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Figure 1: With an original 3D scene (left), we generate a high relief (middle) that incorporates free-standing sculpture elements
located within a limited depth range. Today, high reliefs can be produced thanks to additive fabrication technologies such as
3D printing (right).

Abstract
We present a method for synthesizing high reliefs, a sculpting technique that attaches 3D objects onto a 2D surface
within a limited depth range. The main challenges are the preservation of distinct scene parts by preserving depth
discontinuities, the fine details of the shape, and the overall continuity of the scene. Bas relief depth compression
methods such as gradient compression and depth range compression are not applicable for high relief production.
Instead, our method is based on differential coordinates to bring scene elements to the relief plane while preserving
depth discontinuities and surface details of the scene. We select a user-defined number of attenuation points
within the scene, attenuate these points towards the relief plane and recompute the positions of all scene elements
by preserving the differential coordinates. Finally, if the desired depth range is not achieved we apply a range
compression. High relief synthesis is semi-automatic and can be controlled by user-defined parameters to adjust
the depth range, as well as the placement of the scene elements with respect to the relief plane.

1. Introduction

High relief, also referred to as alto-rilievo, is a sculpting
technique in the plastic arts [MM72]. In contrast to bas re-
liefs, in which the scene elements are projected into a very
narrow depth range, high reliefs contain elements that are
detached from the relief plane (Fig. 2). This makes the de-
sign and production of high reliefs more complicated than
the creation of bas reliefs. Preserving 3D shape characteris-
tics in a limited depth range is the main challenge.

The production techniques used for bas reliefs such as
milling and carving, in which the shape is created by remov-
ing material from the main mass, are not easily applicable
to high reliefs. However, recent advances in additive man-
ufacturing such as 3D printing simplify the production of
high reliefs. These additive technologies enable building the
parts that are detached from the plane using special support
materials that can be removed after the print. The new ma-
terials available for 3D printers, such as thermoplastics and

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
The definitive version is available at http://diglib.eg.org/ and
http://onlinelibrary.wiley.com/.



S. Arpa et al. / High Reliefs from 3D Scenes

photopolymers, have a transparent, matte, or shiny appear-
ance. They thus enable creating high reliefs for decorative or
artistic purposes.

Figure 2: High relief examples. Left: Greek relief in marble,
Girl with Doves, 300 B.C.; Middle: Hero-City Obelisk, St.
Petersburg, 1985; Right: Cherub sculpture in high relief.

While techniques have lately been proposed for the design
of bas reliefs [KWC∗12], there have not been many attempts
to address the challenges of high reliefs. The fundamental
challenges for high relief design are the following [Hof39]:

• Depth discontinuities. Parts of the scene are detached
from the relief plane and result in depth discontinuities
(Fig. 3). While depth discontinuities are avoided in bas
reliefs, they are emphasized in high reliefs. The resulting
strong shadow effects enhance the illusion of depth. Depth
discontinuities enable viewing the high relief differently
from different viewing orientations. This creates the illu-
sion of seeing a real 3D scene. However, preserving both
the original shape properties and the depth discontinuities
within a limited depth range is challenging.
• Surface continuity. The continuity between the "high"

and the "low" parts of the relief needs to be ensured. The
high parts preserve the depth to a large extent and the low
parts are very close to the plane and look like bas reliefs.
• Perspective deformation. The depth illusion can be fur-

ther enhanced by applying a perspective deformation to
the 3D scene.

The method we present for designing high reliefs of given
3D scenes addresses these challenges and assists both am-
ateur and professional users. In order to enhance the depth
perception of the observer, we first apply a perspective de-
formation of the scene according to a given vanishing point.
Then we bring certain scene elements to the relief plane
and calculate all other elements by using differential coor-
dinates [Ale03,KG00]. The continuity and fine details of the
original scene and the depth discontinuities of the high sur-
face parts are preserved (Fig. 1). Our method allows the user
to control the depth range, as well as the parts of the scene
that are brought to the relief plane.

2. Background and Related Work

Automatic generation of reliefs has recently become a sig-
nificant research topic. However, most works have focused

on the design techniques for the creation of bas reliefs
[KWC∗12].

