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Abstract
Parallel servers for I/O and compute intensive continuous
media applications are difficult to develop. A server
application comprises many threads located in different
address spaces as well as files striped over multiple disks
located on different computers. The present contribution
describes the construction of a continuous media server, the
4D beating heart slice server, based on a computer-aided
parallelization tool (CAP) and on a library of parallel file
system components enabling the combination of pipelined
parallel disk access and processing operations. Thanks to
CAP, the presented archictecture is concisely described as a
set of threads, operations located within the threads and flow
of data and parameters (tokens) between operations.
Continuous media applications are supported by allowing
tokens to be suspended during a period of time specified by a
user-defined function. Our target application, the 4D beating
heart server supports the extraction of freely oriented slices
from a 4D beating heart volume (one 3D volume per time
sample). This server application requires both a high I/O
throughput for accessing from disks the set of 4D sub-
volumes (extents) intersecting the desired slices and a large
amount of processing power to extract these slices and to
resample them into the display grid.  With a server
configuration of 3 PCs and 24 disks, up to 7.3 slices can be
delivered per second, i.e. 43 MB/s are continuously read
from disks and 4.1 MB/s of slice parts are extracted,
transfered to the client, merged, buffered and displayed. This
performance is close to the maximal performance
deliverable by the underlying hardware. The observed single
stream server delay jitter varies between 0.6s (52% of
maximal display rate) and 1.4s (92% of the maximal display
rate). For the same resource utilization, the jitter is
proportional to the number of streams that are accessed
synchronously. The presented 4D beating heart application
suggests that powerful continuous media server applications
can be built on top of a set of simple PCs connected to SCSI
disks.
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1.  Introduction
Since the early nineties, there has been considerable interest
in developing concepts and computer architectures for
continuous media applications, especially for video on
demand services. Recent research has focussed either on the
design of single computer video servers [9], [13] or on the
design of large parallel video servers able to serve thousands
of client viewers [1], [2], [8]. These servers generally
incorporate dedicated admission control, file striping and file
access mechanisms ensuring that the hard real-time video
stream delivery constraints (guaranteed throughput, bounded
jitter) can be met. 

Continuous media services may not only consist of the
transfer of data between the server’s disks and clients but
also of processing operations. The server might for example
need to transcode the media stream from one compression
standard to another, or to compute from an original video
stream a derived stream with smaller size frames and a lower
frame rate. 

In the present paper, we focus our attention on the design and
implementation of a parallel continuous media server
application requiring intensive I/O access and processing
operations: the  4D beating heart slice server. A 4D
tomographic beating heart incorporates as many 3D
tomographic volumic images as time slices. In our
experimental server, we store a beating heart made of 320
volumic  images, corresponding to time slices of 1/16 s over
a time interval of 20 seconds.

This server receives from clients slice stream access
requests. Each slice stream request specifies the orientation
of the slices within the 3D time-varying tomographic image
and the access rate. After admission control (to allocate the
required resources), the server continuously extracts slices
according to the specified orientation and rate and transmits
them to the client for visualization purposes.

To serve several continuous slice viewing requests
simultaneously, the server needs both significant processing
power and high disk throughput. To benefit from low-cost
commodity components, the server architecture we consider
consists of a cluster of PCs interconnected by a Fast Ethernet
switch. Each PC is connected to several SCSI-2 disks (up to
12 disks).

Creating a parallel server application requires the explicit
creation and management of processes, threads and
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communication channels. In addition, accessing
simultaneously and in parallel many disks located on
different computers requires appropriate parallel file system
support, i.e. means of striping a global file into a set of disks
located on different computers and of managing meta-
information. To minimize communications, processing
operations should be executed on processors which are
close to the disks where the data resides.

In order to build parallel continuous media servers, we use a
computer aided parallelization tool (CAP) and parallel file
system components [10] that have been created for
facilitating the development of parallel server applications
running on distributed memory multi-processors, e.g. PCs
connected by Fast Ethernet. We generate parallel server
applications from a high-level description of threads,
operations (sequential C++ functions) and of high-level
parallel constructs specifying the flow of parameters and
data between operations. Due to the macro data flow nature
of CAP, the generated parallel application is completely
asynchronous. Each thread incorporates an input token
queue ensuring that communication occurs in parallel with
computation. In addition, disk access operations are
executed asynchronously. The call-back function associated
with each disk access operation ensures that the result token
is forwarded to the next operation. 

Parallel volumic data access methods are detailed in section
2. The Beating Heart slice server application is described in
section 3. Section 4 describes the computer-aided
parallelization preprocessor (CAP) which is used to
synthesize the parallel Beating Heart Slice Server
application. Admission control, resource allocation, data
streaming and synchronization issues are described in
section 5. Performances and scalability issues are discussed
in section 6.

2.  The Parallel 3D Tomographic Slice 
Server
Before explaining how the 4D beating heart is stored and
accessed, let us briefly present the principles underlying the
storage and access of slices within a 3D tomographic
volume declustered over several disks and PCs. 

