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Abstract. Dynamic Parallel Schedules (DPS) is a flow graph based
framework for developing parallel applications on clusters of worksta-
tions. The DPS flow graph execution model enables automatic pipelined
parallel execution of applications. DPS supports graceful degradation of
parallel applications in case of node failures. The fault-tolerance mech-
anism relies on a set of backup threads stored in the volatile storage of
alternate nodes that are kept up to date by both duplicating transmit-
ted data objects and performing periodical checkpointing. The current
state of a failed node can be reconstructed on its backup threads by
re-executing the application since the last checkpoint. A valid execu-
tion order is automatically deduced from the flow graph. The addition
of fault-tolerance to a DPS application requires only minor changes to
the application’s source code. The present contribution focuses on the
development of fault-tolerant parallel applications with DPS from a pro-
grammer’s perspective.

1 Introduction and Related Work

Clusters of commodity workstations are rapidly growing in size and complexity as
computation power requirements increase. The large number of computing nodes
incorporated within a cluster dramatically increases the likelihood of node fail-
ures during program executions. Therefore, ongoing research focuses on graceful
degradation and the continuation of program execution despite individual node
failures.

In the context of message-passing systems, two major classes of recovery
schemes have been proposed: checkpoint-based and message log-based recovery
[8].

Checkpoint based approaches store the current state of computation to sta-
ble storage. Coordinated checkpointing on all participating nodes [16] may be
achieved by stopping in an ordered manner all computations and communi-
cations, and performing a two-phase commit in order to create a consistent
distributed checkpoint. Checkpointing can also be performed independently on
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all participating nodes (uncoordinated checkpointing). This removes the perfor-
mance bottlenecks induced by the global synchronization required for coordi-
nated checkpoints and allows checkpointing at convenient times, for example
when the data size associated with a checkpoint is very small. Several check-
points need to be stored on each node, and a consistent state from which to
restart has to be found when a failure occurs [4]. In unfavorable situations, the
recovery can lead to the domino effect, where no consistent checkpoint other than
the initial state can be found. In order to eliminate the domino effect, additional
constraints on checkpointing sequences need to be introduced, for example based
on the applications’ communication patterns [17].

Message logging approaches store in addition to checkpoints all the messages
flowing through the system. The logged messages allow bringing a node to any
given state by re-executing its application code with the corresponding sequence
of logged input messages. Three types of message logging are usually considered:
pessimistic, optimistic and causal. Pessimistic logging logs every received mes-
sage to stable storage before processing it. This ensures that the log is always
up to date, but incurs a performance penalty due to the blocking logging opera-
tion. The penalty can be reduced by using specific storage hardware, or by using
sender-based message logging [13][5]. Optimistic logging begins processing mes-
sages without waiting for a successful write to stable storage [15]. The overhead
of pessimistic logging is removed, but several messages might be lost in case of
failures. When the system is restarted it must roll back to a previous consistent
state on all nodes. Finally, causal logging also provides low overhead and lim-
its the backtracking that has to be performed during recovery. It does however
require the construction of an antecedence graph for messages, and requires a
rather complex recovery scheme [9].

These mechanisms make no assumptions about the internal structure of the
applications other than the use of message passing for communications between
processes. They are thus very well suited for applications written with general-
purpose message passing libraries such as MPI [7]. When parallel applications are
described using high-level approaches, additional information about the struc-
ture of the application is available. For example, task graphs [6] or Calypso [2]
make use of such information for recovering and resuming computation after a
failure. In order to keep the fault-tolerance mechanism efficient, the application
developer often needs to provide specific hints or to use certain constructs within
the application. These modifications are required for example in order to allow
an application to be restarted from a stored checkpoint.

Fault-tolerance schemes also vary in the assumptions they make about the
number and nature of failures that can be recovered. Placing additional limita-
tions on the recoverable cases may enable significant optimizations when com-
pared to the general case. For example, if the system has never more than one
failure at a time, stable storage can be replaced with transfers to neighboring
nodes [14]. Such a scheme has the advantage of allowing the application to re-
cover without having to fetch data from the stable storage of the failed node.
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Dynamic Parallel Schedules (DPS) is a high-level framework for developing
parallel applications [10]. The DPS framework supports fault-tolerance using a
combined message logging and checkpointing approach [11]. The fault-tolerance
mechanism uses the parallel application’s structure exposed in the application’s
high-level description in order to hide most of the complexity of fault-tolerance
from the application developer. However, the support for fault-tolerance is not
fully transparent; the developer needs to take some specific requirements into
account. In the present paper, we describe the implications of developing fault-
tolerant applications from a developer’s perspective.

