purposes. This implies that theoretically, the speedup can never exceed the number of proces-

sors (a formal proof is given in [Cosnard95]). In practice, superlinear speedups (an example

is described in Chapter 10) are observed. This is usually due either to a nonoptimal sequential

algorithm or to hardware characteristics that put the sequential algorithm at a disadvantage. For

example, the data for a problem might be too large to fit into the main memory of a single pro-

cessor, thereby degrading its performance due to the use of secondary storage. But when

partitioned among several processors, the individual data-partitions would be small enough to

fit into their respective processor’s main memories [Kumar94].

A general way to analyze parallel programs is to establish the speedup function and to con-

sider the differences with the ideal speedup. In a second step, these differences should be

explained by an appropriate performance model describing the parallel algorithm. The role of

the performance model is to identify the bottlenecks, algorithm inefficiencies, and/or parallel

architecture limitations. Finally, these explanations could be used to improve the parallel

algorithm.

1 If the sequential algorithm used for the comparison is not the best serial algorithm but the same as the

parallel algorithm running on one computer, then we measure the relative speedup as opposed to true

speedup [Patterson97].

t
p

S p()

S p()
t
s

t
p

----=

ts

S p()

p

S p() p=

p S p() p> S p() p<

S p() αp= α

p

p

p

8

Basic notions and parallelization fundamentals

Performance Measurements

Ù

2.1.2. Efficiency

An ideal parallel system containing processors can deliver a speedup equal to . In practice,

ideal behavior is not achieved because while executing a parallel algorithm, the processors can-

not devote 100% of their time to the computations of the algorithm. The efficiency measures the

fraction of time in which a processor is usefully employed. The efficiency function is

defined as the ratio of the speedup to the number of processors.

(2-2)

Ideally the efficiency should be equal to one. In practice, the efficiency is between zero and

one, depending on the degree of effectiveness with wich the processors are utilized.

2.1.3. Amdahl’s law

Various authors attempted to specify the speedup limits. In 1967, Gene Amdahl asserts that

the inherent fraction of a program’s execution time that must be carried out serially dominates

the overall execution time, regardless of the number of processors available.

Amdahl’s law can be formulated as follows. For a given serial program let us denote by the

total execution time, by the execution time of the serial parts of the program which cannot

be parallelized, and by the time spent on a single processor in executing the parallel portions

of the programs. We have, therefore:

(2-3)

Let be the ratio between and :

(2-4)

The parallel execution time on processors is:

(2-5)

Consequently, the speedup becomes:

(2-6)

This last equation expresses the fact that the speedup is limited by a limit which is independent

of the number of processors and the structure of the machine. This result is known as Amdahl’s

p p

E p()

E p()
S p()

p
-----------=

ts
tss

tsp

t
s

t
ss

t
sp

+=

s tss ts

s
t
ss

t
s

-----=

p

t
p

t
ss

t
sp

p
------+=

S
t
s

t
p

t
ss

t
sp

+

t
ss

t
sp

p
------+

1

s
1 s–

p
-----------+

1

s
---≤= = =
9

Basic notions and parallelization fundamentals

Performance Measurements2
law [Amdahl67][Amdahl88]; later, this law was generalized by Lee [Lee80]. Since this formula

does not take into account any reduction in speedup due to synchronization, it could even be

considered as a favorable point of view of parallel processing.

Amdahl’s law was used as a powerful argument against the use of parallel processors, espe-

cially systems with a large number of processing units. Since Amdahl’s predicts that even with

an infinite number of processors, a program with (which was considered as a realistic

lower bound for) would never achieve a speedup greater than 200. The argument points that

it is may be a waste of money to develop (especially massively) parallel processing.

Several research groups (e.g. Sandia National Laboratories) have demonstrated that this last

consideration is not valid. In fact, they observed speedups in excess of 1000 on several parallel

programs. They achieve such a result by increasing considerably the amount of parallelizable

work without increasing the sequential portion of the program, i.e. reducing . These results do

not invalidate Amdahl’s law, but point out the importance of understanding the assumption of

this law. A fundamental assumption in Amdahl’s formula is that the percentage of time spend

in executing the parallel sections of the code is independent of the number of processors. In

practice, this is not obvious, since it would amount of taking a fixed-size problem and running

it on extremely large numbers of processors. Rather, the problem size tends to scale with the

number of processors. If we are interested in developing a parallel application on a very large

number of processors, the application is certainly also very large. When the size of a problem is

scaled up, frequently the serial portion of the program does not increase proportionately to the

problem size. For example, if a finer grid is used or the number of time steps is increased, the

serial portion of the program is not affected, but the parallel portion increases [Leiss95]. In order

to take into account these considerations, the Sandia National Laboratories developed the scaled

speedup model [Gustafson88]. This model differs from Amdahl’s law in that the serial execu-

tion time is considered as independent of the problem size and only the parallel portion

scales up with the problem size.

In order to better understand the implication limits of the Amdahl’s law, let us consider the

following noncomputing problem taken from [Foster94]. Assume that 999 of 1000 workers on

an express way construction project are idle while a single worker completes a sequential com-

ponent of the project. We would not view this as an inherent attribute of the problem to be

solved, but as a failure in management. For example, if the time required for a truck to bring

material to a single point is a bottleneck, we could argue that the road should be under construc-

tion at several points simultaneously. Doing this would undoubtedly introduce some

inefficiency - for example, some trucks would have to travel further to get to their point of work

- but would allow the entire task to be finished more quickly. Similarly, it appears that almost

all computational problems admit parallel solutions. The scalability of some solutions may be

limited, the challenge is to find the optimal way to schedule the tasks in parallel. One must not

build parallel applications by incrementally parallelizing sequential programs. Parallelism

should be the central point that suggests the guiding lines of the algorithm. Finding optimal par-

allelization strategies is the main challenge.

s 0.005≥

s

s

p

tss
10

Basic notions and parallelization fundamentals

Granularity

Ù

Amdahl’s law suggests how difficult it is to reach ideal speedup. Arranging schedules effi-

ciently in parallel requires a large effort, similar to the management effort necessary to

coordinate 1000 workers. This is the fundamental reasons why we believe that programming

environments such as MPI do not provide an efficient framework for parallel processing. In

such an environment, there is no concrete distinction between the serial work and parallel sched-

uling. It is like if in real life, there would be no difference between being a worker or a manager.

The CAP language extension separates clearly the serial tasks, which are expressed in C++, and

the flowgraph describing the parallel schedule. The flowgraph is described with dedicated CAP

keywords and constructions. The language offers several parallel constructions and asynchro-

nous execution models which can be combined together to form new parallel schedules. This

way, the programmer can focus his attention on building efficient parallel schedule indepen-

dently from the conception of serial routines.

2.2. Granularity

This section poses the problem of how to make efficient use of parallel systems. Programming

parallel systems requires that one starts with a study of the parallelism inherent in the problem

to be solved. Thus, the question of where parallelism can occur arises. As pointed out by

[Leiss95], several parallelization levels are possible:

1) At the job level

2) At the program, function or thread level

3) At the instruction level

4) At the arithmetic and bit level

These four levels are presented in increasing granularity order. The first level offers the lowest

granularity, since there will typically be a few tasks at that level. At the opposite, the last level

has a very high granularity. The question is to determine which levels are concerned by high

performance parallel computing on cluster based parallel computers. Level one (job manage-

ment) is rather uninteresting since independent tasks by definition can be executed in parallel.

Operating systems or dedicated job management tools such as LSF [Xu01] handle the problem

of assigning tasks (eventually dynamically) to processors, but it is not the main topic of high

performance parallel computing. The fourth level (parallelization at the bit level) concerns the

internal architecture of the processor and some compilers. This level is not relevant for the pro-

grammer of parallel applications. The programmer is concerned by levels two and three, i.e.

instruction parallelism and thread or function level parallelism.

Instruction level parallelism requires fine granularity. Because of the fine granularity, this

level of parallelization is mostly used on vector computers. Generally, the programmer does not

express explicitly the parallelism. Instead, the programmer develops a sequential program (usu-

ally in Fortran or C). The application is parallelized by applying a vectorizer to the sequential

program [Leiss95]. Important in this process is that in doing this translation from sequential to
11

Basic notions and parallelization fundamentals

Parallel processing and pipelining2
vector code, the compiler uses only syntactic properties of the program; in other words, there is

no need for any understanding of the meaning of the program in order to do the vectorization.

In contrast to initial expectations, several scientific and engineering applications have proved to

be amenable to automatic vectorization. Furthermore, this approach benefits from the advantage

that the programming effort necessary to vectorize the code is in general very low. Nevertheless,

this approach requires the use of a specific expensive hardware, and is not well suited for I/O

intensive or interactive applications. In addition, from the theoretical point of view, automatic

vectorization is unlikely to adhere to any modular design approach. These reasons limits the

usage of vectorized applications.

An automatic parallelization tool will never be able to transform a sequential QuickSort into

a more appropriated parallel MergeSort. Such a transformation requires the understanding of

the meaning of the program which could not be deduced from the syntactic properties of the

sequential program. Let us now discuss the second level of parallelization grain, the function or

thread based parallelization, which requires coarse grain. At this level, the programmer fomu-

lates explicitly the expression of parallelism and focuses his attention on developing an efficient

parallel schedule. The CAP language extension is based on these considerations and helps the

programmer in its task. CAP facilitates the programmer’s work by offering several high-level

parallel constructions avoiding the implementation of low-level routines necessary to the exe-

cution of the parallel schedules. The high-level of abstraction offered by the CAP framework

lets the developer focus his attention on the management of parallel schedules.

2.3. Parallel processing and pipelining1

In this section we introduce two fundamental ways of executing tasks in parallel. We distin-

guish pipelining and parallel processing. In order to explain clearly the differences between

these two parallelization techniques, let us take an example from real life. Anyone who has done

a lot of laundry has intuitively used pipelining or parallel processing. Let us study the several

ways to accomplish this task [Patterson97].

The serial approach to laundry would be: (1) Place on dirty load of clothes in the washer,

(2) when the washer is finished, place the wet load in the dryer, (3) when the dryer is finished,

place the dry load on a table and fold, (4) when folding is finished, put the clothes in the ward-

robe. When the clothes are put away, then the next dirty load starts over, and the whole process

is repeated. For this example, we suppose that each step of the task takes 30 minutes and that

we need to repeat the task four time (tasks A, B, C, D). Figure 2.1 suggests that if the first load

is placed in the washer at 6 pm, the last task terminates at 2 am.

If two laundry rooms are available, the process can be improved by using in parallel both laun-

dry rooms. Figure 2.2 illustrates this process. The tasks A and C start both at 6 pm. At 8 pm the

1 Pipelining refers in general to the internal architectures of processors. In the thesis, we use this termi-

nology in a more general sense.
12

Basic notions and parallelization fundamentals

Parallel processing and pipelining

Ù

tasks B and D start and they terminate at 10 pm. By working in parallel with both laundry rooms

the eight hours serial work is reduced to four hours.

Fig. 2.1 Doing the laundry sequentially

Fig. 2.2 Doing the laundry in parallel

Fig. 2.3 Doing the laundry in pipeline

6pm 17 8 9 10 11 12 2am

A

B

C

D

time

tasks

6pm 17 8 9 10 11 12 2am

A

B

C

D

time

tasks

Laundry room 1

Laundry room 2

6pm 17 8 9 10 11 12 2am

A

B

C

D

time

tasks
13

Basic notions and parallelization fundamentals

Parallel processing and pipelining2
If only one laundry room is available, doing the laundry in pipeline takes less time than the

sequential approach. The pipelined approach is presented by Figure 2.3. As soon as the washer

is finished with the first load and placed in the dryer, the washer is loaded with the second dirty

load. When the first load is dry, it is placed on the table and the folding starts, at the same time,

the wet load is moved to the dryer, and the next dirty load into the washer. Next, the first load

A is placed in the wardrobe, the second load B is folded, the dryer receives the third load, and

the fourth load D is moved into the washer. At this point (7h30 pm), all steps - called stages in

pipelining - are operating concurrently. The pipeline reaches the steady state. The time until the

pipeline reaches the steady state is called the pipeline starting cost. Similarly, the pipeline has

also an ending cost. As long as separate resources are available for each stage, the task can be

pipelined.

The pipelining paradox is that the time from placing a single dirty sock in the washer until it

is dried, folded, and put away is not shorter for pipelining; the reason pipelining is faster for

many loads is that everything is working in parallel, so more work is achieved per hour. If all

the stages take about the same amount of time and there is enough work to do, then the speedup

due to pipelining is equal to the number of stages in the pipeline. [Patterson97].

The final improvement consists of combining both parallelization techniques. If two laundry

rooms are available, it is possible to accomplish the task in a parallel-pipeline fashion.

Figure 2.4 illustrates this process. In this figure the pipeline never reach the steady state (there

is no time where all pipeline stages are working in parallel) because there are not enough tasks

to perform.

The previous considerations can be transposed to parallel computing. Parallel processing con-

sists obviously of running the algorithm using several processors, just as using two laundry

rooms (Fig. 2.2). Pipelining seems to be more difficult to transpose. One possible way to

achieve pipelining is to consider that generally an algorithm is composed of computing and I/O.

By I/O we mean mostly disk accesses and network transfers. Modern technologies allow the

hardware responsible for I/O to have a Direct Memory Access (DMA), i.e. disk or network

Fig. 2.4 Doing he laundry in a parallel-pipeline fashion

6pm 17 8 9 10 11 12 2am

A

B

C

D

time

tasks

Laundry 1

Laundry 2
14

Basic notions and parallelization fundamentals

Parallel processing and pipelining

Ù

accesses can be performed without loading significantly the processor. Therefore, it is possible

to pipeline I/O and computing. If the application is compute-bound, by performing the I/O and

computation in pipeline it’s possible to hide the I/O time. Similarly, if the application is I/O-

bound, an efficient pipeline allows to hide the computation time. If a parallel algorithm per-

forms it’s I/O serially (as it is commonly), it will consequently fall under the Amdahl’s law. By

pipelining the I/O and the computation the parallel algorithm can be improved.

Let us give a concrete program example, where parallel-pipeline processing is well suited. The

program consists of reading a 4MB file from a hard disk, performing some computation to

encrypt it, writing the encrypted file (also 4MB) back to a second hard disk and sending the

encrypted file over the network. By stripping the file in four blocks of 1MB it is possible to per-

form the computation in a pipelined fashion. Figure 2.5 illustrates this process. Each task (A, B,

C or D) consists of reading 1MB from the disk (R), encrypting it (C), writing it back to a second

hard drive (W) and finally sending it over the network (S). We suppose that each step takes the

same amount of time (1 second). Each task is working on a different part of the file: task A on

the first MB, task B on the second MB, task C on the third MB and task D on the last MB. The

pipeline stages (R, C, W and S) can be performed in parallel since they use different resources.

The last figure can be compared with Figure 2.3. If several computers are available the encryp-

tion program can be improved by implementing a parallel-pipeline execution model like in

Figure 2.4.

Another approach to improve the pipelined encryption program of Figure 2.5 is described by

Figure 2.6. Instead of splitting the file into 1MB blocks, we use 0.5MB blocks. Each step of the

pipeline takes now 0.5 second instead of 1 second. Since the tasks are smaller there are more

tasks to perform. The new version of the encryption program is composed with 8 tasks: a1, a2,

b1, b2, c1, c2, d1, d2. Reducing the task size increases the number of tasks (finer grain), reduces

the pipeline starting and ending cost, and therefore improve the program execution time. The

1MB block size program takes 7 second to terminates against 5.5 second for the 0.5MB block

size encryption program. This indicates - from the pipelining point of view - that the task should

be as small as possible. This consideration must be balanced with the fact that smaller tasks have

Fig. 2.5 Executing the encryption program in pipeline (1 MB blocks)

R C SW

R C SW

R C SW

R C SW

0 71 2 3 4 5 6 8

A

B

C

D

time [s]

tasks
15

Basic notions and parallelization fundamentals

Master-slave or distributed system2
a relative higher latency. For example, when a disk read access of 100MB is made the latency

can be ignored. But when a 1B access is made the latency becomes dominant against the

throughput. From the latency point of view, it is more efficient to handle larger tasks. The ideal

strategy is a compromise in between taking into account pipelining and latency.

Parallel and pipeline execution model are critical issues in terms of parallel processing. The

CAP language extension allows the programmer to specify parallel and pipeline constructions,

and to combine them together to formulate more complex execution schedules. Let us ignore

for now the syntax of the CAP language extension. Conceptually the CAP programmer is able

to formulate the execution schedule of Figure 2.4 by specifying something like:

Parallel(Pipeline(A,B) , Pipeline(C,D))

Clearly the programmers do not care about any synchronizations between the several pipeline

stages and between the different tasks. The programmer formulates at a high-level of abstraction

the parallel execution schedule. The CAP kernel is responsible for deducing the dependencies

and for managing the required synchronizations. Inside the CAP kernel, everything is

performed in an asynchronous manner allowing parallel-pipeline executions. From the CAP

programmer point of view, the CAP kernel could be considered as a parallel scheduler. The

possibility to formulate at a high-level of abstraction complex parallel-pipeline execution

schedules is one of the main issues of the CAP language extension.

2.4. Master-slave or distributed system

There are two fundamental ways of organizing parallel schedules: in a master-slave or in a

distributed fashion. By a distributed system we mean that each processing node, part of the par-

allel system, is responsible (1) for performing some computation and (2) for cooperating with

the other processing node. Cooperating means exchanging some information with other pro-

cessing nodes. The results of this communication can induce several modifications in the

current or further computation activities. Within a parallel algorithm organized in a distributed

Fig. 2.6 Executing the encryption program in pipeline (0.5 MB blocks)

c1

c2

d1

d2

c wr s

0 71 2 3 4 5 6 8

a1

a2

b1

b2

time [s]

tasks

c wr s

c wr s

c wr s

c wr s

c wr s

c wr s

c wr s
16

Basic notions and parallelization fundamentals

Master-slave or distributed system

Ù

fashion, each processing node exchanges information with all or at least with some neighboring

processing nodes. Implementing distributed systems can be difficult, since each processing

node must take into account the activities of other nodes.

In general, implementing a master-slave parallelization scheme requires less programming

efforts. In a master-slave scheme, the slaves are responsible to perform some computation, but

the slaves do not communicate with each other. They perform their tasks independently. Instead

a master is responsible to coordinate the slaves. This coordination is ensured by several infor-

mation exchanges between the master and the slaves. The master can be considered as the

manager of a team of workers. In a master-slave scheme, the coordination effort is localized at

a single place, the master. This explains why implementing a master-slave scheme is simpler

than a distributed system. Nevertheless, it’s not always possible or efficient to parallelize a pro-

gram in a master-slave manner.

There is no exact border between the master-slave and distributed parallelization models. Sev-

eral execution schedules can be categorized in neither of the two execution schemes. For

example, let us consider the problem of image filtering (Chapter 7). Such a problem can be par-

allelized by letting a master divide the input image into tiles. The master then distributes the tiles

to the slaves. The slaves filter the tiles received from the master and send the filtered tiles back

to master. Once the master has collected all the filtered tiles, the program is terminated. The

slaves, in order to perform the filtering step, need to receive some data from the neighboring

tiles located on other slaves. Thus the slaves need to exchange information between themselves,

like in a distributed system.

The master-slave parallel organization scheme has been criticized by the scientific commu-

nity. The major argument against the master-slave scheme is that it is not scalable. In fact, the

number of slaves cannot increase infinitely, because the master becomes a bottleneck. This

argument is clearly true, but we want to formulate three comments on this consideration. First,

Amdahl’s law suggests that the problem of scalability is not specific to the master-slave scheme,

but inherent to any parallelization model. Second, the master-slave scheme could be, if neces-

sary, extended hierarchically, by introducing masters of masters. The hierarchical organization

of our society seems to indicate that such a system works pretty well. Finally, the question of

knowing if a system is infinitely scalable is not always relevant. Rather, the problem is to per-

form parallel processing in order to achieve a finite and specified speedup. The corresponding

question is to choose the appropriate parallelization scheme (e.g. requiring the least program-

ming effort).

The CAP language allows the programmer to specify either master-slave or distributed paral-

lelization schedules. Nevertheless, CAP facilitates the development of master-slave schedules.

This result comes from the fact that we are mostly interested in high-performance parallel com-

putation on a limited number of nodes, e.g. 50. On such a number of processing nodes, master-

slave schedules are generally efficient.
17

Basic notions and parallelization fundamentals

Load balancing2
2.5. Load balancing

Imperfect partitioning may have a dramatic impact on the overall performance of a parallel

program. Suppose a program that takes 1000 seconds on a single processor can be partitioned

into 100 task that can be executed without incurring overhead or waiting because of depen-

dences. With a perfect partition, each task would take exactly 10 seconds. However, suppose

that all tasks except one take 9.9 seconds and that the remaining task takes 19.9 seconds. If the

100 tasks are distributed among 2 processors, each processor executing 50 tasks, the system

achieves a speedup of:

(2-7)

If we decide to distribute the 100 tasks over 100 processors the speedup becomes:

(2-8)

As we see, a difference of 10 seconds between tasks, which is small compared to the 1000

seconds required to accomplish the work sequentially, becomes critical when increasing the

number of processors.

A critical issue of parallel algorithms is to balance the load between the contributing proces-

sors, i.e. achieving load balancing. We distinguish static load balancing and dynamic load

balancing. Static load balancing consists of assigning statically some work to processors. Unfor-

tunately, static partitioning of several algorithms yields poor performance because of substantial

variation in the execution time of each partition. Dynamic load balancing is more elaborated, it

consists of distributing the load at run time. When a processor runs out of work, it should get

more work from another processor. Dynamic load balancing is more flexible and achieves better

performance than static load balancing.

Load balancing is another important feature of the CAP language extensions. CAP allows the

programmer to specify, at a high-level of abstraction, static or dynamic load balancing direc-

tives. The CAP kernel interprets these directives and balances the load of the specified tasks

among the different processors.

2.6. Asynchronous behaviour

Asynchronous behavior is opposed to synchronous execution. In a synchronous execution

mode all the processors receive computation work at specific time. This may result in some inef-

ficiencies, letting several processors idle. An improvement consists of letting each processor

work independently from the others. Instead of receiving tasks synchronously, each processor

takes its work from a task-stack. Such an asynchronous execution mode enables each processor

to work at its own speed.

S
1000

49 9.9 19.9+×
------------------------------------ 1.98= =

S
1000

19.9
------------ 50.25= =
18

Basic notions and parallelization fundamentals

Flexibility

Ù

The CAP execution model is based on asynchronous behavior. The CAP kernel associates to

each thread composing the parallel application a queue. This queue is filled with tasks (pro-

duced by other tasks). As soon as a thread terminates a task, it takes a new task from its queue

independently from the other threads. The asynchronous behavior of the CAP kernel is hidden

to the programmer. The CAP program describes how the tasks are scheduled. The CAP kernel

acts at a lower level using asynchronous routines to realize the desired schedule.

2.7. Flexibility

Another important issue of the CAP framework is to allow the programmer to deal with log-

ical processes. Instead of developing architecture dependent programs, the developer programs

at a logical level. Within the CAP framework the programmer declares logical processes and

develops parallel schedules using these logical processes. At execution time, the logical pro-

cesses are mapped to OS processes. The mapping is defined by a configuration file. The

configuration file name (and path) is given on the command line arguments at execution time.

The dissociation of OS processes and logical processes induces some flexibility. The same pro-

gram can run, without re-compilation, with different numbers of contributing processors. It can

also take into account the usage of heterogeneous hardware, like single-processor or bi-proces-

sor computers. The developer can at execution time customize the configuration file to adapt

and take advantage of the hardware specificities of the cluster on which the program should run.

2.8. Reliability and error handling

When thinking about parallel systems, one must be concerned by reliability. If we run our par-

allel application on a cluster of 100 PCs, the probability of failure is 100 times the failure

probability of a single component. If no adequate error handling exists, the failure of a single

component of the cluster can crash the whole parallel application. To avoid such a situation, an

effort must be invested for handling errors. Error handling is not costless. Reliability is, in a

way, opposed to high-performance computing. The question is not how to built a reliable sys-

tem, but how to build a reliable system that consumes as less resources as possible for handling

errors.

Letting a parallelization tool featuring the ability of recovering from many kinds of errors

induces indubitably a considerable error management overhead. A solution consists of letting

the parallel program handle failures by implementing a checkpoint and restart paradigm

[Gray92]. Within the checkpoint and restart paradigm, the application is responsible for saving

(on one or several permanent storage devices) its status periodically (checkpoint). This strategy

reduces the costs, since the application could decide when it is the most appropriated time to

make a checkpoint. When a failure is detected, the parallel application is destroyed and

restarted. When the application is restarted, it uses the information saved during the last check-

point to recover. Using this strategy, only the computation time from the last checkpoint to the

system crash is lost.
19

Basic notions and parallelization fundamentals

Summary2
Within the development of the CAP framework, we have developed a tool which enables the

capability of detecting a failure during the execution of a parallel application. Such a tool is

commonly called a watchdog. If the watchdog detects a failure, it kills the parallel application

and eventually reboots the whole system. Then the application is launched again. The applica-

tion is responsible for using the information from the last checkpoint to recover from the failure.

2.9. Summary

In this chapter we showed that building parallel algorithm cannot be considered as an exten-

sion of sequential algorithms. Efficient parallel solutions differ from serial solutions. Parallel

scheduling is difficult and requires ingenuity, as suggested by Amdahl’s law. We presented sev-

eral commonly used techniques to improve parallel algorithms, such as pipelining, load

balancing, and asynchronous execution behavior. We introduced the CAP language extension

from the conceptual point of view. The several aspects discussed in this chapter are the funda-

mentals (building blocs) of CAP. Explaining the fundamentals of the CAP language extension

from the conceptual point of view, rather than from the syntactical point of view, aims at helping

the reader to better understand our motivation and philosophy.
20

Ù

3 The CAP Computer-Aided Parallelization Tool

This chapter describes the CAP Computer-Aided Parallelization tool. The CAP language is a

general-purpose parallel extension of C++ enabling application programmers to create separately

the serial program parts and express the parallel behavior of the program at a high-level of abstrac-

tion. This high-level parallel CAP program description specifies a parallel schedule, i.e. a flow of

data and parameters between operations running on the same or on different processors. CAP is

designed to implement highly pipelined-parallel programs that are short and efficient. With a con-

figuration map, specifying the layout of threads onto different PCs, these pipelined-parallel

programs can be executed on distributed memory PCs. In this chapter, we concentrate on the tech-

nical aspects of the CAP framework.

3.1. Introduction

This chapter is intended to give readers the necessary background on the CAP methodology

and programming skills required to understand the remainder of this dissertation. Most of the

current chapter has been taken from [Messerli99a]. Readers who want to have a more in-depth

view of CAP can read its reference manual [Gennart98a].

The CAP specification of a parallel program is described in a simple formal language, an

extension of C++. This specification is translated into a C++ source program, which, after com-

pilation, runs on multiple processors according to a configuration map specifying the mapping

of the threads running the operations onto the set of available processors. The macro-dataflow

model which underlies the CAP approach has also been used successfully by the creators of the

MENTAT parallel programming language [Grimshaw93a][Grimshaw93b].

The control mechanism that selects for execution the primitive units of computation, i.e.

sequential operations, is based in CAP on the macro-dataflow MDF model [Grimshaw93a]

inspired by the dataflow computational model [Agerwala82][Denning86][Srini86][Veen86].

The CAP macro-dataflow computational model is a coarse grain, data-driven model and differs

from traditional dataflow in four ways. First, the computation granularity is larger than in tradi-

tional dataflow. The basic units of computation are high-level tasks such as multiplying two

matrices specified in a high-level language (C/C++ leaf operation in the CAP terminology), not

primitive operations such as addition. Second, some operations may maintain state between

invocations, i.e. have side-effects such as modifying shared global variables. Third, operations

may only depend on the result of their single previous operation, i.e. single data dependency.

Finally, in order to be able to have parallel executions of tasks, CAP has introduced two partic-

ular operations called split and merge. A split routine takes as input the token (CAP data

structure, see Section 3.2) of its previous operation, and splits it into several sub-tokens sent in

a pipelined parallel manner to the next operations. A merge routine collects the results and acts
21

The CAP Computer-Aided Parallelization Tool

Introduction3
as a synchronization means terminating its execution and passing its token to the next operation

after the arrival of all sub-results.

An algorithm is described in CAP by its macro-dataflow and graphically depicted by a

Directed Acyclic Graph (DAG). DAGs are completely general, meaning that they can describe

any sort of algorithm. Furthermore, they ensure that the generated code will be deadlock free.

The CAP language extension enables the programmer to specify DAGs. Figure 3.1 presents a

symmetric DAG, i.e. where all the split and merge points in the graph match pairwise. A recent

extension to CAP enables the programmer to specify asymmetric DAGs as well, i.e. where split

and merge points in the graph do not match pairwise (Fig. 3.2).

Regarding communications, the CAP language does not explicitly provide synchronization

tools such as semaphores, barriers, etc. A CAP program is self-synchronized by the data merg-

ing operations. Merge routines act as synchronization points returning their output tokens only

when all the sub-tokens have been merged.

Fig. 3.1 An example of a CAP macro-dataflow depicted by a symmetric directed

acyclic graph. Arcs model data dependencies between operations. Tokens carry data

along these arcs. Split routines split input tokens into several sub-tokens sent in a

pipelined parallel manner. Merge routines merge input tokens into one output token

thus acting as synchronization points

Fig. 3.2 An asymmetric directed acyclic graph that can be described with the recent

extension to CAP

operation4operation1

operation3

operation2

operation5 operation6 operation7

m
erg

e
1

sp
lit

1

sp
lit

2

m
erg

e
2

sp
lit

1

operation1

operation2

operation3

operation4

m
erg

e
1

sp
lit

2

m
erg

e
2

22

The CAP Computer-Aided Parallelization Tool

Introduction

Ù

The CAP computer-aided parallelization tool enables application programmers to specify at a

high level of abstraction the set of threads which are present in the application, the processing

operations offered by these threads, and the flow of data and parameters between operations.

This schedule specification completely defines how operations running on the same or on dif-

ferent PCs are sequenced, and what data and parameters each operation receives as input values

and produces as output values.

The term high-level is used to emphasize the fact that the CAP computational model works at

a high-level of abstraction compared with other parallel imperative languages such as High-Per-

formance Fortran [Loveman93], Multilisp [Halstead85], Concurrent Pascal [Hansen75], Occam

[Miller88][Galletly96][Inmos85] and compared with other parallel programming environments

such as Express [Parasoft90], PVM [Beguelin90][Sunderam90], Linda [Carriero89a]

[Carriero89b] and MPI [MPI94].

The CAP methodology consists of dividing a complex operation into several suboperations

with data dependencies, and to assign each of the suboperations to a thread in the thread hierar-

chy. The CAP programmer specifies in CAP the data dependencies between the suboperations,

and assigns explicitly each suboperation to a thread. The CAP C/C++ preprocessor automati-

cally generates parallel code that implements the required synchronizations and

communications to satisfy the data dependencies specified by the user. CAP also handles for a

large part memory management and communication protocols, freeing the programmer from

low level issues.

CAP operations are defined by a single input, a single output, and the computation that gen-

erates the output from the input. Input and output of operations are called tokens and are defined

as C++ classes with serialization routines that enable the tokens to be packed or serialized, trans-

ferred across the network, and unpacked or deserialized. Communication occurs only when the

output token of an operation is transferred to the input of another operation. The CAP’s runtime

system ensures that tokens are transferred from one address space to another in a completely

asynchronous manner (socket-based communication over TCP/IP). This ensures that commu-

nication takes place at the same time as computation1.

The CAP language does not explicitly provide data transfer mechanisms such as a send or

receive primitive. Communications, i.e. transfer of data among the address spaces, are automat-

ically deducted by the CAP preprocessor and runtime system based on the CAP specification of

the schedule and the mapping of leaf operations onto the threads available for computation. The

CAP paradigm ensures that data transfer, i.e. token motion, occurs only at the end of the execu-

tion of operations in order to redirect the output token of an operation to the input of the next

operation in the macro-dataflow. By managing automatically the communications without pro-

grammer intervention, the task of writing parallel programs is simplified.

1 In the case of a single processor PC communications are only partially hidden, since the TCP/IP proto-

col stack requires some processing power.
23

The CAP Computer-Aided Parallelization Tool

Introduction3
An operation specified in CAP as a schedule of suboperations is called a parallel operation.

A parallel operation specifies the assignment of suboperations to threads, and the data depen-

dencies between suboperations. When two consecutive operations are assigned to different

threads, the tokens are redirected from one thread to the other. As a result, parallel operations

also specify communications and synchronizations between leaf operations. A leaf operation,

specified as a C/C++ routine, computes its output based on its input. A leaf operation cannot

incorporate any communication, but it may compute variables which are global to its thread.

Each parallel CAP construct consists of a split routine splitting an input request into sub-

requests sent in a pipelined parallel manner to the operations of the available threads and of a

merging function collecting the results. The merging function also acts as a synchronization

means terminating the parallel CAP construct’s execution and passing its result to the next oper-

ation after the arrival of all sub-results (Fig. 3.3).

Fig. 3.3 Graphical CAP specification: parallel operations are displayed as parallel

horizontal branches, pipelined operations are operations located in the same

horizontal branch

parallel operation OP1

input token inOP1 output token outOP1

input token
inOP1

parallel operation
OP3

leaf operation
OP2

Thread Tj

Thread Ti

output token
outOP1

Thread Tk

Thread Tl

leaf operation
OP4

parallel operation
OP3

Thread Tj

leaf operation
OP2

output token
outOP3

output token
outOP3

output token
outOP2

output token
outOP2

input token
inOP2

input token
inOP2

input token
inOP4

sp
lit ro

u
tin

e S
F
1

m
erg

e ro
u
tin

e M
F
1

output token
outOP2

sp
lit ro

u
tin

e S
F
2

m
erg

e ro
u
tin
e M

F
2

output token
outOP3

input token
inOP5

input token
inOP6

output token
outOP5

output token
outOP6

leaf operation
OP5

leaf operation
OP6

Thread Tm

Thread Tn
24

The CAP Computer-Aided Parallelization Tool

Tokens

Ù

3.2. Tokens

In CAP, pieces of data that flow through operations are called tokens since a CAP program is

self-synchronized by its data motion. A token declaration is similar to the C/C++ struct/class

declaration. Token’s members can be any basic or complex (structure or class) type. Tokens can

inherit from C++ struct/class. Along with a token declaration, the programmer must provide

serialization routines necessary for moving the token from one address space to another, i.e.

packing the token in a structure that is easily and efficiently sent through a TCP/IP connection

by the CAP’s runtime system and unpacking the same structure in the other address space (Sec-

tion 5.2). Serialization occurs only when a token has to be transferred from one address space

to another. Within an address space, CAP’s runtime system uses the shared memory to move

tokens from one thread to another.

Figure 3.4 shows an example of a token TokenAT declaration (lines 4-17). Serialization rou-

tines are not shown since Section 5.2 is completely devoted to this issue. The declaration of a

token consists of the keyword token (lines 4) followed by any C/C++ struct/class field declara-

tions (lines 6-13). As C++ classes, tokens may contain constructors and a destructor (line 15 and

16). Tokens can inherit from any C++ class/struct (line 4). One can even declare MFC objects

inside a token (lines 10 and 11) as long as serialization routines are provided. However CAP

does not allow pointer declarations since it does not know how to serialize them. That is the rea-

son for lines 1-2 and 12-13.

3.3. Process hierarchy

The fundamental CAP methodology consists of specifying at a high-level of abstraction a pro-

cess hierarchy, the operations offered by the processes in the hierarchy, and for parallel

operations the schedule of suboperations described by a macro-dataflow depicted as a directed

acyclic graph (DAG). The CAP language allows the programmer to work at a logical level. The

Fig. 3.4 Token declarations in CAP

1. typedef char* PointerToCharT;

2. typedef double* PointerToDoubleT;

3.

4. token TokenAT : MyOwnInheritableClassT

5. {

6. int IntValue;

7. float FloatValue;

8. char CharArray[256];

9. MyOwnClassT AnObject;

10. CString StringOfChars;

11. CArray<float, int> ArrayOfFloat;

12. PointerToCharT PointerToCharP;

13. PointerToDoubleT PointerToDoubleP;

14.

15. TokenAT(int value, float numberOfDegree);

16. ~TokenAT();

17. };
25

The CAP Computer-Aided Parallelization Tool

Process hierarchy3
programmer defines logical processes, grouping hierarchically the processes. Only the lowest

process hierarchy level is mapped to operating system threads according to a configuration file.

Figure 3.5 shows a process hierarchy declaration where 5 types of processes are defined, Pro-

cessAT (lines 1-10), ProcessBT (lines 11-19), ThreadAT (lines 20-26), ThreadBT (lines 27-33),

ThreadCT (lines 34-40), ThreadDT (lines 41-47) and ThreadET (lines 48-54). Processes are

declared as C++ classes with the process keyword (lines 1, 11, 20, etc.). Note that there are pro-

cesses with subprocess declarations, ProcessAT and ProcessBT, and processes without

subprocess declarations, ThreadAT, ThreadBT, ThreadCT, ThreadDT and ThreadET. CAP

makes a significant distinction between these two types of declaration. Therefore in the contin-

uation of this dissertation the term hierarchical process refers to processes with subprocesses

defined in a subprocesses section, the term leaf process or thread refers to processes without a

subprocesses section, and the term process refers to either hierarchical or leaf processes. In a

subprocess section programmers instantiate processes, e.g. the hierarchical process ProcessAT

has three subprocesses: a ProcessB hierarchical process of type ProcessBT (line 4), a ThreadA

leaf process of type ThreadAT (line 5) and a ThreadB leaf process of type ThreadBT (line 6). In

the same manner ProcessB is hierarchically defined.