For enabling parallel storage and access, the volumic data
set is segmented into 3D volumic extents of small size for
example 32x32x17 voxels, i.e. 51 KBytes, distributed over a
number of disks. The distribution of volumic extents to
disks is made so as to ensure that direct volumic extent
neighbors reside on different disks hooked on different
server PCs. We achieve such a distribution by storing
successive extents on successive disks located in different
PCs and by introducing an offset between two successive
rows and between two successive planes of volumic extents
[11]. This ensures that for nearly all extracted slices, disk
and server PC accesses are close to uniformly distributed. 

Visualization of 3D medical images by slicing, i.e. by
intersecting a 3D tomographic image with a plane having
any desired position and orientation is a tool of choice in

diagnosis and treatment. In order to extract a slice from the
3D image, the volumic extents intersecting the slice are read
from the disks and the slice parts contained in these volumic
extents are extracted and resampled (Fig. 1). 

Based on these principles, a parallel PC-based tomographic
slice server was created using the CAP parallelization tool
(see section 4) and parallel file system components  [10].
This server works in a pipelined-parallel manner and
combines high-performance computing and I/O intensive
operations. It offers to any client the capability of
interactively specifying the exact position and orientation of
a desired slice and of requesting and obtaining that slice
from the 3D tomographic volume. Performances scale close
to linearly from one PC with 3 disks to 5 PCs with 60 disk
[11]. A scaled down version of the server (1 Bi-Pentium II
with 16 disks) offers its slicing services on the Web for
accessing the Visible Human data set (http://
visiblehuman.epfl.ch). 

Fig. 1.  Extraction of slice parts from volumic file extents

3.  The 4D Beating Heart Slice Stream 
Server Application
Let us introduce the 4D beating heart slice stream server.
The beating heart dataset consists of a sequence of 8-bits 3D
volumic images, each one of size 512 x 512 x 512 (i.e. 128
MBytes). With 320 time instants, the 4D beating heart
sequence reaches a size of 320 x 128 MBytes = 40 GBytes.

As shown in Fig. 2, each 3D volume of the beating heart is
segmented into sub-volumes of size 16x16x16 voxels. A
sequence of 16 successive sub-volumes is packed into one
extent, i.e. into a sequence of bytes making up a stripe unit. 

Creating extents which incorporate sub-volumes belonging
to several consecutive time instants reduces the number of
disk accesses, since the visualization of consecutive slices in
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time requires sub-volumes associated to consecutive time
instants. For a same extent size, the incorporation of several
time instants reduces the extent’s spatial volume. The
smaller the spatial subvolumes, the less information is to be
read from disks in order to extract a full slice. .

The client interface of the beating heart server (Fig. 3)
enables users to specify the position and orientation of a 2D
slice within the 3D volume. Then, the beating heart server
executes extent accesses and slice extractions in order to
create and send the desired slice stream (sequence of slices
over time) at a user-specified rate to the client. A slice
stream requires the extraction of the “same” slice from
consecutive 3D image volumes. A slice is extracted from a
3D image by extracting sub-slices from subvolumes and
merging them into a full slice as described in section 2 (Fig.
1)

The server application consists of a proxy residing on the
client's site and of server processes running on the server's
parallel processors. Once a slice stream access request is
accepted (section 5.3), the proxy sends the stream
parameters (slice orientation, slice position, display rate,
stream duration) to the servers whose disks contain extents
of the required stream. Each server generates at regular time
intervals the requests for the slices making up the slice
stream. From the generated slice request parameters, each
server determines the extents which reside on its disks and
accesses them. They extract the slice parts from the extents
and send them to the client proxy, which assembles them
into  displayable slices. After having constructed a set of 16
slices, the proxy can start to  display the slices at the
specified rate while the next slice set is being prepared (Fig.
4).

Users may also specify (Fig. 3) different slice streams (i.e.
streams with different slice positions and/or different slice
orientations) and visualize them synchronously.

4.  The Computer-Aided Parallelization 
Framework
In order to speedup the development of parallel applications
and to specify parallel I/O and processing operations at a
high level of abstraction, we use the Computer-Aided
Parallelization (CAP) tool. This tool enables application
programmers to hierarchically specify the schedules of
parallel operations and the flow of parameters and data
(macro dataflow) between operations. Operations consist of
sequential code performed by a single execution thread and
characterized by input and output values. The input and
output values of an operation are called tokens. In the
context of this paper, tokens consist of image data (3D or
2D) and of additional application dependent parameters.
Each parallel CAP construct consists of a split function
splitting an input request into sub-requests sent in a
pipelined parallel manner to the operations of the available
threads and of a merge function collecting the results. The
merge function also acts as a synchronization means
terminating its execution and passing its result to the higher
level program after the arrival of all sub-results (Fig. 5)

Parallel constructs are defined as high level operations and
can be included in other higher level operations to ensure
compositionality. The parallel while construct
corresponding to the example of Fig. 5 has the syntax
shown in Fig. 1. Besides split and merge functions, it
incorporates two successive pipelined operations
(myOperation1 followed by myOperation2). 