The dominating approach for designing a bas relief is
based on a height field as initially presented in the work of
Cignoni et al. [CMS97]. The input scene is represented as
a simple height field. The range of this height field is then
reduced to generate plausible bas reliefs.

The bas relief synthesizing methods mainly addressed the
trade-off between depth compression and the preservation of
the details of the original 3D scene. Cignoni et al. [CMS97]
apply a non-linear compression directly on the points of
the height field. The compression is small for the points
that are close to the viewpoint and large for those that are
far. Although this method produces acceptable bas reliefs
for small compression ratios, it fails to preserve the details
for scene elements having a wide range of depth. To solve
this problem, several works [SBS07,WDB∗07,KTB∗09] try
to preserve most of the details from the scene by operat-
ing in the gradient domain [FLW02] instead of the depth
map. Additionally, Weyrich et al. [WDB∗07] apply a multi-
scale approach for gradient compression. Some recent meth-
ods [SRML09, BH11] work both on the depth range and in
the gradient domain to further enhance the resulting bas re-
liefs.
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Figure 3: Bas and high relief representation in 2D.

Since state-of-the-art solutions for bas reliefs [KWC∗12]
are based on a height field, they are not adequate for gener-
ating high reliefs. As shown in Fig. 3, a bas relief can rep-
resent only a single point projected from the scene. In con-
trast, high reliefs may contain multiple points located on the
same projection line. For the creation of high reliefs, Cignoni
et al. [CMS97] propose to first decompose the scene into a
near and far region, where the far region is compressed with
a bas relief synthesizing algorithm and the near region is
simply stitched to the compressed far region. This method
yields acceptable high reliefs for several types of scenes
where the near and far regions are discontinuous. However,
it is not applicable for the most of complex 3D scenes. The
authors also do not address the problem of mapping the high
relief part of the scene into a limited depth range.

A recent work by Schuller et al. [SPSH14] introduces
appearance-mimicking surfaces as a generalization of bas
relief synthesis for arbitrary target surfaces. This method
does not require a height field as input data but uses the 3D
scene geometry. Given a number of constraints such as tar-
get shapes, viewpoints, and space restrictions, they produce
an optimal relief providing the desired appearance from a

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



S. Arpa et al. / High Reliefs from 3D Scenes

certain viewpoint. In contrast, our approach aims at creating
high reliefs that can be viewed from a wide range of viewing
angles with an appearance similar to the original 3D shape.

In order to construct visually pleasing and continuous
high relief surfaces we use differential coordinates. Repre-
senting 3D surfaces in differential coordinates, also known
as Laplacian coordinates, has been previously proposed
[Ale03, KG00]. In this representation, each vertex is rep-
resented by its difference from its topological neighbours.
Laplacian coordinates can be efficiently used to re-build a
surface by solving a sparse linear system [SCOL∗04].
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Figure 4: A scene M with viewpoint u, relief plane S, van-
ishing point g, and k = 16 attenuation points.

3. High Reliefs

We propose a high relief synthesis technique that is signif-
icantly different from the range compression methods used
to produce bas reliefs. We first select a number of relevant
scene points as attenuation points and move these points to-
wards a relief plane by considering the local relationships of
those points with each other. Then we reconstruct the surface
by using the new positions of the attenuation points and the
differential coordinates of the original scene. This brings the
scene elements close to the relief plane while maintaining
the continuity and fine details of the surface of the original
scene. Furthermore, high reliefs keep the presence of sepa-
rate scene elements at different depth levels. Depth disconti-
nuities are therefore preserved.