2 The Dynamic Parallel Schedules Framework

DPS applications are defined as directed acyclic graphs of operations. The fun-
damental types of operations are leaf, split, merge and stream operations. The
inputs and outputs of the operations are strongly typed data objects. Figure 1
illustrates the flow graph of a simple parallel application, describing the asyn-
chronous flow of data between operations.
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Fig. 1. Flow graph describing data distribution (split), parallel processing, and collec-
tion of results (merge)

The split operations are used to divide the incoming data objects into smaller
objects representing subtasks. These subtasks are subsequently sent to the next
operations specified by the flow graph (e.g. ProcessData). The leaf operations
process the incoming data objects, and produce one output data object for each
input data object. The merge operations are used to collect the results into a
single large output object. Once all the results corresponding to the data ob-
jects originally sent by a split operation have been collected, the larger resulting
data object is sent out. Successive data objects arriving at the entry of a split
operation yield successive new instances of the split-merge operation pair.

The stream operations combine a merge operation with a subsequent split op-
eration. Instead of waiting for the merge operation to receive all its data objects
before allowing the subsequent split operation to send new data objects, the
stream operation can stream out new data objects based on groups of incoming
data objects. Stream operations allow programmers to finely tune their pro-
cessing pipeline and therefore to ensure a maximal utilization of the underlying
hardware.



198 S. Gerlach, B. Schaeli, and R.D. Hersch

All operations, including split and merge operations are extensible constructs
where the developer provides his own code to control how processing requests or
data are distributed, and how processed sub-results are merged into one result.
The data objects circulating in the flow graph may contain any combination of
simple types or complex types such as arrays or lists. The following source code
shows a typical implementation for a split operation within DPS, where a task
is split into smaller parts.

class Split : public dps::SplitOperation
<SplitInDataObject, SplitOutDataObject> // Data object types

{
IDENTIFY(Split)

public:
// This method is called when the input data object is received
void execute(SplitInDataObject *in)
{
// Split task into NB_PARTS small parts
for(Int32 splitIndex=0;splitIndex<NB_PARTS;splitIndex++)
{
SplitOutDataObject *sot=new SplitOutDataObject();

// Fill the output data object with meaningful data

postDataObject(sot);
}

}
};

Other operations are implemented by deriving them from other base classes
depending on their functionality, such as dps::LeafOperation or dps:: Merge-
Operation.

Operations within a flow graph are carried out within threads grouped in
thread collections. Figure 2 illustrates the distribution of flow graph elements
into thread collections for a simple compute farm application. Two thread col-
lections are created. The first, MasterThread, handles the global split and merge
operations, and contains only a single thread. The second, WorkerThreads, han-
dles the parallel computation, and contains one thread for each compute node.

A DPS thread is a logical construct representing an execution environment for
a set of operations. In data parallel applications, data is stored within threads
that are distributed across the available compute nodes. Threads are imple-
mented as standard C++ objects. Figure 3 shows an example of a grid-based
data structure distributed on 3 threads. Each thread stores additional data in or-
der to enable neighborhood dependent computations. DPS threads are mapped
to operating system threads, although not necessarily in a one-to-one relation-
ship. For instance several DPS threads residing on a single processor node may
share a single operating system thread.
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Fig. 2. A flow graph and its associated thread collections
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Fig. 3. Distribution of a grid-based data structure on 3 threads, each thread also storing
copies of its neighboring grid lines (borders)

The selection of the thread within a thread collection on which an operation
is to be executed is accomplished by evaluating at runtime a user defined routing
function attached to the corresponding directed edge of the flow graph. Com-
munication patterns such as the neighborhood exchanges illustrated in Figure 4
required for updating a distributed data structure (Figure 3) can easily be spec-
ified by using relative thread indices. The first part of the flow graph ensures
that all nodes have sufficient neighborhood information available, and the second
part performs the computation on all nodes. The intermediate synchronization
ensures that the global state remains consistent.

By transferring data objects as soon as they are computed, and maintaining
queues of arriving data objects, execution of DPS applications is fully pipelined
and asynchronous. Data object queues are associated with the thread that con-
tains the operations that will consume them. This macro data flow behavior
enables automatic overlapping of communications and computations. In order
to limit the size of the data object queues stored in threads, DPS provides a
flow control mechanism that can be used to limit the number of data objects
in circulation between a split operation and the corresponding merge operation.
The flow control mechanism suspends the split operation until the processed
data objects have been received by the corresponding merge operation.