The split function is called repeatedly to split the input data
into subparts which are distributed to the different compute
server thread operations (ComputeServer[i].myOperation1).
Each operation running in a different thread
(ComputeServer[i]) receives as input the subpart sent by the
split function or by the previous operation, processes this
subpart and returns its subresult either to the next operation
or to the merge function. The parallel construct specifies
explicitly in which thread the merge function is executed
(often in the same thread as the split function). It receives a
number of subresults equal to the number of subparts sent
by the split function. For futher information on the CAP
preprocessor language syntax, please consult the CAP

extracting two
synchronous
slice streams

Fig. 3.  Client’s graphic user interface

Client PC

   Fast 

Slice stream 

Slice parts

Ethernet

 extraction

Server

SCSI-2PC

      Switch
 Fast Ethernet

Fig. 4.  Sending a slice stream extraction request 
and receiving the corresponding slice parts



tutorial [3]. The CAP specification of a parallel program is
described in a simple formal language, an extension of C++.
This specification is translated into a C++ source program,
which, after compilation, runs on multiple processors
according to a configuration map specifying the mapping of
CAP threads  onto the set of available processes and PCs.
The macro data flow model which underlies the CAP
approach has also been used successfully by the creators of
the MENTAT parallel programming language [6], [7].

The CAP approach works at a higher abstraction level than
the commonly used parallel programming systems based on
message passing (for example MPI [14] and MPI-2 [12]).
CAP enables expressing explicitly the desired high-level
parallel constructs. Due to the clean separation between
parallel construct specification and the remaining sequential
program parts, CAP programs are easier to debug and to
maintain than programs which mix sequential instructions
and message-passing function calls. 

Thanks to the automatic compilation of the parallel
application, the application programmer does not need to
explicitly program the protocols to exchange data between
parallel threads and to ensure their synchronizations. CAP’s
runtime system ensures that tokens are transferred from one
address space to another in a completely asynchronous
manner (socket-based communication over TCP-IP). This
ensures that correct pipelining is achieved, i.e. that data is
transferred through the network or read from disks while
previous data is being processed. 

CAP distinguishes itself from DCOM or CORBA by the
fact that data and parameters circulate in an asynchronous
manner between operations. CAP programs therefore make

a much better utilization of the underlying hardware,
specially for data streaming applications (continuous media
servers).

5.  The Parallel Continuous Media Server
This section describes the parallel continuous media server.
Section 5.1 describes the parallel access to files striped
across the available disks, possibly located on different PCs.
Section 5.2 describes the threads making up the server and
section 5.3 the admission control mechanisms. Section 5.4
describes the scheduling of disk requests. The global
schedule for the pipelined parallel slice streaming sever is
described in section 5.5. 

5.1  Parallel Access to Striped Files
The parallel and continuous media server uses a library of
parallel file system components [10] to stripe continuous
media files over several local files located each one in a
different disk. Each local file comprises a set of extents and
a table whose entries specify the size and the storage
location of extents, i.e. their byte address within the
corresponding local file. When creating a continuous media
parallel file, one must provide the number of local files, a
set of path names, one for each local file, and a structure
specifying the media format. When opening a continuous
media parallel file, the system returns the parallel file
descriptor, the number of subfiles, a table of disk server
thread indices (one per local file) and a table of local file
descriptors. These parameters allow the execution of extent
oriented I/O operations on individual local files, such as
ReadExtent or WriteExtent operations. The parallel
continuous media server executes pipelined parallel data
access and processing operations, where processing
operations (e.g. slice part extractions from extents) are
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1 operation ParallelServerT::ParallelComputation
2 in inputParTokenType* inputP
3 out mergeOutputTokenType* outputP
4 {
5 parallel while (splitInput, mergeResults, MainProcess, mergeOutputTokenType Result)
6 (
7 ComputeServer[thisTokenP->index].myOperation1 >-> ComputeServer[thisTokenP->index].myOperation2
8 );
9 }

Fig. 1. Syntax of a parallel while construct



executed on the same nodes as the corresponding data
access operations (i.e. extent disk accesses).

5.2  Parallel Continuous Media Server Threads
The parallel continuous media server (Fig. 7) consists of one
Client thread and one Display thread running on the client
PC, one ResourceAllocator thread running on one of the
server PCs, and in each server PC of one StreamTimer
thread, one DiskScheduler thread and one ComputeServer
thread. The ResourceAllocator thread applies the admission
control algorithm to evaluate the availability of server
resources and to determine whether a new request stream
can be accepted. In order to serve each accepted stream, the
ResourceAllocator thread reserves the necessary resources.
The StreamTimer threads are in charge of generating at
regular time intervals the successive media access requests.
Media requests (e.g. slice extraction requests in a slice
stream) are timed, i.e. they must satisfy a certain deadline.
The ComputeServer threads compute which extents
contribute to the currently requested slice and perform
computations on the extents extracted from the disks (e.g.
extraction of slice parts). The DiskScheduler threads
schedule the timed extent access requests before performing
asynchronous extent read/write operations.