Let us introduce the notations used hereinafter. We con-
sider a relief plane S ∈ R3 and a 3D scene M = {V,∆V},
where V = {v1, ...,vn} ⊂ R3 incorporates the Cartesian co-
ordinates vi of n vertices. Each vertex vi ∈ V has the co-
ordinates vi = [vx vy vz]. The differential coordinates ∆V =
{∆v1, ...,∆vn} ⊂ R3 comprise, for each vertex, the weighted
differences from their neighbours: ∆vi = [∆vx

∆vy
∆vz]. The

scene M is further defined by the user controlled view-
point u and the vanishing point g, which guide the per-
spective deformation. We partition the scene into k clusters
C = {c1, ...,ck}. In each cluster ci, we select one attenuation
point ai that we use to control the proximity of the scene el-
ements to the relief plane. Fig. 4 shows the scene, the view-
point, the relief plane, and the vanishing point within a coor-
dinate system centered in the relief plane.

3.1. Forced perspective

Perspective foreshortening [DH04] is a key tool to achieve a
depth illusion when projecting 3D scenes onto a 2D plane.
However, it is not applicable for high reliefs since we do not
project 3D points onto a 2D plane. Nevertheless, since we
limit the depth range, deforming the geometry along van-
ishing lines is useful to enhance the perception of depth.
This type of perspective deformation is applied in several ar-
chitecture and sculpting works. For instance, the Borromini
corridor in Palazzo Spada is perceived to be much longer
than its actual length. This is due to the parallel lines of
the corridor that are deformed so as to converge to a van-
ishing point [Arn74, p. 273]. In a similar manner, we cre-
ate a forced perspective on the 3D scene by applying a one
point perspective deformation, see Appendix II. The defor-
mation is controlled with the vanishing point g = [gx gy gz]
located behind the relief plane and the viewpoint u. Choos-
ing g at infinity (gz =∞) does not cause any deformation
of M, while choosing it closer to the relief plane S creates
a corresponding perspective deformation (Fig. 5). Note that,
since we limit the perspective to one vanishing point, non-
linear deformations occur on the lines that are neither par-
allel nor perpendicular to the viewing direction. In order to
achieve visually interesting forced perspective effects, and to
avoid non-linear deformations we recommend transforming
the scene so that dominant lines become parallel or perpen-
dicular to the viewing direction. Alternatively, choosing the
vanishing point further away from the relief plane decreases
the non-linearities but reduces the forced perspective effect.

vanishing point, g
vanishing line

a

b

c
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b
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Figure 5: Perspective deformation. a: Original input scene;
b: the scene deformed for a far vanishing point; c: the scene
deformed for a near vanishing point.

3.2. Bring it to the plane

Instead of directly compressing the depth range, we bring
scene elements towards the relief plane S and attach some
of them to the plane. At the same time we aim to preserve
the overall shape. We achieve this by selecting several scene
vertices as attenuation points. These attenuation points are
then migrated towards the relief plane S. The positions of all
other vertices are calculated according to the new positions
of the attenuation points and the differential coordinates ∆V
of the vertices.
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Figure 6: Clustering and selection of attenuation points on a simple curve in 2D. Each circle indicates a vertex. Vertices with
dark borders are visible vertices and vertices with light borders are invisible vertices. The vertices having the same color belong
to the same cluster. a) The vertices are clustered according to their x positions and the visible vertex closest to the relief plane
is selected as attenuation point in each cluster. b) The result of reconstructing the scene as bas relief using the method of
Weyrich et al. [WDB∗07]. c) The reconstruction of the scene if all attenuation points are attached to the relief plane. d) The
differential values for attenuation points are calculated by taking the differences from their 2 nearest neighbours, illustrated
with the respective color lines. In 3D, we use 4 nearest neighbours. e) The reconstructed scene after moving the attenuation
points considering their differential values.

Attenuation points. The selection of attenuation points
determines to a large extent the final high relief geome-
try. Our goal is to select those attenuation points as control
points that enable bringing the scene towards the relief plane
by satisfying the following requirements:

• Ensure that all vertices that are visible from viewpoint u
stay in front of the relief plane.
• Use the least number of attenuation points k in order to

avoid excessive deformations.
• Preserve the original depth order of all scene vertices in

local neighbourhoods.

