
Towards an Intelligent GRID
Scheduling System

Ralf Gruber1, Vincent Keller1, Pierre Kuonen5, Marie-Christine Sawley4,
Basile Schaeli2, Ali Tolou1, Marc Torruella6, Trach-Minh Tran3

1LIN-STI, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
2LSP-I&C, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland

3CRPP, Ecole Polytechnique Fédérale, CH-1015 Lausanne, Switzerland
4CSCS, CH-6928 Manno, Switzerland

5Ecole d’Ingénieurs et d’Architectes, CH-1705 Fribourg, Switzerland
6Universitat Politecnica Catalunya, E-08034 Barcelona, Espana

Abstract

The main objective of the Intelligent GRID Scheduling System
(ISS) project is to provide a middleware infrastructure allowing a good
positioning and scheduling of real life applications in a computational
GRID. According to data collected on the machines in the GRID, on
the behaviour of the applications, and on the performance require-
ments demanded by the user, a heuristic cost function is evaluated by
means of which a well suited computational resource is detected and
allocated to execute his application. The monitoring information col-
lected during execution is put into a database and reused for the next
resource allocation decision. In addition to providing scheduling infor-
mation, the collected data allows to detect overloaded resources and
to pin-point inefficient applications that could be further optimised.

1 Introduction

The development of GRID technology for computational purposes is promis-
ing. By harnessing a great number of different systems in a transparent
manner, a user can have access to the computer architectures that are well
suited to the constraints of his applications.

The different communication needs of applications demand a GRID that
can offer different parallel computer architectures: SMP and/or NUMA ma-
chines for shared memory parallel applications, a NoW (Network of Work-
stations) interconnected by a bus for embarassingly parallel applications,
scalable but cost-effective networked clusters for applications dominated by
point-to-point communications, and more expensive machines with faster
networks for communication intensive applications.

There is currently little feedback about applications that are not adapted
to the hardware infrastructure, and little incentive to do so: if for instance
a user notices that the network is too slow and hampers the performance
of its application, he may try to find another machine to run it. On the

1

bschaeli
Text Box
Proc. of 6th Int. Conf. PPAM 2005, Poznan, Poland, Lecture Notes in Computer Science 3911 (Springer, 2006) 751-757



other hand, when he runs an embarassingly parallel application on a costly
NUMA machine, he will probably not recognise this as a problem. In the
future, one would like to choose a well suited hardware for the application
(according to peak performance, memory bandwidth of the processor, or
inter-node network communication system), and this in a most automatic
manner.

The ISS project is precisely aimed at solving this latter problem. The ISS
middleware will be built on top of existing GRID middleware infrastructures
such as Globus [1], Unicore [2], EGEE [7], or GridLab [3]. In a first phase,
a static parameterisation of the test applications is used to decide on which
machine of a GRID testbed the application should be submitted. In a second
phase, the information on the behaviour of the application during execution
is collected and put into a database. Scheduling decisions are then made in
an automatic manner, taking constantly the monitored data into account.
In a third phase, the accumulated data will be interpreted statistically to
recognise overloaded resources that have to be complemented.

The long term goal is to determine the suitability of a platform using a
more general cost function, which would not be restricted to computation
costs. Other indirect costs could include for instance the waiting time of an
engineer, or the licence of a commercial application.

Within this paper, we present ideas on how to parameterise the GRID
hardware and the parallel applications [4], and how to use these parameters
to decide on which machine a given application is to be executed. More-
over, a first statistical study on the CPU usage of the Pleiades.epfl.ch cluster
is presented together with two application profiles coming from CFD and
plasma physics. Such measurements will be used to automatically parame-
terise the applications in the next phase of the project.

2 Parameterisation of clusters and applications

2.1 Different types of machines in a GRID

Let us consider a cluster with P computational nodes, each node has a
processor peak performance of R∞ [Gflops/s], and a peak main memory
bandwidth of M∞ [Gwords/s] (1 word = 64 bits). The nodes are intercon-
nected by a communication network with a total peak bandwidth of C∞
[Gwords/s]. Then, one can define the following quantities

VM =
R∞
M∞

(1)

VC = P
R∞
C∞

.

These two parameters measure the number of floating point operations the
processor can make during the transfer time of an operand from main mem-

2



Cluster Vendor node procs/ network network
node 1 2

NoW Pentium 4 1 FE bus
Pleiades1 Logics Pentium 4 1 FE switch
Pleiades2 DELL Pentium 4 1 GbE switch
Mizar Dalco Opteron 2 Myrinet
Blue Gene IBM Power 4 2 Grid network Fat Tree
Horizon Cray Opteron 1 3D Torus
SX-5 NEC vector 1 Switch

Table 1: Some typical clusters.