5.3  Admission Control Algorithm
Admission control is performed by the ResourceAllocator
thread to ensure that a new stream request does not cause
the violation of the real-time requirements of streams
already being serviced. For each accepted stream, the
admission control algorithm reserves the resources to serve
them. The parallel server comprises the following resources
(1) parallel disk I/O bandwidth, (2) parallel server
processing power (for slice part extraction and resampling),
(3) network bandwidth (for transferring the slice parts from
server PCs to the client PC), and (4) processing power at the
client PC (for receiving many network packets, for
assembling slice parts into the final image slice and for
displaying the final image slice on the user’s window). The

implemented admission control algorithm reserves the disk
bandwidth, the parallel server processor utilization and the
network bandwidth. These resources are reserved up to a
given bound (e.g. 2 MBytes/sec per disk). The
determination of a pessimistic bound ensures that deadlines
are met, but implies a poor utilization of the resource. An
optimist bound implies a high resource utilization but may
overload the resource. In the parallel server, the reservation
bound is determined from worst-case experimental results
since in the 3D beating heart application, no information
loss is accepted.

The ResourceAllocator thread maintains the reserved server
load (disk bandwidth, processor utilization, network
bandwidth), i.e. the reserved capacity for each resource in
the parallel server, and a reservation table whose entries
specify the reserved resources for each of the streams being
served. The ResourceAllocatorT::ReserveResources
operation evaluates the server resources in order to accept or
refuse the new stream. If the stream is accepted, the
reserved server load is updated and an entry in the
reservation table is created for the new stream. The
ResourceAllocatorT::FreeResources operation is called by
the Client thread when the stream retrieval is terminated.
This operation deletes the reservation table entry specified
by the stream descriptor of its input token, and updates the
reserved server load.

5.4  Disk Scheduling
In order to reduce seek times, to achieve a disk high
throughput and to guaranty the real-time requirements of the
media streams being serviced, the DiskScheduler thread
schedules the extent requests as follows. An extent request
consists of the stream descriptor, the server node index, the
local file descriptor, the local extent index and the request
deadline. A zero deadline value specifies an access to a non-
continuous media extent. The DiskScheduler thread
maintains two extent request lists per disk hooked on its
server PC, a list containing extent requests for non-

1 process StreamServerT {// high-level abstract thread
2 subprocesses:          // real threads
3 ClientProcessT Client;
4 DisplayT Display;
5 ResourceAllocatorT ResourceAllocator;
6 ServerNodeT ServerNode[NSERVERS];
7 operations: // high level parallel operations
8  OpenSliceStream in StreamNameT Input
9 out StreamDescriptorT Output;
10 ExtractSliceStream in SliceStreamExtractionReqT Input 
11                   out ErrorT Output;
12 StopSliceStream in StreamDescriptorT Input 
13  out ErrorT Output;
14 ...
15};
16
17 process ServerNodeT {// high-level abstract thread
18 subprocesses:        // real threads
19 StreamTimerT StreamTimer;
20  DiskSchedulerT DiskScheduler;
21 ComputeServerT ComputeServer;
22 };
23
24 process ResourceAllocatorT {
25 operations:

26  ReserveResources in ResourceRequirementsT Input
27  out ErrorT Output;
28  FreeResources in StreamDescriptorT Input 
29    out ErrorT Output;
30 };
31
32
33 process StreamTimerT {
34 };
35
36 process ComputeServerT {
37 operations:
38   ExtractAndResampleSlicePart in ExtentDataT Input 
39  out SlicePartT Output;
40 ...
41 };
42
43 process DiskSchedulerT {
44 operations:
45 ScheduleReadExtent in ExtentReadReqT Input 
46 out ExtentDataT Output;
47 ScheduleWriteExtent in ExtentWriteReqT Input 
48 out ErrorT Output;
49 ...
50};

Fig. 7.  CAP specification of the parallel and continuous media server threads



continuous media and a list containing   extent requests for
continuous media. The continuous media request list has
always a higher priority than the non-continuous media
request list, i.e. continuous media extent requests are always
served first. Non-continuous media extent requests are
served according to a first come first served policy.
Continuous media extent requests are served according to
the earliest deadline first strategy. If several extent requests
have the same deadline, they are served as follows:

• for extent requests belonging to different streams (e.g.
streams of different media, or different slice streams),
extent requests containing more time slices are served
first1, 

• for extent requests belonging to the same stream (e.g.
extents contributing to the same set of slices), extent
requests are served in the order of their extent indices.
This enables to move the disk head in one direction,
similar to the SCAN disk scheduling algorithm [15],
since extents with consecutive indices are generally
stored in consecutive blocks.