200 S. Gerlach, B. Schaeli, and R.D. Hersch

 
MasterThread[0] MasterThread[0]

Compute 
Threads[0] 

Split to 
all 

threads 

Split 
border 

requests 

Copy 
border 
data 

Merge 
border 
data 

Compute 
new local 

state 

Merge 
from all 
threads

Split to 
all 

threads

Merge 
from all 
threads 

MasterThread[0] 

Compute  
Threads[1] 

Compute  
Threads[2] 

ComputeThreads[0] 

ComputeThreads[1] 

ComputeThreads[2] 

Fig. 4. A flow graph for one iteration of an iterative neighborhood-dependant parallel
computation

The flow graph together with its collections of threads and its routing func-
tions forms a parallel schedule. A parallel schedule describes a fine to medium-
grained parallel application. Its operations represent the small subtasks that are
executed in a pipeline-parallel manner according to the flow graph. The DPS
communication layer, hidden from the application programmer, relies on TCP
sockets, and uses an optimized data serialization scheme that minimizes memory
copies.

3 Fault-Tolerance in DPS

DPS provides a fault-tolerance mechanism that allows applications to continue
execution despite node failures. The fault-tolerance mechanism is implemented
by providing a scheme for the recovery of flow graph program execution seg-
ments located on a failed node. The scheme is composed of two distinct recovery
mechanisms. The first general purpose mechanism enables the reconstruction of
the state of a thread upon node failure. The second specialized mechanism is an
optimization for threads that do not store any local state information.

DPS detects node failures by monitoring communications. A node is consid-
ered to be failed when it is not able to communicate with another node. The
TCP/IP network layer used by DPS reports failures when communications fail
or disconnections occur.

3.1 General Purpose Recovery Mechanism

The general purpose mechanism relies on a set of backup threads that are
mapped onto an alternate set of nodes as illustrated in Figure 5. When a data
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object is sent to an operation on a given thread, a copy is also sent to the backup
thread. Upon occurrence of a failure, the current state of the threads that were
on the failed node is reconstructed on the backup threads by re-executing op-
erations. The valid execution sequence of operations is automatically deduced
from the flow graph of the corresponding DPS application by applying a simple
data object numbering scheme.

Operations are assumed to be deterministic, i.e. for a given initial thread state
and a set of incoming data objects, they will always produce the same output.
This assumption is necessary to ensure that the reconstruction on a backup
thread will yield a state identical to the state that was present on the failed
thread.

Backup threads Active threads 

Node 1 Thread [1] 

Node 2 

Node 3 

Thread [2] 

Thread [3] Thread [2] 

Thread [1] 

Thread [3] 

Fig. 5. Mapping of a thread collection with backup threads

In order to shorten the reconstruction time of a failed node, one may replicate
the state of the active threads onto the corresponding backup threads (periodic
checkpointing). When the backup thread is subsequently used for reconstructing
the thread state after a failure of the active thread, reconstruction is initiated
from the replicated state rather than from the initial state. Each DPS thread has
three components that must be conserved for successful reconstruction: the cur-
rent local thread state, the queue of data objects that wait for processing, and the
state of suspended operations within that thread. Since replicating the current
state also removes part of the pending data object queue on the backup thread,
it reduces the memory requirements on the backup nodes. This checkpointing
operation can be carried out asynchronously and independently on all individual
threads. Independent checkpointing of individual threads enables the compute
nodes to remain potentially busy during the checkpointing process by executing
operations attached to other threads mapped to the same node. The effective
overhead induced by stopping a thread in order to checkpoint can therefore be
kept very low.

Since both active and backup threads are stored in the volatile storage of the
processing nodes, only a single copy of the thread is left after a failure. In order
to ensure that the application can survive successive failures, it is necessary to
rapidly create a new backup thread for the remaining copy. The new backup



202 S. Gerlach, B. Schaeli, and R.D. Hersch

thread is created by checkpointing the surviving thread copy immediately after
activation, in order to minimize the time during which the application is fragile.
This general-purpose fault-tolerance mechanism allows the computation to con-
tinue as long as for each thread within every thread collection either the active
thread or its backup thread remains valid.