In a hierarchical process, high-level operations also called parallel operations are defined as

a schedule of suboperations (either parallel or sequential suboperations) offered by its subpro-

cesses and/or offered by the process itself (lines 8, 9 and 18). The flow of tokens between

Fig. 3.5 CAP specification of a process hierarchy

1. process ProcessAT

2. {

3. subprocesses:

4. ProcessBT ProcessB;

5. ThreadAT ThreadA;

6. ThreadBT ThreadB;

7. operations:

8. Op1 in TokenAT* InP out TokenDT* OutP;

9. Op2 in TokenAT* InP out TokenDT* OutP;

10. };

11. process ProcessBT

12. {

13. subprocesses:

14. ThreadCT ThreadC;

15. ThreadDT ThreadD;

16. ThreadET ThreadE;

17. operations:

18. Op1 in TokenCT* InP out TokenDT* OutP;

19. };

20. process ThreadAT

21. {

22. variables:

23. int ThreadLocalStorage;

24. operations:

25. Op1 in TokenAT* InP out TokenBT* OutP;

26. };

27. process ThreadBT

28. {

29. variables:

30. int ThreadLocalStorage;

31. operations:

32. Op1 in TokenBT* InP out TokenCT* OutP;

33. };

34. process ThreadCT

35. {

36. variables:

37. int ThreadLocalStorage;

38. operations:

39. Op1 in TokenCT* InP out TokenCT* OutP;

40. };

41. process ThreadDT

42. {

43. variables:

44. int ThreadLocalStorage;

45. operations:

46. Op1 in TokenCT* InP out TokenCT* OutP;

47. };

48. process ThreadET

49. {

50. variables:

51. int ThreadLocalStorage;

52. operations:

53. Op1 in TokenCT* InP out TokenDT* OutP;

54. };

55.

56. ProcessAT MyHierarchy;
26

The CAP Computer-Aided Parallelization Tool

Process hierarchy

Ù

operations, i.e. macro-dataflow, is programmed by combining the high-level CAP constructs

described in Section 3.5.

In leaf processes, operations are defined as standard sequential C/C++ subprograms (lines 25,

32, 39, 46 and 53), henceforth called leaf operations or sequential operations. The term opera-

tion is used to refer to either parallel or leaf operations.

Both parallel and leaf operations take a single input token (InP) and produce a single output

token (OutP). The input token is in the parallel case redirected to the first operation met when

flowing through the macro-dataflow, and in the sequential case it is the input parameter of the

function. Alternatively, the output token is in the first case the output of the last executed oper-

ation in the dataflow and in the second case the result of the serial execution of the C/C++

function.

At line 56 the process hierarchy is instantiated. At run time and with a configuration file (Sec-

tion 3.3.1), the MyHierarchy process hierarchy is created on a multi-PC environment1, i.e. only

the leaf processes are spawn since they are the threads executing the leaf operations they offer.

Hierarchical processes are merely entities for grouping operations in a hierarchical manner.

They do not participate as threads during execution since the parallel operations represent

exclusively schedules used by leaf processes at the end of a leaf operation to locate the next leaf

operation, i.e. the successor. In other words, tokens flow from leaf operations to leaf operations

guided by parallel operations2. Therefore at run time behind the MyHierarchy process hierar-

chy, there are five threads of execution, i.e. ThreadA, ThreadB, ThreadC, ThreadD, ThreadE.

These threads are distributed among the PCs according to a configuration file.

In leaf processes it is possible to declare thread local variables3 in the variables sections (lines

22, 29, 36, 43 and 50), i.e. variables that are distinct across different thread instantiations. Hier-

archical processes may also contain a variables section but care must be taken if the leaf

subprocesses are mapped by the configuration file onto different address spaces. In that case a

local copy of the variables present in the variables section is available in each address space.

CAP’s runtime system does not ensure any coherence between address spaces. Each of them

gets a local copy of all the variables, i.e. the global variables, the thread local variables and the

hierarchical process local variables. Also the CAP variables are supposed to be accessed only

by the thread within which they are declared. It’s possible for a thread to access a variable within

another thread, but the CAP runtime system does not ensure any exclusive access to that vari-

able. It is the programmer’s responsibility to protect that variable (mutex) against concurrent

accesses.

The execution model of MyHierarchy CAP process hierarchy is shown in Figure 3.6. Each

thread in the process hierarchy executes a loop consisting of (1) removing a token from its input

1 In the case where the configuration file is omitted, all the threads are spawned in a single address space.
2 In addition, split and merge sequential functions enable scattering and gathering tokens.
3 This is equivalent to the thread local storage (TLS) used in Win32 programs [Cohen98].
27

The CAP Computer-Aided Parallelization Tool

Process hierarchy3
queue; (2) selecting the leaf operation to execute based on the current parallel operation; (3) run-

ning the leaf operation to produce an output token; (4) finding out the successor, i.e. the next

leaf operation to be executed by a thread, and sending asynchronously the output token to that

thread using the CAP Message Passing System (Chapter 5).

3.3.1. Configuration file

In order to be able to run a CAP program on multiple address spaces, i.e. with several Win-

dows NT processes distributed on a multi-PC environment, CAP’s runtime system needs a

configuration file. A configuration file is a text file specifying: (1) the number of address spaces

(or Windows NT processes) participating in the parallel computation; (2) the PC’s IP addresses

on which these Windows NT processes run; (3) the Windows NT process executable filenames;

(4) the mapping of threads to address spaces.

Figure 3.7 gives an example of a configuration file for the MyHierarchy process hierarchy

shown in Figure 3.5. A configuration file always contains two sections:

1) A processes section (lines 2-6) where all the address spaces or Windows NT processes

participating in the parallel computation are listed. For each of them a PC’s IP address

and an executable filename are given in order to allow the runtime system to spawn the

Windows NT process on that PC with the specified executable file (lines 4-6). Note the

special keyword user (line 3) used to refer the Windows NT process launched by the

Fig. 3.6 Graphical representation of MyHierarchy CAP process hierarchy

ThreadAT::O
p1

?

ThreadA

ThreadAT::O
pX

?

ThreadBT::
Op1

?

ThreadB

ThreadBT::
OpX

?

ProcessAT

M
essag

e P
assin

g
 S
y
stem

M
essag

e P
assin

g
 S
y
stem

input token
queue

thread of
execution

leaf operations
offered by this leaf

process

which thread is
the successor?

2

1

3

4

5

1

2

3

4

5

which leaf operations
should I execute?

6

Message passing
system output token

queue

6

Legend:

ProcessBT
28

The CAP Computer-Aided Parallelization Tool

Operations

Ù

user as a console command for starting the CAP program (Fig. 3.8). In that case, the

PC’s IP address and the executable file name is obviously not mentioned since the user

launches that process.

2) A threads section (lines 7-12) specifying for each thread in the MyHierarchy process

hierarchy the Windows NT process where the thread runs.

Figure 3.8 shows how to start a CAP program with a configuration file. At the beginning of

the execution the CAP’s runtime system parses the configuration file and thanks to the CAP

Message Passing System (Chapter 5) spawns all the Windows NT processes (except the user

one, Fig. 3.7, line 3) on the mentioned PCs. Then the four Windows NT processes (A, B, C, and

D) parse the configuration file so as to spawn the five threads in their respective address space,

e.g. the Windows NT process C spawns the ThreadA thread and the ProcessB.ThreadE thread.

The CAP configuration file enables the possibility of running the CAP parallel program in a

variety of configurations without recompiling the program. Any combination of multi-process

or multi thread configuration can be specified within the CAP configuration file.

If the configuration file is omitted when starting a CAP program, then CAP’s runtime system

spawns all the threads in the current Windows NT process.

3.4. Operations

After having shown how to declare a process hierarchy and the operations offered by the pro-

cesses in the hierarchy, this section looks at how to implement leaf operations and parallel

operations.

Fig. 3.7 Configuration file declaring four address spaces, the PC’s addresses where

these four Windows NT processes run, the three executable filenames and the

mapping of the five threads to the four address spaces

Fig. 3.8 Starting a CAP program with a configuration file at DOS prompt

1. configuration {

2. processes :

3. A ("user");

4. B ("128.178.75.65", "\\FileServer\SharedFiles\CapExecutable.exe");

5. C ("128.178.75.66", "\\FileServer\SharedFiles\CapExecutable.exe");

6. D ("128.178.75.67", "\\FileServer\SharedFiles\CapExecutable.exe");

7. threads :

8. "ThreadA" (C);

9. "ThreadB" (B);

10. "ProcessB.ThreadC" (D);

11. "ProcessB.ThreadD" (A);

12. "ProcessB.ThreadE" (C);

13. };

128.178.75.67> CapExecutable.exe -cnf \\FileServer\SharedFiles\ConfigurationFile.txt ... ↵
29

The CAP Computer-Aided Parallelization Tool

Operations3
CAP enables the programmer to declare an operation, either a parallel operation or a leaf oper-

ation, outside its process interface. This feature is extremely useful for extending the

functionality of existing CAP programs. Instead of declaring the operation inside a given pro-

cess, the programmer merely declares its interface globally, using the keyword operation (Fig.

3.9).

CAP allows the programmer to call a CAP operation within a C/C++ program or library using

the call keyword (Fig. 3.10, line 7). It is the programmer’s responsibility to create the input

token (line 5) and to delete the output token (line 9). The call instruction is synchronous, i.e. the

thread that performs the call instruction is blocked until the called operation completes.

Fig. 3.9 Additional operation declarations

Fig. 3.10 Synchronous call of a CAP operation from a sequential C/C++ program

Fig. 3.11 Asynchronous call of a CAP operation from a sequential C/C++ program

operation ProcessBT::Op2 // Additional parallel operation declaration

in TokenDT* InP

out TokenBT* OutP;

leaf operation ThreadET::Op2 // Additional leaf operation declaration

in TokenBT* InP

out TokenAT* OutP;

1. ProcessAT MyHierarchy;

2.

3. int main(int argc, char* argv[])

4. {

5. TokenAT* InP = new TokenAT(2, 4.562);

6. TokenDT* OutP;

7. call MyHierarchy.Op1 in InP out OutP;

8. printf(“Result = %s\n”), OutP->APointerToCharP);

9. delete OutP;

10. return 0;

11. }

1. ProcessAT MyHierarchy;

2.

3. int main(int argc, char* argv[])

4. {

5. capCallRequestT* CallRequestP;

6. TokenAT* InP = new TokenAT(2, 4.562);

7. TokenDT* OutP;

8. start MyHierarchy.Op1 in InP out OutP return CallRequestP;

9. ...

10. OutP = capWaitTerminate(CallRequestP);

11. printf(“Result = %s\n”), OutP->APointerToCharP);

12. delete OutP;

13. return 0;

14. }
30

The CAP Computer-Aided Parallelization Tool

Operations

Ù

CAP also provides an asynchronous start instruction where the thread that performs the start

instruction is not blocked and may synchronize itself with the capWaitTerminate CAP-library

function (Fig. 3.11).

3.4.1. Leaf operations

As mentioned previously, CAP’s primitive units of computation are leaf operations or sequen-

tial operations, i.e. C++ subprograms usable as building blocks for concurrent programming. A

leaf operation is defined by a single input token, a single output token, and the C/C++ function

body that generates the output from the input.

In our directed acyclic graph formalism (Fig. 3.3), we depict leaf operations as a single

rounded rectangle with an input arrow with the input token’s type, an output arrow with the out-

put token’s type, and the thread which performs this leaf operation (Fig. 3.12).

Figure 3.13 shows the implementation of the ThreadAT::Op1 sequential operation using the

leaf operation CAP construct. It is the responsibility of the leaf operation to create the output

token (line 6) using one of the defined constructors. Once the leaf operation is completed, by

default, the CAP’s runtime system deletes the input token. A call to the capDoNotDeleteInput-

Token CAP-library function inside a leaf operation tells the CAP runtime system not to delete

the input token of the leaf operation.

A leaf operation may have side-effects, i.e. modifying shared global variables or thread local

variables, so as to exchange information between threads in a same address space. It is the pro-

grammer’s responsibility to ensure the coherence of the shared data by using appropriate

synchronization mechanisms, e.g. mutexes, semaphores, barriers, provided by the CAP runtime

library. Care must be taken when using these synchronization tools in order to avoid deadlocks.

Indeed, CAP ensures that parallel programs are deadlock free by specifying macro-dataflows as

directed acyclic graphs. However, if additional synchronizations outside CAP are used, dead-

lock free behavior cannot be guaranteed any more.

Fig. 3.12 A leaf operation with its input and output token. Single rounded rectangles

depict leaf operations

ThreadAT::Op1

TokenAT TokenBT

type of the input token

name of the leaf
operation

ThreadA

name of the thread that
executes this leaf

operation

type of the output token

a single rounded
rectangle indicates a leaf

operation

type of the thread that
offers this leaf
operation
31

The CAP Computer-Aided Parallelization Tool

Parallel CAP constructs3
By default, when a leaf operation terminates, the CAP runtime system calls the successor, i.e.

the next leaf operation specified by the DAG. CAP enables the programmer to prevent the CAP

runtime system to call the successor, by calling the capDoNotCallSuccessor CAP-library func-

tion in the body of the leaf operation. The effect of the capDoNotCallSuccessor CAP-library

function is to suspend the execution of the schedule of this particular token. To resume the exe-

cution of a suspended token, CAP supplies the capCallSuccessor CAP-library function. It is the

programmer’s responsibility to keep track of the suspended tokens, e.g. by having a global list

of suspended tokens. A typical place to use this feature is when the leaf operation uses asyn-

chronous system calls, e.g. the ReadFile Win32 system call. When the leaf operation finishes,

the thread is able to execute other leaf operations while the OS is asynchronously doing the sys-

tem call. When the system call completes, the callback routine resumes the schedule of the

suspended token by calling the capCallSuccessor CAP-library function.

3.4.2. Parallel operations

As said in Section 3.3, a parallel operation, i.e. a hierarchically higher-level operation, is

defined by an input token, an output token, and a schedule of suboperations that generates the

output from the input. Parallel operations are possibly executed in parallel in the case of a par-

allel hardware environment, i.e. a cluster of PC.

In a directed acyclic graph (Fig. 3.3), parallel operations are depicted as a double rounded rect-

angle having an input arrow with the input token’s type, and an output arrow with the output

token’s type (Fig. 3.14).

Figure 3.15 shows the implementation of the ProcessAT::Op1 parallel operation using the

operation CAP construct. In order to specify the content of the parallel operation, i.e. to build

the schedule of suboperations (line 5), the programmer may use one or several parallel CAP

constructs described in the following section. C/C++ statements are strictly forbidden since a

parallel operation only describes the order of execution of suboperations.

3.5. Parallel CAP constructs

This section looks at the parallel CAP constructs. CAP provides several parallel

constructs: pipeline, if and ifelse, for, while, parallel, parallel while, and indexed parallel. In

this section, we will focus our interest on the pipeline and the indexed parallel constructs, the

Fig. 3.13 CAP specification of a leaf operation. Note the leaf keyword

1. leaf operation ThreadAT::Op1

2. in TokenAT* InpP

3. out TokenBT* OutP

4. {

5. ... // Any C/C++ statements

6. OutP = new TokenBT(“Switzerland”);

7. ... // Any C/C++ statements

8. }
32

The CAP Computer-Aided Parallelization Tool

Parallel CAP constructs

Ù

other parallel constructions are described in [Messerli99a]. CAP parallel constructs are used as

building blocks for specifying the macro-dataflow of parallel operations, i.e. the schedule of the

underlying leaf operations. These high-level parallel CAP constructs are automatically trans-

lated into a C/C++ source program, which, after compilation, runs on a multi-PC environment

according to a configuration file specifying the mapping of the threads running the leaf opera-

tions onto the set of available Windows NT processes. For each of the parallel CAP constructs,

its graphical specification, i.e its DAG, and its CAP specification are shown.

A question that may arise when reading this section is who executes parallel operations, i.e.

who evaluates the boolean expression in if, ifelse and while CAP constructs, who executes the

three expressions (init expression, boolean expression, and increment expression) in a for CAP

construct, who executes the split functions in a parallel and parallel while CAP construct, and

who executes the three expressions (init expression, boolean expression, and increment expres-

sion) and the split function in an indexed parallel CAP construct. The question of who executes

a leaf operation is simple: the thread specified by the programmer executes the leaf operation.

The question of who executes parallel operation is much more subtle [Gennart98a]. The job of

a parallel operation is to redirect tokens from their producing sequential suboperation, i.e. the

suboperation that generates it, to the consuming sequential suboperation, i.e. the suboperation

that consumes it. The producing suboperation is not necessarily executed by the same thread as

the consuming suboperation. If the producing thread is not in the same address space as the con-

suming thread, the token must be transferred from one address space to the other, a costly

operation that should be performed only when explicitly required by the programmer. Therefore

in the current implementation of the CAP runtime system, the producing thread performs the

Fig. 3.14 A parallel operation with its input and output token. Note double rounded

rectangle depict parallel operations.

Fig. 3.15 CAP specification of a parallel operation

a double rounded rectangle
indicates a parallel operation

dashed lines indicating that the parallel
operation decomposes into...

ProcessAT::Op1

TokenAT TokenDT

type of the input token

name of the parallel
operation

type of the output token

type of the process
that offers this parallel

operation

1. operation ProcessAT::Op1

2. in TokenAT* InP

3. out TokenDT* OutP

4. {

5. // One or several parallel CAP constructs

6. }
33

The CAP Computer-Aided Parallelization Tool

Parallel CAP constructs3
parallel operation in order to decide itself where to redirect the token it produced. For example,

the split functions in the parallel, parallel while and indexed parallel CAP constructs are always

executed by the thread that produced the input token of the parallel construct.

3.5.1. The pipeline CAP construct

The pipeline CAP construct enables the output of one operation to be redirected to the input

of another. It is the basic CAP construct for combining two operations. Figure 3.16 shows the

DAG of the pipeline construct where three operations are connected in pipeline, i.e.

ThreadAT::Op1, ThreadBT::Op1 and ProcessBT::Op1 operations. The output of the

ThreadAT::Op1 leaf operation is redirected to the input of the ThreadBT::Op1 leaf operation

whose output is redirected to the first leaf operation met when flowing through the DAG of the

ProcessBT::Op1 parallel operation.

The CAP specification of the DAG in Figure 3.16 is shown in Figure 3.17. The output of one

operation is redirected to the input of another operation using the >-> CAP construct (lines 6

and 8).

The execution of the program presented in Figure 3.17 strongly depends on the configuration

file, i.e. whether the threads are mapped onto different processors or not. If the ThreadA thread,

the ThreadB thread and the threads running the ProcessB::Op1 parallel operations are mapped

Fig. 3.16 Graphical CAP specification of the pipeline construct

Fig. 3.17 CAP specification of the pipeline construct

arc indicating that the output of ThreadAT::Op1 is
redirected to the input of ThreadBT::Op1

ProcessAT::Op1

TokenAT TokenDT

TokenAT TokenBT
ThreadA

ThreadBT::Op1 ProcessBT::Op1ThreadAT::Op1

TokenCT TokenDT
ThreadB

1. operation ProcessAT::Op1

2. in TokenAT* InP

3. out TokenDT* OutP

4. {

5. ThreadA.Op1

6. >->

7. ThreadB.Op1

8. >->

9. ProcessB.Op1;

10. }
34

The CAP Computer-Aided Parallelization Tool

Parallel CAP constructs

Ù

onto different processors and if the first operation in the horizontal branch, i.e. ThreadAT::Op1

leaf operation, is fed with several tokens, then the 3 operations are executed in a pipelined man-

ner like an assembly line (Fig. 3.18).

Supposing now that the ProcessAT hierarchical process declaration contains a pool of

ThreadAT threads (Fig. 3.19, line 5) and a pool of ThreadBT threads (Fig. 3.19, line 6) instead

of ThreadA and ThreadB threads (Fig. 3.5, line 5 and 6), then in the CAP specification of Pro-

cessAT::Op1 parallel operation the programmer must select within the 2 pools which threads

are running ThreadAT::Op1 and ThreadBT::Op1 leaf operations (Fig. 3.20, lines 5 and 7).

The CAP runtime system provides programmers with the thisTokenP variable pointing to the

token about to enter a CAP construct, e.g. line 5 thisTokenP refers to ProcessAT::Op1 input

token and line 7 refers to ThreadAT::Op1 output token. The thisTokenP variable enables tokens

Fig. 3.18 Timing diagram of the execution of the 3 operations in a pipelined manner

Fig. 3.19 Declaring two pools of threads within a hierarchical process

Fig. 3.20 Selecting a thread within a pool

ThreadA running
ThreadAT::Op1

ThreadB running
ThreadBT::Op1

Threads running
ProcessBT::Op1

1. process ProcessAT

2. {

3. subprocesses:

4. ProcessBT ProcessB;

5. ThreadAT ThreadA[];

6. ThreadBT ThreadB[];

7. ...

1. operation ProcessAT::Op1

2. in TokenAT* InP

3. out TokenDT* OutP

4. {

5. ThreadA[thisTokenP->ThreadAIndex].Op1

6. >->

7. ThreadB[thisTokenP->ThreadBIndex].Op1

8. >->

9. ProcessB.Op1;

10. }
35

The CAP Computer-Aided Parallelization Tool

Parallel CAP constructs3
to be dynamically redirected according to their values. If the configuration file maps all the

threads to different processors, then program of Figure 3.20 is executed in a pipelined parallel

manner, i.e. ThreadAT::Op1, ThreadBT::Op1 and ProcessBT::Op1 operations are executed in

pipeline while ThreadAT::Op1 and ThreadBT::Op1 operations are executed in parallel by the

threads in the two pools. Figure 3.21 illustrates this schedule; in the example it is supposed that

the ThreadAT[] thread pool is composed with 4 threads, i.e. ThreadAT[0], ThreadAT[1],

ThreadAT[2], ThreadAT[3], and that the ThreadBT[] thread pool is composed with 2 threads,

i.e. ThreadBT[0], ThreadBT[1].

In order to express this pipelined parallel execution, the DAG of ProcessAT::Op1 hierarchical

operation is modified so as to include two parallel branches (Fig. 3.22).

Selecting a thread within a pool raises the issue of load balancing in CAP (Fig. 3.20, lines 5

and 7). Supposing that the execution time of ThreadAT::Op1 depends on the values in its input

token and that ThreadA[] threads are selected in a round-robin fashion (Fig. 3.20, line 5), then

the execution flow may be unbalanced, i.e. the loads of the different ThreadA[] threads may dif-

fer strongly one from another and therefore decrease overall performances. This issue is further

discussed in Chapter 4.

3.5.2. The indexed parallel CAP construct

The indexed parallel CAP construct is a split-merge construct. It iteratively divides a token

into several subtokens, performs in pipeline similar operations on each of the subtokens, and

merges the results of the last operation in the pipeline. The iteration is based on a C/C++ for

loop.

Figure 3.23 shows the DAG of the indexed parallel CAP construct. The indexed parallel con-

struct input token (TokenAT) is iteratively divided into several subtokens by the Split split

Fig. 3.21 Timing diagram of a pipelined parallel execution

ThreadA[0] running
ThreadAT::Op1

Threads running
ProcessBT::Op1

ThreadA[1] running
ThreadAT::Op1

ThreadB[0] running
ThreadBT::Op1

ThreadB[1] running
ThreadBT::Op1

ThreadA[2] running
ThreadAT::Op1

ThreadA[3] running
ThreadAT::Op1
36

The CAP Computer-Aided Parallelization Tool

Parallel CAP constructs

Ù

function. Once a subtoken is generated, it is redirected to the indexed parallel body subconstruct

which performs the operations in a pipelined manner (ThreadBT::Op1 and ThreadCT::Op1

operations). The output tokens of the indexed parallel body subconstruct are merged into the

indexed parallel construct output token using Merge merge function by ThreadA thread. When

all the subtokens are merged, the indexed parallel construct output token (TokenDT) is redi-

rected to its successor. The operations contained in the indexed parallel body subconstruct

(ThreadBT::Op1 and ThreadCT::Op1 operations) may execute in a pipelined manner (Fig. 3.17

and 3.18) or in a pipelined parallel manner (Fig. 3.20 and 3.21) depending whether different

threads on different processors are selected for computation or not.

The CAP specification of the DAG in Figure 3.23 is shown in Figure 3.24. The indexed par-

allel CAP construct consists of the keyword indexed (line 15) followed by standard C/C++ for

expressions (line 16), and of the keyword parallel (line 17) followed by the four construct ini-

tialization parameters (line 18) and an indexed parallel body subconstruct (lines 19-23). The

first two initialization parameters are the split function and the merge function. A split function

is a sequential C/C++ routine that creates a new subtoken from the indexed parallel construct

input token and the current index values (lines 1-6). The split function is called for all the index

values specified in the standard C/C++ for expressions (line 16) and may return a null subtoken

to skip an iteration. A merge function is a sequential C/C++ routine that merges indexed parallel

body subconstruct output tokens into the indexed parallel construct output token (lines 7-10).

The last two initialization parameters are the name of the thread (ThreadA) that merges the out-

put of the indexed parallel body subconstructs into the indexed parallel construct output token

(Out1) and the output token declaration (line 18). Note the keyword remote which indicates that

the indexed parallel construct input token (thisTokenP) is sent to ThreadA thread in order to ini-

tialize the indexed parallel construct output token in ThreadA address space. If, instead, the

keyword local would have been used, the indexed parallel construct output token would have

Fig. 3.22 Graphical representation of a pipelined parallel execution

dots indicate that the two parallel branches are
executed in parallel on different PCs

forks indicate that tokens are redirected
towards different PCs

ProcessAT::Op1

TokenAT TokenDT

TokenAT

TokenBT
ThreadA[]

ThreadBT::Op1

ProcessBT::Op1

ThreadAT::Op1

TokenCT TokenDT

ThreadB[]

TokenBT

ThreadA[]

ThreadBT::Op1ThreadAT::Op1

ThreadB[]
37

The CAP Computer-Aided Parallelization Tool

Parallel CAP constructs3
been initialized in the current address space, i.e. the address space of the thread executing the

indexed parallel CAP construct, and sent in the ThreadA address space. If the programmer

doesn’t specify anything, the CAP default behavior corresponds to the case denoted by the

remote keyword. Depending on their sizes, the programmer can choose to transfer either the

thisTokenP or the Out1 token from the current address space to ThreadA address space.

Fig. 3.23 Graphical CAP specification of the indexed parallel construct

Fig. 3.24 CAP specification of the indexed parallel construct

ProcessAT::Op1

TokenAT TokenDT

ThreadBT::Op1

ThreadB

TokenBT TokenCTTokenAT

ThreadC

S
p
lit

M
erg

e

This symbol indicates
that the indexed parallel
construct input token is
repeatedly split into

subtokens

This symbol indicates that the indexed
parallel body subconstruct output tokens
are merged into the indexed parallel

construct output token. The output token is
redirected to the successor only when all

the split subtokens are merged.

thread that merges the
subtokens into the output

token

Split routine
Merge routine

ThreadCT::Op1

TokenDT

ThreadA

TokenDT

subconstruct

1. void Split(TokenAT* InP, TokenBT* &subtokenP, int index)

2. {

3. ... // Any C/C++ statements

4. subtokenP = new TokenBT(...);

5. ... // Any C/C++ statements

6. }

7. void Merge(TokenDT* OutP, TokenDT* subtokenP, int index)

8. {

9. ... // Any C/C++ statements

10. }

11. operation ProcessAT::Op1

12. in TokenAT* InP

13. out TokenDT* OutP

14. {

15. indexed

16. (int Index = 0; Index < 100; Index++)

17. parallel

18. (Split, Merge, ThreadA, remote TokenDT Out1(thisTokenP))

19. (

20. ThreadB.Op1

21. >->

22. ThreadC.Op1

23.);

24. }
38

The CAP Computer-Aided Parallelization Tool

Summary

Ù

3.6. Summary

The CAP computer-aided parallelization tool simplifies the creation of pipelined parallel dis-

tributed memory applications. Application programmers create separately the serial program

parts and express the parallel behavior of the program with CAP constructs. Thanks to the auto-

matic compilation of parallel applications, application programmers do not need to explicitly

program the protocols to exchange data between parallel threads and to ensure their synchroni-

zations. The predefined parallel CAP structures ensure that the resulting parallel program

executes as an acyclic directed graph and is therefore deadlock free. Furthermore, due to its

macro-dataflow nature, it generates highly pipelined applications where communication opera-

tions run in parallel with processing operations.

CAP parallel programs can be easily modified by changing the schedule of operations or by

building hierarchical CAP structures. CAP facilitates the maintenance of parallel programs by

enforcing a clean separation between the serial and the parallel program parts. Moreover, thanks

to a configuration text file, generated CAP applications can run on different hardware configu-

rations without recompilation.

The CAP approach works at a higher abstraction level than the commonly used parallel pro-

gramming systems based on message passing (for example MPI [MPI94] and MPI-2 [MPI97]).

CAP enables programmers to express explicitly the desired high-level parallel constructs. Due

to the clean separation between parallel construct specification and the remaining sequential

program parts, CAP programs are easier to debug and to maintain than programs which mix

sequential instructions and message-passing function calls. Wilson [Wilson96] provides a thor-

ough overview of existing approaches using object oriented programming for supporting

parallel program development.

This chapter presented the fundamental aspects of the CAP language. The reader should

understand the basic CAP specifications such as tokens, process hierarchies, leaf operations,

parallel operations, configuration files and parallel constructions (pipeline, indexed parallel).

Every parallel schedule can be expressed as a macro-dataflow; in this chapter, we have shown

how these macro-dataflows can be defined and executed within the CAP framework.

One contribution of the present thesis is the develoment of several programs for testing and

validating the CAP language. A timing analysis tool has been developed. This tool enables the

programmer to analyze (once the execution is finished) the parallel program behavior by indi-

cating which operation is executed by which thread on which computer at which time. Several

programs were analyzed with this tool demonstrating the validity of the CAP approach.

Another contribution is to suggest the development of advanced CAP features such as the

CAP token suspension (3.4.1). This feature allows the CAP programmer to control the CAP

scheduling mechanism and therefore to develop more elaborated parallel programs.
39

The CAP Computer-Aided Parallelization Tool

Summary3
40

Ù

4 CAP flow-control and load balancing issues

In this chapter we are concerned about the creation of efficient parallel programs. Writing effi-

cient parallel programs also requires the ability of managing resources such as the amount of

available memory. We explain in which situations resource management is required and how it

can be expressed within the CAP language. Another important aspect of efficient parallel program-

ming is the ability of balancing the load between several computing nodes. The CAP language

features a mechanism allowing the programmer to control the flow of tokens between several oper-

ations. Resource management and load balancing can both be handled with the CAP flow-control

mechanism.

4.1. Introduction1

Who regulates the number of tokens generated by the split routine? Who prevents the split

routine from generating all its subtokens without knowing if the indexed parallel (or the parallel

while) body subconstruct is consuming them at the same rate as they are produced? The answer

is nobody. The split routine actually generates all the subtokens without stopping. If the split

routine creates few subtokens this is probably acceptable, but if the split routine generates thou-

sands of large subtokens then the problem is different. The processor will be overloaded

executing continuously the split routine, memory will overflow, and the network interface will

saturate sending all these subtokens. This will result in a noticeable performance degradation

and later in a program crash with a no more memory left error message.

The problem with the indexed parallel (or the parallel while) CAP constructs is that the split

routine generates input tokens faster than the merge routine consumes indexed parallel body

subconstruct output tokens. This happens either because the indexed parallel body subconstruct

output token rate is too slow or because the merging time of a token is too long. Therefore

tokens accumulate somewhere in the pipeline between the split and the merge routine in the

token queue located in front of the most loaded PCs, thus becoming the bottleneck of the appli-

cation (Fig. 4.1).

In a multi-PC environment potential bottlenecks are: processors, memory interfaces, disks,

network interfaces comprising the message passing system interface, the PCI network card

adapter and the 100 Mbits/s Fast Ethernet network. If the processor, the memory interface or the

disks are the bottleneck, then tokens are accumulated in the input token queue (Fig. 4.1) of the

thread that executes the leaf operation that uses this offending resource, i.e. the resource that

forms the bottleneck. Alternately, if the message passing system interface, the PCI network card

adapter or the Fast Ethernet network is the bottleneck, then tokens are accumulated in the mes-

sage passing system output queue (Fig. 4.1) of the offending Windows NT process, i.e. the

1 Part of this chapter has been taken from [Messerli99a].
41

CAP flow-control and load balancing issues

CAP flow-control issues4
Windows NT process that sends too many tokens. The consequence of such a congestion point

is that computing resources are monopolized for handling such a peak in the flow of tokens, e.g.

memory space for storing tokens and computing power for sending/receiving tokens, leading to

a rapid degradation of performances (virtual memory thrashing).

Best performances are achieved when the split routine generates tokens at the same rate as the

merge routine consumes the indexed parallel body subconstruct output tokens. In that situation

the most loaded component in the pipeline becomes the bottleneck, i.e. it is active 100% of the

time and no further improvement is possible.

4.2. CAP flow-control issues

The adopted flow-control approach consists in applying a high-level flow-control mechanism.

The offending indexed parallel (or parallel while) CAP constructs are replaced by a combina-

tion of indexed parallel and for CAP constructs [Messerli99a] in order to maintain the

difference between the number of split tokens and the number of merged tokens constant by

Fig. 4.1 Example of a 4-stage pipeline composed of a split routine, two intermediate

leaf operations and a merge routine. Note the input token queues in front of each

CAP threads and the MPS output token queues at the border of each address spaces.

Fig. 4.2 High-level flow-control mechanism requiring additional communication

between the thread that runs the merge routine (the ThreadB thread) and the thread

that runs the split routine (the ThreadA thread) so as to maintain the split token rate

equal to the merged token rate

S
p
lit

M
erg

e

Message Passing
System comprising the

100 Mbits/s Fast
Ethernet network

input token
queue

MPS output
token queue

CAP thread

address space

SOp1 SOp2

leaf operation

S
p
lit

M
erg

e

SOp1 SOp2

additional communication so as to maintain the
split token rate equal to the merged token rate

ThreadA ThreadB
42

CAP flow-control and load balancing issues

CAP flow-control issues

Ù

having additional communication between the thread that runs the merge routine and the thread

which runs the split routine (Fig. 4.2). By doing this, the program regulates by itself the split

token rate according to the merged token rate, thus preventing tokens from being accumulated

somewhere in the pipeline causing a possible performance degradation.

Figure 4.3 shows a CAP program with an indexed parallel CAP construct at lines 7-13. The

inline operation at line 5 constraints the C/C++ indexed parallel indexing expression (line 8)

and the Split routine (line 10) to be executed by the ThreadA thread. The Merge routine is exe-

cuted by the ThreadB thread (line 10). Without an adequate flow-control mechanism this

parallel CAP construct generates 10’000 TokenCT tokens that will certainly fill up the memory

and cause a memory overflow condition.

In order to maintain the difference between the number of split tokens and the number of

merged tokens constant, e.g. 20 tokens, the indexed parallel CAP construct is rewritten. Figure

4.4 shows the first high-level flow-controlled split-merge construct replacing the original

indexed parallel CAP construct in Figure 4.3. The idea consists of generating a small amount

of tokens, e.g. 20, with a first indexed parallel CAP construct (lines 7-10) and to redirect 500

times, with a second for CAP construct (line 12), each of these 20 tokens, through the pipeline

formed by the split routine (line 14), the parallel ProcessBT::Op1 operation (line 16) and the

merge routine (line 18). In other words, the indexed parallel CAP construct (lines 7-10) gener-

ates 20 tokens (or 20 parallel flows) and each of these 20 tokens circulates, in parallel, 500 times

through the pipeline (lines 14-18) thanks to the for CAP construct (line 12). The combination

of the indexed parallel and the for CAP constructs ensures that exactly 20 tokens are always

flowing in the pipeline, thus preventing a large memory consumption and a possible memory

overflow.

This first high-level flow-controlled split-merge construct (Fig. 4.4) requires one additional

communication between the thread which runs the merge routine and the thread that runs the

split routine. For example, on a 6-stage pipeline (split routine, 4 intermediate pipe stages, and

Fig. 4.3 Example of a CAP program requiring a flow-control preventing the split

routine from generating 10’000 tokens

1. operation ProcessAT::Op1

2. in TokenAT* InP

3. out TokenDT* OutP

4. {

5. ThreadA.{}

6. >->

7. indexed

8. (int Index = 0; Index < 10000; Index++)

9. parallel

10. (Split, Merge, ThreadB, remote TokenDT Out(thisTokenP))

11. (

12. ProcessB.Op1

13.);

14. }
43

CAP flow-control and load balancing issues

CAP flow-control issues4
merge routine) this correspond to a communication increase of 20%, i.e. 6 token transfers

instead of 5 token transfers.