5.5  Parallel Stream Retrieval and Presenta-
tion

In order to create a global schedule for parallel continuous
media stream access let us identify the basic sub-tasks that
compose the parallel retrieval and presentation of a slice
stream:

• copy the slice access parameters to the contributing
server PCs,

• generate the successive slice requests that form the slice
stream at regular time intervals, 

• compute the extents intersecting a slice,

• read an extent from a single disk,

• extract a slice part from an extent and resample it onto
the display grid,

• merge an extracted and resampled slice parts into a full
slice,

• visualize a full slice on the client computer.
Fig. 8 shows the macro data flow specifying the schedule of
these seven basic operations. The input is a
SliceStreamExtractionReqT token comprising the slice
parameters (slice orientation and position), the stream
descriptor, the display rate and the stream duration. First,
the Client thread sends the SliceStreamExtractionReqT
token to all the StreamTimer threads located on the server
PCs contributing to the stream2. Using the system timers,

each StreamTimer thread generates at regular time intervals
the timed slice extraction requests to generate the slice
stream. Each slice extraction request is defined by the
SliceExtractionReqT token containing the slice parameters,
the stream descriptor and a deadline. The time interval
between slice extraction requests is derived from the display
rate. Each SliceExtractionReqT request is directed to a
ComputeServer thread running in the same PC. Timed
extent reading requests are generated with a deadline
derived from the SliceExtractionReqT deadline. There is
one reading request per local extent intersecting the slice.
The reading requests are sent to the DiskScheduler thread
who applies the disk scheduling algorithm before reading
the extents from disk. Once an extent is read, it is processed
by the ComputeServer thread to extract and resample the
corresponding slice part. The resulting extracted and
resampled slice part is sent back to the Client thread and
merged into a full slice. Once constructed and buffered, full
slices are ready to be consumed at the display rate by the
Display thread.

This global schedule achieves both pipelining and
parallelism. Pipelining is achieved at three levels:

• slice part extraction is performed by the ComputeServer
thread on one extent while the DiskScheduler thread
reads the next extents,

• an extracted slice part is merged by the Client thread
into the full slice while the next slice parts are being
extracted,

• a full slice is displayed by the Display thread while the
next full slices are being prepared.

Parallelization occurs at two levels:

• several extents are read simultaneously from different
disks; the number of disks can be increased to improve
the I/O throughput,

• extraction of slice parts from extents is done in parallel
by several processors; the number of processors can be
increased to improve the slice part extraction and resa-
mpling performance.

The schedule of Fig. 8 is implemented by the parallel
StreamServerT::ExtracSliceStream CAP operation specified
in Fig. 9.

The input of the parallel ExtractSliceStream operation (lines
46 to 80) performed by the Client thread is a
SliceStreamExtractionReqT request. Using an indexed-
parallel CAP construct (line 50) this request is duplicated
by the DuplicateSliceStreamExtractionRequest routine (line
1) and sent from the client PC to the StreamTimer threads
(line 58) located on each server PC contributing to the
stream extraction (lines 51 to 53). By using the parallel-
while-suspend CAP construct (line 60), the StreamTimer
thread calls the GenerateSliceExtractionRequests routine
(line 9) to generate each time it is called a
SliceExtractionReqT request with a certain deadline. Thanks
to the suspension of the token flow during the time interval

1We assume that extent sizes are similar for different streams 
(between 40KB and 80KB)
2When a parallel stream is opened, the client thread obtains infor-
mation about how the parallel stream is striped into subfiles and on 
which processing node each subfile resides. This enables comput-
ing the index of the processing node whose disk contains the 
desired file extent.



computed by the CalculatePeriod function (line 18),
consecutive GenerateSliceExtractionRequests functions are
called at appropriate time intervals. The number of
generated slice extraction requests depends on the stream
duration. Each SliceExtractionReqT request is directed to
the ComputeServer thread (line 65) residing on the same PC
as the StreamTimer thread (line 58). The ComputeServer
thread performs the parallel-while CAP construct (line 67).
There, the SliceExtractionReqT request is processed by the
GenerateExtentReadRequests routine (line 21) that
incrementally computes the local extents intersecting the
slice. Each time it is called, it generates an ExentReadReqT
request with the same deadline than the
SliceExtractionReqT request deadline. The ComputeServer
threads redirect the ExtentReadReqT requests to their
DiskScheduler thread companions (line 71) who read the
required extents from the disks by performing the
ScheduleReadExtent operation. The extents read from disks
are redirected back to the ComputeServer threads (line 74).
The ComputeServer threads running the
ExtractAndResampleSlicePart operation (line 32) extract
the slice parts from the received extents, and return them to
the Client thread who originally started the operation. The
Client thread merges the slice parts into a full slice using the
MergeSlicePart routine (line 29). The full slices are
redirected to the Display thread (line 77) who performs the
BufferAndVisualizeSlice operation (line 41). In this
operation, a set of full slices is constructed before starting a
system timer to display the full slices at the user-specified
rate.

To extract multiple synchronous slice streams, we may
simply launch at the same time several asynchronous calls
to the StreamServerT::ExtractSliceStream CAP operation
and specify for all of them the same display rate.

The Client thread requests an entire stream and the server
PCs send stream data to the client at a controlled rate. This
data delivery model, called server-push [8] (as opposed to
the client-pull model), may cause a synchronization
problem due to the parallel transmissions from multiple
independently running server PCs having each one a
different clock. To improve the synchronization, the Client
thread divides the stream request into requests for stream
pieces (e.g. a 10 minutes stream is divided into 10 pieces of
1 minute substreams).

The Client thread makes timed requests for the stream
pieces and resynchronizes the server PCs at each stream
piece request. This pattern combines the client-pull and
server-push delivery models.