3.2 Recovery for Threads Without Local State Data

For threads that do not store any local state data (stateless threads), the recovery
mechanism can be simplified. If the general purpose mechanism would be used,
the backup threads would store only the duplicated data objects. It is therefore
more efficient not to send out the duplicate data objects, but rather to keep
them on the sender node. Since the operations running on stateless threads do
not use any local state, these operations can be executed on any thread. If a
stateless thread fails, it is removed from the thread collection. The sender node
resends the data objects to another thread in the collection. The execution of
the application can continue as long as at least one thread remains valid within
the stateless thread collection.

The flow graph provides information about the runtime execution patterns of
applications, allowing the framework to transparently select the appropriate re-
covery mechanism for the graph segments. For compute bound applications, the
fault-tolerance overheads during normal program execution remain low thanks
to the asynchronous communications that occur in parallel with computations.
A detailed description of both fault-tolerance mechanisms and the associated
performance overheads can be found in [11].

4 Implementing Fault-Tolerance

The following sections focus on the elements that must be taken care of by the
developer of a fault-tolerant application. As an example, we use two applications:
a compute farm application, where a master node distributes computation tasks
onto worker nodes, and a complex application with a distributed state that is
updated iteratively. These applications use the flow graphs illustrated in Fig-
ures 2 and 4 respectively. The DPS fault-tolerance mechanism is presented in
two steps. The first step aims at adding fault-tolerance, allowing the application
to survive multiple failures. The second step ensures an efficient reconstruction
process by enabling checkpointing.

4.1 Simple Compute Farm Applications

A fault-tolerant compute farm application needs to be able to survive two types
of failures: the failure of a worker node, and the failure of the master node. Since
the worker threads do not store any local data, these threads can be handled by
the specialized sender-based stateless thread recovery mechanism provided by
DPS. Since this mechanism simply redistributes the unprocessed worker tasks
to the surviving worker threads, no changes are required in the source code
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implementation of the application. Therefore, when the application is running,
any node other than the one running the master thread can fail at any time. As
long as one worker node remains active, the program execution is unaffected.

Fault-tolerance on the master thread is important, since this thread is running
the split and merge operations. At least one backup thread needs to be added to
the mapping of the thread collection MasterThread. This will allow the master
thread to be reconstructed on other nodes participating in the computation,
ensuring successful completion if the initial master thread fails. The backup
thread is simply created by adding a list of valid backup nodes to the mapping
of the master thread collection:

masterThread.addThread("node1+node2+node3");

In this example, the master thread is located on node1 and its backup thread
on node2. The third node node3 will take over the role as backup if either of the
other nodes fails in order to ensure support for multiple subsequent failures.

On a master node failure, the split operation is restarted from the beginning,
and all processing requests are sent again. The routing function does not nec-
essarily return constant results for a given data object when the total number
of threads varies, some data objects will get routed to different nodes on re-
execution, and part of the computation may possibly be performed again. Those
data objects that are resent to the same nodes will be caught by a mechanism for
eliminating duplicate data objects [11]. This additional reconstruction overhead
can be reduced by periodically checkpointing the main thread, i.e. by replicating
its current state to the backup thread as described in section 5.

4.2 Applications Storing a Distributed State

Applications that store local data within their computation threads need backup
threads. For example, let us consider an application using a thread collection
computeThreads, containing three computation threads mapped onto nodes
node1, node2 and node3. Each thread needs to have at least one backup thread.
In order to ensure that the thread collection can survive failures until a single
node is left, we use all nodes as backups for each thread, creating a round-robin
mapping as shown in Figure 6. The proposed mapping can be obtained with the
following mapping string:

computeThreads.addThread
("node1+node2+node3 node2+node3+node1 node3+node1+node2");

This mapping ensures that any two nodes may fail without preventing the
application from completing successfully. The thread mapping strings (“node1+
node2+node3 node2+node3+node1 node3+node1+node2”) with round robin
mapping of backup threads may be generated automatically by the DPS frame-
work [12]. In order to ensure acceptable reconstruction times, it is again necessary
to perform periodic checkpointing.
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5 Checkpointing Support

In order to provide support for checkpointing, long-running operations that may
be suspended (split and merge operations) need some minor modifications, so as
to allow them to be restarted from other points than from the beginning. Since
operations are simple C++ functions, and since the language does not provide
a simple means to checkpoint the current state of a function and to restart
it later, the application needs to help the framework in order to obtain the
desired functionality. The required modifications are independent of the general
application structure, since the changes affect only individual operations. For
the following discussion, we use the split and merge operations of the compute
farm application (Figure 2) as example.