The number of tokens that are simultaneously flowing in the pipeline, i.e. within the for CAP

construct (lines 14-18) is henceforth named the filling factor. The performance of a flow-con-

trolled split-merge construct (Fig. 4.4) highly depends on its filling factor. A too large filling

factor creates a congestion point that consumes lots of memory degrading performance and pos-

sibly crashing the program. A too small filling factor does not provide enough tokens to saturate

one of the PC’s components, i.e. the most loaded, on which the pipeline executes. This

decreases the parallelism between the different pipeline stages and performance suffers. At the

extreme case, a filling factor of 1 corresponds to a serial execution of the split-merge construct.

Best performances are obtained when the filling factor is equal to the minimum factor that sat-

urates the most loaded components on which the pipeline executes.

Our first attempt of a high-level flow-controlled split-merge construct (Fig. 4.4) requires one

communication between the thread that runs the last leaf operation of the pipeline (or merge rou-

tine, line 18) and the thread that runs the first leaf operation of the pipeline (or split routine, line

14) for each iterations (provided that ThreadA thread and ThreadB thread are mapped onto two

different PCs). Remember that the two original split-merge CAP constructs do not require any

additional communications but they do not offer any flow-control mechanism. Although com-

munications are mostly overlapped by computations, sending and receiving many small tokens

such as those required for the high-level flow-control add an additional load on processors and

Fig. 4.4 First high-level flow-controlled split-merge construct that requires one

communication between the thread that runs the merge routine, i.e. the ThreadB

thread, and the thread that runs the split routine, i.e. the ThreadA thread, for each

merged tokens

1. operation ProcessAT::Op1

2. in TokenAT* InP

3. out TokenDT* OutP

4. {

5. ThreadA.{ }

6. >->

7. indexed

8. (int IdxFlwCtrl1 = 0; IdxFlwCtrl1 < 20; IdxFlwCtrl1++)

9. parallel

10. (SplitFlwCtrl1, MergeFlwCtrl1, ThreadB, remote FlwCtrlT Out1(thisTokenP))

11. (

12. for (int IdxFlwCtrl2 = 0; IdxFlwCtrl2 < 10000/20; IdxFlwCtrl2++)

13. (

14. ThreadA.SplitFlwCtrl2

15. >->

16. ProcessB.Op1

17. >->

18. ThreadB.MergeFlwCtrl2

19.)

20.)

21. >->

22. ThreadB.ReturnOutputToken;

23. }

filling factor
44

CAP flow-control and load balancing issues

CAP flow-control issues

Ù

network interfaces. Often, network interfaces and the processing power required for the TCP/IP

protocol represent the bottleneck. Therefore, even if flow-control tokens are small (between 50

and 100 Bytes), it is essential to reduce communications so as to alleviate these two scarce

resources.

The second high-level flow-controlled split-merge construct in Figure 4.5 requires much less

communication between the thread that runs the merge routine, i.e. the ThreadB thread, and the

thread that runs the split routine, i.e. the ThreadA thread. This is achieved by having a second

indexed parallel CAP construct (lines 16-19) within the for CAP construct (line 12). Conse-

quently only every each 10 tokens merged by the ThreadB thread using the MergeFlwCtrl2

routine a FlwCtrlT token (line 19, Out2 token) is sent back to the ThreadA thread (line 14)

which uses the SplitFlwCtrl2 routine to split the next 10 tokens feeding the pipeline. The empty

inline leaf operation at line 14 forces the ThreadB thread to send the flow-control Out2 token to

the ThreadA thread. Otherwise the SplitFlwCtrl2 routine would have been executed by the

ThreadB thread which is different than the original program (Fig. 4.3, line 10) where the Split

routine is executed by the ThreadA thread. The outer indexed parallel CAP construct (lines 7-

10) with an appropriate filling factor, allows to saturate the most loaded PC’s components in the

pipeline. With an outer filling factor of 1, the pipeline is empty while the flow-control Out2

token is being sent from the ThreadB thread to the ThreadA thread thus decreasing performance.

Fig. 4.5 High-level flow-controlled split-merge construct requiring much less

communication between the thread that runs the merge routine, i.e. the ThreadB

thread, and the thread that runs the split routine, i.e. the ThreadA thread

1. operation ProcessAT::Op1

2. in TokenAT* InP

3. out TokenDT* OutP

4. {

5. ThreadA.{ }

6. >->

7. indexed

8. (int IdxFlowCtrl1 = 0; IdxFlowCtrl1 < 2; IdxFlowCtrl1++)

9. parallel

10. (SplitFlowCtrl1, MergeFlowCtrl1, ThreadB, remote FlowCtrlT Out1(thisTokenP))

11. (

12. for (int IdxFlowCtrl2 = 0; IdxFlowCtrl2 < 10000/(2*10); IdxFlowCtrl2++)

13. (

14. ThreadA.{ }

15. >->

16. indexed

17. (int IdxFlowCtrl3 = 0; IdxFlowCtrl3 < 10; IdxFlowCtrl3++)

18. parallel

19. (SplitFlwCtrl2, MergeFlwCtrl2, ThreadB, remote FlwCtrlT Out2(thisTokenP))

20. (

21. ProcessB.Op1

22.)

23.)

24.)

25. >->

26. ThreadB.ReturnOutputToken;

27. }

filling factor1

filling factor2
45

CAP flow-control and load balancing issues

CAP flow-control issues4
In contrast to the first high-level flow-controlled split-merge construct (Fig. 4.4), in the

improved construct (Fig. 4.5) the filling factor is composed of 2 values. A first value named fill-

ing factor1 specifies the number of bunches of tokens (line 8), and a second value named filling

factor2 specifies the number of tokens per bunch (line 17). Additional flow-control communi-

cations occur only every each filling factor2 merged tokens. The maximum number of tokens

that may simultaneously be in the pipeline is filling factor1 multiplied by filling factor2 tokens.

With a filling factor2 of 1, the improved high-level flow-controlled split-merge construct (Fig.

4.5) is equivalent to the first construct (Fig. 4.4).

The CAP preprocessor is able to generate by itself the two high-level flow-controlled split-

merge constructs of Figures 4.4 and 4.5 from the original indexed parallel (or parallel while)

CAP constructs thus simplifying the task of writing parallel CAP programs. Figure 4.6 shows

how the programmer can specify with the keyword flow_control a split-merge CAP construct

with a high-level flow-control mechanism. The first flow-controlled construct in Figure 4.4 is

generated if the flow_control keyword contains a single argument, i.e. the filling factor. The sec-

ond flow-controlled construct in Figure 4.5 is generated if the flow_control keyword contains

two arguments, i.e. the filling factor1 and filling factor2. Programmers must be aware that the

two high-level flow-controlled parallel while and indexed parallel CAP constructs (Fig. 4.6)

require additional communications. Performance may suffer if the pipeline empties, either due

to the additional communication cost or due to too small filling factors.

The high-level flow-control mechanism CAP constructs prevent a program from crashing but

has several disadvantages. It requires additional communication that may slightly reduce per-

formances. Also, experience has shown that it is quite difficult to adjust the filling factors so as

to make the most loaded PC the bottleneck thus giving the best performance. Finally, the high-

level flow-control (i.e. the filling factor) lacks some dynamicity in order to take into account

changing conditions at run time, for example when processor, memory, disk or network utiliza-

tions change.

Fig. 4.6 Automatic generation of the 2 flow-controlled split-merge constructs using

the CAP preprocessor

1. operation ProcessAT::Op1

2. in TokenAT* InP

3. out TokenDT* OutP

4. {

5. ThreadA.{ }

6. >->

7. flow_control(20) // or flow_control(2, 10)

8. indexed

9. (int Index = 0; Index < 1000; Index++)

10. parallel

11. (Split, Merge, ThreadB, remote TokenDT Out1(thisTokenP))

12. (

13. ProcessB.Op1

14.);

15. }
46

CAP flow-control and load balancing issues

Issues of load balancing in a pipelined parallel execution

Ù

4.3. Issues of load balancing in a pipelined parallel execution

Figure 4.7 shows a pipelined parallel execution on a multi-PC environment. The master PC

divides a large task into many small jobs which are executed in parallel on M different pipelines

of execution. In this example, the pipeline of execution is composed of N different PCs each

performing a particular stage. After a job has performed the N stages of a pipeline, the result is

sent back to the master PC where all the job results are merged into the result buffer. When all

the jobs making up the task are completed, the result of the execution of the task is sent back to

the client PC which requested the execution of the task. The master PC is responsible for dis-

tributing the jobs making up a task and for balancing the load amongst the M pipelines.

The graphical representation (DAG) of the pipelined parallel schedule depicted in Figure 4.7

is shown in Figure 4.8. The input of the parallel ParallelProcessingServerT::PerformTask oper-

ation is a task request, i.e. a TaskT token. Using a split-merge CAP construct, this task request

is divided into many small jobs by the Master thread using the SplitTaskIntoJobs split routine.

Then, each job is routed through one of the M pipelines. At the end of the M pipelines, the job

results, i.e. the JobResultT tokens, are merged into a TaskResultT token using the MergeJobRe-

sults merge routine. When all the job results are merged, the result of the execution of the task,

i.e. the TaskResultT token, is passed to the next operation.

Fig. 4.7 Execution in a pipelined parallel manner on a multi-PC environment

task

result of the
execution of
the task

job job job

job job job

results of the execution of the
jobs in a pipeline manner

results of the execution of
the jobs in a pipeline manner

MASTER

SLAVE1-1

pipeline1

pipelineM

SLAVE1-2 SLAVE1-N

SLAVEM-1 SLAVEM-2 SLAVEM-N

the master divides
an important task
into small jobs
which are

executed in a
pipelined parallel
manner on an
array of PCs
47

CAP flow-control and load balancing issues

Issues of load balancing in a pipelined parallel execution4
A pipelined parallel execution such as the one depicted in the schedule of Figure 4.8 raises

two orthogonal problems, i.e. flow-control and load-balancing. The mechanism of flow-control,

presented in the previous section, attempts to regulate the flow of tokens through a single pipe-

line so that the split token rate is both high enough for maintaining the most loaded PC active

100% of the time and low enough for preventing tokens from accumulating in front of the most

loaded PC and causing problems to the application.

A mechanism of load-balancing balances the load among the parallel pipelines (pipeline1 to

pipelineM in Figure 4.7 or 4.8), i.e. prevents the most loaded thread in each of the parallel pipe-

Fig. 4.8 Graphical representation of a pipelined parallel execution. The horizontal

arrow represents the flow-control mechanism and the vertical arrow represents the

load-balancing mechanism

Fig. 4.9 Example of a CAP program where the jobs are statically distributed in

round-robin manner among the slaves

ParallelProcessingServerT::PerformTask
TaskT

TaskT

S
p
litT

ask
In
to
Jo
b
s

M
erg

eJo
b
R
esu

lts

Master

TaskResultTJobT

JobT
Slave1-1

SlaveT::PerformJob2SlaveT::PerformJob1

Job
ResultT

Slave1-2

SlaveM-1

SlaveT::PerformJob2SlaveT::PerformJob1

SlaveM-2

TaskResultT

Master

SlaveT::PerformJob3

Slave1-N

SlaveT::PerformJob3

SlaveM-N

JobT

flow-control mechanism

load-balancing mechanism

JobT

JobT

pipeline1

pipelineM

1. const int NUMBER_OF_SLAVES = 5;

2. const int FILLING_FACTOR_PER_SLAVE = 3;

3.

4. operation ParallelProcessingServerT::PerformTask

5. in TaskT* InP

6. out TaskResultT* OutP

7. {

8. Master.{ }

9. >->

10. flow_control(NUMBER_OF_SLAVES * FILLING_FACTOR_PER_SLAVE)

11. indexed

12. (int TaskIndex = 0; TaskIndex < NumberOfTasks; TaskIndex++)

13. parallel

14. (Split, Merge, Master, local TaskResultT Out(thisTokenP))

15. (

16. Slave[TaskIndex%NUMBER_OF_SLAVES].PerformJob

17.);

18. }
48

CAP flow-control and load balancing issues

Issues of load balancing in a pipelined parallel execution

Ù

lines from being more loaded1 than the most loaded threads in other pipelines. Such a

mechanism is necessary when the utilization of the computing resources, e.g. processors, mem-

ory, disks, network, etc., is unequal between the PCs on which the parallel pipelines execute,

i.e. when:

• The execution time of a pipeline stage is data dependent, e.g. the number of iterations

in a Mandelbrot computation depends on the initial value of the free variable (complex

number).

• The multi-PC environment is made of different machines, e.g. Pentium Pro 200 MHz

PCs, Pentium II 333MHz PCs, Pentium 90 MHz PCs, etc.

• The multi-PC environment is shared among several users, e.g. on a network of multi-

user workstations.

Figure 4.9 shows a CAP program where the master PC divides a large task into small jobs and

statically distributes them in a round-robin fashion (line 16) amongst the worker slaves. The

Split routine splits the input TaskT task into jobs. The Merge routine merges the results of the

jobs into a single TaskResultT token. The parallel ParallelProcessingServerT::PerformTask

operation consists of iteratively getting a job (Split function), performing the job by a slave and

merging its result into the output TaskResultT token using the high-level flow-controlled

1 The load of a thread is defined as the percentage of elapsed time that this thread is executing a pipe

stage.

Fig. 4.10 Example of a CAP program where the jobs are dynamically distributed

amongst the slaves according to their loads, i.e. the master balances the load amongst

the slaves

1. const int NUMBER_OF_SLAVES = 5;

2. const int FILLING_FACTOR_PER_SLAVE = 3;

3.

4. operation ParallelProcessingServerT::PerformTask

5. in TaskT* InP

6. out TaskResultT* OutP

7. {

8. Master.{}

9. >->

10. indexed

11. (int SlaveIndex = 0; SlaveIndex < NUMBER_OF_SLAVES; SlaveIndex++)

12. parallel

13. (LBSplit, LBMerge, Master, local TaskResultT Out1(thisTokenP))

14. (

15. flow_control(FILLING_FACTOR_PER_SLAVE)

16. indexed

17. (int TaskIndex = 0; IsTaskAvailable(); TaskIndex++)

18. parallel

19. (Split, Merge, Master, local TaskResultT Out2(thisTokenP))

20. (

21. Slave[SlaveIndex].PerformJob

22.)

23.);

24. }
49

CAP flow-control and load balancing issues

Issues of load balancing in a pipelined parallel execution4
indexed parallel CAP construct (lines 11-17). Note that the selection of the slave (line 16) is

done statically without balancing the loads of the slaves.

The principle of a load-balancing mechanism consists of having a distinct high-level flow-

controlled split-merge construct for each of the parallel pipelines. Each flow-controlled split-

merge construct is dedicated to a specific slave. There is exactly one flow-controlled split-

merge construct per slave. As soon as a slave completes a job, a new job is redirected to it. In

that way the load is automatically balanced, since jobs are dynamically redirected to slaves com-

pleting their computation.

Figure 4.10 shows the CAP program equivalent to Figure 4.9 with a load-balancing mecha-

nism. The first indexed parallel CAP construct (lines 10-13) generates NUMBER_OF_SLAVES

parallel flows of execution consisting each of a high-level flow-controlled indexed parallel

CAP construct (lines 15-19) distributing jobs to its slave. As soon as a slave completes a job, a

new job is redirected to it (as long as tasks are available, line 17) thanks to the flow-controlled

indexed parallel CAP construct (lines 15-19). The filling factor (line 15) ensures that slaves are

active 100% of the time and that computations overlap communications.

The CAP preprocessor is able to generate itself the load balancing mechanism. CAP con-

structs thus simplifies the task of writing parallel CAP programs. Figure 4.11 shows how the

programmer can specify with the keyword flow_control and cap_fcindex0 a load balanced split-

merge CAP construct. The cap_fcindex0%SlaveIndex represents the SlaveIndex of the example

in Figure 4.10. The programs of Figures 4.10 and 4.11 are equivalent.

To summarize, CAP provides an automatic mechanism for balancing the load between worker

threads. This construction is based on the combination of the flow_control and cap_fcindex0

Fig. 4.11 Automatic generation of a dynamic load balanced program using the CAP

preprocessor, i.e. the load is automatically balanced by the master among the slaves.

1. const int NUMBER_OF_SLAVES = 5;

2. const int FILLING_FACTOR_PER_SLAVE = 3;

3.

4. operation ParallelProcessingServerT::PerformTask

5. in TaskT* InP

6. out TaskResultT* OutP

7. {

8. Master.{}

9. >->

10. flow_control(NUMBER_OF_SLAVES * FILLING_FACTOR_PER_SLAVE)

11. indexed

12. (int TaskIndex = 0; TaskIndex < NumberOfTasks; TaskIndex++)

13. parallel

14. (Split, Merge, Master, local TaskResultT Out2(thisTokenP))

15. (

16. Slave[cap_fcindex0%NUMBER_OF_SLAVES].PerformJob

17.);

18. }
50

CAP flow-control and load balancing issues

Summary

Ù

keywords. This provides to the application programmers a simple and efficient load-balancing

mechanism.

4.4. Summary

In the previous chapters, we have already shown the capability of the CAP language to specify

parallel schedules. In this chapter, we explained how the CAP programmer controls the flow of

tokens within these parallel schedules. This flow-control CAP mechanism leads to the specifi-

cation of efficient parallel programs in terms of resource management and load balancing. The

flow-control CAP mechanism has been used in the CAP application examples described in

chapters 6 to 10.

The Visible Human application [Hersch00][VisibleHuman98] developed at the Peripheral

Systems Laboratory (LSP) of EPFL is based on the CAP technology. In order to avoid memory

overflows and to regulate the disk accesses, the Visible Human application uses several stages

of flow-control CAP constructions. The Visible Human application is running for 3 years and

675,000 slice extractions have been carried out. The server, based on Window NT, is rebooted

only a few times a year. This example tends to show that the CAP flow-control mechanism ful-

fills its requirements and is reliable.

Within the context of this thesis, I contributed in defining the flow-control feature and pro-

posed to use it for load balancing.
51

CAP flow-control and load balancing issues

Summary4
52

Ù

5 CAP Message passing and Serialization

In this chapter, we describe the main issues of the CAP runtime system. We introduce the CAP

Message-Passing System (MPS), i.e. the inter-process communication mechanism. MPS is an

important part of the CAP runtime system. We explain the CAP token serialization mechanism.

We present also an automatic serialization tool reducing the programming effort to serialize the

data structures. We conclude this chapter by studying the CAP integration capabilities.

5.1. The CAP token-oriented Message-Passing System (MPS)

This section describes the token-oriented message-passing system named MPS developed

within the context of the CAP computer aided parallelization tool. The development of the CAP

Message-Passing System is an important part of Vincent Messerli’s thesis [Messerli99a]. We

present here only the main aspects which are necessary to understand our work on automatic

serialization.

The sockets abstraction was first introduced in 1983 in the 4.2 Berkeley Software

Distribution (BSD) Unix [Wright95] to provide a generic and uniform application program-

ming interface (API) to interprocess and network communication protocols such as the Internet

protocols [Stevens94]. Since then, all Unix versions, e.g. Solaris from Sun Microsystems, have

adopted the sockets abstraction as their standard API for network computing. Microsoft has also

adopted and adapted the sockets paradigm as a standard on its various operating systems, i.e.

Windows 3.11, Windows 95/98 and Windows NT (Windows Sockets 1.1 and 2 API). All the

programming details for sockets are available in [Stevens90].

A socket is a communication endpoint, i.e. an object through which a sockets application

sends or receives packets of data across a network. A socket has a type and is associated with a

running process, and it may have a name. Sockets exchange data with other communication

endpoints, e.g. other socket, in the same communication domain which uses for example the

Internet protocol suite.

To implement a portable message passing system for transmitting CAP tokens from one

address space to another different possibilities are available. Since CAP needs a reliable means

of communication, we choose an implementation based on stream sockets. Stream sockets pro-

vide sequenced1, reliable, flow-controlled, two-way, connection-based data flows without

record boundaries, i.e. byte streams. Stream sockets use the underlying TCP/IP protocol stack

and may have a name composed of a 32-bit IP address and a 16-bit TCP port number. Stream

sockets are bi-directional: they are data flows that can be communicated in both directions

simultaneously, i.e. full-duplex.

1 Sequenced means that packets are delivered in the order sent
53

CAP Message passing and Serialization

The CAP token-oriented Message-Passing System (MPS)5
Contrary to the UDP protocol (datagram sockets), the TCP protocol (stream sockets) has no

notion of packets with boundaries. A TCP/IP connection is a two-way reliable flow-controlled

stream of bytes. The receiver has no information about the number of bytes that the sender is

transmitting and how its WSABUF buffers are scattered, i.e. the number of WSABUF buffers and

their sizes. Figure 5.1 depicts a TCP/IP transmission example where the sender with a single

call to the WSASend routine transmits a whole group of scattered WSABUF buffers, while the

receiver has to implement a mechanism that repeatedly calls the WSARecv routine in order to

fill the destination scattered WSABUF buffers with the incoming data. Remember that a read

completion may occur regardless of whether or not the incoming data fills all the destination

WSABUF buffers.

To transfer CAP tokens through a TCP/IP connection, a three steps mechanism indicating to

the receiver the number of scattered buffers and their sizes has been implemented (Fig. 5.2). For

the remainder of this section, the term packet (or socket packet) is used to refer to the array of

WSABUF buffers sent with a single WSASend call and received using the appropriate three step

mechanism that repeatedly calls the WSARecv routine.

The CAP MPS provides the CAP runtime system with a portable communication environ-

ment. The problem of portability has been addressed by isolating platform-dependent code

within a few number of files. A high-level platform-independent stream socket kernel has been

devised providing simple robust efficient functions for creating passive and active sockets

[Microsoft96], for asynchronously sending C/C++ structures to active sockets and asynchro-

nously receiving C/C++ structures from active sockets. The interest and the efficiency of the

socket kernel resides in the fact that all network events, i.e. new incoming connection, lost con-

nection, connection established, data received, data sent, etc., are asynchronously handled by a

single thread, the message-passing system thread, called the MPSThread. All low-level tedious

error-prone platform-dependent communication mechanisms such as the packet transfer mech-

Fig. 5.1 The TCP protocol has no notion of packets. There is no correspondence

between the WSASend and WSARecv calls.

sending direction

WSABUF

WSASend()

receiving direction

tran
sm

issio
n
 d
irectio

n

WSABUF

1st WSARecv()

2nd WSARecv()

3rd WSARecv()

4th WSARecv()

network

BufferCount = 5 BufferCount = 3

WSABUF

BufferCount = 2

receiving direction
54

CAP Message passing and Serialization

The CAP token-oriented Message-Passing System (MPS)

Ù

anism, the C/C++ structure serialization, the coalescence of C/C++ structures into a same socket

packet for improving performance, are located within a same file enabling to optimize the code

for a particular platform. At the present time, MPS runs on Sun Solaris, Microsoft Windows NT

and Digital Unix OSF 1. However, the most advanced features such as the zero-copy serializa-

tion (address-pack serialization) are only available on Windows NT platforms.

The CAP MPS must provide a means for a thread to asynchronously receive tokens from any

threads independently whether they are in the same address space, in a different address space

but on the same PC, or located on another PC, i.e. communication of any threads to one thread.

In the MPS terminology such a communication endpoint is called an input port comprising a

FIFO queue (Chapter 3, Fig. 3.6, input token queue) where received tokens are inserted. Before

a thread can receive tokens from an input port, it must be registered to the message-passing sys-

tem. That is, the CAP runtime system must name the input port using a string of characters and

a 32-bit instance number uniquely identifying the connection endpoint so that any other threads

in the MPS network can use this logical name for sending tokens to this input port. The creation

and the destruction of the input ports are completely dynamic. A Windows NT process can cre-

ate and delete input ports at any time during execution.

The CAP MPS provides also a means for a thread to asynchronously send tokens to any

threads independently whether they are in the same address space, in a different address space

but on the same PC, or located on another PC. In the MPS terminology such a communication

endpoint is called an output port. Before a thread can send tokens through an output port, it must

Fig. 5.2 The three steps mechanism that enables a scattered packet to be transmitted

from one address space to another using a stream socket (TCP/IP protocol) and the

overlapped gather/scatter WSASend and WSARecv routines

sending direction

WSASend

receiving direction

tran
sm

issio
n
 d
irectio

n

network

1
3
2

5
5
6

6
0

7
7
6

2
0

4

132

556

60

776

2
0
 B
y
tes

5
5
6
 B
y
tes 6

0
 B
y
tes

7
7
6
 B
y
tes

1
3
2
 B
y
tes

4

4

1
6

132

556

60

776

1
3
2

5
5
6

6
0

7
7
6

1
3
2
 B
y
tes 5

5
6
 B
y
tes 6

0
 B
y
tes

7
7
6
 B
y
tes

receiving direction receiving direction

WSARecv

WSARecv

receive the number of
user’s buffers1 receive the size of each

user’s buffer2 receive the user’s data3

1
6
 B
y
tes
55

CAP Message passing and Serialization

Serialization of CAP tokens5
be connected to an input port. That is, the CAP runtime system must open the output port by

providing the name of the input port previously registered. At opening time, the message-pass-

ing system resolves the input port name into an IP address and a 16-bit TCP port number, and

opens a TCP/IP connection between the output port and the input port. If the input port is located

in the same address space as the output port, then instead of using a TCP/IP connection, the

shared memory along with an inter-thread synchronization mechanism is used avoiding to seri-

alize the tokens, i.e. only pointers are copied. Any number of output ports can be connected to

a same input port. The creation and the destruction of the output ports are completely dynamic.

A Windows NT process can create and delete output ports whenever it wants during execution.

The CAP MPS is a critical actor during the initialization phase of a CAP parallel program. The

CAP processes are spawned using the standard Remote SHell Daemon (RSHD) daemon

[BSD93]. The process which spawns all other processes is called the master process, the

spawned processes are the slave processes. The master process opens a passive socket and

informs the spawned slave processes (through the command line argument) how to connect to

his passive socket. The slave processes also open a passive socket and inform the master process

(by connecting themselves to the master passive socket) about it. The master collects all the

information and then broadcasts it to all the slaves. At this point, all the slave processes are able

to communicate with each other. Since one input port is created per thread in each process, a

similar broadcast process is repeated until each process knows all input ports of the other

threads. The initialization phase is then finished. The output ports are created dynamically (the

first time they are needed) during the parallel program execution.

The CAP MPS has been developed in order offer good performance in terms of throughput

and latency, i.e. the performance are near to the physical limits. A complete performance anal-

ysis is given in [Messerli99a].

5.2. Serialization of CAP tokens

To move a C/C++ structure, i.e. a CAP token, from one address space to another, the struc-

ture’s data should be prepared for transfer, sent over a communication channel linking the two

address spaces, received in the destination address space, and finally restored the data into a

C/C++ structure identical to the original one. This process of preparing a data structure for trans-

fer between two address spaces is called serialization.

The state of the art in respect to serialization (or marshaling) can be resumed by two major

approaches. Some languages are based on a type library (the term of library is used here in a

general sense). Each of these types features serialization capabilities. The program data struc-

tures must be based on these types or on a combination of these types in order to benefit from

serialization capabilities. Several languages or libraries use this concept such as Java

[Cornell97] or MFC [MSDN00]. The other approach consists of using data description state-

ments in order to describe the content of the structures to serialize. Such an approach is used by

Corba, COM, DCOM (through IDL) [MSDN00] or MPI (derived datatype) [Snir98]
56

CAP Message passing and Serialization

Serialization of CAP tokens

Ù

[Pachero97]. The CAP approach is similar to the second approach. In our view, this approach

offers improved integration capabilities for existing programs. The CAP approach is not based

on a standard description language (e.g. IDL, XDR) but is custom made in order to control the

whole serialization process and to be more efficient.

The CAP serialization process consists of four steps:

• The packing step prepares the data structure for the transfer.

• The sending step sends the prepared data structure over a communication channel, i.e. a

TCP/IP stream socket for MPS, linking two address spaces.

• The receiving step receives the data in the destination address space.

• The unpacking step restores the received data into the original C/C++ structure in the

destination address space.

The token-oriented message-passing system implements two types of serialization operations,

the copy-pack serialization and the address-pack serialization. The copy-pack mechanism uses

a temporary buffer for transmitting the structure’s data thus enabling two computers with dif-

ferent data encoding (little endian, big endian, etc.), i.e. heterogeneous environment, to

communicate. However, the use of a temporary buffer involves two memory-to-memory copies,

one at the sending side and one at the receiving side. In the case where the two computers use

the same data encoding, i.e. homogeneous environment, the address-pack serialization avoids

these two copies by copying the addresses to the structure’s data into a list of pointers to mem-

ory blocks. Efficient serialization (address-pack) becomes critical for data intensive

applications (such as imaging applications) or for continuous media applications.

When packing a token, the CAP’s runtime system adds its type index, which is a 32-bit value

identifying the type of the transmitted token so that in the destination address space, the corre-

sponding unpack function is called. The unpack function creates a token of the original type and

copies the received data into it.

In Figure 5.3, the copy-pack packing mechanism copies all the token’s fields into a single

memory buffer called the transfer-buffer. The CAP tool automatically generates instructions for

packing the predefined C/C++ types, e.g. int, float, double, char, etc. For user defined C/C++

structures and pointers, the CAP’s runtime system calls, thanks to C++ function overloading,

the appropriate user defined pack routine that recursively copies the structure’s data fields into

the same memory block. At the receiving address space, the token is first created based on the

received type index and then data is copied from the transfer-buffer into the token’s fields using

the corresponding unpack routines.

In Figure 5.4, the address-pack packing mechanism creates a list of pointers to memory blocks

(WSABUF buffers), and the asynchronous send handles the transfer of these scattered memory

blocks. The CAP tool automatically generates instructions for packing the token’s memory

block. For user’s defined C/C++ structures and pointers, the CAP’s runtime system calls (thanks
57

CAP Message passing and Serialization

Serialization of CAP tokens5
to C++ function overloading) the appropriate user’s defined pack routine that recursively copies

all the pointers to the structure’s memory blocks into the list of WSABUF buffers. At the receiv-

ing address space, the token is first created based on the received type index, then a list of

pointers to memory blocks is created using the corresponding unpack routines, and the over-

lapped scatter receive handles the transfer. Since the memory block-oriented transfer process

Fig. 5.3 The copy-pack serialization uses a temporary transfer buffer to copy the

structure’s data so that the data encoding can be modified

Fig. 5.4 The address-pack serialization uses a list of scattered buffers for sending and

receiving the structure’s data with no memory-to-memory copy

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

double Y;

char Z;

char A;

int B;

int X;

double Y;

char Z;

int X;

double Y;

char Z;

array

array

temporary transfer-buffer

copy-pack
packing

possibly modify
the data
encoding

according to the
destination
computer

copy-pack
unpacking

TokenT

UserT

1

64

477

1
2

6
4number of scattered

buffers

type index

size of 1st scattered
buffer

WSABUF buffers

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

double Y;

char Z;

array

TokenT

UserT

6
4
 B
y
tes

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

int Y;

char Z;

array

address-pack
packing

address-pack
unpacking

TokenT

UserT

1

28

477

2
0

2
8

WSABUF buffers

34

12

3
4

1
2

1

28

477

2
0

2
8

WSABUF buffers

34

12

3
4

1
2

int B;

char A;

UserT C;

UserT* EP;

double* DP;

int X;

int Y;

char Z;

array

TokenT

UserT

2
8
 B
y
tes

1
2
 B
y
tes

34 Bytes

2
0
 B
y
tes

2
0
 B
y
tes
58

CAP Message passing and Serialization

Serialization of CAP tokens

Ù

also copies pointers, e.g. in Figure 5.4 the DP and EP pointers, an additional address-restore

stage restoring the clobbered pointers is required. Note that it is necessary to restore the pointer

to the virtual function table in the case of a C++ class containing at least one virtual function.

Figure 5.5 shows a PrimeNumbersT token comprising a user’s defined ArrayOfIntsT

object (line 53). To serialize such a C/C++ structure, the CAP’s runtime system needs 4 rou-

tines. An address-list-size routine (lines 17-21) calculating the number of scattered memory

blocks necessary for transmitting the whole structure’s data. An address-pack routine (lines 22-

28) copying the pointers to the structure’s memory blocks (line 26) and their sizes (line 25) into

the list of memory buffers to send. An address-unpack routine (lines 29-43) allocating the inter-

nal structure’s memory blocks (lines 33-34) and copying their pointers into the list of memory

buffers where the incoming network data will be stored. And finally, an address-restore routine

(lines 44-50) restoring the clobbered pointers (lines 47-48) previously saved in the unpack-rou-

tine (lines 40-41). For transmitting PrimeNumbersT tokens, the CAP tool automatically

generates appropriate calls to the 4 user defined serialization routines and assigns a unique token

type index.

Fig. 5.5 To serialize a user’s defined C/C++ structure, the CAP’s runtime system

needs 4 routines: an address-list-size, an address-pack, an address-unpack and an

address-restore routine

1. class ArrayOfIntsT

2. {

3. public:

4. ArrayOfIntsT();

5. ~ArrayOfIntsT();

6. int Size;

7. int* ArrayP;

8. };

9. ArrayOfIntsT::ArrayOfIntsT() :

10. Size(0), ArrayP(0)

11. {

12. }

13. ArrayOfIntsT::~ArrayOfIntsT()

14. {

15. delete ArrayP;

16. }

17. int capAddressListSize(

18. ArrayOfIntsT* udP)

19. {

20. return 1;

21. }

22. void capAddressPack(int& listSize,

23. WSABUF* &bufferP, ArrayOfIntsT* udP)

24. {

25. bufferP->Len = udP->Size;

26. bufferP->BufP = (char*) udP->ArrayP;

27. bufferP++;

28. }

29. void capAddressUnpack(int& listSize,

30. WSABUF* &bufferP, ArrayOfIntsT* udP)

31. {

32. if(bufferP->Len) {

33. udP->ArrayP =

34. new int[bufferP->Len];

35. }

36. else {

37. udP->ArrayP = 0;

38. }

39. bufferP->BufP = (char*) udP->ArrayP;

40. thrAddressSave(listSize,

41. bufferP, (void*) &(udP->ArrayP));

42. bufferP++;

43. }

44. void capAddressRestore(int& listSize,

45. WSABUF* &bufferP, ArrayOfIntsT* udP)

46. {

47. thrAddressRestore(listSize,

48. bufferP);

49. bufferP++;

50. }

51. token PrimeNumbersT

52. {

53. ArrayOfIntsT PrimeNumbers;

54. int NumberOfPrimeNumbers;

55. };
59

CAP Message passing and Serialization

Automatic serialization of CAP tokens5
5.3. Automatic serialization of CAP tokens1

Writing the four serialization routines is often tricky and error prone. Moreover, bugs in these

routines are hard to handle, since the program will not crash immediately but run with corrupted

data. The objective of this section is to present an automatic serialization tool. This tool should

alleviate the task of the programmer and reduce the programming errors, making the data seri-

alization as simple as possible. Currently this tool is not completely integrated into the CAP

runtime, but can be used as an external preprocessor. Therefore, we limit the development of

this section to the fundamentals ideas.

The automatic serialization tool should be able to work within both homogeneous and heter-

ogeneous environment. In heterogeneous environment, the data can not be copied directly from

one address space to another since the data representation could be different on both

architectures (e.g. big/little indian). In an heterogeneous environment the data should be trans-

mitted using a standard data encoding system such as XDR [XDR95]. XDR is useful for

transferring data between different computer architectures, and has been used to communicate

data between diverse machines. Transmitting data in an heterogeneous environment requires

two memory-to-memory copies (copy-pack) in order to perform the data encoding/decoding. In

an homogeneous environment the serialization should use the efficient address-pack serializa-

tion mechanism described in the last section. The automatic serialization tool should handle this

two different situations transparently from the programmer’s point of view.

One solution consists of developing a CAP specific type library. This library should cover all

the usual types (char, integer, float, etc.), but also complex types such as lists, arrays, hash-

tables, etc. Such a solution has not been considered for two major reasons. Firstly, it is not a

suitable solution in terms of integration, i.e. all the classes and structures of a sequential pro-

gram must be redefined in order to be parallelized. Secondly, in some situations it could

introduce an unacceptable overhead, decreasing considerably the performance. For these rea-

sons we adopted a more flexible and efficient solution.

The adopted solution consists of letting the programmer describe, in a dedicated part of the

program, all the members (one by one) of the classes/structures he wants to serialize. CAP must

therefore provide a mechanism allowing the programmer to specify such a statement. This has

been done by adding the serialize CAP keyword and by providing a type description library.

This library contains the routines needed to serialize all the usual types (char, integer, float, etc.)

and also complex types (lists, arrays, hash-tables, etc.). Since the provided library is a type

description library and not a type library, it’s not needed to redefine all the classes/structures of

a sequential program in order to parallelize it. A serialization kernel responsible to collapse and

interpret the programmer’s serialization instructions has been added to the CAP runtime system.

1 This section is an original contribution of the present thesis.
60

CAP Message passing and Serialization

Automatic serialization of CAP tokens

Ù

One of the critical issue of the automatic serialization tool is its ability to deal with pointers.

Indeed, a pointer is an incomplete C/C++ type, i.e. it’s impossible to deduce from the pointer

itself if the pointers refers to a single element, to an array of elements or even if it is an alias (it

refers to an object that has already been serialized). Another issue of the automatic serialization

tool is its capability to deal with hierarchical classes/structures. The serialization kernel is

responsible to traverse recursively through all the inherited (simple inheritance, multiple inher-

itance, virtual inheritance, and any combination of them) or included classes/structures.