In order to meet these criteria, we apply the following pro-
cedure. A spatially well distributed selection of attenuation
points is required to control the scene elements. Therefore,
we partition the scene into spatial clusters C and select one
vertex from each cluster ci as attenuation point ai that be-
comes its control point. We apply a k-means spatial cluster-
ing [M∗67] to the scene vertices V using only their x and
y coordinates as cluster data and k as the desired number
of clusters. With this strategy, we do not partition the scene
in the z direction. This prevents self intersection of scene
parts when the attenuation points are moved towards the re-
lief plane.

In each cluster, we select as attenuation point ai ∈ V the
vertex visible from viewpoint u having the smallest Eu-
clidean distance to the relief plane S. This vertex may be-
come an attachment point to the relief plane. This procedure
provides well distributed attenuation points that constraint

visible vertices to stay in front of the relief plane. This can
be shown more easily in 2D than in 3D. Fig. 6a shows a
scene comprising a curve in 2D, its clusters and their corre-
sponding attenuation points.

Next we scale down the distance of each attenuation point
ai = [ax

i ay
i az

i ], ai ∈ ci to the relief plane. Attaching all atten-
uation points to the relief plane, as shown in Fig. 6c, creates
problems such as undesired deformations and the migration
of visible parts of the scene behind the relief plane when the
surface is reconstructed (see cluster c4 in Fig. 6c). Such de-
formations appear when an attenuation point is more distant
to the relief plane than its neighbouring attenuation points.
In order to prevent this, we develop a strategy where atten-
uation points are either discarded, scaled down, or attached
to the relief plane. For this purpose, we define the differen-
tial relief distance of an attenuation point as the difference
between its relief distance and the average relief distances of
its neighbours:

∆az
i = az

i −
1
|N| ∑

j∈N
az

j (1)

where N is the set of 4 nearest neighbours of the attenua-
tion point ai. The nearest neighbours are searched by calcu-
lating the Euclidean distances in x,y coordinates between an
attenuation point ai and other attenuation points. Then, we
map all differential relief distances to the interval between 0
and 1:
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ρi =
∆az

i −∆az
min

∆az
max−∆az

min
(2)

where ∆az
min is the minimal differential relief distance and

∆az
max is the maximal differential relief distance. Depending

on the value of the relative differential relief distance ρi, of
an attenuation point ai, we either attach it to the relief plane,
scale it down, or discard it:

ρi > t1 → discard
t2 ≤ ρi ≤ t1 → scale down

ρi < t2 → attach

where t1 is the threshold for discarding an attenuation
point and t2 is the attachment threshold. In our experiments,
we heuristically chose t1 = 0.6 and t2 = 0.3, respectively.
These values give good results in all our examples.

A high ρi, which corresponds to a high positive differen-
tial relief distance, indicates that the attenuation point is fur-
ther away from the relief plane compared to its neighbours.
It is not a suitable attenuation point since it might cause ex-
cessive deformations (see a′3 and c4 in Fig. 6c). In contrast,
a small ρi, which corresponds to a low negative differential
relief distance, indicates that the corresponding attenuation
point is closer to the relief plane compared to its neighbours
and that it can be an attached to the relief plane (see a′2 and
a′4 in Fig. 6d). For attenuation points with t2 ≤ ρi ≤ t1, we
reduce their relief distances az. In order to scale down large
absolute differentials more, we scale differentials ∆az

i by us-
ing an attenuation function proposed by Bian et al. [BH11].

0
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Figure 7: Modified differential relief distances for k = 16 at-
tenuation points after applying the attenuation function pro-
posed by Bian et al. [BH11] (see Eq. 3) for the dragon model
in Fig. 4.

(∆az
i )
′ =

arctanβi∆az
i

βi
(3)

We use attenuation factor βi = 0.2 for all attenuation

points if not stated otherwise. As shown in Fig. 7, it affects
large differantial values very strongly. A wide range of dif-
ferential values is almost equalized [KWC∗12].