Cluster P R∞ M∞ VM C∞ VC

[Gflops/s] [Gwords/s] [Gwords/s]
NoW 25 6.4 0.8 8 0.0016 100000
Pleiades1 132 5.6 0.8 7 0.2 3600
Pleiades2 120 5.6 0.8 7 1.8 360
Mizar 160 9.6 1.6 6 5 300
Blue Gene 4096 8 1 8 192 170
Horizon 1100 5.2 0.8 6.5 1760 3.3
SX-5 16 8 8 1 128 1

Table 2: Characteristic parameters of some clusters.

ory to cache (VM ) or from one computational node to another one (VC).
Some typical machines are listed in Table 1, with their respective pa-

rameters in Table 2. The data corresponds to machines with one (NoW,
Pleiades, Horizon) or two (Mizar, Blue Gene) processors per node. Specifi-
cally, the parameter VM distinguishes between a vector machine (VM ≈ 1)
and a RISC processor (VM ≈ 7). One also sees that the quantity VC can
vary from 1 for a vector machine to 100000 or even more for a bus-based
machine. The cost of a machine often increases with decreasing values of
VC .

2.2 The Γ parameter

In the following analysis, we will assume that the tasks of a parallel applica-
tion are well balanced, and that computations and communications do not
overlap. Let assume that the execution time T on each computing node can
be divided in two parts:

T = TP + TC , (2)

3



where TP is the time spent to compute and TC the time spent to com-
municate and synchronise on each processor. Thus the speedup A of an
application running on P processors can be expressed as:

A =
PTP

TC + TP
=

P

1 + 1
Γ

= eP (3)

and e is the average CPU usage of the application or the efficiency (e=A/P).
We define Γ as the ratio TP /TC and decompose TP and TC into application
and hardware specific parameters. This allows to separate the two contri-
butions:

Γ =
TP

TC
=

O/ra

S/b
=

O/S

ra/b
=

γa

γM
. (4)

The quantity O denotes the number of operations per processor [flops]
one has to perform during the execution of the application, and S is the
amount of data (in 64-bit words) that has to be sent through the internode
network by each processor [words]. The quantities b and ra measure the peak
effective bandwidth of the network for each processor [Gwords/s], and the
peak performance of the application per processor [Gflops/s], respectively.
If the data can be kept in cache, the value of ra can be close to the peak
performance R∞ of a processor, or ra can be related to the main memory
bandwidth if the data has to be continuously loaded from main memory
to cache or stored back to memory. In scientific applications, ra varies
between 10% and 100% of R∞. The smaller ra/R∞, the bigger Γ, and the
communication needs diminish.

We thus see that Γ is a parameter which expresses how a given hardware
is suitable to efficiently run a given parallel application. For instance, a value
of 1 means that the application spends as much time in communications than
in processing, and is equivalent to a speedup of P/2, or e = 0.5. Γ should
thus be as large as possible but experience shows that a value greater than 1
(around 2 or 3) corresponds to an acceptable match between the application
and the hardware. Let us describe a few cost-effective application/machine
combinations with values of Γ > 1.

2.3 The Γ of the different application/machine combinations

2.3.1 Embarassingly parallel applications

Embarassingly parallel applications are dominated by master/slave com-
munications. No data is exchanged between slave nodes. In this case,
TP >> TC and thus Γ >> 1. As a consequence, very high γM commu-
nication networks such as a bus or the Pleiades1 cluster (see Table 2) can
be used. A typical example is the seti@home project that collects compu-
tational cycles over the Internet. Other examples are massive data interpre-
tation as it occurs in high energy physics, or the sequencing algorithms in
genomics and proteomics.

4



2.3.2 Applications with point-to-point communications

Point-to-point communications typically appear in finite element or finite
volume methods when a huge 3D domain is decomposed in subdomains [4]
and an explicit time stepping method or an iterative matrix solver is ap-
plied. If the number of processors grows with the problem size, and the
size of a subdomain is fixed, γa is constant, and, consequently, Γ does not
change. The per processor performance is determined by the main mem-
ory bandwidth. The number O of operations per step is directly related
to the number of variables in a subdomain times the number of operations
per variable, whereas the amount of data S transfered to the neighboring
subdomains is directly related to the number of variables on the subdomain
surface. For huge point-to-point applications using many processing nodes,
Γ << 1 for a bus, 2 < Γ < 10 for the Pleiades1 cluster with a Fast Ethernet
switch, 10 < Γ < 50 for the Pleiades2 and Mizar clusters, and Γ >> 100
for Horizon. Hence, that kind of applications can run well on a cluster
with a relatively slow and cost-effective communication network. Such an
application has been discussed in [5].

2.3.3 Applications with multicast communication needs

The parallel 3D FFT algorithm is a typical example with important mul-
ticast communication needs. Here, γa decreases when the problem size is
increased, and the communication network has to become faster. In addi-
tion, ra = R∞ for FFT, γM is big, and, as a consequence, the communication
paramater b must be big to satisfy Γ > 1. Such an application has been dis-
cussed in [4]. It has been showed that with a Fast Ethernet based switched
network, the communication time is several times bigger than the comput-
ing time, even when the problem size is small. Such an application needs
a faster switched network such as an efficient GbE, a Myrinet, a Quadrics,
or an Infiniband network. If thousands of processors are needed, a special
vendor specific machine such as Horizon or Blue Gene might be required.