Figure 5.6 presents the serialization of structure A and it’s inherited structure B. Structure A

contains one integer n and an array dP containing n doubles. Structure B contains a list bP. It

must be notated that this list can contain either elements of type B either elements of type

A (polymorphism) or both. The serialization information written by the programmer to serialize

structure A are given by the lines 17-22. The serialization information are interpreted line by

line. Line 19 specify that n is an integer type, using the description library type BasicType. Lines

20-21 are dedicated to the serialization of the dP array. Line 21 specifies that dP is an array,

using the description library type Array. The line above indicates the size the dP array, using

the keyword ArraySize. The this keyword refers to the object currently serialized. Therefore the

expression this n refers to the current size of the array. The serialization of structure B is given

by the lines 12-16. Line 14 indicates that bP points on a list, using the defined type ListPointer

from the description library. ListPointer is defined so that all the list is serialized (the last pointer

is supposed to null). Line 15 specifies that aP is an alias and that it should be initialized to the

this pointer value. The inheritance of structure B must also be specified in order to serialize cor-

rectly structure A, this is done at line 17.

The presented serialization concept is able to handle inheritance, basic and complex type seri-

alization. The complex type serialization is based on a description library of complex types

which can be extended. Since the serialization tool is able to serialize any type, the original non-

parallel program structures and classes do not need to be modified in order to be parallelized.

The serialization supports either copy-pack (heterogeneous environment) or efficient (no mem-

ory copy) address-pack (homogeneous environment) serialization. Theses last issues are

transparent from the programmer’s point of view. One inconvenience of this serialization mech-

anism is that the programmer’s needs to provide, for each structure/class member, an indication

about how to serialize it. This represents some amount of work. The mechanism could be

improved by letting the CAP preprocessor determine, for each structure/class member, a default

serialization, e.g. line 19 (serialization of the integer n) could be determined automatically by

the preprocessor. The CAP preprocessor default choice may then be overridden by a program-

mer instruction.

As mentioned before, at the present time the automatic serialization tool is not completely

integrated into the CAP framework. The difficulties arises mainly from the parsing of the C++

language and the capability of handling all the cases of type serialization. Nevertheless we

exposed here the main principle of an automatic serialization tool for a future version of the

CAP framework.

→

61

CAP Message passing and Serialization

Integration5
5.4. Integration

The serialization mechanism has been developed in order to facilitate the parallelization of an

existent application with CAP. In general, the integration capability offered by the CAP frame-

work is one of its major feature. Since the CAP language is preprocessed and translated into

pure C++ code, the CAP parallelization facilities are easily integrated into an existent project.

Also CAP works at a coarse grain level, i.e. task or procedural level; therefore the transforma-

tion of a sequential program into a parallel program can be done smoothly without major

modifications of the original sequential program.

The evolution of a sequential program into a parallel solution requires a general competence

in parallelism and some experience with the CAP framework. Once the parallel solution is

working, no particular knowledge is required to maintain or add small modifications to the sys-

tem. In fact, for real projects, the ratio of the CAP code compared to the rest of the cost is not

more than a few percents. The CAP part of the program source makes the parallel structure of

the program explicit.

The main step involved in turning a sequential program into a parallel solution with the help

of the CAP framework can be formulated as follows:

1. Define the global parallel schedule and the data dependencies.

2. Adapt and modify the sequential program in order to respect the constraints imposed by

the parallel schedule

Fig. 5.6 Automatic serialization of a user’s defined C/C++ structure, the CAP’s

runtime system needs serialization information for each member of the C/C++

structures.

1. struct A;

2. struct B

3. {

4. B* bP; // a list

5. A* aP; // an alias

6. };

7. struct A : B

8. {

9. int n;

10. double* dP;

11. };

12. serialize B

13. {

14. bP : ListPointer;

15. aP = this;

16. };

17. serialize A : B

18. {

19. n : BasicType <int>;

20. ArraySize = this->n;

21. dP : Array <double>;

22. };
62

CAP Message passing and Serialization

Summary

Ù

3. Define the original data structures that need to be transmitted across the processes, i.e

the tokens.

4. Write a few CAP lines to describe the schedule represented by the macro-dataflow.

5.5. Summary

The CAP environment has been ported to a number of operating systems, including Microsoft

Windows NT, Sun Solaris and Digital OSF Unix. Its underlying MPS communication library is

portable but requires a socket interface for providing asynchronous SendToken and ReceiveTo-

ken routines.

This chapter has shown how MPS asynchronously transmits a packet, i.e. a serialized CAP

token, through a TCP/IP connection using sockets. Two mechanisms used in MPS for serializ-

ing CAP tokens have been presented, i.e. the copy-pack and the address-pack serialization

mechanisms. Since the copy-pack mechanism requires the use of a temporary buffer involving

additional memory-to-memory copies, it is only used in heterogeneous environments where the

transmitted data format has to be adapted to the destination machine (big/little endian, 32/64

bits). The address-pack mechanism, only used in homogeneous environments (e.g. in a multi-

PC environment), enables CAP tokens to be serialized and transferred with no superfluous

memory-to-memory copy providing optimal performance.

The original contribution of this thesis was to provide an automatic serialization tool (Section

5.3) to the CAP framework. At the present time, this tool is not completely integrated in the

CAP runtime system. Nevertheless, we presented an efficient (support address-pack) and flex-

ible serialization tool able to serialize any types without major modification of the original code.

The serialization tool and the CAP framework in general have been developed in order to

allow easy integration into existent applications. Turning a sequential program into a parallel

solution with the help of the CAP framework does not require major modifications of the orig-

inal sequential program. This integration aspect is one of the most interesting feature of the CAP

framework.
63

CAP Message passing and Serialization

Summary5
64

Ù

6 Parallel linear algebra algorithm

The traditional approach to the parallelization of linear algebra algorithms such as matrix mul-

tiplication and LU factorization is based on the static allocation of matrix blocks to processing

elements (PEs). Such algorithms suffer from two drawbacks: they are very sensitive to load imbal-

ances between PEs and they make it difficult to take advantage of pipelining. This chapter

describes dynamic versions of linear algebra algorithms, where subtasks (matrix block multiplica-

tion, matrix block LU factorization) are dynamically allocated to PEs. It analyzes the performance

of the dynamic algorithms. We show that the dynamic-pipelined linear-algebra algorithms can be

specified compactly in CAP and yet achieve good performance. The content of this chapter is pub-

lished in [Mazzariol97].

6.1. Introduction

This chapter is dedicated to the parallelization of parallel linear algebra algorithms [Quinn87].

Section 6.2 explains the static and dynamic algorithms for parallel matrix multiplications, ana-

lyzes theoretically their performance, and lists the CAP specification for the dynamic parallel

matrix-multiplication algorithm. Section 6.3 describes the dynamic algorithm for parallel LU

factorization and analyzes theoretically its performance. Section 6.4 lists experimental perfor-

mance results. In the experimental setup, the hardware consists of a network of biprocessor

SPARC 20 workstations connected through FDDI. Low-level linear algebra routines are carried

out by the BLAS software package [Anderson95].

6.2. Matrix Multiplication

6.2.1. Notations and problem formulation

Lowercase letters represent matrix terms. Uppercase letters represent matrices. Subscripted

uppercase letters represent matrix blocks. The matrix size is N2. The number of blocks in the

matrix is p2, and the size of the blocks is n2 = (N/p)2. A row of blocks is called a horizontal

matrix slice. A column of blocks is called a vertical matrix slice. For simplicity we assume that

N modulo p = 0. Using these conventions, the matrix multiplication is written as:

(6-1)

Since all matrice sizes are N x N, equation (6-1) can be written as:

(6-2)

C A B⋅=

cij aik bkj⋅
k 1=

N
∑=
65

Parallel linear algebra algorithm

Matrix Multiplication6
If we divide all the matrices into p x p blocks of size n x n (where n = N/p), the block matrix

multiplication is written as:

(6-3)

We consider a physical machine consisting of P processing elements (PEs) connected to a sin-

gle client requesting the computation. We assume that the hardware supports direct memory

access, i.e. that it is possible to perform data transfers between PEs without interrupting the

ongoing computations in which the PEs are involved.

6.2.2. Dynamic parallel algorithm

Traditionally, matrix multiplication is performed statically. Matrix blocks are assigned

according to a static mapping to all the participating PEs. The PEs exchange matrix blocks at

fixed synchronization points. Between two synchronization events a part of the matrix multipli-

cation is performed. Static matrix multiplication parallel algorithms tend to minimize the

communications between the PEs. Nevertheless, the multiple synchronizations limit their

efficiency.

In order to improve these limitations, we developed a dynamic matrix multiplication parallel

algorithm. Here the objective is not to minimize the communications, but to propose a flexible

algorithm allowing to balance the load between the participating PEs and to reduce the synchro-

nization costs. The parallelization is based on a master-slave parallelization scheme. The

dynamic version of the algorithm assumes that initially both input matrices are located in the

client address space. The client divides both matrices (A, B) into p2 matrix blocks. Then, accord-

ing to equation (6-3), the client creates all p3 matrix block pairs needed for performing matrix

multiplication:

(6-4)

and sends each matrix block pair to the PEs for partial matrix computation:

(6-5)

The partial results are returned to the client for merging into the final resulting matrix:

(6-6)

The dynamic algorithm requires, according to equation (6-4) and (6-5), p3 times the transfer

of n x n matrix blocks for both input matrices and also for the output matrix. Since n = N/p, the

total transfer requirement is:

(6-7)

Cmn C
l
mnl 1=

p
∑ Aml B

 ln⋅l 1=

p
∑= =

Aml B ln,() l m n, ,{ } 1 ... p, ,{ }∈,

C
l
mn Aml B

 ln l m n, ,{ } 1 ... p, ,{ }∈,⋅=

Cmn C l
mnl 1=

p

∑=

Total transfer size 3p3n2 3p
3 N

p
---- 
 

2

3pN
2

= = =
66

Parallel linear algebra algorithm

Matrix Multiplication

Ù

The transfers are well distributed among the PEs, but the client, receiving and transferring all

messages is clearly a potential bottleneck. No synchronization is required between the PEs and

it is possible to keep the PEs busy during the execution of the algorithm, assuming several

matrix block pairs are queued waiting to be executed by each PEs. It is easy to perform load

balancing, so as to make the algorithm insensitive to PEs load imbalances. Besides being a com-

munication bottleneck, the client is also a memory bottleneck as it is required to store both input

matrices and the output matrix in the client memory. The client bottleneck problem may be

solved by out-of-core programming, where matrix blocks are stored on disks and prefetched

when required, or by splitting the client node into several nodes, each owning part of the matrix

data. This chapter analyses theoretically and experimentally the performance of the dynamic

algorithm with a single client, and shows the capabilities and limitations of the dynamic

algorithm.

6.2.3. Dynamic parallel algorithm: theoretical analysis

The timing diagram for the dynamic matrix multiplication is presented in Figure 6.1. There

are 5 PEs, one for the client (master) and 4 for the computation threads (slaves). Each PE incor-

porates one additional thread for communication. The time line flows from left to right. The

thick arrows represent thread activity, i.e. time during which the communication or computation

occurs. We have assumed DMA, i.e. that communication can overlap computation on a given

PE. The shaded boxes indicate the data transfers. The thin arrows represent data dependencies.

The final timing diagram section (rightmost part of Figure 6.1) represents a minimal length sec-

tion for 4 matrix-block-pair transfers (client to computation threads), 4 block by block matrix

multiplications, and 4 matrix-block transfers (computation threads to client). Taking into

account that communications are hidden by computation1, the critical path through the graph

consists of one matrix-block-pair transfer to each PE when initializing the pipeline, i.e. P

matrix-block-pair transfers, p3 matrix-block multiplications distributed over P PEs, i.e. p3/P

matrix-block multiplications, and one matrix-block transfer to the client for the last partial

result.

1 Complexity of matrix multiplications is O(n3), whereas matrix size is O(n2). Therefore, for large matri-

ces, it’s possible to choose a matrix block size which ensures that computation hides communications.

Fig. 6.1 Dynamic matrix multiplication: timing diagram

client

PE1

PE0

PE2

PE3

comp.
transf.

comp.

transf.

transf.

comp.

transf.

comp.

transf.
67

Parallel linear algebra algorithm

Matrix Multiplication6
Assuming a network latency of l
t
, a network throughput of 8/τ

t
 (τ

t
 is the transfer time for 1

matrix element, and 8 is the number of bytes per (double) floating point number), and a compu-

tation throughput of 1/τ
c
 (τ

c
 is the nominal computation time for 1 element of the resulting

matrix), we obtain:

(6-8)

(6-9)

(6-10)

(6-11)

The condition on the network bandwidth is that the transfer time during one section of the tim-

ing diagram is less than the computation time during the same time interval:

(6-12)

The speedup formula is given by:

(6-13)

Let us assume reasonable values for the parameters: l
t
 = 1ms, τ

t
 = 1.6µs/elem (5MB/s through-

put), τ
c
=875ns/elem (all numbers resulting from experimental measurements on the FDDI

network and the BLAS routine dgemm). We find according to equation (6-13) for matrices of

1000x1000 elements (N = 1000), for a block of 125x125 elements (n = 125, p = 8) and for a

number of processors P ranging from 1 to 20, theoretical speedups ranging from 1 to 19.50,

showing that the dynamic approach is definitely valid. The left and right part of equation (6-12)

in the worst case (P = 20) are 1.61s and 1.83s, ensuring that the condition holds. The experi-

mental results are presented in Section 6.4.1.

6.2.4. CAP specification of the matrix multiplication

Figure 6.2 is the textual specification of the dynamic matrix multiplication in CAP. The

indexed parallel construct in Figure 6.2 (line 4 to 8) features 3 range indices. The CAP runtime

iteratively calls the SplitInput routine (line 8) on the TwoMatricesT Input token, and generates

matrix block pairs. As soon as a matrix-block-pair is generated it is sent to the appropriate thread

(located on another computer) for a sequential matrix computation (line 10). When all matrix

Communication time for pipeline initialization P l
t

2τ
t
n
2

+()⋅=

Computation time
τ
c
N
3

P
-----------=

Communication time for pipeline termination l
t

τ
t
n
2

+()=

Total time P l
t

2τ
t
n
2

+()
τ
c
N
3

P
----------- l

t
τ
t
n
2

+()+ +=

P l
t

2τ
t
n
2

+() l
t

τ
t
n
2

+()+() τ
c
n
3

<

S P()
τ
c
N
3

P l
t

2τ
t
n
2

+()
τ
c
N
3

P
----------- l

t
τ
t
n
2

+()+ +

--=
68

Parallel linear algebra algorithm

LU factorization

Ù

block pairs are sent, the CAP run time initializes in the client address space (called Main, line

8) the output matrix (MatrixT Output, line 8). When a computation thread completes a block by

block submatrix multiplication, it returns the partial result immediately to the client thread, and

gets a new matrix block pair from its input queue. The client thread, as soon as it receives a par-

tial result from a computation thread, merges the partial result into the output matrix result.

Figure 6.2 specifies all communication and synchronization requirements of the parallel

matrix multiplication program. The rest is sequential C++ code specifying how to split the input

matrices TwoMatricesT token into matrix block pairs, how to merge partial results into the out-

put matrix MatrixT token, and specifying the sequential matrix multiplication.

The issue of whether matrix blocks are copied by the SplitInput routine is left to the imple-

mentation of the TwoMatricesT token and the SplitInput routine. A simple implementation will

implement TwoMatricesT tokens as actual matrices and implement the SplitInput routine as

memory copies. A sophisticated implementation will implement TwoMatricesT tokens as

matrix references and make sure that copies occur only when data is transferred from one

address space to the other. Our implementation uses the sophisticated BLAS array data refer-

encing mechanism which avoids unnecessary data copies. We ensure that data is copied only

when data is transferred between address spaces. The actual ParallelMatrixMultiplication oper-

ation we used implements load balancing. As we already know (Section 4.3, flow-control), the

implementation of load balancing requires only a few modification in the program of Figure 6.2.

6.3. LU factorization

The LU factorization is interesting in two respects. It features more data dependencies than

the matrix multiplication, and uses the matrix multiplication. This example is ideally suited to

show two important features of CAP, its compositionality and its support for pipelining. We

reuse without modification the CAP parallel matrix multiplication specification in the LU fac-

torization algorithm. We pipeline triangular system resolution with matrix multiplication to

achieve higher speedups. The complex data dependencies of the algorithm also show the gen-

erality of the CAP approach.

Fig. 6.2 CAP specification of the ParallelMatrixMultiplication operation

1. operation CompositeThreadT::ParallelMatrixMultiplaction (int p)

2. in TwoMatricesT Input out MatrixT Output

3. {

4. indexed

5. (int i = 0; i < p; i++) // first construct range

6. (int j = 0; j < p; j++) // first construct range

7. (int k = 0; k < p; k++) // third construct range

8. parallel (SplitInput(p,i,j,k), MergeOutput(p,i,j,k), Main, MatrixT Output)

9. (

10. Thread[((i*p+j)*p+k)%4].SequentialMatrixMultiplication

11.);

12. }
69

Parallel linear algebra algorithm

LU factorization6
6.3.1. Problem description

LU factorization consists of decomposing a matrix A into a unit lower triangular matrix L and

an upper triangular matrix U so that1:

(6-14)

For example:

(6-15)

Golub describes in [Golub96] (p. 100) a block-based LU factorization. We summarize it here.

Consider a N x N matrix A divided in 4 blocks: A11 n x n matrix, A12 n x (N-n) matrix, A21 (N-

n) x n matrix and B (N-n) x (N-n) matrix:

(6-16)

Consider the following decomposition:

(6-17)

According to this equation, a block-based LU factorization can be realized by a 3 steps proce-

dure, let us call these steps LU1, T1 and M1:

LU1: This first step consists of solving a smaller LU factorization problem described

by equation (6-18). This can be done by using the dgetf2 routine in LaPack

[Anderson95].

(6-18)

T1: The second step consists of solving two triangular systems. This can be

performed by the trsm routine in BLAS.

(6-19)

(6-20)

1 The LU factorization exists and is unique, if and only if A is a nonsingular matrix.

A L U⋅=

3 5

6 7

1 0

2 1

3 5

0 3–
⋅=

A
A
11

A
12

A
21

B

n N n–

n

N n–
=

A
A
11

A
12

A
21

B

L
11

0

T
21

X

U
11

T
12

0 Y
⋅= =

A
11

L
11

U
11

⋅=

A
12

L
11

T
12

⋅=

A
21

T
21

U
11

⋅=
70

Parallel linear algebra algorithm

LU factorization

Ù

M1: The last step is related to the last condition extracted from (6-17). This condition

is specified by equation (6-21). Clearly if X is a unit lower triangular matrix and Y

an upper triangular matrix we are done. In general it’s not the case. Let us rename

 as and define equation (6-22). The matrix multiplication of equation

(6-22) can be performed by the dgemm BLAS routine. If we repeat recursively

the 3 steps algorithm on the new defined matrix, we will finally obtain the LU

factorization.

(6-21)

(6-22)

The complete block-based LU factorization algorithm consists of repeating p = N/n times the

above 3 steps procedure. We need to perform the following steps: LU1, T1, M1, LU2, T2, M2, ...,

LUp-1, Tp-1, Mp-1, LUp.

Let us analyze the complexity of each step of the proposed algorithm. Step LU1 consists of

performing the LU factorization on a n x n matrix. The complexity is given by O(n3). Since this

step is repeated p times the total complexity is given by:

(6-23)

Step T1 consists of solving two triangular system. The two matrices involved in the system are

of size n x n and n x (N-in), where i corresponds to the i-th step Ti. The complexity is given by

O(n2(N-in)). Since this step is repeated (p-1) times, the total complexity is given by:

(6-24)

Step M1 consists of multiplying two matrices. The size of the two matrices involved in the

multiplication are respectively (N-in) x n and n x (N-in), where i corresponds to the i-th step Mi.

The complexity is given by O(n(N-in)2). Since this step is repeated (p-1) times the total com-

plexity is given by:

(6-25)

If we assume that the matrix block size n is small enough compared with the total matrix size

N, we see, according to equations (6-23)(6-24)(6-25), that the dominant operation is the multi-

X Y⋅ A'

A'

B T
21

T
12

X Y⋅+⋅=

A' X Y⋅ B T
21

T
12

⋅–= =

n
3

i 1=

p

∑ pn
3

O Nn
2

()≈=

n
2
N in–()

i 1=

p 1–

∑ n
3

p i–()

i 1=

p 1–

∑ n
3

i n
3
p
2

≈

i 1=

p 1–

∑ O N
2
n()≈= =

n N in–()
2

i 1=

p 1–

∑ n
3

p i–()
2

i 1=

p 1–

∑ n
3

i
2

n
3
p
3

≈

i 1=

p 1–

∑ O N
3

()≈= =
71

Parallel linear algebra algorithm

LU factorization6
plication step Mi. The complexities of the two first steps are below O(N2), only the

multiplication step requires O(N3) operations.

6.3.2. Parallelization

The block-based matrix multiplication step Mi is easy to parallelize because the size of each

transfer is O(n2) and the number of scalar multiplications per matrix block multiplication is

O(n3). It is therefore possible to select a matrix block size n ensuring that communication time

is small compared with computation time. We use our previously developed parallel matrix

multiplication algorithm in order to solve in parallel the LU factorization problem.

However we cannot afford to perform at each step the block LU factorization followed by the

block triangular system resolutions sequentially, before performing in parallel the matrix mul-

tiplication. The sequential part of the algorithm would be much too long. This situation is

presented in Figure 6-3. In this figure, we show the activity of the client and of the PEs. In order

to simplify the diagram the communication costs are not shown.

We apply pipelining to improve the parallel algorithm. Instead of performing the triangular

system resolution step Ti with a single matrix operation, we perform it block by block (each

block having n x n elements). Similarly, we perform the parallel matrix multiplication step Mi

block by block. This block decomposition allows the parallel matrix multiplication Mi to start

on the PEs as soon as the first blocks of the triangular system have been computed. Figure 6-4

shows this situation.

Fig. 6.3 LU factorization without pipelining

Fig. 6.4 LU factorization with pipelined matrix multiplication

LU1 T1

M1

LU2 T2

M2

LU3

PE1

PE0

client

PE3

PE2

LU1 T1

M1

LU2 T2

M2

LU3

PE1

PE0

client

PE3

PE2
72

Parallel linear algebra algorithm

LU factorization

Ù

Again we can improve the performance by resorting to pipelining. The LU factorization LU2

can start before the end of the parallel matrix multiplication. As soon as the required blocks are

available, the LU factorization can start. Figure 6.5 presents the full pipelined parallel solution

for solving the LU factorization.

The parallel schedule presented in the last figure cannot be directly expressed with the basic

CAP statements (indexed parallel,...). To implement this parallel schedule we use the advanced

capCallSuccessor/capDoNotCallSuccessor CAP features (Section 3.4.1) allowing the program-

mer to have a more detailed control of the CAP scheduling mechanism.

The dominant part of the algorithm is the matrix multiplication which is performed in parallel

by the PEs. The size of the two matrices involved in the parallel matrix multiplication Mi at the

i-th step are (N-in) x n and n x (N-in). Since we decompose the matrices into n x n matrix blocks,

step Mi requires (p-i)
2 matrix block by block multiplications (where p = N/n). According to

equation (6-9) the duration of step Mi is given by . Since this step is performed

(p-1) times, the duration for all Mi step is given by:

(6-26)

The only part of the algorithm during which the PEs cannot work is at least the first LU fac-

torization LU1, the last LU factorization LUp and the two first triangular system resolution of

steps T1 and T2 (Fig. 6.5). Equation (6-27) defines this time:

(6-27)

To compute the total parallel computation time we need to add the communication costs

required to initiate and terminate the pipeline. This costs have already been defined in equations

Fig. 6.5 LU factorization with full pipelining

LU1 T1

M1

LU2 T2

M2

LU3 T3

M3

LU4 T4

PE1

PE0

client

PE3

PE2

p i–()
2
τcn

3
P⁄()

Parallel matrix multiplication time p i–()
2τcn

3

P

i 1=

p 1–

∑
τcn

3

P
---------- i

2

i 1=

p 1–

∑

τcn
3

P

p p 1–() 2p 1–()

6
--

τcN
3

3P
-----------≈

= =

=

Sequential time = 2τlun
3

2τ
∆
n
3

+

73

Parallel linear algebra algorithm

Performance measurements6
(6-8) and (6-10). The total parallel computation time to perform the LU factorization is given

by:

(6-28)

The approximated formula of equation (6-26) is true provided the matrix multiplication Mi

takes longer than the LU factorization LUi+1 and the triangular system resolution Ti+1 together

(Fig. 6.5). This condition is usually true for the early steps of the parallel LU factorization, but

becomes false at the end of the algorithm. When the expression becomes false the PEs are not

fully loaded and becomes partially idle, waiting for new matrix blocks multiplication jobs. We

express in equation (6-29) the condition that the client thread computation time is less that the

PEs multiplication time for step i and check that it is true for most of the steps of the algorithm.

To establish equation (6-29) we consider that at step i, (p-i)2 matrix block multiplications are

performed on the PEs. At the same time on the client thread, one LU factorization LUi+1 and

2(p-i-1) block triangular system resolution Ti+1 are performed.

(6-29)

Let us assume that the computation time at the end of the algorithm, where equation (6-29) is

not valid, is small relative to the total computation time. Then, the speedup is given by

(6-30)

We analyze the values of equation (6-30) for a 2000x2000 matrix (N = 2000), block size of

125x125 (n = 125, p = 16), and for unitary values of the LU factorization τlu = 260ns, triangular

system resolution and matrix multiplication τc = 875ns. The communication

latency and throughput are respectively l
t
 = 1ms and τ

t
 = 1.6µs/elem (5MB/s throughput)

respectively. For a number of processors P ranging from 1 to 10, theoretical speedups ranging

from 1 to 8.75 are obtained. The experimental results are presented in Section 6.4.2.

6.4. Performance measurements

We run our performance measurements on a network of Sun Sparc20 computers, each with

two processors, connected by an FDDI network. We run a single computation thread and a sin-

gle communication thread per workstation, thus allowing for overlapped communications and

computations. No single thread can exceed 100% utilization per processor.

Total parallel time P lt 2τtn
2

+() 2 τlu τ
∆

+()n
3 τcN

3

3P
----------- lt τtn

2
+()+ + +=

τlu 2 p i– 1–()τ
∆

+()n
3

p i–()
2τcn

3

P
----------<

S P()
τcN

3
3⁄

P lt 2τtn
2

+() τlu τ
∆

+()n
3 τcN

3

3P
----------- lt τtn

2
+()+ + +

--=

τ
∆

700ns=
74

Parallel linear algebra algorithm

Performance measurements

Ù

We integrated LaPack into CAP. Sequential routines are BLAS routines. The implementation

effort consisted of wrapping BLAS routines in CAP tokens, and providing serialization routines

for the tokens, to allow BLAS structures to be transferred from one address space to the other.

The communication and synchronization between sequential operations are specified in CAP.

6.4.1. Dynamic matrix multiplication

Figure 6-6 displays the speedup results of the matrix multiplication on 1000x1000 matrices.

We compare the speed of the parallel program with 1 to 20 slave computers (i.e. 21 workstations

involved) to the sequential program performance (single LaPack call). Two threads run on each

slave computer (workstation), one for computation and one for communication.

The left part of Figure 6.6 shows a near linear speedup as a function of the number of slave

computers. The single thread matrix multiplication comprising of a single call to LaPack is per-

formed in 875s. The 20-computation-PEs matrix multiplication with a 125x125 block size is

performed in 46.6s, yielding an 18.8 speedup, close to the theoretically predicted speedup. The

slight difference between the predicted theoretical speedup and the measured speedup comes

essentially from the fact that not all computations threads terminates exactly at the same time

(small load unbalance). The experiments show that better results are obtained with 125x125

matrix blocks than with 100x100 blocks. This is in contradiction with equation (6-13). The rea-

son is that in equation (6-13) τ
c
 is supposed to be constant, in practice this value tends to

decrease for larger matrix blocks because of some internal processor optimizations (caching,

instruction prefetching,...). Larger matrix sizes may improve the overall speedup, but would

require out-of-core programming, i.e. storing matrix data on disks, and prefetching the data into

memory in advance.

The right part of Figure 6-6 shows the processor utilization on the client computer (master).

The client computer utilization is affected by the block size. As is expected, the smaller the

block size, the more data chunks need to be transferred between client and computation nodes.

The utilization ranges between 0 and 200%, showing that both computation and communication

Fig. 6.6 Matrix multiplication speedup and client computer utilization

(1000x1000 matrices)

0

5

10

15

20

25

0 5 10 15 20

Number of slave computers

S
p
e
e
d
u
p

80x80

100x100

120x120

125x125

theoretical

0

40

80

120

160

200

0 4 8 12 16 20

Number of slave computers

M
a
s
te
r
u
ti
li
z
a
ti
o
n

(2
 p
ro
c
e
s
s
o
rs
)

80x80

100x100

120x120

125x125

block size block size
75

Parallel linear algebra algorithm

Performance measurements6
threads are fully utilized. For 80x80 blocks matrices we see that the client becomes rapidly a

bottleneck, decreasing the overall performance. For the matrix multiplication, the client com-

putation thread handles matrix-block-pair serialization and partial result accumulation. The

client communication thread handles the matrix deserialization, as well as serialized data emis-

sion and reception. The computation threads have a 100% utilization for the complete duration

of the algorithm, except at pipeline startup and termination.

6.4.2. LU factorization

Figure 6.7 shows the performance results of the LU factorization for a 2000-by-2000 matrix,

for a number of slave computers varying from 1 to 10. The single process sequential computa-

tion time for the LU factorization of the matrix is 2095s. The fastest parallel time we achieved

with 10 computers is 250s, yielding an 8.38 speedup. The difference with the theoretical model

is due to the fact that for the later steps of the algorithm, condition (6-29) becomes false.

6.4.3. Analysis of results

The client load is much higher than what the theoretical analysis suggests. This is due to the

fact that data structure serialization is a time consuming process requiring several data copies,

in particular in the version of the LSP library running on Sun Sparc20 workstations. Moreover,

the use of the TCP/IP protocol between workstations consumes an important amount of CPU

resources. Typically a 5MB/s throughput at the client leads to a 100% CPU utilization.

It is not possible to handle matrices larger than 1000x1000 without having the client thread

starting to swap. The three matrices required for a 1000x1000 multiplication represent 24 MBs

of data. Out of core programming is required, where the client thread prefetches the matrix

blocks from the disks as needed. As pipelining is a CAP feature, disk prefetching is not difficult

to integrate in the CAP implementation of the LaPack routines. The disk prefetching mechanism

has been successfully used in the CAP implementation of an out of core 3-D visualization pack-

age [Hersch00][VisibleHuman98].

Fig. 6.7 .LU factorization performance

0

2

4

6

8

10

0 2 4 6 8 10

Number of slave computers

S
p
e
e
d
u
p

experimental

theoretical
76

Parallel linear algebra algorithm

Summary

Ù

The good performance of CAP generated programs can be attributed to the following factors:

(1) threads are allocated statically to processing elements; (2) operation overhead is small. The

input data of each operation is tagged with a 20-byte header, which typically represents a over-

head of less than 1%; (3) data can be passed by reference between threads sharing a common

address space; (4) data elements (tokens) are routed dynamically to threads, allowing to adapt

the load of each processing element; (5) pipelining is a part of the CAP semantics, allowing to

remove unnecessary synchronization barriers. Current difficulties in the CAP implementation

of the LaPack routines are: (1) the Solaris version of the MPS communication library performs

3 copies for each transfer (copy-pack mechanism, see Chapter 5); (2) serialization of sophisti-

cated data structures is a time-consuming effort and (3) some data dependencies are impossible

to specify in the current version of the language.

6.5. Summary

This chapter has presented pipelined-parallel algorithms for matrix multiplication and LU

decomposition. It has analyzed the theoretical performance of the algorithms, shown their CAP

implementation, and presented performance results. The results show that the dynamic pipe-

lined approach is viable for matrix multiplication and LU decomposition for a number of

computers varying between 10 to 20 computers. Large matrix sizes require out of core program-

ming. CAP support for pipelining is effective to overcome the important network latencies.

CAP specifications are short, and yet the parallel programs achieve good performance, demon-

strating the validity of the CAP model.
77

Parallel linear algebra algorithm

Summary6
78

Ù

7 Parallel Imaging

Imaging applications such as filtering, image transforms and compression/decompression

require vast amounts of computing power when applied to large data sets. These applications

would potentially benefit from the use of parallel processing. However, dedicated parallel comput-

ers are expensive and their processing power per node lags behind that of the most recent

commodity components. Furthermore, developing parallel applications remains a difficult task:

writing and debugging the application is difficult (deadlocks), programs may not be portable from

one parallel architecture to the other, and performance often comes short of expectations. In this

chapter, we will use the Computer-Aided Parallelization (CAP) framework for creating a typical

pipelined parallel image processing application. This chapter shows how processing and I/O inten-

sive imaging applications must be implemented to take advantage of parallelism and of pipelining

between data access and processing. This chapter’s contribution is (1) to show how such imple-

mentations can be compactly specified in CAP, and (2) to demonstrate that CAP specified

applications achieve the performance of custom parallel code. The chapter analyzes theoretically

the performance of CAP specified applications and demonstrates the accuracy of the theoretical

analysis through experimental measurements. The content of this chapter is published in

[Mazzariol98].

7.1. Introduction

Imaging computations such as filtering, image transforms, compression/decompression and

image content indexing [Equitz95] require, when applied to large data sets (such as 3-D medical

images, satellite images and aerial photographs), vast amounts of computing power. In order to

facilitate the development of parallel applications, we propose the CAP computer-aided paral-

lelization tool which enables application programmers to specify at a high-level of abstraction

the flow of data between pipelined-parallel operations. The CAP environment supports the pro-

grammer in developing parallel imaging applications. The CAP environment features (1)

support for the parallel storage of large data sets; (2) an image library supporting 1-bit, 8-bit,

16-bit, 24-bit images, as well as the division of images in tiles of user-defined size; (3) the CAP

language extension to C++ which allows to write deadlock-free portable pipelined-parallel

applications, and combine parallel storage access routines and image processing operations.

This chapter shows how processing and I/O-intensive imaging applications can be imple-

mented to take advantage of parallelism and pipelining between data access and processing

operations. This chapter’s contribution is (1) to show how such implementations can be com-

pactly specified using the CAP set of flow control instructions, and (2) to demonstrate that CAP

specified applications achieve the performance of custom code. The chapter analyzes theoreti-

cally the performance of CAP specified applications and demonstrates the accuracy of the

theoretical analysis through experimental measurements. To implement I/O intensive applica-

tions, large 2D (resp. 3D) images are divided into square (resp. cubic) subsets with good locality

called tiles. Two kinds of applications are considered in this chapter: neighborhood-indepen-
79

Parallel Imaging

System support for managing large images7
dent operations, and neighborhood-dependent operations. Neighborhood-independent

operations are operations where no data must be exchanged between tiles to compute the result-

ing final image.

Section 7.2 shows how large images are divided in tiles for storage and processing purposes.

Section 7.3 describes in general terms the process-and-gather operation, i.e. the problem of

applying a neighborhood-independent operation to selected tiles stored on disk(s) and gathering

the processed tiles in a single address space. It shows the ideal execution schedule for perform-

ing a process-and-gather operation and analyzes theoretically the performance of such a

schedule. Section 7.3.5 shows how process-and-gather operation is specified in CAP. The pro-

cess-and-gather operation is limited to linear filters. Section 7.4 describes the more general

exchange-process-and-store operation, i.e. the problem of applying a neighborhood-dependent

operation to tiles stored on disk(s) and storing the result back to disk(s). Section 7.5 lists perfor-

mance results for the exchange-process-and-store parallel operations.

7.2. System support for managing large images

7.2.1. Hardware architecture

The hardware we consider consists of multiple PentiumPro PCs connected through a com-

modity 100Mb/s network such as Fast Ethernet (Fig. 7.1). The PCs run the WindowsNT

operating system and communicate using the TCP/IP-based MPS message-passing system

(Chapter 3). Each PC represents a storage/processing node (server node) consisting of one or

two processors connected through its PCI internal bus to one or more disks. The client request-

ing some image processing operation is also located on a PC. This platform scales from a single

PC architecture with one processor and one disk, to a multiple-PC multiple-disk architecture.

We assume that both the disk and the network can access memory through DMA (Direct Mem-

ory Access). While this hypothesis is accurate for disks1, network interfaces based on the

TCP/IP protocol consume an important amount of processing power2.

Fig. 7.1 Commodity component based parallel architecture composed of one client

node and several server nodes

client PC

network: FDDI, Fast Ethernet

server node

PC PC PC
80

Parallel Imaging

System support for managing large images

Ù

7.2.2. Software architecture

Large images are divided in rectangular or squared tiles which are stored independently, pos-

sibly on multiple disks. Pixmap image tiling is often used for the internal representation of

images in software packages such as PhotoShop. Square tiles enable accessing image windows

efficiently, with a good data locality. In addition parallel access to individual tiles distributed on

different disks and computers is possible [Hersch93]. The CAP imaging library provides data

types and functions for splitting images in tiles, and allocating tiles to disks. Figure 7.2 shows

an image divided in tiles, as well as a visualization window covering part of the image.