Next we find the new relief distances of attenuation points
by reconstructing them using their modified differential re-
lief distances. The attenuation points selected as attachment
points represent positional constraints:

(az
i )
′ = 0, i ∈ {b, ...,k}, b < k (4)

where {b, ..,k} are the indices of the attachment points.
Under these constraints, we find the distances of the other
attenuation points (az

i )
′, i ∈ {1, ...,b−1} using the modi-

fied differentials. However, instead of directly fixing attach-
ment points, we recalculate them in a least square sense as
recommended by Sorkine et al. [SCOL∗04] by minimizing
the following cost function:

E((az
1)
′, ...,(az

k)
′) =

k

∑
i=1
‖(∆az

i )
′−∆(az

i )
′‖2 +

k

∑
i=b
‖(az

i )
′‖2

(5)

The first term in the optimization minimizes the square
differences between modified differential relief distances
(∆az

i )
′ and the differential values of the newly obtained re-

lief distances ∆(az
i )
′. The second term minimizes the square

distances to the relief plane for those attenuation points that
are selected as attachment points. This optimization problem
is solved as a sparse linear systems of equations [SCOL∗04]
(see Appendix IV). Fig. 6e shows the result for a curve in
2D.

Construction. We construct the final relief surface by
using the new positions of the attenuation points a′i =
[ax

i ay
i (az

i )
′] as positional constraints. As discussed previ-

ously, the differential coordinates ∆V enable preserving the
local characteristics of the scene while moving scene ele-
ments to the plane. We calculate the differential coordinates
∆vi of a vertex vi by using the cotangent weights as de-
scribed in Sorkine [Sor05] (see Appendix III). Next we re-
construct the surface by fixing the new positions of the at-
tenuation points:

v′i = a′i , i ∈ {m, ...,n}, m < n (6)

where {m, ..,n} are the k indices of the vertices that are se-
lected as attenuation points. Under these constraints, we find
the new positions of all other vertices v′i , i∈ {1, ...,m−1}
using the differential values ∆v′i , i ∈ {1, ...,m− 1}. We
minimize the square differences between the differential co-
ordinates of new vertex positions ∆v′i and original differen-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



S. Arpa et al. / High Reliefs from 3D Scenes

k = 1 k = 4 k = 16 k = 64 k = 256
y

x

z

x

Figure 8: Increasing the number k of attenuation points increases the number of scene elements that are brought to the relief
plane and decreases the overall depth range.

tial coordinates ∆vi for all vertices except the attenuation
points.

E(V ′) =
m−1

∑
i=1
‖ ∆v′i−∆vi ‖2 (7)

This optimization problem is solved as a sparse linear
systems of equations (see Appendix V). Instead of treating
the constraints in the least-squares sense as suggested by
Sorkine et al. [SCOL∗04], we substitute them into the lin-
ear system.

Deformation errorshigh low

Figure 9: Undesired deformations become more visible as
the number k of attenuation points is increased (left). We
detect local deformation errors by comparing the depth or-
ders (middle) and apply a reconstruction to correct the er-
rors (right).

Restoration. Increasing the number k of attenuation
points increases the number of scene elements that are
brought to the relief plane and decreases the overall depth
range (Fig. 8). However, having sparsely distributed posi-
tional constraints results in undesired deformation errors.
Since we apply a least square solution, errors are locally dis-
tributed around the attenuation points (Fig. 9). The usage of
higher order differential coordinates or the relaxation of po-
sitional constraints in the construction step can smooth the

errors, but result in unpleasant global changes, see the sup-
plementary material. Instead, we detect the errors and cor-
rect them by applying a local reconstruction procedure using
higher order differential coordinates. First, we detect local
errors by comparing the depth order of the current vertices
V ′ with the depth order of the original vertices V . For each
attenuation point ai, we check all vertices within a certain
radius (i.e. half of the largest distance between two points in
the current cluster considering the original vertex positions
V ). Depth order error ε is calculated for a vertex v in the
neighbourhood of ai:

ε =
| v′o− vo |

p
(8)

where p is the number of vertices in the neighbourhood
of ai. v′o and vo denote the current and original depth or-
der of vertex v, respectively. The depth order is obtained by
presorting all p vertices according to their distances to the
relief plane. In this manner, we calculate errors for all ver-
tices which are around attenuation points and assign ε = 0
for all other vertices. Next we reconstruct the surface parts
having high errors. All vertices with error ε < t3 are fixed as
positional constraints. We use t3 = 0.2. This value has been
chosen by carrying out extensive tests. To avoid discontinu-
ities, we use higher order differential coordinates in this step,
as described in Appendix VI. As shown in Fig. 9, with this
strategy, we remove local errors without relaxing the depth
range or introducing new deformations.