A configuration file maps the parallel and continuous media
server threads onto the available processors of the hardware
architecture (Fig. 10). Changing the configuration file
enables the same program to run without recompilation on
different hardware configurations. In this example, process
A runs the user application on the user machine. Processes
B and C execute the server application on machines whose
IP addresses are 128.178.75.65 and 128.178.75.66
respectively. In the CAP program, there are 9 threads. The
Client and Display threads run in process A. Threads
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ResourceAllocator, ServerNode[0].StreamTimer, Server
Node[0].ComputeServer and ServerNode[0].DiskScheduler
run in process B. Threads ServerNode[1]. StreamTimer,
ServerNode[1].ComputeServer and ServerNode[1].Disk
Scheduler run in process C.

Each DiskScheduler thread and its companion
ComputeServer thread work in pipeline; multiple pairs of
DiskScheduler and ComputeServer threads may work in
parallel if the configuration map specifies that different
DiskScheduler/ComputeServer threads are mapped onto
different processes running on different computers (Fig. 10).
In addition, by being able to direct at execution time the
ScheduleReadExtent and ExtractAndResampleSlicePart
operations to the storage server PC where the extents
resides, operations are performed only on local data and
superfluous data communications over the network are
completely avoided. Load-balancing is ensured by
appropriate distribution of extents onto the disks (section 3).

6.  Performance and Scalability Analysis
The server architecture we consider comprises 4 200MHz
Bi-PentiumPro PC’s interconnected by a 100 Mbits/s Fast
Ethernet crossbar switch (Fig. 4). Each server PC runs the
Windows NT Workstation 4.0 operating system, and
incorporates 12 SCSI-2 disks divided into 4 groups of 3
disks, each hooked onto a separate SCSI-2 string. We use
5400 rpm disks which have a measured mean physical data
transfer throughput of 3.5 MBytes/s and a mean latency
time, i.e. seek time + rotational latency time, of 12.2 ms
[10]. Thus, when accessing 64 KBytes blocks, i.e.

16x16x16x16 8-bit extents, located at random disk
locations, an effective throughput of 2.05 MBytes/s per disk
is reached.

In addition to the server PCs, one client 200MHz Bi-
PentiumPro PC located on the network runs the 3D beating
heart visualization task which enables the user to specify
interactively (Fig. 3) the desired slice stream access
parameters (position, orientation and stream rate) and
interacts with the server proxy to extract the desired slice
stream. The server proxy running on the client sends the
slice stream request to the server PCs, receives the slice
parts and merges them into a set of displayable slices. The
set of displayable slices is then passed to the 3D beating
heart visualization task at the specified rate.

A TCP/IP socket-based communication library [17] called
MPS implements the asynchronous SendMessage and

1 void DuplicateSliceStreamExtractionRequest 
2 (SliceStreamExtractionReqT* FromP, 
3   SliceStreamExtractionReqT* &ThisP, 
4   int ServerNodeIndex) {
5 ThisP = new SliceStreamExtractionReqT 
6 (FromP, ServerNodeIndex);
7 }
8
9 bool GenerateSliceExtractionRequests 
10 (SliceStreamExtractionReqT* FromP,
11  SliceExtractionReqT* PreviousP, 
12  SliceExtractionReqT* &ThisP) {
13 ThisP = new SliceExtractionReqT; 
14 //...C++ sequential code
15 return (IsNotLastSliceExtractionRequest);
16 }
17
18 int CalculatePeriod (SliceStreamExtractionReqT* InputP) 
19 { //...C++ sequential code, return period in msec }
20
21 bool GenerateExtentReadRequests 
22 (SliceExtractionReqT* FromP, 
23  ExtentReadReqT* PreviousP, ExtentReadReqT* &ThisP ) {
24 ThisP = new ExtentReadReqT; 
25 //...C++ sequential code
26 return ( IsNotLastExtentReadRequest );
27 }
28
29 void MergeSlicePart (SliceT* IntoP, SlicePartT* ThisP) 
30 { //...C++ sequential code }
31
32 leaf operation
33 ComputeServerT::ExtractAndResampleSlicePart
34 in ExtentDataT* InputP
35 out SlicePartT* OutputP
36 { 
37 OutputP = new SlicePartT; 
38 //...C++ sequential code
39 }
40

41 leaf operation DisplayT::BufferAndVisualizeSlice
42 in SliceT* InputP
43 out ErrorT* OutputP
44 { //...C++ sequential code }
45
46 operation StreamServerT::ExtractSliceStream
47 in SliceStreamExtractionReqT* InputP
48 out ErrorT* OutputP
49 {
50 indexed ( 
51 int ServerNodeIndex = 0; 
52 ServerNodeIndex < thisTokenP->ServerArray.Size (); 
53 ServerNodeIndex++ )
54 parallel (DuplicateSliceStreamExtractionRequest, 
55 void, Client, void Result2)
56 (
57 ServerNode[thisTokenP->ServerNodeIndex].
58 StreamTimer.{ }
59 >->
60 parallel while ( GenerateSliceExtractionRequests 
61 suspend CalculatePeriod (thisTokenP), 
62 void, Client, void Result3 )
63 (
64 ServerNode[thisTokenP->ServerNodeIndex].
65 ComputeServer.{ }
66 >->
67 parallel while ( GenerateExtentReadRequests, 
68 MergeSlicePart, Client, void Output )
69 (
70 ServerNode[thisTokenP->ServerNodeIndex].
71 DiskScheduler.ScheduleReadExtent
72 >-> 
73 ServerNode[thisTokenP->ServerNodeIndex].
74 ComputeServer.ExtractAndResampleSlicePart 
75 )
76 >-> 
77 Display.BufferAndVisualizeSlice
78 )
79 );
80 }