Figure 7.2 also shows a possible allocation of tiles to disks, assuming an image striped over 8

disks. The allocation index consists of the disk index, as well as the local tile index on the disk.

For example, the bottom right tile in Figure 7.2 is allocated on disk 3, and is the 6th tile on that

disk. The distribution of tiles to disks is made so as to ensure that direct tile neighbors reside on

different disks. We achieve such a distribution by introducing, between two successive rows of

tiles (and between two successive planes of tiles in the case of 3-D images), offsets which are

prime to the number of disks.

The data types required in this example are the WindowT and the TileT classes, provided in

the CAP imaging library (Fig.:7.3). The WindowT class fields are a file name, the window posi-

tion within an image, the window size, the window data, and a pixel descriptor (pixel size in bit,

color scheme (gray level, RGB,...). The WindowT class is used both to specify a window request

parameters (in which case the data field is empty), as well as the window itself. The TileT class

fields give its position, its size, the tile data, a pixel descriptor, as well as the index of the disk

where the tile is stored, and the local index of the tile on the disk.

Figure 7.4 lists a simple sequential program which performs a process-and-gather operation.

It assumes that the whole window to be processed is in memory. The while loop (lines 10 to 14)

repeatedly calls the GetNextTileInWindow routine, until it returns 0. At each iteration, the Get-

1 Our experience shows that for disk throughputs of up to 45 MB/s (throughput achieved by connecting

15 disks to 5 SCSI boards, the processor utilization remains below 15%.
2 Our experience shows that a single PentiumPro processor reaches over than 50% utilization rate when

Fast Ethernet reaches its maximal throughput of ~8.5MB/s [Messerli99a].

Fig. 7.2 Distribution of tiles on disks

0-0 1-0 2-0 3-0 4-0 5-0 6-0 7-0

0-2 1-2 2-23-1 4-1 5-1 6-1 7-1

0-3 1-3 2-3 3-3 4-3 5-36-2 7-2

0-51-4 2-4 3-4 4-4 5-4 6-4 7-4

0-6 1-6 2-6 3-64-5 5-5 6-5 7-5

visualization window

7-0

disk index local tile index

on disk
81

Parallel Imaging

The parallel process-and-gather operation7
NextTileInWindow routine returns the next window tile (nextP parameter), based on the window

description (windowP parameter) and the previous window tile (prevP parameter). The first

time the GetNextTileInWindow is called, the prevP parameter is 0. In the body of the while loop

(lines 11 to 13), the new tile is processed using the user-defined ProcessTile routine. In this sim-

ple program, all tiles are processed independently. When the tile is processed, the result is

merged into the final window using the MergeAndAddTile routine. This simple routine handles

correctly neighborhood-independent and linear filtering operations (see Section 7.3.1) The Get-

NextTileInWindow and the MergeAndAddTile are provided by the imaging library. The

ProcessTile routine is user-defined.

The next sections show more sophisticated imaging programs which in a pipelined-parallel

manner access tiles stored on disks and perform on it processing operations.

7.3. The parallel process-and-gather operation

7.3.1. Problem description

A process-and-gather operation consists of reading the tiles composing the image from the

disks (on the several server nodes), performing a neighborhood-independent operation on the

tiles, gathering the processed tiles in a single address space, and merging the tiles to form the

final visualization window. The server nodes perform the neighborhood-independent operation,

Fig. 7.3 CAP imaging-package data-types

Fig. 7.4 Sequential processing of a window, tile by tile

1. class WindowT {

2. char* FileName;

3. int PositionX, PositionY;

4. int SizeX, SizeY;

5. char* DataP;

6. PixelDescriptorT Descr;

7. };

1. class TileT {

2. int DiskIndex

3. int LocaTileIndex;

4. int PositionX, PositionY;

5. int SizeX, SizeY;

6. char* DataP;

7. PixelDescriptorT Descr;

8. };

1. int GetNextTileInWindow (WindowT* windowP, TileT* prevP, TileT* &nextP);

2. void MergeAndAddTile (WindowT* windowP, TileT* tileP);

3. void ProcessTile (TileT* inputP, TileT* &outputP);

4. void ProcessWindowByTile (WindowT* inputP, WindowT* &outputP)

5. {

6. TileT* prevP = 0;

7. TileT* nextP;

8. TileT* processedTileP;

9. outputP = new WindowT (...);

10. while (GetNextTileInWindow (inputP, prevP, nextP)) {

11. ProcessTile (nextP, processedTileP);

12. MergeAndAddTile (outputP, processTileP);

13. prevP = nextP;

14. }

15. }
82

Parallel Imaging

The parallel process-and-gather operation

Ù

and send the processed tiles to the client PC, where processed tiles are merged to form the final

image. Linear filtering can be carried out according to a process-and-gather scheme (Fig. 7.5).

The linear operation is performed on each tile, assuming that elements beyond the tile border

are set to 0. The linear filtering operation generates enlarged tiles. After filtering, tiles overlap.

When merging the tiles to form the final image, the overlapping part of the tiles are added

together, leading to the correct final result. As an example, we filter a 1-D gray-level discrete

signal, by averaging elements with a 3-by-1 convolution kernel (Fig. 7.5). The 3-by-1 convolu-

tion kernel is applied to an 8-element vector, with and without tiling. Both situations assume

that elements outside the range of the vector are 0. With tiling, the filter is applied to two 4-ele-

ment vector slices, and both vector slices grow to 6 elements after filtering. The overlapping

parts of the vector slices are then added at tile-merging time to recover the correct 8-element

vector.

7.3.2. Modelled single-PC execution schedule

This hardware configuration consists of a single PC reading data from the disks, performing

the neighborhood-independent operations on all tiles, and merging the processed tiles. We

assume that the disks can read the tiles faster than the processor can process them (Fig. 7.6).

The schedule described in Figure 7.6 guarantees that the PC processor is busy at all times, after

the first tile has been fetched. In this model, all disk accesses but the first one are performed

while the processor carries out computations.

7.3.3. Modelled multiple-PC execution schedule

Figure 7.7 shows the ideal execution schedule for a multiple server node situation. We assume

that the disks read tiles faster than the processors can process them, that the network transfers

processed tiles faster than the processor can produce them, and that the client PC merges pro-

cessed tiles faster than the network can transfer them.

Fig. 7.5 Applying a linear filtering operation to a 1-D discrete signal.

(a) standard filtering (b) filtering tiles separately

8 5 7 2 1 9 5 4

4.33 6.66 4.66 3.33 4 5 6 3

8 5 7 2

1 9 5 4

4.33 6.66 4.66 3

3.33 5 6 3

2.33 0.66

0.33 1.33

4.33 6.66 4.66 3.33 4 5 6 3

original 1D discrete signal

tile 1

tile 2

addition

filtering

filter kernel

1/3 1/3 1/3

filtered signal

filtering

filtering

(a) (b)
83

Parallel Imaging

The parallel process-and-gather operation7
In Figure 7.7, horizontal arrows represent disk access, processing operations and network

transfer time. Vertical arrows represent ordering between operations. The critical path is repre-

sented as a smooth light-gray line. As in Section 7.3.2, this schedule ensures that all disk

transfers but the first one, all network transfers but the last P (where P is the number of server

nodes) and all merging operations but the last one are performed while the server node proces-

sors perform the neighborhood-independent tile computations.

7.3.4. Theoretical performance analysis

According to Figure 7.7, the critical path in the pipelined-parallel process-and-gather opera-

tion consists of one disk access, tile processing steps, P network transfers and one

MergeAndAddTile operation, where N is the number of tiles in the window, and P the number

of server nodes in the architecture. We assume that the size of each tile is

(in bytes) and that this size does not change significantly regarding the neighborhood-indepen-

dent computation. The time required to read a tile from a disk is written as

 where ld is the disk latency and 1/τd is the disk throughput. The time

required to transfer data over the network is written as where ln is the

network latency and 1/τn is the network throughput. The time required to process a tile is written

as where τp is the computation time per byte and f gives the complexity

Fig. 7.6 Execution schedule with a single PC and two disks (processor bottleneck)

Fig. 7.7 Execution schedule (multiple single-processor PCs with two disks, slave

processor bottleneck)

disk 0

processor

disk 1

critical path

accesses

accesses
disk 1

disk 0

processor

disk 1

network

disk 0

processor

disk 1

processor

network

critical
path

server

server

client PC

accesses

accesses

accesses

accesses

node 0

node 1

N P⁄

TileSize TileSize×

td ld τd TileSize2⋅+=

tn ln τn TileSize2⋅+=

tp τp f TileSize()⋅=
84

Parallel Imaging

The parallel process-and-gather operation

Ù

of the algorithm as a function of the tile size. The time required to merge a tile into the visual-

ization window is . The duration of the process-and-gather operation is:

(7-1)

The assumptions behind the execution schedule of Figure 7.7 are that tile accesses are faster

than tile processing steps (), where D is the number of disks per server node, that P

network transfer times are faster than a single tile processing step (), and that merging

a tile into a window is faster than a network transfer step ().

7.3.5. CAP specification of the process-and-gather operation

CAP threads are grouped hierarchically. In the context of this chapter, the CapServerT thread

hierarchy (Fig. 7.8) consists of a client thread running on the client node (line 3) and two sets

of threads running on the server nodes (lines 4 and 5). The TileServer threads perform I/O oper-

ations (ReadTile and WriteTile, lines 16 to 19) and the ComputeServer threads perform

computations on the tiles extracted from the disks (e.g. filtering, lines 25 and 26). Each server

node comprises one ComputeServer thread and as many TileServer threads as disks. The CapS-

erverT thread hierarchy can perform two parallel operations: the process-and-gather and the

exchange-process-and-store operations. The current and the next section specify the behavior

of these two operations.

Fig. 7.8 Parallel storage and processing system threads

tm τm TileSize2⋅=

T td
N

P
---- tp⋅ P tn⋅ tm+ + +=

td D tp⋅<

P tn tp<⋅

tm tn<

1. process CapServerT {

2. subprocesses:

3. ClientProcessT Client;

4. TileServerT TileServer[NDISK]; // NDISK:total nb of disks

5. ComputeServerT ComputeServer[NSTOR]; // NSTOR:total nb of

6. operations: // storage/processing nodes

7. ProcessAndGather (FilterT filter)

8. in WindowT Input out WindowT Output;

9. ExchangeProcessAndStore (FilterT filter)

10. in WindowT Input out void Output;

11. ...

12. };

13.

14. process TileServerT {

15. operations:

16. ReadTile

17. in TileReadingRequestT Input out TileT Output;

18. Writetile

19. in TileWritingRequestT Input out void Output;

20. ...

21. };

22.

23. process ComputeServerT {

24. operations:

25. Filtering (FilterT filter)

26. in TileT Input out TileT Output;

27. };
85

Parallel Imaging

The exchange-process-and-store operation7
Figure 7.9 is the CAP specification of the process-and-gather operation declared in Figure 7.8

(lines 7-8). This program applies in a pipeline-parallel manner a linear filter to all tiles within a

window specified by the WindowT Input class instance. The WindowT class consists of a win-

dow position, and a file name (see Section 7.2.2). The CAP parallel while expression semantics

(Fig. 7.9, lines 4 to 9) is to perform in parallel the body of the pipeline (lines 6 to 8). The parallel

while expression iteratively calls the GetNextTileInWindow split function (line 4, first parallel

while parameter) until it returns 0. Each token generated by the call is immediately (before the

next token is generated) sent to the appropriate TileServer thread which reads a tile (line 6). The

tile is then processed by the ComputeServer thread (line 8). Tiles sent to different server nodes

are processed in parallel. Tiles sent to the same server node are processed in pipeline: the

TileServer thread fetches the next tile, while the ComputeServer is processing the previous tile.

When a tile has been processed, it is returned to the Client PC (line 4, third initialization param-

eter) where it is merged using the MergeTile routine (line 4, second initialization parameter) into

the final window (line 4, fourth initialization parameter).

The program given in Figure 7.9 performs in a pipeline-parallel manner the operations per-

formed sequentially by the program of Figure 7.4. It specifies all communications and

synchronizations required to implement the execution schedule of Figures 7.6 and 7.7. If a sin-

gle PC with two disks is available, the process-and-gather operation (Fig. 7.9) follows the

schedule described Figure 7.6. If two server nodes with a total number of 4 disks are available,

it follows the schedule given in Figure 7.7.

7.4. The exchange-process-and-store operation

7.4.1. Problem description

We consider the situation where the source image is read from disks, and the target image is

written to disk(s). Both, input and output images are divided into tiles stripped over the disks on

the several server nodes. Before filtering can be performed on a tile, tile sides must be

exchanged: a tile must receive pixels from its 8 neighboring tiles. The width of the border

exchanged between tiles is defined as w and depends on the filtering operation (Fig. 7.10).

Neighboring dependent operations may for example consist of non-linear kernel operation such

as erosions or dilations.

Fig. 7.9 CAP process-and-gather operation

1. operation CapServerT::ProcessAndGather (FilterT filter)

2. in WindowT Input out WindowT Output

3. {

4. parallel while (GetNextTileInWindow, MergeTile, Client, WindowT Window)

5. (

6. TileServer[thisTokenP->DiskIndex].ReadTile

7. >->

8. ComputeServer[thisTokenP->DiskIndex].Filtering (filter)

9.)

10. }
86

Parallel Imaging

The exchange-process-and-store operation

Ù

We assume that there are enough disks to ensure that disk(s) throughput is superior to the pro-

cessor(s) throughput, i.e. our algorithm is always compute bound. The CAP runtime library

incorporates a tile cache keeping loaded tiles in memory. The tile cache works according to a

least-recently used scheme. Provided that the cache can store at least 3 tile rows, most of the

required tiles will be in memory during a given computation step. Considering a tile size of 256-

by-256 pixels or 64KB, in a 4096-by-4096 image, 3 rows represent 24 tiles, or 1.5MB, well

below the typical memory size of current PCs. In the theoretical analysis and experimental mea-

surement sections, we consider two situations: tile cache disabled, tile cache enabled.

We select an execution schedule where the processors are always busy. We must ensure that

the required data to compute a given tile (or part of it) is in memory when the computation starts,

i.e. the required data is read from the disks, and exchanged between the neighboring server

nodes before the computation is started.

To achieve this result, all server nodes work in parallel, and each server node runs a four-step

pipeline. The first step consists of reading tiles from disk (possibly cached in memory). During

the second pipeline step, the server node computes the central part of the tile and in parallel

reads the neighboring tiles borders from the other server nodes. During the third pipeline step,

the server node computes the border of the tiles after having received the neighboring tile bor-

ders. During the fourth pipeline step, the server node writes the computed tile back to disk. The

tile central part is defined as the part of the tile that is not affected by the neighboring tile sides.

The tile border is defined as the part of the tile that is affected by the neighboring tile sides. As

opposed to hardware pipelining, the pipeline steps are not performed synchronously: the only

guarantee is that a given tile will undergo the four pipeline steps in the specified order.

Tiles are allocated to server nodes so as to ensure proper load-balancing. Assuming P server

nodes, the tile disk index n is processed by the server node n mod P. For example, in Figure 7.11,

tile (4,6) is stored as local tile 12 on disk 2. On a 2 server node machine, tile (4,6) will be pro-

cessed by server node 0. In the present allocation of tiles to disks, adjacent tiles on the same row

are processed by different server nodes.

Figure 7.11 shows the four stages pipeline activity pattern during a computation step, with 2

server nodes. During the algorithm step shown in Figure 7.11, server node 0 (resp. 1) reads tiles

(3,9) (resp. (3,8)) from disk, processes the central part of tile (2,6) (resp. (2,5)), computes the

Fig. 7.10 Borders exchanged during a neighborhood dependent operation

3-51

2-301-30

2-51

3-72 0-73

3-30

0-52

1-73

w

87

Parallel Imaging

The exchange-process-and-store operation7
border of tile (2,4) (resp. (2,3)) after having exchanged the neighboring tile sides, and writes tile

(2,2) (resp. (2,1)) to disk. For the next computation step, the activity pattern is shifted two tiles

along the arrow. The tiles are scanned in serpentine order so as to benefit from the tile cache.

A number of trade-offs must be taken into considerations:

• The basic activity pattern can be adapted so that each server node processes more than

one tile during each computation step. This reduces the number of synchronizations

during the course of the algorithm, but increases the pipeline startup cost.

• For the same reasons, an increase in tile size reduces the number of synchronizations

during the execution of the algorithm, but increases the pipeline startup cost.

• As explained in Section 7.2.2, the tile allocation scheme selected in this chapter ensures

that neighboring tiles are allocated on different server nodes in order to improve load

balancing. This in turn increases the number of communications required during each

computation step. An alternative tile allocation scheme could optimize communications

at the expense of load balancing, and would be easy to specify in CAP.

7.4.2. Theoretical performance analysis

The theoretical performance analysis is done under two separate assumptions: disabled tile

cache and enabled tile cache.

We first assume that the tile cache is disabled. During the algorithm execution, each server

node receives requests from the other server nodes. To serve these requests each server node

Fig. 7.11 Activity pattern among image tiles during a computation step

1-70-7

3-42-40-43-2 1-4

2-5 3-5 0-6

1-8 3-9

0-11

3-8

1-12 2-12

3-6

tiles read from disks

border processing

tiles in memory

1

2

3

4

0 1 2 3 4 5 6

ti
le
 r
o
w
 i
n
d
e
x

tile column index

1-10

1-3
d
is
k
 i
n
d
e
x

lo
c
a
l
ti
le
 i
n
d
e
x

0-6 tiles written back to the disks

2-61-6

0-9 1-9 2-9

1-3 2-3

2-8

1-11 2-11 3-11 0-12

0-10

3-12

2-7

1-10

0-13

0-5

3-7

2-10

1-13

7 8 9

0-3

0-0 1-1 2-11-0 2-0 3-0 0-1

0

3-3

3-1 0-2 1-2

tile (4,6)

0-7

2-6

first pipeline step

central part processing

third pipeline step

fourth pipeline step

second pipeline step
88

Parallel Imaging

The exchange-process-and-store operation

Ù

must in the worst case read nine tiles from disks (since the cache is disabled). During each com-

putation step, four activities are carried out simultaneously. Each server node reads nine tiles

from disks, communicates with the other server nodes to obtain at most 4 tile sides and 4 tile

corners, computes one tile, and writes one tile to the disk. Assuming that the tile processing

operation is a computation intensive operation (as opposed to data-intensive), we try to keep the

server node processors busy at all times by reading in advance data from the disks.

Assuming that the size of each tile is (in bytes), the time required to read

a tile from the disk is written as where ldr is the read disk latency

and 1/τdr is the read disk throughput. The time required to write a tile to the disk is written as

 where ldw is the write disk latency and 1/τdw is the write disk

throughput. During one algorithm step, each server node reads in the worst case nine tiles from

the disk, and writes one tile to the disk. This yields equation (7-2). The time required to transfer

tile borders (resp. corners) over the network is written as where ln is

the network latency, 1/τn is the network throughput. Assuming that the width of a tile border to

be exchanged is defined as w, we determine that the size of a tile border is

, and that the size of a tile corner is . This leads to

equation (7-3). The time required to process a tile is written as where τp
is the computation time per byte and f gives the complexity of the algorithm as a function of the

tile size. When the pipeline reaches the steady state, equations (7-2), (7-3) and (7-4) determine

respectively the disk access, the network transfer and the processing times during each step of

the algorithm:

disk access time: (7-2)

network transfer time: (7-3)

processing time: (7-4)

In order to establish the total parallel execution time, we need to compute the pipeline startup

and termination time. The pipeline startup cost is the time of preloading one tile on each server

node, i.e tdr. The pipeline termination cost is the time of writing back one tile on each server

node, i.e tdw. Here, we ignore the small communication time between the client and the server

nodes when the program starts or terminates. We suppose that all server nodes start and termi-

nate at the same time. The total parallel execution time consists of the pipeline startup cost, the

computation time, and the pipeline termination time. We define the number of server nodes as

P and the number of tiles to be processed as N. Equation (7-5) establishes the total parallel exe-

cution time.

(7-5)

The last equality is true only if the algorithm is compute-bound, i.e. processing-intensive

enough to hide the disk access and the network transfer time. Provided that the number of tiles

TileSize TileSize×

tdr ldr τdr TileSize2⋅+=

tdw ldw τdw TileSize2⋅+=

tn ln τn DataSize⋅+=

DataSize TileSize w⋅= DataSize w2=

tp τp f TileSize()⋅=

Td 9 ldr τdr TileSize
2

⋅+()= ldw τdw TileSize
2

⋅+()+

Tn 4 ln τn TileSize w⋅ ⋅+()= 4 ln τn w
2

⋅+()+

Tp τp f TileSize()⋅=

T tdr
N

P
---- max Td Tn Tp, ,()⋅ tdw tdr= N

P
---- Tp⋅ tdw+ + + +=
89

Parallel Imaging

The exchange-process-and-store operation7
is large, the relative startup cost can become very small. The trade-off in the tile size is that (1)

the larger the tile size, the smaller the overhead due to synchronization and communications; (2)

the smaller the tile size, the smaller the overhead due to pipeline startup cost.

We now assume that the tile cache is enabled. When the pipeline reaches the steady state the

number of read tiles per server node is reduced to one (vs. nine). Equations (7-3) and (7-4)

remain unchanged. Equation (7-2) becomes:

disk access time: (7-6)

Assuming that the time until the pipeline reaches the steady state (pipeline startup and first tile

row computation) is not significant and that the algorithm is compute-bound, then the total com-

putation time with or without tile cache is similar, equation (7-5) remains unchanged. The only

difference between the two situations is the number of disks required to keep the algorithm com-

pute-bound.

The speedup function is given by equation (7-7). It gives a bound on the number of server

nodes that can effectively contribute to the parallelization of the application.

(7-7)

7.4.3. CAP specification

The CAP specification of the exchange-process-and-store operation is given in Figure 7.12

(lines 28 to 41). The input token to the exchange-process-and-store operation is a window

description (image name, size, position, but no data) and the output token is void because the

filtered image is directly stored on the disk without producing any output. The indexed parallel

construct semantics (lines 32 to 35) consists of: one or more iteration expressions (lines 33 and

34), a split-function name (line 35, DuplicateWindow), a merge-function name (line 35, second

initialization parameter, void), an output token (line 35, fourth initialization parameter, Result)

initialized in the specified address space (line 35, third initialization parameter, Client) and a

CAP expression as body of the loop (lines 36 to 40). The split-function generates tokens which

are forwarded to the TileFiltering operations. The merge-function indicates how to merge the

parallel-construct body-output token into the parallel-construct output-token. The program con-

sists of a double parallel iteration. The first loop (lines 33) iterates on successive window tile

rows and the second loop (line 34) iterates on all tiles of one input window tile row. As

explained in Figure 7.11, the second loop iterates from left to right on even rows and from right

to left on odd rows. At line 35, the split-function DuplicateWindow duplicates the window

parameters; the merge-function is void, indicating that the parallel-construct body-output is

used for synchronization purposes only. The indexed parallel expression executes in parallel

instances of its body (lines 36 to 40), as many times as expressed in the index specification (lines

33 and 34). The body consists of two parts, performed in parallel: filter the tile by calling the

Td ldr τdr TileSize
2

⋅+()= ldw τdw TileSize
2

⋅+()+

S P()
NTp

tdr
N

P
---- Tp tdw+⋅+

---=
90

Parallel Imaging

The exchange-process-and-store operation

Ù

TileFiltering operation (line 37) and then save the filtered tile (line 39). The flow_control spec-

ification (line 31) indicates that only 2*P instances of the body should be executed

simultaneously; i.e. each processor receives two tile processing requests. This ensures pipelin-

ing while avoiding memory overflow (see Chapter 4).

The TileFiltering parallel operation (lines 5-26) is called in pipeline by the ExchangeProces-

sAndStore operation. The tile filtering operation filters a specific tile depending on the value of

the TileFiltering parallel operation parameters (Row, Col). Let us call this tile the center tile.

The filtering of the center tile requires data from its neighboring tiles (called North, North_East,

East, etc., lines 1-3). The TileFiltering operation is divided into two parts. The first part (lines

8-23) reads the center tile from the local disk, filters its central part, and ask the neighboring

server nodes for the required data. All this work is launched in parallel by the indexed parallel

Fig. 7.12 CAP specification of the exchange-process-and-store operation

1. enum NeighbourhoodT

2. { Center, North, North_East, East, South_East,

3. South, South_West, West, North_West };

4.

5. operation capServerT::TileFiltering (int Row, int Col)

6. in windowsT Input out TileT Output

7. {

8. indexed

9. (NeighbourhoodT n = Center; n <= North_West; n++)

10. parallel

11. (SplitToTiles(Row, Col), MergeToTileWithBorders(Row, Col),

12. ComputeServer[ComputeIndex(Row,Col)], TileWithBordersT Result)

13. (

14. ifelse (n == Center)

15. (

16. TileServer[thisTokenP->DiskIndex].ReadTile

17. >->

18. ComputeServer[ComputeIndex(Row, Col)].CenterFiltering

19.)

20. (// else: n != Center

21. TileServer[thisTokenP->DiskIndex].ReadBorder

22.)

23.)

24. >->

25. ComputeServer[ComputeIndex(Row, Col)].BorderFiltering;

26. }

27.

28. operation capServerT::ExchangeProcessAndStore (int P)

29. in windowsT Input out void Output

30. {

31. flow_control (2*P)

32. indexed

33. (int Row = 1; Row <= Rmax; Row++)

34. (int Col = 1; Col => 1 && Col <= Cmax; Col = NextCol(Row, Col))

35. parallel (DuplicateWindow, void, Client, void Result)

36. (

37. TileFiltering (Row, Col)

38. >->

39. TileServer[thisTokenP->DiskIndex].WriteTile

40.);

41. }
91

Parallel Imaging

Performance results7
loop (lines 8-10) at the beginning of the operation. The loop iterates over all the tiles, i.e. the

center tile and the eight neighboring tiles. The center tile and neighboring tiles are differentiated

at line 14 by the ifelse statement. The center tile is processed at lines 15-19; at line 16 it is read

from the local disk, and then at line 18, its central part is filtered. The request for neighboring

data is performed in the second part of the ifelse statement at lines 20-22. Within these lines, a

request is send to each neighboring server node (selected by the thisTokenP->DiskIndex expres-

sion). The results of these requests are collected in the Result variable by the

MergeToTileWithBorder merge function executed by the local ComputeServer. Once all the

results are collected, the Result variable goes into the second part of the operation. The second

part of the TileFiltering operation consists of filtering the remaining part of the tile, i.e. the bor-

ders (lines 24-25). This is performed by the BorderFiltering operation executed by the local

ComputeServer.

The CAP thisTokenP variable refers to the input token of the operation about to be executed.

For example, at lines 16, 21 and 39, the expression thisTokenP->DiskIndex selects, based on

the DiskIndex field of the current token, the appropriate TileServer thread (see definition in Fig-

ure 7.8, line 14) to execute the next operation. The DiskIndex value is set at run time by the split

functions (DuplicateWindow, or SplitToTiles) according to the mapping of the tiles to the disks

(Fig. 7.2).

7.5. Performance results

In this section we present and discuss performance results, and compare them to the theoreti-

cal models of Section 7.4.2.

Fig. 7.13 Single processor computation time according to the filtered data size

(MBytes)

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

Filtered image portion (MBytes)

T
im

e
 [
s
e
c
]

Tile size : 512x512 pixels

pipeline startup cost : ~1s

Tile size : 256x256 pixels

pipeline startup cost : ~0.5s
92

Parallel Imaging

Performance results

Ù

We run the performance measurements on a network of Bi-PentiumPro (200MHz), connected

through Fast Ethernet (100 Mbits/s). We filter a 4096x4096 pixel graylevel image (16 MBytes)

split in 256 (resp. 64 tiles) of size 256x256 pixels (resp. 512x512 pixels). The tiles are stored on

several disks (from one to nine per computer). The filtering operation consists of applying a 5x5

median filter mask [Weeks96] to the whole image.

Figure 7.13 displays the computation time as a function of the image size (MBytes). These

results are computed locally on a single PentiumPro PC and image tiles are stored on two local

disks. The cache is disabled. The diagram shows that a smaller tile size reduces the pipeline star-

tup cost but increases the synchronization overhead, since more image tiles need to be

processed. For reference, performing locally and sequentially the same tile-based algorithm

with the whole image preloaded in memory (16 MBytes) takes about 44s. This shows that disk

accesses are almost completely hidden during the computation. It also illustrates the ability of

CAP to properly handle pipelining: programs reading data from disk have the same perfor-

mance as programs working directly from main memory.

Figure 7.14 presents the speedup results when filtering in parallel a 16MByte image. With the

cache disabled, two disks are required for each processor. With the cache enabled, a single disk

per processor is sufficient. To produce speedup figures, we compare the speed of the parallel

program (tile-based program) running on multiple processors (up to ten processors located on

five Bi-PentiumPro PC) with the sequential program performance. In Figure 7.14, the continu-

ous thick line represents the ideal speedup, and the dashed thick line represents the theoretical

speedup according to equation (7-7). The dip in the theoretical speedup curve for 6 processors

is due to an imperfect load balancing, expressed by the ceiling operator.

Performance results are similar with and without cache. In both situations the algorithm is

compute bound, and the total execution time is mostly computation time. In contradiction with

the theoretical previsions, we achieve better results for larger tiles. The reason is that the theo-

retical analysis assumes that the unitary processing throughput τp of equation (7-4) is constant

independently of the tile size. In practice this value tends to increase for smaller tile size,

because of the overhead due to the larger number of tiles.

The theoretical previsions for four processors are close to the experimental results. With

 (disk latency), (disk throughput), Tile-

Size = 512x512 pixels, N = 64 (number of tiles), P = 4 (number of server nodes),

(time needed to filter one tile) we obtain a theoretical total time of (see Section

7.4.2) against 11.9s measured. The difference is explained by two factors: (1) the theoretical

pipeline startup cost underestimates the actual pipeline startup cost; (2) the load is not perfectly

balanced between the processors. In fact, with 64 tiles and 4 processors (N = 64, P = 4) equation

(7-5) (see Section 7.4.2) predicts an ideal balanced load. Practically, the processors (PCs under

WindowsNT) work at a slightly different pace and terminate with a time difference of at most

10% of the total processing time.

ldr ldw 18.5ms= = 1 τdr⁄ 1 τdw⁄ 3.3MBytes/s= =

Tp 0.69s=

T 11.24s=
93

Parallel Imaging

Summary7
With ten processors, the efficiency falls down to 75% against 88% theoretically (equation

(7-7), Section 7.4.2). Nevertheless, the processors are kept busy during the whole program exe-

cution. The reason is that with current PC hardware, processing time is spent handling the

TCP/IP stack protocol. Therefore the computation part of the algorithm does not benefit from

the full processor activity as it does on a single-processor execution (i.e. without communica-

tion). We measured the TCP/IP protocol overhead by running the program without any disk

accesses and computations, and found that it is about 1s. Subtracting it from the experimental

measurements, the resulting time is in accordance with the theoretical predictions.

7.6. Summary

This chapter shows that CAP enables the compact specification of pipelined-parallel imaging

applications. The CAP environment is not restricted to the process-and-gather or exchange-pro-

cess-and-store operations described in this chapter. It may be applied to various imaging

algorithm, including non-oblivious algorithms1. Once the imaging library is available, the

implementation and test effort for the parallelization of the two applications described in this

Fig. 7.14 Speedup as function of the number of processors

1 Oblivious algorithms are algorithms whose execution flow is independent of the content of the data

being processed.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Number of processors

S
p
e
e
d
-u
p

Tile size : 256x256 pixels, Cache disabled

Tile size : 256x256 pixels, Cache enabled

Tile size : 512x512 pixels, Cache disabled

Tile size : 512x512 pixels, Cache enabled

Ideal speedup

Theorical speed-up
94

Parallel Imaging

Summary

Ù

chapter requires only a few days. The generated programs run on PCs under WindowsNT and

on Sun workstations under Solaris. With a limited effort, reusable and customizable parallel

code can be produced.

The CAP imaging library supports the subdivision of images in tiles. The CAP language han-

dles the communication and synchronization of messages in a parallel program. These two

features of the CAP environment free the programmer to concentrate on the algorithm(s) to be

applied. Once the algorithm has been designed, the programmer can either reuse existing CAP

programs and modify the processing operation performed on each tile, or create new CAP pro-

grams to handle new parallel execution schedules.

Performance measurements on a slave computers comprising two disks per processor show

that we obtain similar results by reading the image directly from disks or from memory. There-

fore, the CAP-specified algorithm achieves excellent pipelining between disk accesses and

filtering operation. In the multi-processor configuration, the speed-ups achieved with the 4-pro-

cessor and 10-processor configurations are 3.71 and 7.5 respectively. Disk accesses and

network transmissions are hidden during the computation. Except at the beginning and the end

of the algorithm, the processor utilization is 100%.
95

Parallel Imaging

Summary7
96

Ù

8 Parallel Cellular Automata

We are interested in running in parallel cellular automata. We present an algorithm which

explores the dynamic remapping of cells in order to balance the load between the processing

nodes. The parallel application runs on a cluster of PCs connected by Fast Ethernet. As a typical

example of a cellular automaton we consider the image skeletonization problem. Skeletonization

requires spatial filtering to be repetitively applied to the image. Each step erodes a thin part of the

original image. After the last step, only the image skeleton remains. Skeletonization algorithms

require vast amounts of computing power, especially when applied to large images. Therefore,

skeletonization application can potentially benefit from the use of parallel processing. Two differ-

ent parallel algorithms are proposed, one with a static load distribution consisting in splitting the

cells over several processing nodes and the other with a dynamic load balancing scheme capable

of remapping cells during the program execution. The content of this chapter is published in

[Mazzariol00a].

8.1. Introduction

We are interested in running in parallel cellular automata. We present an algorithm which

explores the dynamic remapping of cells in order to balance the load between the processing

nodes. The parallel application runs on a cluster of PCs (Windows NT) connected by Fast Eth-

ernet (100 Mbits/sec.).

A general cellular automaton [Sipper97][Toffoli87] can be described as a set of cells where

each cell is a state machine. To compute the next cell state, each cell needs some information

from neighboring cells. There are no limitations on the kind of information exchanged nor on

the computation itself. Only the automaton topology defining the neighbors of each cell remains

unchanged during the automaton’s life.

Let us describe a simple solution for the parallel execution of a cellular automaton. The cells

are distributed over several threads running on different computers. Each thread is responsible

for running several automaton cells. Every thread applies successively to all its cells a 3 steps

algorithm: (1)(2) exchange (send and receive) neighboring information, (3) compute the next

cell state. If communications are based on synchronous message passing, the whole system is

synchronized at exchange time because of the neighborhood dependencies. Due to the serial

execution of communications, computations and multiple synchronizations, some processors

remain partly idle and the achievable speedup does not scale when increasing the number of

processors.

Improved performance can be obtained by running communications asynchronously. One can

then overlap data exchange with computation. Neighboring information is received during the

computation of the previous step and sent during the computation of the next step. This solution

offers improved performances, but still does not achieve a linear speedup. Like in the skeleton-
97

Parallel Cellular Automata

Image skeletonization algorithm8
ization problem, discussed in Section 8.2, the computation load may be highly data dependent

and may considerably vary from cell to cell. Furthermore, the parallel application may run on

heterogeneous processors inducing a severe load balancing problem. Due to the neighboring

dependencies, cells consuming more computation time slow down the whole system. To reach

an optimal solution we need a flexible load balancing scheme.

One solution is to allow each cell to be dynamically remapped during program execution. One

or more cells may be displaced from overloaded threads to partly idle threads. Cell remapping

requires 3 steps after terminating the computation of the cell to be remapped: (1) notify every

thread about the decision to remap a given cell, (2) wait for acknowledgement from all threads

and (3) remap the cell. Step (2) ensures that the neighborhood information for the remapped cell

is redirected towards the target thread. In the applications we consider, the overhead for remap-

ping a cell is insignificant compared with the computation time. For the sake of load balancing,

we will present in Section 8.4 a strategy for cell remapping.

As a typical example of a cellular automaton, we consider the image skeletonization

problem [Schalkoff89][Jain89][Manzanera99]. Skeletonization requires spatial filtering to be

repetitively applied to the image. Each step erodes a thin part of the original image. After the

last step, only the image skeleton remains. Skeletonization algorithms require vast amounts of

computing power, especially when applied to large images. Therefore, skeletonization applica-

tion can potentially benefit from the use of parallel processing.

To parallelize image skeletonization, we divide the original image into tiles. These tiles are

distributed across several threads. Each thread applies successively the skeletonization algo-

rithm to all its tiles. Threads are mapped onto several processors according to a configuration

file. Tiles cannot be processed independently from their neighboring tiles. Before each compu-

tation step, neighboring tiles need to exchange their borders. In addition, each computation step

depends on the preceding step.

Section 8.2 presents the image skeletonization algorithm. Section 8.3 develops a paralleliza-

tion scheme. Section 8.4 shows how to load balance the application by cell remapping. The

performance analysis is presented in Section 8.6.

8.2. Image skeletonization algorithm

Image skeletonization consists of extracting the skeleton from an input black and white image.

