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Abstract 
Commodity computer clusters are often composed of hundreds 

of computing nodes. These generally off-the-shelf systems are not 
designed for high reliability. Node failures therefore drive the 
MTBF of such clusters to unacceptable levels. The software 
frameworks used for running parallel applications need to be 
fault-tolerant in order to ensure continued execution despite node 
failures. We propose an extension to the flow graph based Dy-
namic Parallel Schedules (DPS) development framework that 
allows non-trivial parallel applications to pursue their execution 
despite node failures. The proposed fault-tolerance mechanism 
relies on a set of backup threads located in the volatile storage of 
alternate nodes. These backup threads are kept up to date by du-
plication of the transmitted data objects and periodical check-
pointing of thread states.  In case of a failure, the current state of 
the threads that were on the failed node is reconstructed on the 
backup threads by re-executing operations. The corresponding 
valid re-execution order is automatically deduced from the data 
flow graph of the DPS application. Multiple simultaneous failures 
can be tolerated, provided that for each thread either the active 
thread or its corresponding backup thread survives. For threads 
that do not store a local state, an optimized mechanism eliminates 
the need for duplicate data object transmissions. The overhead 
induced by the fault tolerance mechanism consists mainly of du-
plicate data object transmissions that can, for compute bound 
applications, be carried out in parallel with ongoing computa-
tions. The increase in execution time due to fault tolerance there-
fore remains relatively low. It depends on the communication to 
computation ratio and on the parallel program's efficiency. 

Keywords: Parallel computing, clusters of workstations, par-
allel schedules, graceful degradation, fault tolerance, checkpoint-
ing, message logging 

1. Introduction 

Clusters of commodity workstations are rapidly growing in 
size and complexity as computation power requirements increase. 
The large number of computing nodes incorporated within a clus-
ter dramatically increases the likelihood of node failures during 
program executions. Therefore, ongoing research focuses on 
graceful degradation and the continuation of program execution 
despite individual node failures.  

In the context of message-passing systems, two major classes 
of recovery schemes have been proposed: checkpoint-based and 
message log-based recovery [11]. 

Checkpoint based approaches store the current state of compu-
tation to stable storage. Coordinated checkpointing on all partici-
pating nodes [22] may be achieved by stopping in an ordered 
manner all computations and communications, and performing a 
two-phase commit in order to create a consistent distributed 
checkpoint. Checkpointing can also be performed independently 
on all participating nodes (uncoordinated checkpointing). This 
removes the performance bottlenecks induced by the global syn-
chronization required for coordinated checkpoints and allows 
checkpointing at convenient times, for example when the data 
size associated with a checkpoint is very small. Several check-
points need to be stored on each node, and a consistent state from 
which to restart has to be found when a failure occurs [4]. In un-
favorable situations, the recovery can lead to the domino effect, 
where no consistent checkpoint other than the initial state can be 
found. In order to eliminate the domino effect, additional con-
straints on checkpointing sequences need to be introduced, for 
example based on the applications' communication patterns [23]. 

Message logging approaches store in addition to checkpoints 
all the messages flowing through the system. The logged mes-
sages allow bringing a node to any given state by re-executing its 
application code with the corresponding sequence of logged input 
messages. Three types of message logging are usually considered: 
pessimistic, optimistic and causal. Pessimistic logging logs every 
received message to stable storage before processing it [11]. This 
ensures that the log is always up to date, but incurs a performance 
penalty due to the blocking logging operation. The penalty can be 
reduced by using specific storage hardware, or by using sender-
based message logging [14][7]. Optimistic logging begins proc-
essing messages without waiting for a successful write to stable 
storage [21]. The overhead of pessimistic logging is removed, but 
several messages might be lost in case of failures. When the sys-
tem is restarted it must roll back to a previous consistent state on 
all nodes. Finally, causal logging also provides low overhead and 
limits the backtracking that has to be performed during recovery. 
It does however require the construction of an antecedence graph 
for messages, and requires a rather complex recovery scheme [12]. 

These mechanisms make no assumptions about the internal 
structure of the applications other than the use of message passing 
for communications between processes. They are thus very well 
suited for applications written with general-purpose message 
passing libraries such as MPI [10]1. When parallel applications 

                                                             
1 Most fault-tolerant parallel MPI systems rely on coordinated checkpoint-

ing [20][1][8]. Further fault-tolerant implementations of MPI rely on uncoor-
dinated checkpointing either with pessimistic message logging [3][16][5] or 
with pessimistic sender based message logging [6]. 
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are described using high-level approaches, additional information 
about the structure of the application is available. For example, 
task graphs [9], Calypso [2] and Chime [18] make use of such 
information for recovering and resuming computation after a fail-
ure. 