Fig. 9.  CAP specification of the pipelined-parallel StreamServerT::ExtractSliceStream operation

1 configuration {
2 processes:
3 A ("User") ;
4 B ("128.178.75.65", "\\Shared\StreamServer.exe");
5 C ("128.178.75.66", "\\Shared\StreamServer.exe");
6 threads:
7 "Client" (A) ;
8 "Display" (A) ;
9 "ResourceAllocator" (B);
10 "ServerNode[0].StreamTimer" (B);
11 "ServerNode[0].ComputeServer" (B);
12 "ServerNode[0].DiskScheduler" (B);
13 "ServerNode[1].StreamTimer" (C);
14 "ServerNode[1].ComputeServer" (C);
15 "ServerNode[1].DiskScheduler" (C);
16};

Fig. 10.  Configuration file mapping the parallel and contin-
uous media server threads onto different PCs



ReceiveMessage primitives enabling CAP generated
messages, i.e. tokens, to be sent from the application
program memory space of one PC to the application
program memory space of a second PC, with at most one
intermediate memory to memory copy at the receiving site. 

The present application comprises several potential
bottlenecks: insufficient parallel disk I/O bandwidth,
insufficient parallel server processing power for slice part
extraction and resampling, insufficient network bandwidth
for transferring the slice parts from server PC’s to the client
PC and insufficient processing power at the client PC for
receiving many network packets, for assembling slice parts
into the final image slice and for displaying the final image
slice on the user’s window.

To measure the slice stream extraction and visualization
application performances, the experiment consists of
requesting and displaying a 512x512 8-bit/pixel slice stream
comprising 320 slices according to the server-push delivery
model. In order to test the worst case behavior, the selected
slice orientation is orthogonal to one of the diagonals
traversing the Beating Heart’s rectilinear volume.

In the experiment, 1 stream extraction request of 120 bytes
is sent to each server PC. For each set of 16 consecutive
slices, 1504 4D extents of size 64 KBytes (i.e.
16x16x16x16) are read in average from the disks (94
MBytes). The 16 consecutive slice parts (each one of size
390 Bytes approx.) contained in a 4D extent are extracted,
packed and sent to the client, i.e 1504 messages of size 6.24
KBytes (i.e. 16 x 390 Bytes) are sent back to the client for
each set of 16 512x512 image slices.

Fig. 11 (obtained from the Windows NT performance
monitor) shows the load behavior over time of one server
PC belonging to a 3 PC 24 disks server configuration. In
Fig. 10a, one 512x512 8bit/pixel slice stream is extracted at
6 slices/sec and in Fig. 10b two synchronous 512x512 8bit/
pixel slice streams are extracted at 3 slices/sec. Each cycle
corresponds to the extraction of (a) one set of 16 slices and
(b) two sets of 16 slices. It shows that while disk accesses
are made, i.e. extents become available, the processor is

100% busy extracting slice parts.

Fig. 11 shows the performances obtained, in number of
image slices per second, as a function of the number of
contributing server PCs and a function of the number of
disks per contributing server PC. With up to 7 disks per
server PC, disk I/O bandwidth is always the bottleneck.
Therefore increasing either the number of disks per server
PC or the number of server PCs (assuming each PC
incorporates an equal number of disks) increases the
number of disks and offers a higher extracted image slice
throughput. From 8 disks per server PC, the bottleneck
shifts from the disks to the limited processing power
available on the server PCs. At 99% server processor
utilization, 82% are dedicated for slice part extraction and
resampling, 3% for extent reading and 14% for the network
interface and system activities.

From 4 server PCs, each with 8 disks, the client PC is the
bottleneck. 22% processor utilization is required for
merging slice parts into a full slice and visualizing the full
slices and 67% processor utilization is dedicated for the
network interface and system activities. One of the two
processors of the Bi-PentiumPro client PC is used at 95%
for the network interface and system activities and is
therefore the bottleneck. 

For a single client, the optimal configuration consists of 3
server PCs and 24 disks. With such a configuration, up to
7.3 full slices/s can be generated. This corresponds to an
aggregate disk throughput of roughly 43.24 MB/s (7.36/16 *
94 MB), i.e. 1.80 MB/s per disk. This aggregate disk
throughput is slightly below the 2.05 MB/s measured mean
throughput of individual disks due to the fact that with 8
disks per PC, the processor is the bottleneck. 