The algorithm erodes repeatedly the image until only the skeleton remains. The erosion is per-

formed by applying a 5x5 thinning filter to the whole image. The thinning filter is applied

repeatedly, thinning the input image pixel by pixel. The algorithm ends once the thinning pro-

cess leaves the image unchanged. Figure 8.1 shows a skeletonized image.

Since several skeletonization algorithms exist, let us describe the one providing excellent

results [Jain89]. Let be the number of white to black (0 1) transitions in theTR P1() →
98

Parallel Cellular Automata

Image skeletonization algorithm

Ù

ordered set of pixels describing the neighborhood of pixel (Fig. 8.2).

Let be the number of black neighbors of (black = 1).

 is deleted, i.e. set to background (white = 0) if:

(8-1)

The process is repeated as long as changes occur. This algorithm is highly data dependent.

One thinning filter step modifies only small parts of the input image and leaves the major part

unchanged. In the next section we take advantage of this fact to improve the algorithm.

8.2.1. Improvement of the image skeletonization algorithm

To improve the image skeletonization algorithm, we divide the input image into cells (or

tiles). The program maintains a list of living and dead cells. A cell is dead if further applications

of the thinning filter leave the cell unchanged. A cell is alive if it is not dead. The algorithm

Fig. 8.1 Skeletonization algorithm example

Fig. 8.2 Neighborhood of pixel

Original image Skeletonized image

P2 P3 P4 ..., P9 P2, , , , P1

NZ P1() P1

P3

P4

P5

P2

P1

P6

P9

P8

P7

P1

P1

 2 NZ P1() 6≤≤

and TR P1() 1=

and P2 P4 P8⋅ ⋅ 0 or TR P2() 1≠=

and P2 P4 P6⋅ ⋅ 0 or TR P4() 1≠= 







99

Parallel Cellular Automata

Parallel skeletonization with static load distribution8
applies the thinning filter to each living cell, decides if the cell is still alive and if necessary

updates the list of living and dead cells.

This algorithm improves considerably the performance of the skeletonization since a signifi-

cant part of the image is removed from the computation. What should be the cell size? A small

cell size ensures a fine grain selection of the living and dead parts of the image, but increases

the cell management overhead. The cell size should be chosen so as to keep the management

overhead time small compared with the average computation time.

8.3. Parallel skeletonization with static load distribution

To parallelize the skeletonization algorithm, the cells are uniformly distributed over N pro-

cessing nodes. Each processing node applies repeatedly the thinning filter to all its living cells.

Since the cells can not be processed independently from their neighbors, the processing nodes

may need to exchange neighboring information before applying the thinning filter to a given

cell. The program ends once all the cells of every processing node are dead. This parallelization

scheme ensures that all processing nodes are performing the same task.

Initially the cells are distributed in a round robin fashion over the N processing nodes. For

example if there are 4 processing units, the cells (Fig. 8.3) are distributed in row major order

modulo the number of nodes ((L0, C0)->P0, (L0, C1)->P1,...). More generally, if there are

LMax lines, CMax columns and N processing nodes, the distribution of the cells over the pro-

cessing nodes in function of the line and column numbers (L, C) is given by:

(8-2)

Fig. 8.3 Division of the input image into cells

Original image splitted image

C0 C1 C2 C3 C4 C5 C6 C7

L7

L0

L1

L2

L3

L4

L5

L6

NodeIndex L C,() L CMax⋅ C+() Modulo N=
100

Parallel Cellular Automata

Parallel skeletonization with static load distribution

Ù

In the parallel algorithm, the overhead for the exchange of information between neighboring

cells increases since communication and synchronization is needed between processing nodes

responsible for adjacent cells. The parallel program requires therefore larger cell sizes.

To develop the parallel application, we use the Computer-Aided Parallelization (CAP) frame-

work, which allows to manage the neighborhood dependencies and the data flow

synchronization. The CAP Computer-Aided Parallelization framework is specially well suited

for the parallelization of applications having significant communication and I/O bandwidth

requirements. Application programmers specify at a high level of abstraction the set of threads

present in the application, the processing operations offered by these threads, and the flow of

data and parameters between operations. Such a specification is precompiled into a C++ source

program which can be compiled and run on a cluster of distributed memory PCs. A configura-

tion file specifies the mapping between CAP threads and operating system processes possibly

located on different PCs. The compiled application is executed in a completely asynchronous

manner: each thread has a queue of input tokens containing the operation execution requests and

their parameters. Network I/O operations are executed asynchronously, i.e. while data is being

transferred to or from the network, other operations can be executed concurrently by the corre-

sponding processing node. If the application is compute bound, in a pipeline of network

communication and processing operations, CAP allows to hide the time taken by the network

communications. After initialization of the pipeline, only the processing time, i.e. the cell state

computation, determines the overall processing time.

Each processing node contains two threads (IOThread, ComputeThread) running in one

shared address space. The address space stores the data relative to all its cells. The IOThread

runs the asynchronously called ReceiveNeighbouringInfo and SendNeighbouringInfo functions.

The ComputeThread runs the ComputeNextCellStep function. The ReceiveNeighbouringInfo

function receives the neighboring information from the other cells and puts it in the local pro-

cessing node memory. The SendNeighbouringInfo function sends the neighboring information

from the local cells to the neighboring cells. The ComputeNextCellStep applies the skeletoniza-

tion filter to the given cell. Before starting the computation, the ComputeNextCellStep waits for

the required neighboring information and until the current neighboring information has been

sent. Once the filter is applied, the ComputeNextCellStep determines if the cell is still alive, and

if necessary updates the list of living and dead cells.

Each processing node runs the same schedule. The schedule comprises a main loop executing

for all the living cells of the local address space one running step. A running step consists of

executing asynchronously the SendNeighbouringInfo, ReceiveNeighbouringInfo functions and

in parallel the ComputeNextCellStep function for the given cell. Figure 8.4 shows a schematic

view of the schedule. The CAP tool allows the programmer to specify this schedule by appro-

priate high-level language constructs. The CAP specification is similar to the exchange and

process operation described in the previous chapter (Section 7.4.3, Fig. 7.12).

When the program starts, all the cells are at step zero. Each time the thinning filter is applied

to a cell, the cell step is incremented by one. Because of the neighboring dependencies, the dif-
101

Parallel Cellular Automata

Dynamic load balanced parallel scheme8
ferences between the step of a given cell and of its neighbors is at most one. Therefore, during

the program execution, some cells are waiting for their neighbors to perform the computation

of the next step. If all the cells of a processing node are waiting, the processor becomes idle,

reducing the overall performance. To avoid as much as possible such a situation, the parallel

algorithm is improved by computing first the cell with the smallest step value on each process-

ing node.

While some cells are sending their neighboring information or waiting for the reception of

neighboring information, other cells could potentially keep the processor busy. This argument

fails if there is just one cell per processing node or if the cellular automaton topology implies

that every cell is depending on all other cells. In order to run computations in parallel with com-

munications, one may partially compute a cell without knowing the neighboring information.

Cell computation may start while receiving the neighboring information from other cells.

If the total computation load is evenly distributed over the processing nodes, the parallel algo-

rithm can potentially keep all the processors busy. However, in the case of the skeletonization

algorithm, the computation time is highly data dependent. To keep all processors busy, we need

to balance dynamically the computation load.

8.4. Dynamic load balanced parallel scheme

For load balancing, we need to remap the cells during program execution. In order to migrate

a cell from one address space to another, we need to maintain the load (or the inverse of the load,

Fig. 8.4 Parallel skeletonization algorithm schedule for one cell

Wait until send completes

wait until receive completes

SendNeighbouringInfo ReceiveNeighbouringInfo

ComputeNextCellStep

SendNeighbouringInfo ReceiveNeighbouringInfo

reception

is done

by

other

cells

sending

is done

by

other

cells

sending the neighboring information to

neighboring cells

receiving the neighboring information from

neighboring cells

compute the next cell step after having exchanged

the needed neighboring information
102

Parallel Cellular Automata

Dynamic load balanced parallel scheme

Ù

i.e. an idle factor) for each processing node. A simple way of computing the load is presented

here. Let A be the average step value of all cells

(8-3)

For each processing node, we compute an IdleFactor by adding the signed differences

between the processing node cell step values and the average step value A. When the processor

is idle, the IdleFactor is set to a MaxIdleFactorValue minus the number of cell in the processing

node1.

(8-4)

A negative IdleFactor indicates that the cell step values of the corresponding processing node

are behind the other processing nodes. A processing node with a strongly negative IdleFactor

is overloaded and slows other processing nodes which run its neighboring cells. A positive Idle-

Factor indicates that the corresponding processing node is ahead of the others. The processor

of such a processing node may soon become idle since the neighboring dependencies with the

cells of other processing nodes will put it in a wait state. To balance the load, a cell from the

processing node having the most negative IdleFactor should be remapped to the processing

node having the largest positive IdleFactor. The IdleFactor is evaluated periodically, every

time a new cell migration is performed. Between two cell migrations, a specific IntegrationTime

allows the system to take advantage of the previous cell migration.

In order to compute the IdleFactor, one thread, called MigrationThread, is added in each pro-

cessing node. Periodically, a new token is generated and traverses all the MigrationThreads of

every processing nodes. The token is generated in processing node P0, then it visits all process-

ing nodes in the order: P1, P2,..., PN and back to P0. The migration token makes three full

traversals in order to allow the parallel system to decide which cell to remap. During the first

traversal, the migration token collects the number of living cells of each processing node and

the sum of their step values. This information is distributed to all the processing nodes during

the second traversal. During this same traversal, every node computes its IdleFactor. This Idle-

Factor is collected by the migration token and distributed over all processing nodes during the

third and last traversal. Then every node decides in a distributed manner which processing nodes

are involved in the migration.

1 A processing node having no cell to process should have a higher IdleFactor than processing nodes

with cells waiting for neighbouring information.

A
1

NumberOfCells
--- CellStepValue

AllCells

∑=

IdleFactor
CellStepValue A–() if the processor is not idle,

AllCells

∑

MaxIdleFactorValue NumberOfCells, if the processor is idle–





=

103

Parallel Cellular Automata

Dynamic load balanced parallel scheme8
The processing node from which the migration starts, migrates the cell with the smallest step

value. In order to perform the migration, the IOThread broadcasts to every processing node the

migration cell destination and waits for acknowledgment. Once the IOThread receives

acknowledgments from every processing node, no further information for the migrating cell

will be received on the current processing node. The IOThread sends the cell data and all the

previously received neighboring information to the destination processing node. The migration

is done. The time period between each migration cycle is set by the IntegrationTime parameter.

If the IntegrationTime is too short, the processing nodes will waste time for performing useless

cell migrations. In the worst case, a too short IntegrationTime results in migrating all the cells

of a processing node leaving it without any cell. If the IntegrationTime is too large, then the pro-

cessors may become idle before receiving a migrated cell.

Experiments show that it is difficult to find an a good IntegrationTime. In order to improve

the cell remapping strategy, let us introduce the notion of stability. A processing node is stable

if the difference between the CellStep values within a processing node is at most one:

(8-5)

A processing node is unstable, if it is not stable. Since the ComputeNextCellStep function pro-

cesses first the cells with the smallest CellStep value, the stable state is a permanent state if no

cell migration occurs. Without cell migration, each unstable processing node will sooner or later

reach the stable state. The migration cell emission and receiving processing nodes are deter-

mined by the IdleFactor. In order to improve the cell migration strategy, we take into account

two migration rules avoiding in some special cases the migration of cells. We do not migrate

the cell if the cell receiving processing node is in an unstable state. This rule avoids to carry out

consecutive migrations to the same cell receiving processing node. We also do not migrate if

the migrated cell will leave the receiving processing node in a stable state. This rule avoids

migration if the receiving processing node has no major advance compared with the emission

processing node. These two rules are not applied if the receiving processing node is detected to

be idle. The stability information is exchanged in the same way as the IdleFactor.

Fig. 8.5 CAP thread hierarchy

 Processing node is stable Max CellStepValue() Min CellStepValue() 1≤–⇔

1. process SlaveProcessT

2. {

3. subprocesses:

4. IOThreadT IOThread;

5. ComputeThreadT ComputeThread;

6. MigrationThreadT MigrationThread;

7. operations:

8. // ...

9. };

10.

11.

12.

13. process GlobalProcessT

14. {

15. subprocesses:

16. SlaveProcessT SlaveProcess[];

17. MasterThreadT MasterThread;

18. operations:

19. Run

20. in void* inputP out void* outputP;

21. ExchangeMigInfo

22. in void* inputP out void* outputP;

23. // ...

24. }
104

Parallel Cellular Automata

CAP specification

Ù

8.5. CAP specification

Figure 8.5 present the CAP thread hierarchy. The main process GlobalProcessT contains two

subprocesses: the master thread MasterThread (line 17) and the hierarchical process pool Slave-

Process (line 16). The slave processes contain three subprocesses: IOThread (line 4),

ComputeThread (line 5) and MigrationThread (line 6). The IOThread is responsible for sending

Fig. 8.6 CAP specification of the parallel cellular automata

1. operation GlobalProcessT::ExchangeMigInfo

2. in void* inputP out void* outputP

3. {

4. SlaveProcess[0].MigrationThread.{} >->

5. for(int SlaveID = 0; SlaveID < NBSLAVEPROCESS; SlaveID++)

6. (

7. SlaveProcess[SlaveID].

8. MigrationThread.UpdateAndSendMigrationInfo >->

9. SlaveProcess[(SlaveID+1)%NBSLAVEPROCESS].MigrationThread.ReceiveMigInfo

10.);

11. }

12. operation GlobalProcessT::Run

13. in void* inputP out void* outputP

14. {

15. parallel(MasterThread, void result)

16. (

17. (// here is the exchange migration info part

18. void,

19. while(!Finished())

20. (

21. ExchangeMigInfo

22.),

23. void

24.)

25. (// here is the computation part

26. void,

27. indexed

28. (int SlaveID = 0; SlaveID < NBSLAVEPROCESS; SlaveID++)

29. parallel(void, void, MasterThread, void result)

30. (

31. SlaveProcess[SlaveID].ComputeThread.{}

32. indexed

33. (int CellID = 0; CellID < GetNbCells(); CellID++)

34. parallel(void, void, MasterThread, void result)

35. (

36. if(SlaveID == GetCellSlaveID(CellID))

37. (

38. while(IsCellAive(CellID))

39. (

40. SlaveProcess[SlaveID].Run(CellID) >->

41. SlaveProcess[SlaveID].Migrate(SlaveID, CellID)

42.)

43.)

44.)

45.),

46. void

47.)

48.);
105

Parallel Cellular Automata

Performance measurement8
(resp. receiving) the data to (resp. from) the neighbouring cells. The ComputeThread is respon-

sible for performing the computation on each cell located on the current slave. The

MigrationThread exchanges the migration information (IdleFactor,...) between the slaves.

These processes contain all operations required to run the parallel cellular automaton. Figure

8.5, shows only two particular operations: the Run (lines 19-20) and the ExchangeMigInfo (lines

21-22) operations.

The CAP specification of the parallel cellular automaton is given in Figure 8.6. This figure

presents the CAP code for the Run (lines 12-48) and for the ExchangeMigInfo (lines 1-11) par-

allel operations. The Run operation begins with the CAP parallel statement, which divide the

execution flow into two parts executed independently in parallel. The first part (lines 17-24) is

responsible for exchanging the migration information during the program execution. This part

is composed with the CAP while (line 19) statement and a call to the ExchangeMigInfo opera-

tion. The ExchangeMigInfo operation is based on a CAP for (lines 5-10) loop responsible for

forwarding the migration information token (IdleFactor, stability,...) over all the slave proc-

esses. At lines 7-8, the migration information token is updated and sent to the next slave. The

token is received by the next slave at line 9. Then, the CAP for loop is repeated until the token

is forwarded over all slaves. The second part of the Run operation (lines 25-47) runs the cellular

automaton itself. This part is composed with two CAP indexed parallel statement traversing

respectively all the slaves and all the cells. Then, if the cell belongs to the current slave (line 36)

and as long this cell is alive (line 38), the main part of the program is executed (lines 40-41).

The main part is divided into two part executed in pipeline. The first part (line 40) consists of

performing one computation step on the current cell including the communication with the

neighbouring cells. This part is similar to the exchange and process operation described in the

previous chapter (Section 7.4.3, Fig. 7.12). The second part (line 41) checks if a cell needs to be

migrated and if necessary, migrates the current cell to another slave. If the cell is migrated, the

SlaveID variable (which specify on which slave the current cell is located) is modified so that

the next iteration of while loop is performed on the new slave.

This program shows the advantages of the CAP language. When the parallel schedule is com-

plicated, expressing the parallel schedule independently from the serial code becomes an

advantage. In this example, two parallel schedules, i.e. the computation and the migration infor-

mation exchange, are combined using the CAP parallel (line 15) statement. This shows the

compositional capability of CAP. Previously developed schedules can be combined to form a

new parallel program. CAP allows to combine parallel schedules without modifying the serial

part of the program and without dealing with low level routines such as synchronization or

thread creation.

8.6. Performance measurement

The performance measurements were carried out on three input images: a balanced input

image, a highly unbalanced input image and a slightly unbalanced input image. The balanced

input image (Fig. 8.8) consists of a repetitive pattern ensuring an evenly distributed computation
106

Parallel Cellular Automata

Performance measurement

Ù

load. In the highly unbalanced input image (Fig. 8.9), according to the cell distribution scheme

defined in equation (8-2), the non-empty cells are distributed unevenly across the processing

nodes. One of two processing nodes receives empty cells which require only one computation

step. The slightly unbalanced input image (Fig. 8.10) is an intermediate case between the bal-

anced and the highly unbalanced input images. The balanced and unbalanced input images are

of size 2048x2048 pixels (8 bits/pixel) and splitted into 16x16 cells, incorporating 128x128 pix-

els. The slightly unbalanced input image is of size 1024x1536 pixels (8 bits/pixel) and splitted

into 8x12 cells, incorporating 128x128 pixels.

The N processing nodes are all Bi-Pentium Pro 200 MHz PCs running under WindowsNT 4.0.

They are connected through a Fast Ethernet switch.

Figure 8.7 shows the speedup for the balanced input image, the highly unbalanced input image

and the slightly unbalanced input image. The measurements are done for 1 to 10 processors. The

performances of the algorithms with and without the cell migration scheme are compared. The

measurements for the dynamically load balanced algorithm are done with an IntegrationTime

of 0.5 sec. between each cell migration..

Fig. 8.7 Speedup for (a) the balanced input image, (b) the highly unbalanced input

image and (c) the slightly unbalanced image

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

(c) slightly unbalanced image

sp
ee
d
-u
p

ideal speedup

with migration

without migration

nb. proc.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

 (b) highly unbalanced image

sp
ee
d
-u
p

ideal speedup

with migration

without migration

nb. proc.
0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

(a) balanced image

sp
ee
d
-u
p

ideal speedup

with migration

without migration

nb. proc.
107

Parallel Cellular Automata

Performance measurement8
Fig. 8.8 Example (a) of a balanced input image, (b) after segmentation into cells and

(c) after skeletonization

Fig. 8.9 Example (a) of a highly unbalanced input image, (b) after segmentation into

cells and (c) after skeletonization

Fig. 8.10 Example (a) of a slightly unbalanced input image, (b) after segmentation

into cells and (c) after skeletonization

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
108

Parallel Cellular Automata

Summary

Ù

In the case of the balanced input image, there is no significant performance difference between

the two algorithms. For such an input image, the cell migration is useless since the load is per-

fectly balanced between the processing nodes. The results show that the overhead induced by

the management of the cell migration is low. The parallelization does not provide a linear

speedup because the neighbouring information exchange consumes processing resources (CPU

power for the TCP/IP communication protocol).

In the case of the highly unbalanced input image, the performances are considerably improved

by dynamic load balancing. Without cell migration the efficiency (speedup/N) is approximately

50% since one processor of two becomes idle. Implementing the cell migration allows the par-

allel program to reach approximately the same speedup with a balanced or an unbalanced input

image.

In the case of the slightly unbalanced input image, the performances are improved by using

the dynamically load balanced algorithm. Since in the input image, about one out of four cells

is empty, the theoretically maximal performance improvement factor obtained by the dynami-

cally load balanced algorithm is . Our algorithm reaches a performance

improvement factor of . The difference is due to the fact that some time is needed until the

system reaches a load balanced state.

Globally, performances are improved by dynamic cell remapping. No improvement is

expected in the case of a well balanced input image. A major improvement is achieved in the

case of an unbalanced input image. The presented results closely match the expected results.

8.7. Summary

We are interested in the parallelization of cellular automata. Our experiment is based on a par-

ticular image skeletonization method. We have developed a parallellization algorithm which

can be easily applied to other cellular automata. We explore two parallelization methods, one

with a static load distribution consisting in splitting the cells over several processing nodes and

the other with a dynamic load balancing scheme capable of remapping cells during the program

execution. In order to maintain a load information across the processors, CAP statements allow

to propagate a global state in parallel with the main computation. The dynamic approach leads

to an efficient parallel solution despite the possible load unbalance of parallel cellular automata.

Performance measurements show that the cell migration doesn’t reduce the speedup if the appli-

cation is already load balanced. It improves the performance if the parallel application is not

well balanced.

Cellular automata have a wide range of applications: matrix computation, state machines, Von

Neumann automata, etc. Many problems can be expressed as cellular automata. Developing

from the scratch a custom parallel application requires a large effort. This chapter shows the

possibility of developing first a generic parallel cellular automaton and, on top of it, parallel

4 3⁄ 1.33=

1.22
109

Parallel Cellular Automata

Summary8
applications making use of the cellular automaton program interface. This approach reduces the

programming effort without loosing efficiency.
110

Ù

9 Parallel Computation of Radio Listening Rates

Obtaining the listening rates of radio stations in function of time is an important instrument for

determining the impact of publicity. Since many radio stations are financed by publicity, the exact

determination of radio listening rates is vital to their existence and to their further development.

Special watches were created which incorporate a custom integrated circuit sampling the ambient

sound during a few seconds every minute. Each watch accumulates these compressed sound sam-

ples during one full week. Watches are then sent to an evaluation center, where the sound samples

are matched with the sound samples recorded from candidate radio stations. The present chapter

describes the processing steps necessary for computing the radio listening rates, and shows how

this application was parallelized on a cluster of PCs using the CAP Computer-aided parallelization

framework. Since the application must run in a production environment, the chapter describes also

the support provided for graceful degradation in case of transient or permanent failure of one of

the system’s components. The content of this chapter is published in [Mazzariol00b].

9.1. Introduction

Obtaining the listening rates of radio stations in function of time is an important instrument

for determining the impact of publicity. Since many radio stations are financed by publicity, the

exact determination of radio listening rates is vital to their existence and to their further devel-

opment. Existing methods of determining radio listening rates are based on face to face

interviews or telephonic interviews made with a sample population. These traditional methods

however require the cooperation and compliance of the participants.

In order to significantly improve the determination of radio listening rates, special

watches [Sun99] were created which incorporate a custom integrated circuit sampling the ambi-

ent sound during a few seconds every minute. The sound samples are split into sub-bands and

converted into energy signals. Their envelopes are extracted, low-pass filtered and resampled at

a much lower rate. Sound compression allows to store a full week of one minute records within

the limited memory space of a watch. Watches are then sent to an evaluation center, where

transformed sound samples are matched with the transformed sound samples recorded from

candidate radio stations. Based on the matching performance, reliable listening rate statistics are

established. Figure 9.1 shows the complete data flow from the radio station emitter to the cor-

relation center.

The evaluation center should be able to determine in real time the listening rates for a config-

uration of approximately 1000 watches and 100 radio stations. The computation of the listening

rates for a single day (24h) should therefore take less then one day.

The present chapter describes the processing steps necessary for computing the radio listening

rates, and shows how this application was parallelized on a cluster of PCs using the CAP Com-

puter-aided parallelization framework. Since the application must run in a production
111

Parallel Computation of Radio Listening Rates

The matching problem9
environment, the chapter also describes the support for graceful degradation in case of transient

or permanent failure of one of the system’s components.

9.2. The matching problem

In order to obtain the listening rates of radio stations for a given hour within a given day, one

must match the transformed sound of the 1000 watches and of the 100 candidate radio stations.

Each watch records the ambient sound during 4 seconds every minute. Each radio station is

recorded during 10 seconds every minute. In both cases, sound is sampled at 3KHz. A small

time shift may appear between sound acquisition in the watch and in the stationary unit, due to

different transmission modes (e.g. terrestrial, cable, satellite). In addition, the quartz inside the

watch has a limited precision and the frequency may vary due to temperature variations. To

reduce the time shift, the watches are synchronized every week (when they are sent back to the

docking station) and a temperature sensor is incorporated in the watch to correct the clock devi-

ation. In order to take into account the time shift, the discrete correlation between the

compressed sound from the watch and from the stationary unit is done at successive 1 ms inter-

vals, i.e. the matching is established by varying, millisecond per millisecond, the time position

of the 4 seconds of sound acquired by each watch within a time window of 10 seconds. The larg-

est match (correlation maximum) between watch and radio station is recorded for further

evaluation, i.e. to determine for the considered minute and for a given watch whether the sound

stems from one of the candidate radio stations. Figure 9.3 shows a global scheme of the match-

ing procedure.

9.2.1. Storage

The data required to perform the matching between ambient sound samples and radio station

sound is organized in files. There is one radio station file per hour, which contains 60 minute

records incorporating each 10 seconds of uncompressed sound. Each minute record takes

Fig. 9.1 Complete data flow from the radio emitter to the correlation center

radio station studio

radio station emitter

terrestrial, satellite,
...

radio station

receiver

radio, car radio,

radio at the

special watch

ambient sound acquisition

and compression

4 sec. every minute

during 1 week

correlation center

compresses the original

sound and correlates the

data from the docking

station and from the

stationary unit

docking station

receives compressed

sound

from the watches

every week

stationary unit

original sound acquisition

radiocontrol project

listening rates

of radio stations
112

Parallel Computation of Radio Listening Rates

The matching problem

Ù

60 KB. Therefore each hourly file has a size of 3.5 MB. Since we want to establish the listening

rate for a full day (24 hours) and 100 radio station, we need 8.2 GB.

(9-1)

(9-2)

(9-3)

The watch file contains all minute records comprising 4 seconds of highly compressed sound

for a full day, i.e. 24x60 records of 95 Bytes. Therefore each daily watch file takes 134 KB.

Since we have 1000 watches, the total space required for the watch files is 134 MB.

(9-4)

(9-5)

(9-6)

Correlating one watch record with one radio station record produces a new result record of

8 Bytes (correlation maximum). Each result file contains all the result records for one hour, one

radio station and all the 1000 watches. Therefore one result files has a size of 470 KB. Since

there are 24x100 result files, the total required space for the result files is 1.1 GB.

(9-7)

(9-8)

(9-9)

Fig. 9.2 Global scheme describing the matching process

 ∑

radio station records

10 sec. sampled at 3KHz

every minute
watch records

4 sec. sampled at 3KHz

every minute

correlation

best match value (correlation maximum)

x x xx

one radio station minute record size 10 sec 3 KHz 2 Bytes 60=×× KB=

one hourly radio station file size 60 60 3.5 MB≅×=

total radio station file size 3.5 24 100× 8.2 GB≅×=

one watch minute record size 95 Bytes=

one dayly watch file size 95 24 60× 134 KB≅×=

total watch file size 134 1000 134 MB≅×=

one result record size 8 Bytes=

one hourly result files size 8 60 1000× 470 KB≅×=

total result file size 470 24× 100 1.1 GB≅×=
113

Parallel Computation of Radio Listening Rates

The matching problem9
By considering the total radio station file size (9-3), the total watch file size (9-6) and the total

result file size (9-9), the total amount of data used to establish the listening rate for a full day

(24 hours), 100 radio stations and 1000 watches is about 10 GB.

(9-10)

The radio station files, the watch files and the result file are all stored on a single PC file

server. The correlation processes can freely access (read and write) this file server. Remote

access to the file is achieved thanks to the NTFS distributed file system, which allows to share

the physical hard drives of the file server over the local network. The full matching process for

one day needs to transfer from the file server over the network a total amount of data of about

10 GB. The file server and the correlation process computer run under WindowsNT 4.0 and are

connected through a Fast Ethernet network (100Mbits/sec.) using the TCP/IP protocol.

9.2.2. Serial correlation algorithm

In serial processing mode, in order to obtain the result for one hour, 100 radio stations, and

1000 watches, the matching program incorporates the following steps:

1. Open and seek within each of the 1000 watch files to get the required target single hour

records, i.e. 60 consecutive minute records of 95 Bytes (9-4) from each watch file. This

requires 1000 disk accesses, each one for reading .

2. For all the 100 radio stations:

2a. Load the hourly radio station file for the current hour. This step consists of a single

disk access of 3.5 MB (9-2).

2b. Correlate the corresponding records from the hourly radio station file and the 1000

watch files. Since there are 60 records in the radio station file (one per minute) and

each must be correlated with the corresponding minute record of each of the 1000

watches, i.e. 60x1000 = 60000 correlations need to be carried out. All the resulting

match values (correlation maxima) are stored in local memory.

2c. Flush the resulting match values from the local memory to the remote result file on

the file server. This step consists of a single write disk access of 470 KB (9-8).

To establish the listening rate for a full day (24 hours), we need to repeat the steps listed above

24 times.

9.2.3. Serial performance analysis/measurements

The following serial performance measurements have been done with one Pentium-II PC

400 MHz file server and one Pentium-II PC 400 MHz correlation computer, both running under

WindowsNT 4.0 and connected through a Fast Ethernet network (100 Mbits/sec.). Let us ana-

total size 8.2
134

1024
------------ 1.1 9.4 GB≅+ +=

95 60 5.5 KB≅×
114

Parallel Computation of Radio Listening Rates

The matching problem

Ù

lyze the time taken by each step described in the previous section. Step 1 requires 1000 disk

accesses of 5.5 KB each. Since the data size is small and seek time is predominant, we obtain

an effective throughput of 550 KB/sec., i.e. 10 sec. are needed to complete step (1).

(9-11)

Step 2a is just a single disk access of 3.5 MB. At an effective throughput of 2 MB/sec., it takes

about 1.75 sec. Since this step is repeated for all the radio station, we get the following total

time:

(9-12)

The match time of two records is highly data dependent due to optimizations in the correlation

procedure. Nevertheless, the mean time to correlate two records is 1.85 milliseconds. This value

is correct for normal ambient sound. Step 2b requires 60000 correlations and therefore needs

111 sec. to complete. Since this step is repeated 100 times, we get:

(9-13)

Step 2c is just a single disk write access of 470 KB. At an effective write throughput of

2 MB/sec. it takes 0.23 sec. Since this step is repeated 100 times:

(9-14)

The total time to establish the listening rate for 24 hours, 100 radio stations and 1000 watches

is obtained by adding the previous results and multiplying them by 24:

(9-15)

Since the I/O time represents less than 2% of the total time, the process is compute bound and

no significant gain could be achieved by pipelining step 2a, step 2b and step 2c (i.e. making

asynchronous accesses to the file server) in the serial implementation. Therefore the total pro-

cessing time is approximately proportional to the number of watches multiplied by the number

of radio stations, i.e. it can be deduced from equation (9-13).

(9-16)

The practical measurements are consistent with the previous analysis. The total computation

time to produce the listening rate for one day exceeds the 24 hours limit. Therefore paralleliza-

tion is needed.

total time for step 1
1000 5.5×

550
------------------------- 10 sec==

total time for step 2a 100
3.5

2
-------× 175 sec==

total time for step 2b 100 60000 0.00185×× 11100 sec==

total time for step 2c 100
470

2 1024×
---------------------× 23 sec≅=

total serial time 24 10 175 11100 23+ + +()× 75.3 hours≅=

tot ser time 24 60 0.00185×× nb× Watches nbRadioStations
2.664 1000 100 74 hours=××

=×≅
115

Parallel Computation of Radio Listening Rates

Parallelization9
9.3. Parallelization

9.3.1. The Computer-Aided Parallelization (CAP) framework

The CAP Computer-Aided Parallelization framework is specially well suited for the parallel-

ization of applications having significant I/O bandwidth requirements. Application

programmers specify at a high level of abstraction the set of threads present in the application,

the processing operations offered by these threads, and the flow of data and parameters between

operations. Such a specification is precompiled into a C++ source program which can be com-

piled and run on a cluster of distributed memory PCs. The compiled application is executed in

a completely asynchronous manner: each thread has a queue of input tokens containing the

operation execution requests and its parameters. Disk I/O operations are executed asynchro-

nously, i.e. while data is being transferred to or from disk, other operations can be executed

concurrently by the corresponding processor. In a pipeline of disk access and process opera-

tions, CAP allows therefore to hide the time taken by the disk access operations if the process

is compute bound. A configuration file (see Chapter 3, Section 3.3.1) specifies the mapping

between CAP threads and operating system processes possibly located on different PCs. This

configuration file is used by the run-time system to launch the parallel application. A Remote

Shell Daemon (rshd) is located on each target computer to launch processes remotely and car-

rying out I/O redirection.

9.3.2. Parallel correlation algorithm

The correlation application has been parallelized in a master-slave fashion (Fig. 9.3). The

master only distributes jobs to the slaves, which are the effective workers. Since the master is

idle most of the time, he resides on the file server computer. The n slaves are connected to the

master through a Fast Ethernet network (100 Mbits/sec.) using the TCP/IP protocols. All the

computers are Pentium-II 400 MHz PCs running under WindowsNT 4.0. The radio station files,

watch files and result files (total 10 GB) are stored in an array of Ultra Wide SCSI-II disks con-

nected to the file server. The disks offer an effective throughput of 2 MB/sec. each, the SCSI

bus has a maximal throughput of 40 MB/sec. and the Fast Ethernet network does not support

more than 8 MB/sec.

The serial processing operations described in the previous section are parallelized by having

different processors (n processors) working on different radio station files. The only change

resides in step 2. Instead of making a simple loop over the 100 radio stations, each slave receives

and computes a different iteration of the loop, i.e. works on a different hourly radio station file.

Each slave reads a new radio station file and computes a new result file. This implies that the

radio station and result files are read/written once during the whole program execution. When

a slave starts to compute a new hour, he loads the corresponding watch minute records within

the 1000 watch files. This correspond to step 1 and is done on every n slaves each time a new

hour computation starts, i.e. each watch minute record is accessed n times, once by each slave.

Therefore the watch files are loaded n times during the program execution. Equations (9-3) and

(9-9) remain unchanged, but equation (9-6) must be multiplied by n. If n is small (near 10) the
116

Parallel Computation of Radio Listening Rates

Parallelization

Ù

total amount of data transferred from the disks over the network will not increase more than

20%, which is acceptable. Equation (9-6) and (9-10) become respectively for :

(9-17)

(9-18)

Since there are 100 radio stations and 24 hours, the master distributes 2400 jobs to the slaves

representing a total computation time of about 75.3 hours (9-15). The CAP framework helps the

programmer to distribute these jobs intelligently. When the computation starts, each slave

receives a job from the master and starts computing it. Immediately after this first job distribu-

tion, i.e. while the slaves are still busy with their first job, the master sends a second job to all

the slaves. This new job is not executed immediately but inserted in a job queue in each slave.

As soon as a slave finishes computing his first job, he starts processing the second job (no idle

time). During the execution of the second job, the master sends a third job to the slave and the

whole process is repeated. This job distribution mechanism ensures that the slaves are never

waiting for a new job, i.e. are always busy, and that the total computation time is load balanced

between the slaves. Since each slave receives a new job when he finishes computing the previ-

ous one, each slave works at its own speed; a faster slave will receive more jobs than a slower

slave and since the jobs do not exactly require the same computation time, a slave can (for

example) receive 2 large jobs while another receives 3 small jobs during the same time interval.

Since the radio station, watch and result files reside on a single computer, the file server treats

the slaves read/write requests sequentially. In the previous section, equations (9-11), (9-12) and

(9-14) shows that the total access time to the file server is:

(9-19)

Fig. 9.3 Parallel architecture

slave 1

Pentium-II 400 MHz PC

WindowsNT 4.0

slave 2

Pentium-II 400 MHz PC

WindowsNT 4.0

slave n

Pentium-II 400 MHz PC

WindowsNT 4.0

master / file server

Pentium-II 400 MHz PC

WindowsNT 4.0

Fast Ethernet network

100 Mbits/sec.

Ultra Wide SCSI-II

n 10=

total watch file transfered size n 134 MB× 10 134 1.31 MB≅×==

total transfered size 8.2 1.31 1.1 10.6 GB≅+ +=

total transfered size 8.2 1.31 1.1 10.6 GB≅+ +=
117

Parallel Computation of Radio Listening Rates

Parallelization9
This time is insignificant when compared with the 75.5 hours (9-15) required to establish the

listening rates in serial execution mode, but it may become significant in parallel execution

mode, as stipulated by Amdahl’s law. Therefore it is important to access asynchronously to the

file server, i.e. read/write accesses should be hidden by the slaves computation time. The CAP

framework helps the programmers in this task. CAP allows to assign the steps 2a, 2b and 2c to

three different threads. This enables the execution of the three steps in a pipeline. While a job

is requiring computation power and keeping the slave processor busy at step 2b, another job can

make accesses to the file server (step 2a or 2c). In a totally transparent manner for the program-

mer, CAP ensures the correct data flow through the operations of the pipeline. Figure 9.4 shows

the slave activity and resource occupation during the correlation process.