As a final step we eliminate all vertices that are displaced
behind the relief plane S.

c© 2015 The Author(s)
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k = 1, α = 0.3 k = 128, no
compression k = 128, α = 0.8

a
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k = 256, no
compression k = 256, α = 0.8 k = 128, α = 0.8

c d

e
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Figure 11: Our results preserve to a large extent the fine details and the properties of the original scene within a limited
depth range. With a simple depth compression method equivalent to the prior art depth range compression strategies (a: k = 1,
α = 0.3; c: close-up), the details are lost and the scene is not well attached to the relief plane (b). With more attenuation points
(a: k = 128, no compression; d: close-up), the scene elements are brought to the relief plane without inducing a loss of details.

Figure 10: The users can control the attenuation factor βi
for each attenuation point and possibly release attachment
points. The red dots indicate the attenuation points with βi =
0.1 and blue ones with βi = 0.8. Smaller βi values enable
scene elements to be detached from the relief plane.

3.3. Compression and artistic control

Although our construction method limits the depth range ac-
cording to the number k of attenuation points, we also ap-
ply a range compression method if the desired depth range
is very limited. Increasing k decreases the depth range as
shown in Fig. 8, but more undesired deformations may oc-
cur. In these cases, a range compression method may be
preferred for further compression. We apply a range com-
pression similar to the method of Cignoni et al. [CMS97],
where the vertices closer to the relief plane are compressed
more than the far ones. We automatically assign a compres-

sion ratio for each vertex depending on a user given maximal
αmax and minimal αmin compression ratio. A local compres-
sion value αi is calculated for each vertex vi by mapping the
range of relief distances (vz

i )
′ in the interval between αmin

and αmax. Finally, the relief distance (vz
i )
′ of a vertex is mul-

tiplied by its local compression ratio αi. For the examples in
the paper, we only indicate αmax by referring to it as α and
use αmin = αmax/2.

As shown in Fig. 11 and Fig. 13 as well as in the sup-
plementary material, we obtain different results depending
on the selection of k, α, β, and vanishing point g. For the
artistic control of the resulting high relief, these parameters
can be set by the designers. Furthermore, they can also de-
fine the attenuation factors βi for the attenuation points, see
Eq. 3. Changing βi globally enables determining how much
the scene sinks into the relief plane. Furthermore, changing
it locally for each attenuation point enables tuning how the
different parts of the high relief surfaces stand out from the
relief plane (Fig. 10).

4. Results

We discuss the results and illustrate potential usages based
on different settings. As discussed in Sec. 3, we provide
artistic control for the number of attenuation points k, the
depth compression value α, as well as the attenuation factor
β, possibly adapted for each attenuation point. Having parts
of the scene detached from the relief plane enhances the
depth perception to a great extent. In contrast to bas reliefs,
the preservation of depth discontinuities yields strong shad-
ows. Fig. 11 shows a comparison between a simple com-
pression of the depth range (k = 1, α = 0.3) and our method

c© 2015 The Author(s)
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a: Bas relief [WDB07] b: High relief (our method)

Figure 12: The comparison of bas relief and high relief at different angles under the same lighting conditions.

with different numbers of attenuation points and range com-
pression values. Our strategy preserves the details, ensures
surface continuity, and maintains depth discontinuities of the
scene. A simple depth compression strategy fails to preserve
the scene details and the overall scene is not well attached
to the relief plane. Increasing the number k of attenuation
points decreases the depth range but at the same time intro-
duces deformations of the scene geometry. If a further de-
crease in depth range is desired, the compression ratio α en-
ables a range compression. If no deformation is tolerated and
a limited depth range is desired, we observe that selecting
k = 128 and α = 0.8 gives the best results for many scenes.
Fig. 13 and the supplementary material show additional re-
sults for different types of scenes.