The first functionality that the application needs to provide is the ability to
checkpoint the current state of the operation. For the split operation previously
shown in section 2, the loop counter splitIndex needs to be made serializable,
allowing the operation to be recreated from a checkpoint. Since DPS provides
an automatic serialization mechanism for data objects, we reuse this mechanism
for operations. Therefore, the split operation uses the automatic serialization
syntax for its data members as follows:

class Split : public dps::SplitOperation
<SplitInDataObject, SplitOutDataObject, MasterThread>

{
CLASSDEF(Split)
BASECLASS(dps::OperationBase)

MEMBERS
ITEM(Int32,splitIndex) // Current loop counter

CLASSEND;

The second functionality that the application needs to provide is the ability
to restart the operation from a saved checkpoint. DPS uses the input data object
parameter of the function to distinguish between a normal call to the operation
and a restarted call. When the operation is initially called during normal execu-
tion, it receives a valid non-NULL input data object. However, when it is being
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restarted from a checkpoint after a failure, no input data object is passed as
parameter (i.e. the input data object pointer is NULL). This particular case is
used to skip the initialization of the internal variables, since they have already
been set up by the checkpoint:

public:
// Split operation
void execute(SplitInDataObject *in)
{
// If the input data object is NULL, the operation is
// being restarted from a checkpoint. Otherwise, we need to
// initialize our variables.
if(in)
splitIndex=0;

The content of the loop itself is kept unchanged. The update of the loop
counter has been moved to a position before the call to postDataObject, since it
is at this point that a checkpoint is taken when a checkpoint is requested. The
loop condition can be checked with a while statement.

// Loop until all output data objects have been generated
while(splitIndex<NB_PARTS)
{
SplitOutDataObject *sot=new SplitOutDataObject(splitIndex);
splitIndex++;

postDataObject(sot);
}

}

Finally, the application needs to call the checkpointing function for the main
thread collection. Since checkpointing is fully asynchronous within the DPS
framework, this can be done anywhere. In the present example, we add the
checkpointing request within the main loop of the Split operation. Three check-
points are requested, one for every 25% of output data objects posted. We intro-
duce an additional member variable next that indicates at which point the next
checkpoint is due. This variable is checked within the loop, and checkpoints are
requested accordingly. This variable also needs to be serializable like the loop
counter.

// Loop until all output data objects have been generated
while(splitIndex<NB_PARTS)
{
// Do some periodic checkpointing in Split
if(splitIndex>next)
{

next+=NB_PARTS/4;
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// This is an asynchronous call, the checkpoint will be
// taken shortly after.
getController()->getThreadCollection<MasterThread>

("master").checkpoint();
}

SplitOutDataObject *sot=new SplitOutDataObject(splitIndex);
splitIndex++;

postDataObject(sot);
}

Calling the checkpoint function does not immediately create a checkpoint,
but informs the framework that a checkpoint should be taken as soon as possi-
ble. Since all the threads within a thread collection are independent, they are
checkpointed individually. The checkpointing process is started as soon as the
currently executing operation on the current thread ends or is suspended (for
example when waiting for its next input data object). When no operation is
running on a thread, its state is guaranteed to be consistent. The checkpoint
is then sent to the backup thread. The checkpoint is composed of the current
local state of the active thread, the list of currently suspended operations as
well as the list of all the data objects that have been processed since the last
update. The new state replaces the previous state stored on the backup thread,
and the listed data objects are removed from the backup thread’s data object
queue. When the checkpointing process is complete, execution resumes normally
on the thread. In the above example, the checkpoint is taken on the call to
postDataObject immediately following the call to checkpoint.

When checkpointing is used on this type of application, it is important to
enable flow control, in order to ensure that the split operation does not post all
subtasks at once. If flow control is disabled, all the checkpoints are taken at the
same time after termination of the execution of the split function, making the
complete process useless. With flow control enabled, the checkpoints are taken
as expected, since the split operation is periodically suspended while waiting for
the merge operation to catch up.