9.3.3. CAP program specification

In this section, we present the CAP parallel program specification. Figure 9.5 shows the com-

plete CAP code used in this project. The rest of the code (not presented in Figure 9.5) is the

original sequential C/C++ code.

The GlobalProcess (lines 31-40 and 64) is the top level process. This hierarchical (see Chapter

3, Section 3.3) process defines the top level parallel operation ProcessOneDay. GlobalProcess

Fig. 9.4 Slave activity during the correlation process: the thick line represents the

processor occupation on the slave, and the thin lines represent the file server accesses

time

resources occupation

first correlation second correlation third correlation

Access to the file server to read

the data needed for the first job,

i.e. an hourly radio station file

and the corresponding records

within the 1000 watch files.

Access to the file

server to write the

previous computed

result file.

Access to the file server to read

the data needed for the next job,

i.e. an hourly radio station file

and from time to time records

within the 1000 watch files.

The processor is never

idle thanks to the pipeline

architecture

When the first data is

read, the correlation

keeps the processor busy
118

Parallel Computation of Radio Listening Rates

Parallelization

Ù

contains a leaf process MasterProcess (lines 28-30 and 35) and a pool of slave processes Slave-

Process[] (lines 18-27 and 34). The MasterProcess process is a leaf process, it is only used to

specify where the SplitHour split function and the MergeHour merge function (line 57) must be

executed. The SlaveProcess process is a hierarchical process responsible for scheduling (Proc-

essOneHour CAP operation) the work on the hourly radio station files (read, correlate and

write). SlaveProcess contains two IOProcess (lines 1-10 and 21) leaf processes and one Com-

puteProcess (lines 11-17 and 22) leaf process. IOProcess[1] is responsible for the step 2a (see

9.2.2) of the serial algorithm (ReadData CAP leaf operation). IOProcess[2] is responsible for

the step 2c of the serial algorithm (WriteResult CAP leaf operation). The ComputeProcess is

responsible for the correlation (Correlate CAP leaf operation), i.e step 2b of the serial algo-

rithm. The IOProcess[1], IOProcess[2] and ComputeProcess are the only leaf processes

(except MasterProcess) of the application. Typically, these three leaf processes directly map

(configuration file, see Chapter 3, Section 3.3.1) to three operating system threads within the

same operating system process. The three CAP processes are logically grouped into the CAP

SlaveProcess abstraction. Since we have a pool of SlaveProcess processes, the subprocess

Fig. 9.5 CAP program specification for the radiocontrol parallel application

1. process IOProcessT

2. {

3. operations:

4. ReadData

5. in ReadDataInT* inputP

6. out ReadDataOutT* outputP;

7. WriteResult

8. in WriteResultInT* inputP

9. out WriteResultOutT* outputP;

10. };

11. process ComputeProcessT

12. {

13. operations:

14. Correlate

15. in CorrelateInT* inputP

16. out CorrelateOutT* outputP;

17. };

18. process SlaveProcessT

19. {

20. subprocesses:

21. IOProcessT IOProcess[2];

22. ComputeProcessT ComputeProcess;

23. operations:

24. ProcessOneHour

25. in ProcessOneHourInT* inputP

26. out ProcessOneHourOutT* outputP;

27. };

28. process MasterProcessT

29. {

30. };

31. process GlobalProcessT

32. {

33. subprocesses:

34. SlaveProcessT SlaveProcess[];

35. MasterProcessT MasterProcess;

36. operations:

37. ProcessOneDay

38. in ProcessOneDayInT* inputP

39. out ProcessOneDayOutT* outputP;

40. };

41. operation SlaveProcessT::ProcessOneHour

42. in ProcessOneHourInT* inputP

43. out ProcessOneHourOutT* outputP

44. {

45. IOProcess[0].ReadData >->

46. ComputeProcess.Correlate >->

47. IOProcess[1].WriteResult;

48. }

49. operation GlobalProcessT::ProcessOneDay

50. in ProcessOneDayInT* inputP

51. out ProcessOneDayOutT* outputP

52. {

53. MasterProcess.{} >->

54. flow_control(PipelineDepth*NbSlaves)

55. indexed

56. (int i = 0; !SplitIsFinished(); i++)

57. parallel (SplitHour, MergeHour,

58. MasterProcess, MergeHourOutT res())

59. (

60. SlaveProcess[cap_fcindex0%NbSlaves]

61. .ProcessOneHour

62.);

63. }

64. GlobalProcessT GlobalProcess;
119

Parallel Computation of Radio Listening Rates

Parallelization9
(IOProcess[1], IOProcess[2] and ComputeProcess) of the two different SlaveProcess proc-

esses are typically mapped to different computing nodes.

Such a process decomposition ensures a perfect pipelining between the leaf operations (read,

correlate and write). Such a pipelining is only possible if the underlying hardware supports it.

Clearly, it is assumed that the network interface allows to carry out network transfer without

interrupting the processing activities and offers full duplex connection (simultaneous in and out

network transfers).

The implementation of the ProcessOneDay and ProcessOneHour CAP operation is straight-

forward. At lines 54 and 60 we note the usage of the CAP keyword flow_control in combination

with the CAP keyword cap_fcindex0 in order to ensure dynamic load balancing between the

slaves (see Section 4.3).

Compared with a solution based on scripts launching parallel programs on a farm of proces-

sors, the CAP program shown in Figure 9.5 offers a complete parallel solution combining

efficiency (see next section), reliability (see Section 9.4), scalability, asynchronous data access,

debugging capabilities, and simplicity.

9.3.4. Parallel performance analysis/measurements

Within a single processor, disk accesses are asynchronous and executed in parallel with pro-

cessing operations. After initialization of the pipeline, only the processing time, i.e. the

correlation between radio station files and watch records determines the overall processing

time. Therefore the time to perform the steps 1, 2a and 2c described by equations (9-11), (9-12)

and (9-14) is hidden behind the processing time. Only the processing time of step 2b described

by equation (9-13) remains. The total parallel time on n slaves and when doing asynchronous

I/O accesses is given by:

(9-20)

Figure 9.6 shows the computation time when increasing the number of slaves. The measure-

ments have been done for 24 hours, 100 radio stations and 1000 watches on Pentium-II

400 MHz PCs. The performance results show a linear speedup, i.e. processing time which is 74

hours on a single computer decreases to 24.7 hours with 3 PCs, 18.5 hours with 4 PCs (i.e. under

24 hours limit) and 14.8 hours with 5 PCs which is under the 16 hours time constraint imposed

by the industrial specification. When the number of slaves becomes larger (above 20) the

speedup will not remain linear since the shared file server will become the bottleneck.

total parallel time
24 11100×

n

74

n
------ hours==
120

Parallel Computation of Radio Listening Rates

Graceful degradation in case of failure

Ù

9.4. Graceful degradation in case of failure

Since the presented application should work in a production environment, it is highly impor-

tant to provide support for graceful degradation in case of transient or permanent failure of one

of the system’s components (failure of a slave PC for example). This support is based on the

checkpoint and restart paradigm [Gray92]. A watchdog process (independent from the CAP

program) running in the master computer checks that at least once every 20 minutes, new results

are written to the result file. If this is not the case, the watchdog program kills the radio listening

rate computation process on every participating compute nodes. Since the current version of

Windows NT does not allow to kill properly some processes (releasing DLLs), the watchdog

can optionally also reboot the participating compute nodes. Then, the watchdog checks the net-

work to verify which PCs are working, and generates a new configuration file is generated

incorporating only those PCs which are currently living. The application is relaunched on the

new configuration. The application first determines if the result file exists and which were the

last consistent records written on file. The application then resumes the computation in order to

create the next matching records.

Figure 9.7 shows a typical configuration file for the radiocontrol parallel application. This

configuration file runs the application (Radiocontrol.exe) on one master operating system pro-

cess (M) and two slave operating system processes (S1, S2). In the present example, we have

one thread in the master (MasterThread) and three threads on each slave (on S1: Slave[0].Com-

puteThread, Slave[0].IOThread[0], Slave[0].IOThread[1]). The master is launched at the IP-

address given by MasterLocation. The slaves are launched on any of the IP-addresses in the

SlavePool. If both computers from the SlavePool are living, S1 is launched on the first and S2

on the second computer. If one computer from the SlavePool is down then S1 and S2 are

launched on the other living computer. This configuration allows the system to work properly

Fig. 9.6 speedup diagram

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

number of slaves

s
p
e
e
d
-u
p
 /
 c
o
m
p
u
ta
ti
o
n
 t
im

e

74 h

24.7 h

14.8 h

12.3 h

10.6 h

8.2 h

7.4 h

9.3 h

18.5 h

37 h

24 hours limit
121

Parallel Computation of Radio Listening Rates

Summary9
in the case of a single slave computing node failure. The master remains a critical resource

(since it’s the file server). Other configurations with more slaves (e.g. 10 slaves) and multiple

masters are possible.

9.5. Summary

In order to compute the listening rates of radio stations, we developed a parallel sound corre-

lation program running on a cluster of PCs interconnected by Fast Ethernet. The parallel sound

matching server offers a linear speedup up to a large number of PCs thanks to the fact that disk

access operations across the network are done in parallel with computations. Support is pro-

vided for graceful degradation of the sound matching server. In the case of failure of slave

computation PCs, the current computation is stopped, contributing processes are killed, the net-

work is checked for living PCs and the application is automatically restarted on the new

configuration.

The Swiss Radio company decided to adopt this system to measure the listening rates of radio

stations in Switzerland [SSR99]. The system listens to 120 radio stations and 30 televisions in

17 different studio locations. There are 800 test persons equipped with the special watch. The

correlation is done with 9 slave PCs and 1 master PC, each one a Pentium-III 500 MHz com-

puter. Commercial contacts with other countries have been established. A test panel has already

been installed in Paris.

The project was a large collaborative effort with the contribution of many partners: the Insti-

tute of Microtechnics, Univ. of Neuchatel, for developing the custom integrated circuits (very

low power A/D-converter) for sound acquisition and the compression in the watch [IMT99],

EPFL for parallelizing the sound matching algorithms, IBW AG for integrating all the software

into the evaluation system [IBW99], Liechti AG for creating the general concept and building

Fig. 9.7 Typical configuration file for the radiocontrol parallel application

configuration {

pools :

MasterLocation {123.456.78.00};

SlavePool {123.456.78.01, 123.456.78.02};

processes :

M (MasterLocation, Radiocontrol.exe);

S1 (SlavePool, Radiocontrol.exe);

S2 (SlavePool, Radiocontrol.exe);

threads :

MasterThread (M);

Slave[0].ComputeThread (S1);

Slave[0].IOThread[0] (S1);

Slave[0].IOThread[1] (S1);

Slave[1].ComputeThread (S2);

Slave[1].IOThread[0] (S2);

Slave[1].IOThread[1] (S2);

};
122

Parallel Computation of Radio Listening Rates

Summary

Ù

the watches [Liechti99][Wüthrich94] and University of Zurich, Martin Bichsel, for creating the

first version of the sound acquisition and compression software [Bichsel98].

The parallel application is currently working for about 2 years in an industrial environment.

No particular difficulties concerning the CAP framework have been encountered at this time.

This project proves the ability of CAP to handle and solve industrial problems.
123

Parallel Computation of Radio Listening Rates

Summary9
124

Ù

10 Discrete Optimization Problems

This chapter present a didactical CAP parallel program solving the famous traveling salesman

problem. The basic notions of discrete optimization problems are introduced. We enter in the

world of NP-Hard problems. Several sequential search techniques are presented. Their paralleliza-

tion and inherent main difficulties are discussed.

10.1. Parallelization of hard nonnumeric problems

Parallel computation of scientific problems has been the main focus of supercomputing.

Numerous scientific problems have been successfully implemented on various parallel comput-

ers. Regular runtime behavior and deterministic resource usage are among the reasons which

have contributed to their successful parallel implementations. Due to this type of deterministic

behavior, the resource allocation becomes rather straightforward for this type of numeric prob-

lems. Nonnumeric problems on the other hand have received little attention in terms of parallel

implementation on multiprocessors. The main reasons that parallel nonnumeric computation

have been less successful than numeric computations are the large amount of computational

resource usage, their irregular runtime behavior, and often the unknown number of iterations.

Due to these unknown patterns, these types of problems are difficult to parallelize and deploy

on parallel machines. Even if nonnumeric problems are successfully implemented, the resulting

performance is often poor compared to that of numeric problems [Sohn95].

10.2. Discrete optimization problems1

A Discrete Optimization Problem (DOP) can be expressed as a tuple . The set is a

finite or countably infinite set of all solutions that satisfy specified constraints. This set is called

the set of feasible solutions. The function is the cost function that maps each element in set

onto the set of real numbers .

The objective of a DOP is to find a feasible solution such that for all .

Problems from various domains can be formulated as DOPs. Many examples could be found

in the literature: traveling salesman problem, postman’s problem, knapsack problem, parallel

machine scheduling, vertex coloring, spanning tree, shortest path, etc. Some are extremely well

solved, while others continue to frustrate researchers after two centuries of attention. More prac-

1 Definitions and examples are taken from [Kumar94]

S f,() S

f S

Ñ

f : S Ñ→

xopt f xopt() f x()≤ x S∈
125

Discrete Optimization Problems

Discrete optimization problems10
tical examples are: planning and scheduling, finding optimal layouts of VLSI chips, robot

motion planning, test pattern generation for digital circuits, and logistics and control.

Example 10-1. The 0/1 integer-linear-programming

Give an matrix , an vector , and an vector . The objective

is to determine an vector whose elements can take on only the value or .

The vector must satisfy the constraint

(10-1)

and the function

(10-2)

must be minimized. The set is the set of all values of the vector that satisfy the

equation (10-1). The cost function (a scalar product) is evaluated for each vector

in . The vector which minimizes equation (10-2) is the DOP solution. �

Example 10-2. The eight-puzzle problem

The Eight-puzzle problem consists of a grid containing eight tiles, numbered

one through eight. One of the grid segments (called the blank) is empty. A tile can be

moved into the blank position from a position adjacent to it, thus creating a blank in

the tile’s original position. Depending on the configuration of the grid, up to four

moves are possible: up, down, left, and right. The initial and final configurations of the

tiles are specified. The objective is to determine a shortest sequence of moves that

transforms the initial configuration to the final configuration. Figure 10.1 illustrates a

sequence of moves leading from the initial configuration to the final configuration.

The set for this problem is the set of all sequences of moves that lead from the

initial to the final configurations. The cost function of an element in is defined as

the number of moves in the sequence. �

Fig. 10.1 An Eight-puzzle problem instance: sequence of moves leading from the

initial to the final configuration

m m× A m 1× b m 1× c

n 1× x 0 1

Ax b≥

f x() cTx=

S x

f x

S xopt S∈

3 3×

S

f S

1 2 3

4 5 6

7 8

5 2

1 8 3

4 7 6

1 5 2

8 3

4 7 6

1 5 2

4 8 3

7 6

1 5 2

4 8 3

7 6

1 5 2

4 3

7 8 6

1 2

4 5 3

7 8 6

1 2

4 5 3

7 8 6

1 2 3

4 5

7 8 6

up up left down

left

down

upup
126

Discrete Optimization Problems

Heuristics

Ù

Why are DOPs so difficult to solve? DOP’s feasible solution spaces are enormous in size

and they grow exponentially with the number of discrete choices to be resolved. For example,

a problem requiring a modest 200 independent, binary decisions has solutions to

consider. A case with binary decisions has twice as many. The enumeration of even a tiny

fraction of the set of solutions is computationally untenable. Unfortunately, the state of our

present knowledge regarding most DOPs is that we need to enumerate all, or at least a signifi-

cant fraction, of the solution space to solve them. Except a few well solved DOPs, most DOPs

belong to the NP-Equivalent [Parker88] class of problems, which is a strong reason to believe

that quite fundamental limits of our mathematics and computing machines will leave most

DOPs permanently in this enumeration required category.

One may argue that it is pointless to apply parallel processing to these problems, since we

could probably never reduce their run time to a polynomial without using exponentially many

processors. This is a misrepresentation of complexity theory. NP-Equivalent problems are

equivalent only in the sense that no algorithm is likely to be discovered that resolves every

instance in polynomially bounded time. This does not preclude doing well on smaller instances.

Heuristic search algorithms for many problems have a polynomial average-time complexity.

Furthermore, there are heuristic search algorithm that find suboptimal solutions for specific

problems in polynomial time. In such cases, larger problem instances can be solved using par-

allel processing.

10.3. Heuristics

For some problems, it is possible to estimate the cost to reach the goal state from an interme-

diate state. This cost is called a heuristic estimate. Let denote the heuristic estimate of

reaching the goal state from state and denote the cost of reaching state from the initial

state along the current path. The function is called a heuristic function. If is a lower

bound on the cost of reaching the goal state from state for all , then is called admissible.

We define function as the sum . If is admissible, the is a lower bound

on the cost of the path to a goal state that can be obtained by extending the current path between

 and . In subsequent sections we will see how an admissible heuristic can be used to deter-

mine the least-cost sequence of moves from the initial state to a goal state.

Example 10-3. An admissible heuristic function for the Eight-puzzle

Assume that each position in the Eight-puzzle grid represented as a pair . The

distance between position and is defined as the Manhattan distance

. The sum of Manhattan distances between the initial and final positions

of all tiles is an estimate of the number of moves required to transform the current

configuration into the final configuration. This estimate is called the Manhattan

heuristic. Note that if is the Manhattan distance between configuration and the

final configuration, then is also a lower bound on the number of moves

from configuration to the final configuration. Hence the Manhattan heuristic is

admissible. �

S

2200 10 60=

201

h x()

x g x() x

s h h x()

x x h

l x() h x() g x()+ h l x()

s x

i j,()

i j,() k l,()

i k– j l–+

h x() x

h x()

x

127

Discrete Optimization Problems

Sequential search algorithms10
10.4. Sequential search algorithms

In this section we present some sequential search algorithms to solve DOPs that are formu-

lated as tree or graph search problem1. In a tree, each new successor leads to an unexplored part

of the search space. In a graph, however, a state can be reached along multiple paths. For such

problems, whenever a state is generated, it is necessary to check if the state has already been

generated. If this check is not performed, the graph is unfolded into a tree (repeating some

states). Clearly, unfolding increases the search space. For many problems the search space

increases only by a small factor, but for some problems it grows exponentially. Figure 10.2

illustrates the unfolding process.

Example 10-4. Tree-search problem: The 0/1 integer-linear-programming problem

Let us consider an instance of the 0/1 integer-linear-programming defined in example

10-1. Each elements of vector can take the value or , i.e. there are possible

vectors. However, many of these values do not satisfy the problem’s constraints

corresponding to equation (10-1). The problem can be formulated as a tree-search

problem. The initial node represents the state in which none of the elements of vector

 have been assigned values. The initial node generates two nodes corresponding to

 and . After a variable has been assigned a value, it is called a fixed

variable. All variables that are not fixed are called free variables. After instantiating a

1 Other DOP solving techniques exist, for example: polyhedral description algorithms [Parker88], linear

relaxation strategies, cutting, branch-and-cut [Naddef99][Naddef00]

Fig. 10.2 Unfolding graphs into trees

1

2 3

4 5 6

7

8 9

1

2 3

4 5 6

7

9 9

7

8 8

1

2 3

4 4

5 6 5 6

7 7 7 7

8 8 9 99 8 8 9

1

2 3

4

5 6

7

8 9

x 0 1 2
m

x

x1 0= x1 1= xi
128

Discrete Optimization Problems

Sequential search algorithms

Ù

variable to or , it is possible to check whether an instantiation of the remaining free

variables can lead to a feasible solution. If not, the exploration of the remaining tree

hanging to the current node is aborted. Otherwise, if the node could lead to a feasible

solution, the next variable is selected and assigned a value. This process continues until

all the variables have been assigned and the feasible set has been generated. The cost

function from equation (10-2) is evaluated for each generated node, the solution is

the one which minimize . Figure 10.3 illustrates this process. �

Example 10-5. Graph-search problem: The eight-puzzle

Considering the eight-puzzle problem as defined in example 10-2, this problem can

be formulated as a graph-search problem. The initial node represents the initial

configuration. The generated nodes correspond to the four (or less) possible moves.

Each configuration appears only once in the graph. Each time the final configuration

appears in the graph, a feasible solution has been found, i.e. a sequence of moves

bringing from the initial to the final configuration. In such cases the cost function (the

number of moves) is evaluated and the graph-search under the current node is

terminated. The graph exploration continues until the whole feasible set has been

generated. Figure10.4 illustrates the first steps of this process. �

In both examples (10-4, 10-5) the cost function is evaluated for each of the feasible solu-

tion in ; the solution with the minimum value is the desired solution. Note that it is

unnecessary to generate the entire feasible set to determine the solution. As we will see, several

search algorithms can determine an optimal solution by searching only a portion of the graph.

The following presented search algorithms are the most commonly used. However, the list is

non-exhaustive, also several algorithm combinations are possible.

Fig. 10.3 Tree-search problem: The 0/1 integer-linear-programming

Nodes are numerated in exploration order, shaded nodes do not satisfy problem

constraints, node 6 is a feasible solution but does not minimize the cost function,

node 7 is feasible and minimizes , i.e. it’s the solution.

0 1

f

f

76

1

2 3

4 5

Ax

3 3 1

3 3 1

3 3 1

x
1

x
2

x
3

6

6

6

≥ b= =

f x() cTx 16 16 20–

x
1

x
2

x
3

= =

x
1

0= x
1

1=

x
2

0= x
2

1=

x
3

0= x
3

1=

f x() 32= f x() 12=

f

f x()

S

129

Discrete Optimization Problems

Sequential search algorithms10
10.4.1. Depth-first search

Depth-first search (DFS) algorithms solve DOPs that can be formulated as tree-search prob-

lems. DFS begins by expanding the initial node and generating its successors. In each

subsequent step, DFS expands one of the most recently generated nodes. If this node has no suc-

cessors (or cannot lead to any solutions), then DFS backtracks and expands a different node. We

talk about simple backtracking if the search terminates upon finding the first solution. Thus, it

is not guaranteed to find a minimum-cost solution. A variant, ordered backtracking, does use

heuristics to order the successors of an expanded node.

The iterative deepening depth-first search (ID-DFS) consists of imposing a bound on the

depth to which the DFS algorithms searches. If no solution is found, then the search process is

repeated with a larger bound. ID-DFS does not guaranty to find a least-cost solution, but the one

with the smallest number of edges. Iterative deepening A* (IDA*) is a variant of ID-DFS. IDA*

does not use a fixed depth bound. Instead, each node evaluates a cost-function, if this value is

higher than a fixed cost, then the algorithm backtracks. IDA* performs cost-bounded DFS over

the search space. Like the ID-DFS, if no solution is found, then the entire state space is searched

again using a larger cost bound.

Fig. 10.4 Graph-search problem: The eight-puzzle

1 5 2

8 3

4 7 6

5 2

1 8 3

4 7 6

5 2

1 8 3

4 7 6

1 5 2

8 3

4 7 6

1 5 2

4 8 3

7 6

5 8 2

1 3

4 7 6

5 2

1 8 3

4 7 6

up left

left up up left

5 2

1 8 3

4 7 6

down right

state has been

generated

previously

A

B C

D E F G H
130

Discrete Optimization Problems

Sequential search algorithms

Ù

A major advantage of DFS is that its required memory size is linear to the depth of the state

space being searched. Figure 10.5a illustrates the DFS search process.

10.4.2. Breath-first search

The breath-first search (BRFS) is a tree-search algorithm. BRFS begins by expanding the ini-

tial node, generating all nodes at a distance of one level from the root node. Next, all the nodes

at a distance of two levels from the root will be examined, and so forth, until the entire tree is

examined. The nodes are examined in order of increasing depth. This technique can be imple-

mented via a queue. The BRFS algorithm explores the entire search space and locates the

solution minimizing the cost function. The major disadvantage of BRFS algorithms is the large

memory consumption. Figure 10.5b illustrates the BRFS algorithm.

10.4.3. Best-first search

Best-first search (BFS) algorithms can search both graphs and trees. These algorithms use

heuristics to direct the search to portions of the search space likely to yield solutions. Heuristic

evaluation functions assign smaller values to more promising nodes. The A* algorithm is one

of the common BFS technique. The A* algorithm uses the lower bound function

 (see Section 10.3) as a heuristic. BFS algorithms maintain an open list and

a closed list. Nodes in the open list are ordered according to increasing value of the heuristic

evaluation function. At the beginning, the initial node is placed on the open list. At each step,

the node with the smallest heuristic value, i.e. the most promising node, is removed from the

open list and placed in the close list. Its successors are inserted into the open list, unless there

are already in the closed list. The BFS algorithm terminates once the goal node is reached. If the

heuristic function is admissible (see Section 10.3), then the BFS algorithm finds an optimal

solution.

The main drawback of any BFS algorithm is that its memory requirement is linear to the size

of the search space explored, which for many problems, grows exponentially with the depth of

the explored tree.

Fig. 10.5 Search order for (a) Depth-first search, (b) Breath-first search

1

2 4

3 5 9

10

8 12

6

7 11

1

2 3

4 5 6

8

10 12

7

9 11

(a) (b)

l x() h x() g x()+=
131

Discrete Optimization Problems

Sequential search algorithms10
10.4.4. Branch and bound

Branch and bound (BB) algorithms exhaustively search through the state space, represented

as a tree or a graph, seeking for an optimal solution. The BB technique can be used in combina-

tion with all the previously discussed search algorithms. Whenever it finds a new solution, it

updates the current best solution. BB abort exploration of nodes whose extensions are guaran-

teed to be worse than the current best solution. Consider the eight-puzzle problem described in

example 10-2, we assume the initial and final configurations showed in Figure 10.1, and sup-

pose that the illustrated 8-moves solution has already been found. We consider a DFS algorithm

exploring the state space of the eight-puzzle problem. Supposing that our search algorithm

reaches the state illustrated in Figure 10.4. Since the current node is directly connected to the

root, the cost function , as defined in Section 10.3, equals . The Manhantan distance from

the current node to the final configuration is given by . The evaluation of the admis-

sible Manhantan heuristic gives . Therefore, the current node

 will not lead to a better solution than the current best 8-moves solution. Therefore, the BB

search algorithm skips the exploration of the nodes below the node C.

A variant of the BB algorithm is the alpha-beta minimax search (ABMS). The ABMS algo-

rithm is used by several game-playing programs to search for the best move to make next.

Instead of using one bound value to prune some part of the state search space, ABMS algorithms

use two threshold values: alpha and beta, each corresponding to one player. Like in BB algo-

rithms, the alpha-beta strategy use these two values to avoid the exploration of sub-graphs

whose evaluation cannot influence the outcome of the search, see [Naddef00].

BB algorithms, like linear programming, and other techniques could be considered as a partial

enumeration strategy. These strategies may reduce considerably the size of the search state

space. They are especially well-adapted to problems for which a lower bound function exists

and is easily computable. The design of suitable bounding values is at the heart of most BB

research. Linear relaxations is one of the common techniques to provide an obvious source of

bounds [Parker88].

10.4.5. Generic sequential search

Figure 10.6 lists a generic sequential search process [Roosta00]. It involves two lists: open and

closed. The open list contains nodes to be examined, whereas the closed list has those nodes that

are already examined. Line 4 selects a single node from the open list. Line 5 generates succes-

sors of the selected node. Line 6 removes from the successor list those nodes that are either on

the open or closed list. Line 7 merges two lists to form a new open list. Line 8 forms a new

closed list. This algorithm is generic in that it uses no particular search strategy. A particular

search strategy can be embedded by modifying the merge step at line 7. For example, DFS can

be readily implemented by inserting the successors in front of the open list. BRFS can be real-

ized by inserting the successors at the end of the open list. The BFS search strategy can also be

easily implemented by inserting the successors into the open list in ascending order of heuristic

values.

C

g C() 1

h C() 9=

l C() l C() g C() h C()+ 10= =

C

132

Discrete Optimization Problems

Parallel search

Ù

10.5. Parallel search

Parallel search algorithms incur overhead from several sources: communication overhead,

idle time due to load imbalance, and contention for shared data structures. Thus, if both the

sequential and parallel formulations of an algorithm do the same amount of work, the speedup

of parallel search on processors is less than . However, the amount of work done by a par-

allel formulation is often different from that done by the corresponding sequential formulation

because they may explore different parts of the search space. In this case, some speedup anom-

alies could occur [Lai83]. Some executions of parallel versions could find a solution after

generating fewer nodes than the sequential version, making it possible to obtain a superlinear

speedup (acceleration anomalies). Other executions let the parallel versions finding a solution

after generating more nodes, resulting in sublinear speedup (deceleration anomalies). If the

speedup is superlinear, i.e. if the speedup is greater than using processors, it indicates that

the serial search algorithm is not the fastest algorithm for solving the problem.

The critical issue of parallel search algorithms is the distribution of the search space among

the processors. By statically assigning a node in the tree to a processor, it is possible to expand

the whole subtree rooted at that node without communicating with another processor. Poten-

tially, it seems that such a static allocation yields a good parallel search algorithm.

Unfortunately, static partitioning of unstructured trees yields poor performance because of sub-

stantial variation in the size of partitions of the search space rooted at different nodes.

Furthermore, since the search space is usually generated dynamically, it is difficult to get a good

estimate of the size the search space beforehand. Therefore, it is necessary to balance the search

space among processors dynamically, i.e. doing dynamic load balancing.

At run time, when a processor (the recipient processor) runs out of work, it should get more

work from another processor (the donor processor) that has work. Several dynamic load balanc-

ing schemes are described in the literature, the difference between them is the manner how the

donor processor is chosen. It could be chosen by a master (global round robin) or in a distrib-

uted manner (asynchronous round robin). It could also be chosen in a probabilistic way

(random polling). A detailed dynamic load balancing scheme for parallel Branch and Bound

algorithm is presented in [Lüling92].

Fig. 10.6 Generic sequential search algorithm

1. open = initial_state

2. closed =

3. Repeat

4. selected_node select(open)

5. succ expand(selected_node)

6. succ filter(succ, open, closed)

7. open merge(succ, open)

8. closed merge(selected_node, closed)

9. Until(goal_state succ) or (open =)

∅

←

←

←

←

←

 ∈ ∅

p p

p p
133

Discrete Optimization Problems

Travelling Salesman Problem: A didactical solution10
In order to distribute the load, the donor processor splits his work and transmits some nodes

to the recipient processor which runs out of work. How many and which graph nodes should be

transmitted? If too little work is sent, the recipient quickly becomes idle; if too much, the donor

becomes idle. Ideally, the total work is split into equal pieces such that the size of the search

space is the same on the two processors (half-split strategy). It is difficult to get a good estimate

of the size of the tree rooted at an unexpanded alternative. However, deep nodes tend to have

smaller trees rooted at them than nodes close to the root. Three splitting strategies can be cho-

sen: (1) send nodes near from the root, (2) send nodes near to the leaf and (3) send intermediate

nodes. The nature of the search space (uniform, irregular, with a good heuristic, etc.) determines

which strategy is more suitable [Kumar94].

Once a general dynamic load balancing system is installed, simple search algorithms, like

DFS or BRFS, can be readily implemented. The more sophisticated search algorithm that need

to maintain a global status, like BFS or BB, need to exchange several data structures at run time.

The realization details of these data exchanges are dependent on both the target parallel system

(shared/distributed memory, low/high latency network) and on the parallel framework (low

level message passing system like MPI or higher level parallel scheduling language like CAP)

used to develop the application. The most common referenced data exchange techniques are:

the centralized strategy (master-slave), the random communication strategy, the ring communi-

cation strategy and the blackboard communication strategy, see [Parker88].

10.6. Travelling Salesman Problem: A didactical solution

The present section has been developed for teaching purposes. It has its place both as an

advanced tutorial for the CAP framework or as the starting point for developing a more efficient

TSP solution. Because of the speedup anomalies (see previous section), the performances are

difficult to measure and are out of the scope of this tutorial.

The Traveling Salesman Problem (TSP) is easy to formulate: given a finite number of cities

together with the cost of travel between each pair of them, find the cheapest way of visiting all

the cities and returning to the starting point. We consider here only the case of the symmetric

Fig. 10.7 TSP example with 6 cities: the travel costs are defined as the Euclidian

distance between two cities. The bold weighted cycle is the solution.

5 4

0 3

1 2
134

Discrete Optimization Problems

Travelling Salesman Problem: A didactical solution

Ù

TSP, where the travel costs are symmetric in the sense that traveling from city X to city Y costs

just as much as traveling from Y to X. We assume also that the traveling costs are integers. The

solution of the TSP gives the order in which the cities must be visited to minimize the traveling

costs. The simplicity of this problem, coupled with its apparent intractability, makes it an ideal

platform for exploring new algorithmic ideas. Figure 10.7 illustrates a TSP instance.

The origin of the TSP are obscure. The mathematician and economist Karl Menger published

the TSP problem in 1920. Several mathematician and statisticians popularized it until 1950. A

breakthrough came with linear programming and Dantzig’s simplex algorithm [Applegate98].

The TSP gained notoriety as the prototype of hard problem in combinatorial optimization.

Indeed, the TSP belongs to the NP-Hard problems. It remains NP-Hard even if the travel costs

are limited to the integers 0 and 1 - the TSP is NP-Hard in the strong sense [Parker88]. Nowa-

days, a lot of work has been done and published from several domains to solve the TSP:

heuristic approaches, genetic algorithms, neural networks, tabu searches, approximation algo-

rithms, Branch-and-Bound algorithms, Branch-and-Cut algorithms, and many more. Various

algorithms and softwares are available in the public domain [Chvátal00] [Concorde00]

[TSPBIB00] [TSPLIB00]. Some work has also been done for parallelizing the TSP, in particu-

lar, Stefan Tschöke and its colleagues published a remarkable paper describing the

parallelization of the TSP on a 1024 processor network using a BB algorithm [Tschöke95].

In this section, we present a parallel BFS-BB algorithm solving the TSP. In order to facilitate

the development of the parallel application, we implemented it with the CAP language. We

choose a master-slave strategy to achieve dynamic load balancing and data structure exchange.

The slaves perform each a sequential BB algorithm on a part of the search space. The master

distributes jobs to the slaves according to a BFS strategy. The master is responsible for main-

taining a job list. The jobs are split into smaller subjobs and inserted in the list according to the

BFS strategy. The master sends first the most promising jobs to the slaves. The slaves work on

a job during a given amount of time. The chosen amount of time determines the parallelization

grain. When the time is elapsed the job is returned to the master. The returned jobs are either

Fig. 10.8 CAP process hierarchy for the TSP

1. parameter int NbSlaveProcess = 4;

2. process MasterProcessT {

3. operations :

4. };

5. process SlaveProcessT {

6. operations :

7. SlaveRun in tspJobT* inputP out tspJobT* outputP;

8. };

9. process GlobalProcessT {

10. subprocesses :

11. MasterProcessT MasterProcess;

12. SlaveProcessT SlaveProcess[NbSlaveProcess];

13. operations :

14. GlobalRun in void* inputP out void* outputP;

15. };
135

Discrete Optimization Problems

Travelling Salesman Problem: A didactical solution10
terminated or still active. In the last case they are inserted again in the job list. The program ter-

minates when the job list is empty and all the jobs returned.

10.6.1. Process hierarchy

In order to implement the master-slave distribution strategy, we need one master process and

several slave processes. Figure 10.8 shows such a CAP process hierarchy. The GlobalProcessT

contains one master subprocess (line 11) and NbSlaveProcess slave subprocesses (line 12).

Since NbSlaveProcess is a CAP parameter, it can be changed via the command line

arguments (no compilation needed). MasterProcessT and SlaveProcessT are both system pro-

cesses, GlobalProcessT is a higher-level CAP process abstraction; an abstraction that has no

associated system process. The GlobalRun (line 14) operation in GlobalProcessT is the high-

level CAP operation controlling the data flow. The SlaveRun (line 7) leaf operation in Slave-

ProcessT is the sequential C++ function implementing the BB algorithm. The MasterProcessT

is the master execution thread, it does not contain any operation, it is responsible for executing

the Split and Merge functions as we will see it later.

Fig. 10.9 CAP configuration file for the TSP: 1 master and

4 single-processor slave computers

Fig. 10.10 CAP configuration file for the TSP: 1 master and

2 bi-processor slave computers

1. configuration {

2. processes :

3. M ("user");

4. S0 ("128.178.75.10", "tsp.exe");

5. S1 ("128.178.75.11", "tsp.exe");

6. S2 ("128.178.75.12", "tsp.exe");

7. S3 ("128.178.75.13", "tsp.exe");

8. threads :

9. "MasterProcess" (M) ;

10. "SlaveProcess[0]" (S0);

11. "SlaveProcess[1]" (S1);

12. "SlaveProcess[2]” (S2);

13. "SlaveProcess[3]” (S3);

14. };

1. configuration {

2. processes :

3. M ("user");

4. S0 ("128.178.75.10", "tsp.exe");

5. S1 ("128.178.75.11", "tsp.exe");

6. threads :

7. "MasterProcess" (M) ;

8. "SlaveProcess[0]" (S0);

9. "SlaveProcess[1]" (S0);

10. "SlaveProcess[2]" (S1);

11. "SlaveProcess[3]" (S1);

12. };
136

Discrete Optimization Problems

Travelling Salesman Problem: A didactical solution

Ù

This process hierarchy can be used with several CAP configuration files. Figure 10.9 shows

an example with 5 single processor computers: 1 master and 4 slaves. If the slaves are bi-pro-

cessor computers, then the example described in the configuration file of Figure 10.10 is

appropriate.