Fault tolerance schemes also vary in the assumptions they 
make about the number and nature of failures that can be recov-
ered. Placing additional limitations on the recoverable cases may 
enable significant optimizations when compared to the general 
case. For example, if the system has never more than one failure 
at a time, stable storage can be replaced with transfers to 
neighboring nodes [17]. 

In the present paper, we describe recovery mechanisms relying 
on the flow graph structure of applications created with the Dy-
namic Parallel Schedules (DPS) framework [13]. The parallel 
program's flow graph greatly simplifies message logging, check-
pointing and the recovery process in case of failures. We limit our 
considerations to fail-stop failures [19]. 

2. The Dynamic Parallel Schedules framework 

DPS applications are defined as directed acyclic graphs of op-
erations. The fundamental operation types are leaf, split, merge 
and stream [13]. The inputs and outputs of the operations are 
strongly typed data objects. Figure 1 illustrates the flow graph of 
a simple parallel application, describing the asynchronous flow of 
data between operations. 

 

Split Merge 

ComputeData Init Final

ComputeData 

ComputeData 
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Figure 1. Flow graph describing data distribution (split), parallel 

processing, and collection of results (merge) 

The split operations are used to divide the incoming data ob-
jects into smaller objects representing subtasks. These subtasks 
are subsequently sent to the next operations specified by the flow 
graph (e.g. ComputeData in Figure 1). The merge operations are 
used to collect the results into a single large output object. Once 
all the results corresponding to the data objects originally sent by 
a split operation have been collected, the larger resulting data 
object is sent out. Successive data objects arriving at the entry of 
a split operation yield successive new instances of the split-merge 
operation pair.  

The stream operations combine a merge operation with a sub-
sequent split operation. Instead of waiting for the merge operation 
to receive all its data objects before allowing the subsequent split 
operation to send new data objects, the stream operation can 
stream out new data objects based on groups of incoming data 
objects. Stream operations allow programmers to finely tune their 
processing pipeline and therefore to ensure a maximal utilization 
of the underlying hardware. 

All operations, including split and merge operations are exten-
sible constructs, i.e. the developer can provide his own code to 
control how processing requests or data are distributed, and how 
processed sub-results are merged into one result. The data objects 

circulating in the flow graph may contain any combination of 
simple types or complex types such as arrays or lists.  

During execution, operation instances are identified with a hi-
erarchical operation identifier that is transferred along with the 
data objects. These identifiers allow DPS to identify subgraphs 
within the flow graph. A new identifier is added to the hierarchy 
for every traversed split operation, and removed again in the cor-
responding merge. Figure 2 shows the identifiers generated for 
two nested split-merge pairs.  

Operations within a flow graph are carried out within threads 
grouped in thread collections. Figure 2 illustrates the distribution 
of flow graph elements into thread collections for a simple 
neighborhood-dependent computation. Two thread collections are 
created. The first, Main, handles the global split and merge opera-
tions, and contains only a single thread. The second, Compute, 
handles the parallel computation, and contains one thread for each 
compute node. 
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Figure 2. A flow graph and its associated thread collections (the 
communications between Comp[0] and Comp[2] wrap around). 
The numbers inside the operations are the operation identifiers. 

A thread in DPS is a logical construct representing an execu-
tion environment for a set of operations. In data parallel applica-
tions, data is stored within threads that are distributed across the 
available compute nodes. For example, in a matrix computation, 
matrix parts may be stored within each thread of a thread collec-
tion. DPS threads are mapped to operating system threads, al-
though not necessarily in a one-to-one relationship. For instance 
several DPS threads residing on a single processor node may 
share a single operating system thread. 

The selection of the thread within a thread collection on which 
an operation is to be executed is accomplished by evaluating at 
runtime a user defined routing function attached to the corre-
sponding directed edge of the flow graph. Communication pat-
terns such as the neighborhood exchanges illustrated in Figure 2 
can easily be specified by using relative thread indices.  