The Merge operation needs similar changes in order to ensure that the current
output data object state is correctly preserved when checkpointing. The following
source code describes the original merge operation before adding code for fault-
tolerance:

class Merge : public dps::MergeOperation
<MergeInDataObject, MergeOutDataObject >

{
void execute(MergeInDataObject *in)
{
// Create output data object
MergeOutDataObject *output=new MergeOutDataObject();
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// Wait until all the computation results have been received
do
{
// Add the result contained in the input data object ’in’
// to the output data object

}
while((in=waitForNextDataObject())!=NULL);

postDataObject(output);
}

}

The local state of the operation is entirely contained in the output data object,
which is updated for each incoming data object in a while loop. Therefore, in
order to enable restarting, the output data object needs to be stored within the
merge operation class. In the DPS framework, the dps::SingleRef class is used
to store a serializable pointer.

class Merge : public dps::MergeOperation
<MergeInDataObject, MergeOutDataObject >

{
CLASSDEF(Merge)
BASECLASS(dps::OperationBase)

MEMBERS
// The output data object
ITEM(dps::SingleRef<MergeOutDataObject>,output)

CLASSEND;

Just like the Split operation, the Merge operation uses the state of the input
data object for initialization of the output data object. The loop within the
merge operation is unchanged compared with the non fault-tolerant code, since
the local state is already updated before calling waitForNextDataObject. In the
fault-tolerant case, the last operation of the flow graph is responsible for storing
the result of the parallel computation, rather than posting a data object to
the caller of the parallel schedule. This is necessary to ensure that the parallel
application terminates even when the original master node that initiated the
execution of the parallel schedule is dead. Since the merge operation is the last
operation in the flow graph, the operation ends with a call to endSession in the
DPS controller, which causes the application to terminate. Since the application
terminates from within the merge operation, the output data object is never
posted.

void execute(MergeInDataObject *in)
{
// If the operation is not being restarted, initialize the
// output data object
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if(in!=NULL)
output=new MergeOutDataObject();

// Wait until all the computation results have been received
do
{
// Add the result from the input data object ’in’ to the
// output data object if in is not NULL

}
while((in=waitForNextDataObject())!=NULL);

// Store computation result before terminating application

getController()->endSession(true);
}

5.1 Serializing Thread States

For applications that store a local thread state, it is necessary to ensure that the
local thread state can be copied correctly within the checkpointing process. This
is achieved by using the DPS serialization mechanism. Consider the following
thread with local data:

struct ComputeThread
{
int data; // Single integer stored in thread

};

The thread is simply converted to the serializable form as follows:

struct ComputeThread
{
CLASSDEF(ComputeThread)
MEMBERS
ITEM(int,data) // Single integer stored in thread

CLASSEND;
};

6 Conclusions and Future Work

DPS is a novel high-level environment for developing parallel applications spec-
ified as executable flow graphs. The DPS framework provides dynamic handling
of resources, in particular the ability to specify the mapping of threads to nodes
at runtime, and to modify this mapping during program execution. Flow graphs
and updatable thread mappings are the foundation on which we build fault-
tolerance.
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We implement fault-tolerance by providing a hybrid recovery scheme using
two compatible mechanisms for the recovery of flow graph program execution
segments located on a failed node. The first general purpose mechanism relies on
duplicate data objects sent to backup nodes in order to enable the reconstruc-
tion of the state of a thread upon node failure. Backup threads are kept up to
date by periodical checkpointing of thread states. Upon occurrence of a failure,
the current state of the threads that were on the failed node is reconstructed
on the backup threads by re-executing operations. The valid execution sequence
of operations is automatically deduced from the flow graph of the correspond-
ing DPS application by applying a simple sender-based data object numbering
scheme. A second specialized sender-based mechanism is used for operations
that do not depend on local state information, such as graph segments com-
prising simple compute farms. Since no state needs to be reconstructed in case
of failures, the duplicate communications are avoided. The flow graph provides
information about the runtime execution patterns of applications, allowing the
framework to transparently select the appropriate recovery mechanism for the
graph segments. For compute bound applications, the fault-tolerance overheads
during normal program execution remain low thanks to the DPS asynchronous
communications that occur in parallel with computations.

The general-purpose fault-tolerance mechanism allows computation to con-
tinue as long as for each thread within every thread collection either the active
thread or its backup thread remains valid. The optional compatible stateless
recovery mechanism requires that at least one thread remains valid within ev-
ery stateless thread collection, and that the threads hosting the surrounding
split-merge pair are recoverable with the general purpose recovery mechanism.

The fault-tolerance mechanisms are not fully transparent to the application
developer. However, only minor changes need to be made to the application in
order to enable fault-tolerance. The required changes are due to limitations of
the C++ language. Some aspects, such as checkpointing requests, are currently
left to the programmer. These requests could also be performed automatically by
the framework by monitoring the applications flow graph. The resulting fault tol-
erance scheme may then become more transparent to the application developer.

The complete DPS software package is available on the Web under the GPL
license at http://dps.epfl.ch. The complete source code for the applications pre-
sented in this paper can also be found at this address.
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