10.6.2. Sequential part of the algorithm

The application is based on the master-slave paradigm: the master sends a token data structure

to the slave, the slave performs some work on it, and sends it back to the master. Before describ-

ing the parallel aspect of the application, we first need to explain the individual work done by

each slave. The token tspJobT exchanged between the master and the slaves is presented by Fig-

ure 10.11. The tab member is a fixed size integer array containing the subpath of visited cities.

The tripSize member is the size of this subpath. Initially, tab contains only the city index .

Then, the algorithm performs a DFS, i.e. when the DFS goes down in the search tree, a new city

is appended to tab and when the algorithm backtracks, the last city is removed. The search is

performed by two functions: tspGetNextSubPath and tspbacktrack. The first goes down in the

search tree adding a new city to tab, the second backtracks by removing the last city from tab.

In order to explore a new subpath when backtracking occurs, we use the swapTab integer array.

This array contains indexes of cities chosen after backtracking. Figure 10.12 explains how the

exploration of the search tree with four cities is performed. For example to reach state F from

the initial state A, we need to call tspGetNextSubPath to go from A to B, then tspGetNextSub-

Path to go from B to C, then again tspGetNextSubPath to go from C to D, then tspbacktrack to

backtrack from D to B (tspbacktrack jumps over state C since no unexplored subpaths are rooted

at this point), then tspGetNextSubPath to go from B to E, and finally tspGetNextSubPath to go

from E to the final state F.

The lowerBound (Fig. 10.11, line 7) member is the length (travel cost) of the current subpath.

The upperBound is the shortest path going through all the cities (Hamiltonian cycle) found at

this time. The upperBound is compared to the lowerBound within the scope of the BB algo-

rithm. The backtrack boolean value determines if we need to backtrack or not. It is set to TRUE

for backtracking, and to FALSE otherwise.

Fig. 10.11 Description of the token data structure exchanged between the master and

slaves

0

1. token tspJobT

2. {

3. int tab[MAX_SIZE]; // contains the actual subpath

4. int swapTab[MAX_SIZE]; // internal usage, used for backtracking

5. int backtrack; // boolean value, set to TRUE if backtrack needed

6. int tripSize; // number of cities in the actual subpath

7. int lowerBound; // lower bound for the actual subpath

8. int upperBound; // best found upper bound

9. int jobLowerBound; // lower bound of the job

10. int minTripSize; // backtracking limit

11. };
137

Discrete Optimization Problems

Travelling Salesman Problem: A didactical solution10
Looking again at Figure 10.12, we known that the whole search tree has been explored when

the tspbacktrack function comes back to state A and that all the subpaths rooted there have been

explored. During the whole search, the first city stays at the first position in tab. If we want to

perform such a search we set the minTripSize member to . Since we are interested in parallel

processing, we need to be able to split a tspJobT. We could, for example, split the job starting

at initial state A in three tspJobT starting respectively at states B, G and H. The two first cities

of these jobs will never change during the search. For these jobs, minTripSize is set to . The

minTripSize member is set when a tspJobT is split; it represents the backtracking limit. The job-

LowerBound member is the lower Bound of the job, i.e. the travel cost from the first city to the

city at position minTripSize in tab.

Figure 10.13 lists the sequential CAP leaf operation performed on each slave. The SlaveRun

leaf operation receives a tspJobT as input token. A Depth-First Search Branch and Bound (DFS-

BB) algorithm is applied to this token, then the token is returned to the master. Lines 7-9 manage

the case of an invalid tspJobT. Such an invalid job is send by the master when no more valid

jobs are available. At line 10 begins the main loop performing the DFS-BB algorithm. The con-

dition of this loop limits the computation time of a job. When the count variable exceeds the

ComputationSteps CAP parameter, the loops ends and the tspJobT token returns to the master.

The slave processes then another job previously received from the master. This computation

limitation avoids the slave to spend too much time on exploring unpromising subtrees. Lines

11-19 implements a DFS algorithm calling the tspGetNextSubPath and tspbacktrack functions

(Fig. 10.12). Lines 21-24 lists the BB part of the algorithm. When the lowerBound exceeds the

best known upperBound backtracking occurs, since the current node will not lead to a better

solution. Lines 25-28 treat the case where a solution better than the currently best known solu-

tion is found. In such a situation, the loop ends, and the new solution is immediately send to the

master. The last lines check if the current path is intersectionless [Applegate99][DeCegama89].

Fig. 10.12 DFS exploration of the TSP search tree with four cities

The black lines correspond to a call to tspGetNextSubPath, the light gray correspond

to a tspbacktrack call

0

10

10 3

10 23

20 30

10 2 20 320 1 30 230 1

10 32 20 1320 31 30 2130 12

A

B

C

D

E

F

G H

1

2

138

Discrete Optimization Problems

Travelling Salesman Problem: A didactical solution

Ù

If the path contains an intersecting pair, then the subsequent exploration will not lead to the

optimal solution. In such a case the algorithm backtracks.

10.6.3. Parallel part of the algorithm

The parallel algorithm implements a Best-First Search (BFS) technique (Fig. 10.14). An open

list (see Section 10.4.3) is used to order the tspJobPs according to their jobLowerBound. The

jobs are sent to slaves using a dynamic load balancing scheme. The best found job (BestTsp-

JobP) is continuously updated and stored to allow the slave to perform a BB algorithm.

GlobalRun is the global CAP parallel operation handling the data flow. The indexed parallel

statement generates new tokens (by calling the Split function), and sends them to the slave pro-

cesses. The token generation stops when they are no jobs in the job list, and no currently running

jobs. Once, the indexed parallel exits, the application terminates. Line 32 guaranties that the

Split function is executed by the MasterProcess. The flow_control statement limits the number

of currently sent jobs to PipelineDepth*NbSlaveProcess. When the pipeline reaches the steady

Fig. 10.13 Sequential CAP leaf operation performed on each

slave (DFS-BB algorithm)

1. parameter int ComputationSteps = 200000;

2. parameter int NumberOfCities = 20;

3. leaf operation SlaveProcessT::SlaveRun in tspJobT* inputP out tspJobT* outputP

4. {

5. int count = 0;

6. outputP = new tspJobT(*inputP);

7. if(outputP->tripSize < 0) { // invalid job

8. return;

9. }

10. while(++count < ComputationSteps) {

11. if(outputP->backtrack || outputP->tripSize > NumberOfCities) {

12. tspbacktrack(outputP); // DFS search (up)

13. if(outputP->tripSize < outputP->minTripSize) {

14. break; // job is terminated

15. }

16. outputP->backtrack = FALSE;

17. continue;

18. }

19. tspGetNextSubPath(outputP); // DFS search (down)

20. // analysis of new subpath

21. if(outputP->lowerBound > outputP->upperBound) {

22. outputP->backtrack = TRUE; // no better solution found here

23. continue;

24. }

25. if(outputP->tripSize > NumberOfCities) {// if round trip completed:

26. outputP->upperBound = outputP->lowerBound; // better sol: upperBound updated

27. break;

28. }

29. if(!tspIsAcceptable(outputP)) {

30. outputP->backtrack = TRUE;

31. continue; // subpath is not intersectionless, backtrack

32. }

33. }

34. }
139

Discrete Optimization Problems

Travelling Salesman Problem: A didactical solution10
state, each slave job queue should contain PipelineDepth jobs. The PipelineDepth CAP param-

eter must be set at least to two. This ensures that slaves are never idle waiting for receiving a

new job. If PipelineDepth is set to a value larger than 2, then the termination latency could

increase due to a possible higher imbalance between slaves. The CAP cap_fcindex0 keyword

ensures dynamic load balancing, cap_fcindex0%NbSlaveProcess represents the index of the

slave, which returned the most recently terminated job.

The Split function gets the jobs from the job list (line 6). If the job list is empty, then an invalid

job is sent (lines 7-9). The successors of the considered job are generated and inserted in the job

list (line 13). The successors are not generated if they are too close to the leaf (CutOff CAP

parameter) of the search tree. In order to avoid to insert in the list unpromising nodes, successors

of jobs that have never been processed by a slave are also not generated (line 11). If the current

Fig. 10.14 Parallel CAP operation solving the TSP (BFS algorithm)

1. parameter int CutOffDepth = 5;

2. parameter int PipelineDepth = 2;

3. int RunningJobs = 0;

4. void Split(capTokenT* inputP, tspJobT*& outputP, int)

5. {

6. if(!(outputP = tspOrderedJobListRemove())) {// take most promising job

7. outputP = new tspJobT(); // job list is empty: send an invalid job

8. outputP->tripSize = -1;

9. return;

10. }

11. if(outputP->tripSize > outputP->minTripSize && // if the job is not new and

12. outputP->minTripSize < NumberOfCities - CutOffDepth) { // not too small then it is

13. tspOrderedJobListExpand(outputP); // splitted into smaller jobs

14. } // and inserted in the list

15. outputP->upperBound = BestTspJobP->upperBound;

16. RunningJobs++;

17. }

18. void Merge(capTokenT* outputP, tspJobT* inputP, int)

19. { // returned jobs may be terminated, provide a better solution or remain active

20. if(inputP->tripSize < 0) {

21. return; // receiving an invalid job

22. }

23. RunningJobs--;

24. if(inputP->tripSize < inputP->minTripSize) {

25. return; // this job is terminated

26. }

27. tspUpdateBestJob(inputP); // job still active: update BestJob

28. tspOrderedJobListInsert(new tspJobT(*inputP)); // and insert it in the job list

29. }

30. operation GlobalProcessT::GlobalRun in void* inputP out void* outputP

31. {

32. MasterProcess.{} >-> // ensure that MasterProcess executes the split fct

33. flow_control(PipelineDepth*NbSlaveProcess) // PipelineDepth jobs per slave

34. indexed

35. (; tspOrderedJobListSize() + RunningJobs > 0;)

36. parallel (Split, Merge, MasterProcess, void result)

37. (

38. SlaveProcess [cap_fcindex0%NbSlaveProcess].SlaveRun// dynamic load balancing

39.);

40. }
140

Discrete Optimization Problems

Summary

Ù

job is valid, it’s upperBound is updated to the currently best found upper bound and the Run-

ningJobs variable is increased.

The Merge function inserts the received job in the job list and updates, if necessary, the best

found job. Invalid or terminated jobs (lines 20-22 and lines 24-26) are ignored. The Running-

Jobs variable is decreased if the received job is valid.

10.7. Summary

The parallel processing of discrete optimization problems is a large domain of research. Sev-

eral theoretical results and applications are available. In this chapter, we give a didactical

presentation of its central aspects. We develop the most common used search algorithm and sev-

eral techniques to considerably reduce the huge search space. We implement a didactical CAP

program solving the famous traveling salesman problem using a hybrid search algorithm. This

program features dynamic load balancing, which is one of the critical issues when parallelizing

discrete optimization problems. CAP enables to express data structures, sequential functions,

and parallel scheduling in a clearly separated manner. This modularity lets the programmer con-

centrates himself on the main (sequential and parallel) algorithm strategies without being

distract by low-level implementation details.

Fig. 10.15 TSP solutions for cities in the U.S.A., the cost of travel between two cities

is defined by the road distance (a) 49 cities: 1 city from each of the 48 states and

Washington D.C. (Selmer Johnson, 1954) (b) 532 AT&T switch locations in the USA

(Padberg and Rinaldi 1987) (c) 13,509 cities in the USA with populations > 500

(Applegate, Bixby, Chvatal, and Cook 1998)

(a) (b)

(c)
141

Discrete Optimization Problems

Summary10
142

Ù

11 Conclusion

Various approaches have been explored in order to facilitate the development of parallel appli-

cations. In the context of this thesis, we explore an approach based on the explicit specification

of parallel schedules. For this purpose, we use the CAP framework which allows to specify at a

high level of abstraction the flow of data and parameters between operations running on the

same or on different processors. Within the CAP language, the programmer specifies explicitly

the parallel behavior of the application as a parallel schedule. The CAP C++ language extension

execution model is based on a coarse grain decomposition. The CAP approach has proved to

work on clusters between 10 to 50 PCs interconnected with a Fast Ethernet network.

In the first chapters we have introduced the CAP approach. We began by presenting the fun-

damentals and the underlying philosophy of the CAP language. We also presented technical

programming aspects and advanced topics such as load balancing and serialization. In the next

chapters, we presented several parallel applications developed within the CAP framework: par-

allel linear algebra computations, parallel image filtering, parallel Branch and Bound

algorithms, dynamic load balancing of cellular automata and parallel computation combined

with asynchronous data access. In all these applications, we demonstrate the ability of CAP to

produce efficient parallel solutions.

The CAP framework is the result of a large collaborative effort between several members of

the Peripheral Systems Laboratory (LSP) of the EPFL. In particular, the CAP language was cre-

ated by Benoît Gennart, the parallel file striping and the message passing system have been

developed by Vincent Messerli. The contribution of this thesis was (1) to contribute to the evo-

lution of the CAP system by improving it with load balancing and serialization features; and (2)

to validate the CAP approach through the development of several parallel applications.

The applications developed during this thesis demonstrate the ability of CAP to express cus-

tom parallel schedules. The presented performance results indicate that the developed

applications have been successfully parallelized yielding very efficient programs making use of

most of the underlying hardware capabilities. With the Radiocontrol application developed for

industrial purposes, we demonstrated that existing programs can be relatively easily parallelized

and that solutions can be found for graceful degradation in case of failure. We conclude that the

CAP approach is valid and well adapted for developing efficient parallel cluster computing

applications.

Future research efforts should aim at overcoming the current limitations of the CAP frame-

work. In particular, CAP does not allow to create parallel schedules dynamically. All schedules

are defined at compilation time. The next generation CAP framework will be based on dynamic

parallel components. Each component will offer a set of parallel services. For example, one
143

Conclusion
11
component could be a parallel file system component, another a parallel image processing com-

ponent, etc. We should offer the possibility of creating dynamically new schedules using the

previously defined parallel components. For example, a new schedule could perform an out-of-

core parallel image processing algorithm, using the parallel file system and parallel image pro-

cessing components. This new schedule can in turn become itself a component. The next

generation framework will offer a flexible solution for building efficient parallel component

based services.

Within this thesis, we validate the schedule based approach for developing parallel applica-

tions. We demonstrate that the formulation of parallel schedules independently from the serial

part of the program facilitates the programmer’s work and offers valuable compositional

aspects. Finally, the presented performances demonstrate the efficiency of the schedule based

approach.
144

Ù

Bibliography

[Agerwala82] T. Agerwala, Arvind, “Data Flow Systems: Guest Editors’s Introduction,”

IEEE Computer, February 1982, Vol. 15, No. 2, 10-13

[Amdahl67] G. S. Amdahl, “Validity of the Single-Processor Approach to Achieving

Large Scale Computing Capabilities”, Proc. AFIPS, Conf. 30, AFIPS Press,

Reston Va., 1967, 483-485

[Amdahl88] G. S. Amdahl, “Limits of Expectations”, The International Journal of

Supercomputer Applications, Vol. 2, No. 1, 1988, 88-94

[Anderson95] E. Anderson, LAPack User’s Guide, 2nd edition, Society for Industrial and

Applied Mathematics, Philadelphia, 1995

[Applegate98] D. Applegate, R. Bixby, V. Chvátal, W. Cook, “On the solution of Travelling

Salesman Problems”, Documenta Mathematica, Vol. 3, Extra volume ICM,

1998, 645-656

[Applegate99] D. Applegate, R. Bixby, V. Chvátal, W. Cook, “Finding tours in the TSP”,

Tech. Rep. TR99-05, Departement of Computational and Applied

Mathematics, Rice University, 1999

[Beguelin90] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, V. S. Sunderam, “A User’s

Guide to PVM Parallel Virtual Machine,” Oak Ridge National Laboratory

Report ORNL/TM-11826, July 1990

[Beguelin92] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, V. S. Sunderam, “HeNCE:

Graphical Development Tools for Network-Based Concurrent Computing”,

Proc. of SHPCC-92, IEEE Computer Society Press, Los Alamitos, California,

1992, 126-136

[Bichsel98] M. Bichsel, “Method for the compression of recordings of ambient noise,

method for the detection of program elements therein, and device therefor”,

European Patent Application EP 0 598 682 A1, applicant LIECHTI AG,

issued 30.12.1998

[BSD93] "Computing Science and Systems: The UNIX System", AT&T Bell

Laboratories Technical Journal 63, October 1984, No. 6 Part 2, 1577-1593,

see also http://www.bsd.org

[Buyya99] I. Buyya, Rajkumar, High Performance Cluster Computing, Prenttice Hall,

1999
145

Ù

[Carriero89a] N. Carriero, D. Gelernter, “Linda in Context,” Communications of the ACM,

April 1989, Vol. 32, No. 4, 444-458

[Carriero89b] N. Carriero, D. Gelernter, “How to Write Parallel Programs: A Guide to the

Perplexed,” Journal of the ACM, September 1989, Vol. 21, No. 3, 323-357

[Chvátal00] V. Chvátal, http://www.cs.rutgers.edu/~chvatal/tsp.html

[Cohen98] A. Cohen, M. Woodring, Win32 Multithreaded Programming, O’Reilly &

Associates, January 1998

[Concorde00] D. Applegate, http://www.keck.caam.rice.edu/concorde.html

[Cornell97] G. Cornell, C. S. Horstmann, Core Java, SunSoft Press, 1997

[Cosnard95] M. Cosnard, D. Trystram, Parallel Algorithms and Architectures, Int.

Thomson Computer Press, 1995

[Crichlow97] J. M. Crichlow, An Introduction to Distributed and Parallel Computing,

Prentice Hall, 1997

[Croes58] G. Croes, “A method for solving Traveling-Salesman Problems”, Operations

Research 5, 1958, 791-812

[DeCegama89] A. L. DeCegama, The Technology of Parallel Processing, Prentice Hall, 1989

[Denning86] P. J. Denning, “Parallel Computing and its Evolution”, Communications of

the ACM, Dec. 1986, Vol. 29, No. 12, 1163-1167

[Dennis75] J. Dennis, “First Version of a Data Flow Procedure Language,” MIT

Technical Report TR-673, MIT, Cambridge, Massachusetts, USA, May 1975

[Dongarra96] J. J. Dongarra, S. W. Otto, M. Snir, D. Walker, “A message passing standard

for MPP and workstations”, Communications of the ACM, 1996, Vol. 39, No.

7, 84-90

[Equitz95] W. Equitz, “Image searching in a shipping product”, Proc. Conf. IS&T/SPIE-

Storage and Retrieval for Image And Video Databases III, California,

February 1995, SPIE Vol. 2420, 186-196

[Foster94] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for

Parallel Software Engineering, Addison-Wesley, 1994

[Galletly96] J. Galletly, Occam-2, UCL Press, 1996

[Gennart98a] B. A. Gennart, “The CAP Computer-Aided Paralllelization Tool: Language

Reference Manual”, EPFL internal report, July 1998

[Ghezzi82] C. Ghezzi, M. Jazayeri, Programming Language Concepts, John Wiley, 1982

[Ghezzi85] C. Ghezzi, “Concurrency in Programming Languages: A Survey”, Parallel

Computing, November 1985, Vol. 2, 229-241
146

Ù

[Golub96] G. H. Golub, C. F. Van Loan, Matrix computations, Johns Hopkins University

Press, Third edition, 1996

[Gray92] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques,

Morgan Kaufmann, 1992

[Grimshaw93a] A. S. Grimshaw, W. T. Strayer; P. Narayan, “Dynamic Object-Oriented

Parallel Processing”, IEEE Parallel & Distributed Technology: Systems &

Applications, May 1993, Vol. 1, No. 2 , 33 -47

[Grimshaw93b] A. S. Grimshaw, “Easy-to-Use Object-Oriented Parallel Processing with

Mentat”, IEEE Computer, May 1993, Vol. 26, No. 5, 39-51

[Gustafson88] J. L. Gustafson, “Reevaluating Amdahl’s Law”, CACM, May 1988, 532-533

[Halstead85] Robert H. Halstead Jr., “Multilisp: A Language for Concurrent Symbolic

Computation,” ACM Transactions on Programming Languages and Systems,

Oct. 1985, Vol. 7, No. 4, 501-538

[Hansen75] P. B. Hansen, “The Programming Language Concurrent Pascal”, IEEE

Transactions on Software Engineering, June 1975, Vol. SE-1, No. 2, 199-207

[Hatcher91] P. J. Hatcher, M. J. Quinn, A. J. Lapadula, B. K. Seevers, R. J. Anderson, R.

R. Jones, “Data-parallel programming on MIMD computers”, IEEE

Transaction on Parallel and Distributed Systems, 1991, Vol. 2, No. 3, 377-

383

[Hersch93] R. D. Hersch, “Parallel Storage and Retrieval of Pixmap Images”, 12th IEEE

Symposium on Mass Storage Systems, Montherey CA, Digest of papers, IEEE

Computer Society Press, April 1993, 221-226

[Hersch00] R. D. Hersch, B. Gennart, O. Figueiredo, M. Mazzariol, J. Tarraga, S. Vetsch,

V. Messerli, R. Welz, L. Bidaut, “The Visible Human Slice Web Server: A

first Assessment”, Proc. IS&T/SPIE Conference on Internet Imaging, San

Jose CA, Jan. 2000, SPIE Vol. 3964, 253-258

[IBW99] http://www.ibwag.com/

[IMT99] http://www-imt.unine.ch/Radiocontrol/

[Inmos85] Inmos Limited, Occam Programming Manual, 1985

[Jain89] A. K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989

[Koelbel94] C. H. Koelbel, D. B. Loveman, R.S. Schreiber, Jr. G. L. Steele, M. E. Zosel,

The High Performance Fortran Handbook, Scientific and Engineering

Computations, MIT Press, Cambridge, MA, 1994

[Kumar94] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel

Computing: Design and Analysis of Parallel Algorithms, Benjamin/

Cummings, 1994
147

Ù

[Lai83] T.-H. Lai, S. Sahni, “Anomalies in parallel branch-and-bound algorithms”,

IEEE Parallel Processing Proc., August 1983, 183-190

[Lee80] R. B. Lee, “Empirical results on the speed, efficiency, redundancy and quality

of parallel compuations”, Proc. International Conference on Parallel

Processing, 1980, 91-100

[Leiss95] E. L. Leiss, Parallel and Vector Computing, MCGraw-Hill, 1995

[Lewis92] T. G. Lewis, H. El-Rewini, Introduction to Parallel Computing, Prentice

Hall, 1992

[Liechti99] http://www.innofair.ch/technologiestandort/sp_d/99/pages/cebit_5.html

[Loveman93] D. B. Loveman, “High Performance Fortan,” IEEE Parallel & Distributed

Technology, February 1993, Vol. 1, No. 1, 25-42

[Luckham93] D. C. Luckham, J. Vera, D. Bryan, L. Augustin, F. Belz, “Partial orderings of

events sets and their application to prototyping concurrent, timed systems”,

Journal of Systems and Software, 21(3), June 1993, 253-265

[Lüling92] R. Lüling, B. Monien, “Load Balancing for Distributed Branch & Bound

Algorithms”, Proc. of the 6th International Parallel Processing Symposium,

IEEE Computer Society Press, 1992, 543-549

[Manzanera99] A. Manzanera, T. M. Bernard, F. Prêteux, B. Longuet, “Ultra-Fast Skeleton

Based on an Isotropic Fully Parallel Algorithm”, DGCI’99, Springer-Verlag,

LNCS 1568, 1999, 313-324

[Mazzariol97] Marc Mazzariol, Benoît A. Gennart, Vincent Messerli, Roger D. Hersch,

“Performance of CAP-specified linear algebra algorithms”, EuroPVM-

MPI'97, Springer-Verlag, LNCS 1332, 351-358

[Mazzariol98] B. A. Gennart, M. Mazzariol, V. Messerli, R.D. Hersch, “Synthesizing

Parallel Imaging Applications using the CAP Computer-Aided Parallelization

tool”, IS&T/SPIE's Symposium on Electronic Imaging'98, Conf. Storage &

Retrieval for Image and Video Databases VI, SPIE Vol. 3312, 446-458

[Mazzariol00a] M. Mazzariol, B. Gennart, R.D. Hersch, “Dynamic load balancing of parallel

cellular automata”, Proc. SPIE Conference on Parallel and Distributed

Methods for Image Processing IV, San Diego, July 2000, SPIE Vol. 4118, 21-

29

[Mazzariol00b] M. Mazzariol, B. Gennart, R.D. Hersch, M. Gomez, P. Balsiger, F. Pellandini,

M. Leder, D. Wüthrich, J. Feitknecht, “Parallel Computation of Radio

Listening Rates”, Proc. SPIE Conference, Parallel and Distributed Methods

for Image Processing IV, San Diego, July 2000, SPIE Vol. 4118, 146-153

[Messerli99a] V. Messerli, Tools for parallel I/O and compute intensive applications, Ph.D.

Thesis, EPFL, No. 1915, 1999
148

Ù

[Messerli99b] V. Messerli, O. Figueiredo, B. Gennart, R.D. Hersch, “Parallelizing I/O

intensive Image Access and Processing Applications”, IEEE Concurrency,

April-June 1999, Vol. 7, No. 2, 28-37

[Microsoft96] Microsoft Corporation, Windows Sockets 2 Application Program, 1996

[Miller88] P. C. Miller, C. E. St. John, S. W. Hawkinson, “FPS T Series Parallel

Processor,” in Robert G. Babb II, editor, Programming Parallel Processors,

Addison-Wesley, 1988

[MPI94] Message Passing Interface Forum, “MPI: A Message-Passing Interface

standard”, The Int. Journal of Supercomputer Applications and High

Performance Computing, Vol. 8, 1994, 159-416

[MPI97] Message Passing Interface Forum, “MPI-2: Extensions to the Message-

Passing Interface,” Technical Report, July 1997, http://www.mpi-forum.org

[MSDN00] MSDN library, http://www.msdn.microsoft.com, July 2000

[Naddef99] D. Naddef, S. Thienel, “Efficient Separation Routines for the Symmetric

Traveling Salesman Problem”, working paper, http://www-apache.imag.fr/

~naddef/

[Naddef00] D. Naddef, G. Rinaldi, “Branch-and-cut Algorithms”, chapter of a

forthcoming book on the Vehicle Routing Problem, http://www-apache.

imag.fr/~naddef/

[Pachero97] P. S. Pachero, Parallel Programming with MPI, Morgan Kaufmann, 1997

[Parasoft90] ParaSoft Corporation, Express C User’s Guide (Version 3.0), 1990

[Parker88] R. G. Parker, R. L. Rardin, Discrete Optimization, Academic Press, 1988

[Patterson97] D. A. Patterson, J. L. Hennessy, Computer organization and design: the

hardware / software interface, Morgan Kaufmann Publishers, 1997

[Quinn87] J. M. Quinn, Designing Efficient Algorithms for Parallel Computers,

McGraw-Hill, 1987

[Rajkumar99a] B. Rajkumar, High Performance Cluster Computing, Vol. 1, Prentice Hall,

1999

[Rajkumar99b] B. Rajkumar, High Performance Cluster Computing, Vol. 2, Prentice Hall,

1999

[Roosta00] S. H. Roosta, Parallel Processing and Parallel Algorithms: Theory and

Computation, Springer-Verlag, 2000

[Schalkoff89] R. J. Schalkoff, Digital Image Processing and Computer Vision, Wiley, 1989

[Shu91] W. Shu, L. V. Kale, “Chare Kernel - A runtime support system for parallel

computations”, Journal of Parallel Distributed Computing, 1991, Vol. 11,

198-211
149

Ù

[Sipper97] M. Sipper, Evolution of Parallel Cellular Machines, Springer-Verlag, LNCS

1194, 1997

[Snir98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI-The

Complete Reference, MIT Press, 1998

[Sohn95] A. Sohn, J-L. Gaudiot, “Programmability and Performance Issues of

Multiprocessors on Hard Nonnumeric Problems”, Advanced topics in

dataflow computing and multithreading, G. R. Gao, L. Bic, J-L. Gaudiot,

IEEE Computer Society Press, 1995, 143-166

[Srini86] V. P. Srini, “An Architectural Comparison of Dataflow Systems,” IEEE

Computer, March 1986, Vol. 19, No. 3, 68-88

[SSR99] http://tora.sri.ch/gd/fr/home/fr_textarchiv_1299.html#hörer

[Stevens90] W. R. Stevens, UNIX Network Programming, Prentice-Hall, Englewood

Cliffs, N.J., 1990

[Stevens94] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison-

Wesley, 1994

[Sun99] S. Sun, C. Calame, M. Gomez, P. Balsiger, F. Pellandini, D. Wuthrich, P.

Mishcler, J. Feitknecht, “Very Low-Power Terminal for Media Control

Applications”, International Workshop on Intelligent Communication

Technologies, Cost Workshop 254, Neuchatel, Switzerland, 1999,

http://www-imt.unine.ch/cost/

[Sunderam90] V. S. Sunderam, PVM: “A Framework for Parallel Distributed Computing”,

Concurrency: Practice & Experience, December 1990, Vol. 2, No. 4, 315-

339

[Toffoli87] Toffoli, Margolus, Cellular Automata Machines: A New Environment for

Modeling, MIT Press, 1987

[Tschöke95] S. Tschöke, M. Räcke, R. Lüling, B. Monien, “Solving the Traveling

Salesman Problem with a Distributed Branch-and-Bound Algorithm, Proc. of

the 9th International Parallel Processing Symposium (IPPS'95), IEEE

Computer Society Press, 1995, 182-189

[TSPBIB00] P. Moscato, http://www.densis.fee.unicamp.br/~moscato/TSPBIB_home.html

[TSPLIB00] G. Reinelt, http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

[Veen86] A. H. Veen, “Dataflow Machine Architecture,” ACM Computing Survey,

December 1986, Vol. 18, No. 4, 365-396

[VisibleHuman98]http://visiblehuman.epfl.ch/

[Watt90] D. A. Watt, Programming Language Concepts and Paradigms, Prentice-Hall,

1990
150

Ù

[Weeks96] A. R. Weeks, Fundamentals of Electronic Image Processing, SPIE/IEEE

Series on Imaging Science & Engineering, 1996, 127-144

[Wilson96] G. V. Wilson, P. Lu (Eds), Parallel Programming Using C++, The MIT

Press, 1996

[Wolfe82] M. J. Wolfe, Optimizing supercompilers for supercomputers, Ph.D. Thesis,

University of Illinois at Urbana-Champaign, DCS Report No. UIUCDCS-R-

82-11005, 1982

[Wright95] G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2: The

Implementation, Addison-Wesley Professional Computing Series, Reading,

Massachusetts, January 1995

[Wüthrich94] D. Wüthrich, “Verfaren zur Ermittlung von Radiohörerverhalten und

Vorrichtung dazu”, European Patent Application EP 0 598 682 A1, applicant

LIECHTI AG, published 25.05.1994

[XDR95] RFC 1832, http://www.cis.ohio-state.edu/Services/rfc/index.html

[Xu01] M. Z. Xu, “Effective Metacomputing using LSF MultiCluster”, Proc. of

IEEE/ACM Symposium on Cluster Computing and the Grid, May 2001, 100-

105, see also http://www.platform.com
151

Ù

152

Biography

Marc Mazzariol was born in the city of Geneva, Switzerland, on July 9th 1973. He received

his high school degree from Collège Calvin in Geneva. At the same time he started as trainer of

a competition team (national and international level) in trampolin. He pursued his studies at the

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland and graduated as a Computer

Science Engineer in 1997. He has been a research assistant at the Peripheral Systems Laboratory

(LSP) of the EPFL for the past four years. His research interests include parallel and distributed

computing, computer-aided parallelization tools, network programming, and design patterns in

C++.

Publications

• M. Mazzariol, B. Gennart, R. D. Hersch, M. Gomez, P. Balsiger, F. Pellandini, M.

Leder, D. Wüthrich, J. Feitknecht, “Parallel Computation of Radio Listening Rates”,

Parallel and Distributed Methods for Image Processing IV, July 2000, San Diego, USA,

SPIE vol. 4118, 146-153

• M. Mazzariol, B. Gennart, R.D. Hersch, “Dynamic load balancing of parallel cellular

automata”, Parallel and Distributed Methods for Image Processing IV, July 2000, San

Diego, USA, SPIE vol. 4118, 21-29

• B. A. Gennart, M. Mazzariol, V. Messerli, R. D. Hersch, “Synthesizing Parallel

Imaging Applications using the CAP Computer-Aided Parallelization tool”,

IS&T/SPIE's Symposium, Electronic Imaging'98 Conf., Storage & Retrieval for Image

and Video Databases VI, San Jose, Calif., 1998, SPIE vol. 3312, 446-458

• Marc Mazzariol, B. A. Gennart, V. Messerli, R. D. Hersch, “Performance of CAP-

specified linear algebra algorithms”, EuroPVM-MPI'97, Krakow, Poland, 1997,

Springer-Verlag, LNCS 1332, 351-358

Other Reference

• The Visible Human Slice Server, http://visiblehuman.epfl.ch/

	Acknowledgements
	Summary
	Résumé
	Table of Contents
	1 Introduction and Related Work
	2 Basic notions and parallelization fundamentals
	2.1. Performance Measurements
	2.1.1. Speedup
	2.1.2. Efficiency
	2.1.3. Amdahl’s law

	2.2. Granularity
	2.3. Parallel processing and pipelining
	2.4. Master-slave or distributed system
	2.5. Load balancing
	2.6. Asynchronous behaviour
	2.7. Flexibility
	2.8. Reliability and error handling
	2.9. Summary

	3 The CAP Computer-Aided Parallelization Tool
	3.1. Introduction
	3.2. Tokens
	3.3. Process hierarchy
	3.3.1. Configuration file

	3.4. Operations
	3.4.1. Leaf operations
	3.4.2. Parallel operations

	3.5. Parallel CAP constructs
	3.5.1. The pipeline CAP construct
	3.5.2. The indexed parallel CAP construct

	3.6. Summary

	4 CAP flow-control and load balancing issues
	4.1. Introduction
	4.2. CAP flow-control issues
	4.3. Issues of load balancing in a pipelined parallel execution
	4.4. Summary

	5 CAP Message passing and Serialization
	5.1. The CAP token-oriented Message-Passing System (MPS)
	5.2. Serialization of CAP tokens
	5.3. Automatic serialization of CAP tokens
	5.4. Integration
	5.5. Summary

	6 Parallel linear algebra algorithm
	6.1. Introduction
	6.2. Matrix Multiplication
	6.2.1. Notations and problem formulation
	6.2.2. Dynamic parallel algorithm
	6.2.3. Dynamic parallel algorithm: theoretical analysis
	6.2.4. CAP specification of the matrix multiplication

	6.3. LU factorization
	6.3.1. Problem description
	6.3.2. Parallelization

	6.4. Performance measurements
	6.4.1. Dynamic matrix multiplication
	6.4.2. LU factorization
	6.4.3. Analysis of results

	6.5. Summary

	7 Parallel Imaging
	7.1. Introduction
	7.2. System support for managing large images
	7.2.1. Hardware architecture
	7.2.2. Software architecture

	7.3. The parallel process-and-gather operation
	7.3.1. Problem description
	7.3.2. Modelled single-PC execution schedule
	7.3.3. Modelled multiple-PC execution schedule
	7.3.4. Theoretical performance analysis
	7.3.5. CAP specification of the process-and-gather operation

	7.4. The exchange-process-and-store operation
	7.4.1. Problem description
	7.4.2. Theoretical performance analysis
	7.4.3. CAP specification

	7.5. Performance results
	7.6. Summary

	8 Parallel Cellular Automata
	8.1. Introduction
	8.2. Image skeletonization algorithm
	8.2.1. Improvement of the image skeletonization algorithm

	8.3. Parallel skeletonization with static load distribution
	8.4. Dynamic load balanced parallel scheme
	8.5. CAP specification
	8.6. Performance measurement
	8.7. Summary

	9 Parallel Computation of Radio Listening Rates
	9.1. Introduction
	9.2. The matching problem
	9.2.1. Storage
	9.2.2. Serial correlation algorithm
	9.2.3. Serial performance analysis/measurements

	9.3. Parallelization
	9.3.1. The Computer-Aided Parallelization (CAP) framework
	9.3.2. Parallel correlation algorithm
	9.3.3. CAP program specification
	9.3.4. Parallel performance analysis/measurements

	9.4. Graceful degradation in case of failure
	9.5. Summary

	10 Discrete Optimization Problems
	10.1. Parallelization of hard nonnumeric problems
	10.2. Discrete optimization problems
	10.3. Heuristics
	10.4. Sequential search algorithms
	10.4.1. Depth-first search
	10.4.2. Breath-first search
	10.4.3. Best-first search
	10.4.4. Branch and bound
	10.4.5. Generic sequential search

	10.5. Parallel search
	10.6. Travelling Salesman Problem: A didactical solution
	10.6.1. Process hierarchy
	10.6.2. Sequential part of the algorithm
	10.6.3. Parallel part of the algorithm

	10.7. Summary

	11 Conclusion
	Bibliography
	Biography