By transferring data objects as soon as they are computed, and 
maintaining queues of arriving data objects, execution of DPS 
applications is fully pipelined and asynchronous. Data object 
queues are associated with the thread that contains the operations 
that will consume them. This macro data flow behavior enables 
automatic overlapping of communications and computations. 



 

The flow graph together with its collections of threads and its 
routing functions forms a parallel schedule. A parallel schedule 
describes a fine to medium-grained parallel application. Its opera-
tions represent the small subtasks that are executed in a pipeline-
parallel manner according to the flow graph. The DPS communi-
cation layer, hidden from the application programmer, relies on 
TCP sockets, and uses an optimized data serialization scheme that 
minimizes memory copies.  

3. Fault-tolerance in DPS 

The DPS flow graph with its associated thread collections is a 
powerful tool for implementing fault-tolerance. Whereas imple-
mentations of fault-tolerance for low level message passing librar-
ies have little or no information about the application, high-level 
frameworks provide information about the applications execution 
patterns. 

Every operation that is executed within the DPS framework 
has two data input sources: the incoming data object(s), and the 
local thread state data. Likewise, it has two outputs: the outgoing 
data object(s), and any modifications made to the local thread 
state data. Operations are assumed to be deterministic, i.e. for a 
given initial thread state and set of incoming data objects, they 
will always produce the same output. 

The execution order of operations in a parallel schedule is de-
fined by the flow graph, and constrained by the split/merge opera-
tion pairs. Within a split-merge operation pair, the outgoing 
branches of the split operation may be executed in any order. Let 
us consider the flow graph shown in Figure 3a. By assuming that 
the first split operation generates two data objects, and that the 
second split operation splits each of them into three data objects, 
we obtain the operation executions shown in Figure 3b. The exe-
cution order of the operations is only constrained by the flow 
graph's directed edges. For instance, two valid execution orders 
for the graph are {1,2a,3a1,3a2,3a3,4a,2b,3b1,3b2,3b3,4b,5} and 
{1,2b,3b3,2a, 3b2,3a1,3b1,3a3,4b,3a2,4a,5}. Because of the 
asynchronous execution model of DPS and of external factors 
such as network load or operating system scheduling, the effec-
tive execution order cannot be predicted. 
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Figure 3. (a) Simple flow graph and (b) operations that are exe-
cuted when running the parallel schedule (each arrow represents 

one data object).  

However, in case of node failure, we may, thanks to a data ob-
ject numbering mechanism reflecting the flow graph's execution 
constraints, reconstruct a failed node state on a backup node by 

ensuring a valid execution order (section 4). The reconstruction of 
a thread state lost due to a node failure has similar properties as 
pessimistic logging [11]: incoming data objects are consumed 
during re-execution according to a valid execution order and du-
plicata of outgoing data objects generated during re-execution 
have no effect on other nodes (silent re-execution property [5]). 

DPS detects node failures by monitoring communications. 
When a node is not able to communicate with another node, that 
node is considered to be failed1. The TCP/IP network layer used 
by DPS reports these failures as disconnections. On a failure, 
DPS starts a master election process among the participating 
nodes. The master then polls all nodes to discover which node has 
become unavailable. It updates the thread collections used by the 
application by removing all threads that were located on the failed 
node and by converting their backup threads into active threads 
(section 4). The updated thread collections are distributed onto all 
nodes. During the thread collection update process, execution of 
operations is not suspended. 

We have implemented two recovery mechanisms: the first for 
the general case and the second optimized for handling graph 
segments whose operations are executed within a stateless DPS 
thread, i.e. a DPS thread without local state. Both types of graph 
segments often coexist, since applications may use several dis-
tinct thread collections for executing their various subtasks, for 
example by separating pure computation tasks from tasks that 
require access to a distributed data structure stored in local thread 
states. By examining the threads associated to the flow graph, 
DPS can automatically apply the appropriate recovery mechanism 
depending on whether a thread is stateless or not2.  

4. General recovery scheme 

In the general case, we have to be able to reconstruct the local 
thread states of all threads that are located on the failed node. The 
local thread state can only be modified by an operation associated 
with this thread. The inputs of an operation can only be its input 
data object and the local thread state. A new thread state T2 is 
obtained by applying the operation UserOp to the input data ob-
ject D1 and the current state T1. 

T2 = UserOp ( T1, D1 ) 

Our recovery mechanism relies on a set of backup threads. At 
least one backup thread is created for every active thread in a 
thread collection. These backup threads are mapped onto nodes 
that differ from the nodes running the active threads, for example 
by rotating the thread indices (Figure 4). When a data object is 
sent to an operation on a given thread, it is also sent to the backup 
thread. 