3 Monitoring data from parallel applications

Each application has its own well suited parallel machine. This characteristic
will in future be used to decide on which machine an application should
be executed, which implies that the behaviour of an application has to be
monitored for each run. To verify our model, data on the CPU usage was
collected on the Pleiades1 cluster using the sysstat tool [6]. The gathering
was made during the first 3 months of 2005, with snapshots being taken on
each node every 10 minutes.

The top part of Fig. 1 shows the histogram of the 1682806 collected
snapshots. The 10% zero CPU usage is due to non-allocated processors

5



when the scheduler blocks resources for a large job, to resources that are
reserved for interactive testing and not used, to lost cycles due to a blocking
in a parallel application, or to intensive I/O operations. The 100% usage
peak is mainly due to single processor applications that represent about 20%
of the total CPU time.

Parallel jobs running on Pleiades1 share their time between computations
and MPI and I/O communications, and use on average 10 processors. The
average utilization of CPUs is 64%, with two peaks around 55%, and 82%.
This can be considered as a fair score by a low-cost cluster with a Fast
Ethernet switch with VM=3600 (see Table 2).

For the application analysis, we chose two user applications that con-
sumed 17% and 9% of the total computing time during the considered pe-
riod. Fig. 1 shows the distribution of CPU usage for one run of each appli-
cation. The first application (middle of Fig. 1) comes from fluid dynamics.
It used 32 processors and ran for 5570 minutes, leading to a profiling with
17824 (=557*32) snapshots. About 10% of the snapshots show a CPU usage
of 0%, and 15% show a 100% usage. This application shows an average CPU
usage of e=0.56, i.e. following eq. 3 a Γ of 1.27. It could run more efficiently
on a machine with a better internode communication system, but we would
need to determine whether the price/performance ratio would improve when
going on a more expensive machine.

The second application (bottom graph of Fig. 1) comes from plasma
physics. It also used 32 processors and ran for 1690 minutes, giving 5408
(=169*32) snapshots. Processors were idle for about 15% of the time. The
efficiency was 75.5%, i.e. Γ = 3.1. This is a typical application that con-
tributes to the peak around 82% CPU usage in the upper graph. The
Pleiades1 cluster seems to be a well-suited machine for this application.

In the future, we shall need characteristic CPU usage profiles such as
those given in Fig. 1 for each parallel application and machine in a GRID.
Together with additional data on the behaviour of the applications, coming
for instance from accounting data collected by the resource management
system, we believe to be able to automatically parameterise them. We can
then define a cost function based on these parameters through which it will
be possible to decide on where to submit each application.

We have to mention that the zero CPU usage peak of the upper graph in
Fig. 1 aggregates contributions from different sources: although I/O is the
most frequent one, MPI message passing and idle processors in unbalanced
jobs must be taken into account as well. In pathological cases, one task of a
parallel job dies, and the other processors remain idle until the job is killed
by the scheduling system.

These first results show that improvements must be made: the Γ model
must include I/O, and being able to distinguish between the sources of ineffi-
ciencies would be most welcome. Monitoring already had a positive impact:
badly behaving applications have already been detected and improved.

6



4 Conclusions

The goal of the ISS project is to make it possible to automatically detect the
type of hardware that is well suited for a given application. We described a
parameterisation of parallel machines and applications that allows to tailor a
computational GRID to a set of applications, and checked the validity of the
parameters against real executions. Although it is in its initial stage, the ISS
project already has an interesting side-effect: badly behaving applications
can already be detected and improved. Future work includes extending the
current model to correct the weaknesses that were described, and using the
data collected during job execution to improve the scheduling decision. This
will enable us to constantly adjust a computational GRID to the needs of
the applications.

Acknowledgements

ISS is part of the the SwissGrid programme managed by the CSCS. This
paper is a co-operative work within the CoreGRID Network of Excellence.

References

[1] I. Foster, and C. Kesselman (Eds.), ”The GRID Blueprint for a new
Computing Infrastructure”, Morgan Kaufman, San Francisco, 1999

[2] D. Erwin (ed.), UNICORE plus final report – uniform interface to com-
puting resource, Forschungszentrum Jlich, ISBN 3-00-011592-7, 2003.

[3] Ed Seidel, Gabrielle Allen, Andr Merzky and Jarek Nabrzyski,
GridLab–a grid application toolkit and testbed, Future Generation
Computer Systems, Volume 18, Issue 8, October 2002, Pages 1143-
1153.

[4] R. Gruber, P. Volgers, A. De Vita, M. Stengel, and T.-M. Tran, ”Pa-
rameterisation to tailor commodity clusters to applications”, Future
Generation Computer Systems, 19, 111-120 (2003)

[5] R. Gruber, and T.-M. Tran, ”Scalability aspects on commodity clus-
ters”, EPFL Supercomputing Review, 14, 12-17 (2004)

[6] http://perso.wanadoo.fr/sebastien.godard/

[7] http://egee-intranet.web.cer.ch/egee-intranet

7



Figure 1: Up: CPU usage of all the 132 processors of the Pleiades1 cluster
(VM=3600) during the first 3 months in 2005. Average CPU usage was
collected for each processor every 10’. The overall average CPU usage is
64%. Center: Profile of one job of a CFD application. Low: Profile of one
job of a plasma physics application.

8