Choice of methods. We use different solutions for find-
ing the new positions of the attenuation points (Eq. 5) and of
all vertices (Eq. 7). As shown by Sorkine et al. [SCOL∗04],
using the least-squared method is preferable in most of sce-
narios. However, in the construction step (Eq. 7), using the
least-squared method causes large scale artifacts due to the
many attenuation points distributed over scene. These arti-
facts are difficult to detect (see Supplementary Material).
However, when we fix the attenuation points, the artifacts
remain localized around the attenuation points and they are
easily detected (Fig. 9).

Bas relief ambiguity. Viewing a 3D Lambertian surface

orthographically creates ambiguity in determining its struc-
ture. A same appearance can be produced by different sur-
faces under appropriate lighting and with a correct view-
point. This is called "bas relief ambiguity" [BKY99]. This
ambiguity is not predominant on high reliefs since high re-
liefs keep the presence of separate scene elements at differ-
ent depth levels (e. g., the arm in Fig. 12b). In contrast to
bas reliefs, high reliefs can be viewed from a wider range of
viewing angles and still preserve the appearance of the orig-
inal shape. Fig. 12 shows a comparison of our high relief
with a bas relief generated with the method of Weyrich et
al. [WDB∗07]. The appearance changes dramatically once
the viewpoint of the bas relief is changed, whereas it is
mostly maintained for our high relief.

Performance. Our method is not optimized for perfor-
mance. For scenes having approximately one quarter million
vertices and half a million faces, it takes 54 seconds to gen-
erate a high relief with k = 128. The execution time is dom-
inated by the restoration operation which takes 34 seconds.
The execution times were measured on a computer with an
Intel Xeon E3-1225 processor.

Limitations. Our algorithm is limited to connected
meshes. In some cases, a number of visible parts might stay
behind the relief plane when the number k of attenuation
points is small. Increasing k increases the constraints to keep
all visible parts of the scene in front of the relief plane.

c© 2015 The Author(s)
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For complex scenes, having the parts of scenes which are
not directly connected to each other may cause the inter-
penetration of these parts in the case of too high constraints
induced by a large number of attenuation points.

5. Conclusion

We propose a method to create visually pleasing high reliefs
from 3D scenes that is simple to operate while still allow-
ing for creative control. Our method relies on the differential
coordinates in order to preserve the overall shape, the depth
discontinuities, and the fine details of the scene. We bring
the overall shape towards the relief plane by using a number
of attenuation points. First, new positions of the attenuation
points are calculated, then new positions of all other vertices
are found by using their differential coordinates. We give
the freedom to artists to control the parameters adjusting the
depth range, the attachment to the relief plane, and the range
compression. The proposed high relief synthesizing method
may find a widespread usage for decorative and home pur-
poses as well as for architecture. With today’s 3D printing
facilities, the fabrication of high reliefs has been consider-
ably simplified.

Our high relief method is a first step towards solving the
problem of automatic generation of high reliefs and it can
inspire several future works. The method may be extended
to create high reliefs on arbitrary relief surfaces. One may
create optical illusions by considering light changes, shadow
effects, and forced perspective. In addition, full-color high
relief design may become fashionable for house decorations
and gifts.
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APPENDIX

I. Notation

Me× f denotes a matrix M where e× f is the dimension of
the matrix. M(a : b,c : d) denotes a sub-matrix of the matrix
M where a : b denotes rows a to b and c : d denotes columns
from c to d.
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a:  k = 128, α = 1.0
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 0
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 =
 1
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, α

 =
 0

.8

c:  k = 128, α = 0.8 e:  k = 128, α = 0.8

Figure 13: High relief examples for different type of scenes.

II. One point perspective deformation for forced
perspective

The perspective deformation consists in bringing line l into
line lp obtained by connecting the projection of l on the view
plane with vanishing point g.

g = [ g   g   g  ],
vanishing point 

-z

v = [ v   v   v   ],
vertex position
v = [ v   v   v   ], 
new vertex position

p

u = [ u   u   u  ], 
viewpoint 

x y z

x y z

x y z

x y z
p p p

-x

g

u 

ll

vvp

p

view plane, parallel
to the relief plane S
through viewpoint u

A vertex v is displaced to vp according to the following
relationship:

vx− vx
p

vx−gx =
vz−uz

gz−uz

Solving for vx
p yields

vx
p = vx− (vx−gx) · (vz−uz)

gz−uz .