To analyze the delay jitter of slice parts delivered by the
server as a function of the server processor utilization, we
consider a single slice stream request at a given nominal rate
and two synchronous slice stream requests at half the
nominal rate. Fig. 12 shows the delay distribution and its
cumulative probability distributions (cpd) for server
processor utilizations of 52% (corresponding to the
extraction of one slice stream at the rate of 4 slices/sec) and
92% (7 slices/sec). For a 92% processor utilization, the jitter
delay (1.4 sec) is slightly more than double the maximum

(b)
Fig. 10.  Processor utilization and disk throughput of one 
server PC with 8 disks belonging to a 3 PC 24 disks server 
configuration, (a) when extracting one 512x512 8-bits slice 
stream at 6 slices/sec, and (b) when extracting two synchro-

nous 512x512 8-bits slice streams at 3 slices/sec

(a)

max.
processor
utilization

(100%)

max. disk
throughput
(18.2MB/s

from 8 disks)

Fig. 11.  Performances extracting a 512x512 8-bits 
slice stream

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

number of disks per server PC

sl
ic

es
 / 

se
c

1 server PC

2 server PC’s

3 server PC’s

4 server PC’s



jitter delay (0.6 sec) at a 52% processor utilization.

Fig. 12.  Delay jitter for one single stream and for two synchro-
nous streams

Fig. 12 shows the jitter delay when extracting two
synchronous slice streams at 2 slices/sec (54.4% processor
utilization) and 3.5 slices/sec (94.2% utilization). Due to the
organization of 4D extents which incorporate data for 16
consecutive slices parts, accessing two synchronous streams
requires reading from disks simultaneously the extents
needed for two times 16 consecutive slices, i.e. 32
consecutive slices. At the same total display rate, in the case
of two synchronous streams, double the number of disk
accesses are made at each deadline. However, as Fig. 11b
shows, the interval between deadlines is twice as large as in
the equivalent single stream access application. This also
explains why the delay jitter for two streams is
approximately double the delay jitter for a single stream
(Fig. 12). Slice parts belonging to 16 consecutive time
instants are sent to clients. In double buffering mode, clients
should therefore have the memory to store 32 slices per slice
stream (8 MB per 512x512 8bit/pixel slice stream). Since
the delay jitter is always less than the time to display 16
slices, delay jitter does not require additional buffer space. 

7.  Conclusions
Parallel distributed memory servers for I/O and compute
intensive continuous media applications are difficult to
develop. A server application comprises many threads
located in different address spaces as well as files striped
over multiple disks located on different computers. In order
to ensure performances close to the potential offered by the
underlying hardware and operating system, pipelined
parallel programs need to be developed, which ensure that
computations, disk accesses and network transfers occur
simultaneously. 

CAP greatly simplifies the creation of pipelined parallel
continuous media applications. By construction, it generates
completely pipelined parallel applications: in front of each
I/O, each processing and each network transfer operation, a
token queue ensures that as soon as the current operation

returns, the next token is ready to be consumed. In addition,
CAP enables application programmers to specify at a high
level of abstraction the parallel application structure. The
parallel application is concisely described as a set of
threads, operations located within the threads and flow of
data and parameters (tokens) between operations.
Continuous media applications are supported by allowing
tokens to be suspended during a period of time specified by
a user-written function. 

Our target application, the 4D beating heart server requires
both a high I/O throughput for accessing from disks 4D
extents intersecting the desired slices and a large amount of
processing power to extract slices from 4D extents and
resample them into the display grid. In order to obtain a
slice set of 16 consecutive full slices, the server needs to
read from the disks 1504 extents of size 64KB, i.e. 94 MB.
From these extents, 1504 slice parts, each of 6.24 KB are
extracted, resampled and merged at the client site (9.3 MB).
With a server configuration of 3 Bi-Pentium Pro PCs and 24
disks (physical throughput: 3.5 MB/s, latency 12.2 ms), up
to 7.3 slices can be delivered per second, i.e. 43 MB/s are
continuously read from disks and 4.1 MB/s of slice parts are
extracted, transferred to the client and merged. This
performance is close to the maximal performance
deliverable by the underlying hardware. 

In the case of a single stream, and at a display rate of 52% of
the maximal display rate, the delay jitter is 0.6 second. At
92% of the maximal display rate, the jitter grows to 1.4 s.
For the same resource utilization, the jitter is proportional to
the number of streams that are accessed synchronously. As
long as the worst case delay jitter is smaller than the time to
display a slice set, it does not require more memory than the
memory for double buffering a full slice set (presently 16
slices). 

The presented 4D beating heart application shows that
thanks to CAP, computation- and I/O-intensive continuous
media server applications can be built on top of a set of
simple PCs connected to SCSI disks. 

The creation of other continuous media applications may
rely on the presented CAP parallel program skeleton. Data
structures, individual operations and indices specifying
thread locations would need to be appropriately modified.

The 4D beating heart application also suggests that
tomographic equipment manufacturers may offer
continuous 3D volume acquisition equipment by interfacing
the acquisition device with a cluster of PCs, each PC being
connected to several disks.
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