Since similar considerations apply to the y and z; we ob-
tain

vy
p = vy− (vy−gy) · (vz−uz)

gz−uz

vz
p = vz.
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III. Cotangent weights

Vi

Vj

β ij

αij

For a vertex vi, the differential coordinates ∆vi are defined
as follows;

∆vi =
1
| ψ | ∑

j∈N
ω j(vi−v j)

ω j =
1
2
(cotαi j + cotβi j)

where N denotes the set of neighbour vertices (i.e. the
1-ring) on the mesh surface around vi. ω j is the cotangent
weight for neighbour vertex v j and | ψ | is the Voronoi area
acting as normalization factor [Sor05].

IV. New relief distances of attenuation points

In order to find differential values and minimize Eq 5, we
proceed as recommended by Sorkine et al [SCOL∗04] and
use matrix form ∆h = Lh, where h and ∆h are vectors of
length k representing the relief distances az

i of all attenuation
points and their differential relief distances ∆az

i respectively.
Matrix L, computed as L = I−D−1A and called the Lapla-
cian matrix, is a k× k sparse matrix. A is the adjacency ma-
trix giving the neighboring attenuation points, where neigh-
bours of an attenuation point are represented with the value
1 and non-adjacent ones with the value 0. Matrix D defined
as D = diag{d1, ...,dn} is the degree matrix with di denoting
the degree of vertex ai, i.e. the number of neighbour attenu-
ation points. After calculating the reduced differential relief
distances ∆h′ according to Eq. 3, we calculate the new re-
lief distances h′ of attenuation points by solving equation
∆h′ = Lh′. The new relief distances h′ are recovered by
introducing our constraints into the system. With the con-
straints indexed from b to k as indicated in Eq. 4, the system
to solve by the least square method is the following:

(
Lk×k

0 I(k−b+1)×(k−b+1)

)
h′ =

(
(∆h)′

0

)

V. Reconstruction of scene vertices

We use matrix form ∆V=LV, where V and ∆V are n×3 ma-
trices representing the vertices V and their differential coor-
dinates ∆V . Laplacian matrix L, a n×n matrix, is computed
as L= I−D−1A. A is the adjacency matrix giving the vertex
connectivity, where vertices adjacent to one vertex are rep-
resented with their cotangent weight and non-adjacent ones
with the value 0. Matrix D = diag{d1, ...,dn} is the degree
matrix with di denoting the Voronoi area of vertex vi. We
insert our constraints (i. e., attenuation points V′(m : n)) de-
scribed in Eq. 6 into the system and solve it for all other
vertices [Sor05].

(
L(1 : m−1,1 : n)

0 I(n−m+1)×(n−m+1)

)
V′(1 : n,3)=

(
∆V(1 : m−1,3)

V′(m : n,3)

)
We only solve for the z coordinates V′(1 : n,3), since x

and y do not change.

VI. Restoration

We apply a blending between higher order differential coor-
dinates ∆

2V and first order differential coordinates ∆V to
obtain blended differential coordinates ∆V′. By using the
Laplacian matrix described in Appendix V: ∆V′ = t(LV)+
(1− t)(L(LV)) = (tL+(1− t)LL)V = L′V, where t is the
blending variable (t = 0.9). Let us index the new positions of
vertices V′ with the first r vertices having high errors (Eq. 8).
Then we recompute the values of these r vertices by adding
the ones not having errors as positional constraints in the
system:

(
L′(1 : r,1 : n)

0 I(n−r+1)×(n−r+1)

)
V′′(1 : n,3) =

(
∆V′(1 : r,3)

V′(r+1 : n,3)

)
where V′′ yields the final positions of the scene vertices.

We only solve for the z coordinates V′′(1 : n,3) since x and
y do not change.
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