This type of mapping provides partial support for simultane-
ous multiple node failures, since as long as for each thread either 
the active thread or the backup thread survives, the application 
can pursue its execution. In order to support successive failures, 
the backup threads that were located on a failed node or that have 

                                                             
1 DPS assumes that the underlying network will not produce partial dis-

connections, i.e. that a failure will never allow a node to communicate only 
with some of its peers.  

2 DPS considers a thread to have a state if it is defined as a custom class 
within the application's implementation. 



 

been consumed when replacing a failed active thread are recon-
structed on another node with the mechanism described in section 
5. 

When a data object is posted to an operation on a given thread, 
the active thread performs the operation, and the backup thread 
only stores a copy of the data object. When the node with the 
active thread fails, the backup thread has all the data objects 
needed for reconstructing the latest state. 

  
 Node 1 Thread[1] Thread[3]

 
 Node 2 Thread[2] Thread[1]

 
 Node 3 Thread[3] Thread[2]

Active threads Backup threads 
 

Figure 4. Mapping of active and backup threads onto processing 
nodes 

Since DPS operates asynchronously and the data objects sent 
to the backup threads originate from multiple nodes, the data ob-
jects can potentially arrive into the backup thread queues in an 
order that does not necessarily correspond to a valid execution 
order.  In order to ensure a successful recovery, it may be neces-
sary to reorder the data objects into a valid execution order as 
described in section 3.  

According to the flow graph, any data object leaving an opera-
tion depends on all data objects having previously entered this 
operation. In order to reflect this dependency, each operation as-
signs a sequence number to all the data objects it generates. The 
sequence number of an outgoing data object is larger than the 
sequence number of all previously received data objects. We 
compute the sequence number as follows: 

SeqOutn+1 = max( SeqIn, SeqOutn ) + 1 

SeqIn is the collection of sequence numbers of all input data 
objects that have been received by the operation and SeqOutn is 
the sequence number of the previously sent object (if any). This 
mechanism ensures that the sequence numbers steadily increase. 
However it does not produce globally unique sequence numbers, 
since two separate branches of the graph may produce the same 
numbers. Nevertheless, it does accurately reflect the execution 
order constraints induced by the DPS flow graph. Figure 5 shows 
the sequence numbers generated for a neighborhood exchange 
followed by a computation. 

When recovering from a failure and initiating a re-execution 
on the backup thread's node, the data objects present in the 
backup thread's queue are sorted according to their sequence 
numbers. The backup thread is subsequently marked as active, 
causing execution of operations to resume with a valid execution 
order. Since the stored data objects contain the operation identifi-
ers, split and merge operations occur with the same combinations 
of data objects as the original failed execution. 
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Figure 5. Sequence numbers associated with the transmitted 

data objects for a neighborhood-dependent computation. 

Since operations are re-executed during the reconstruction 
process, they will also repost their output data objects. If a data 
object is sent to an operation on a thread where that operation has 
already been successfully executed on a previous instance of the 
same data object (same sequence number and same operation 
identifier), that data object is discarded (silent re-execution prop-
erty). 

The proposed recovery scheme induces a communication 
overhead in running applications, since every data object is sent 
twice, once to the active thread and once to the backup thread. On 
applications that are not communication bound, part of this over-
head can be hidden, since network transfers are partially over-
lapped with computations. There is also a memory overhead in-
duced by the backup threads, which contain both a previous 
thread state and the pending data object queue. 

5. Checkpointing 

In order to shorten the reconstruction time of a failed node, 
one may copy the state of the active threads onto the correspond-
ing backup threads. Such copies are also needed in order to re-
generate new backup threads when the previous backup threads 
have been consumed. Each DPS thread has three components that 
must be conserved for successful reconstruction: the local thread 
state, the queue of data objects that wait for processing, and the 
state of active (but possibly suspended) operations within that 
thread. 

The data structures used for checkpointing and message log-
ging are very simple, since no additional elements such as de-
pendency graphs need to be created. All the necessary informa-
tion such as the sequence numbers and the operation identifiers 
are already present within the data objects. When starting the 
checkpointing process, DPS first waits for the currently executing 
operation on the active thread to end or to be suspended (for ex-
ample when waiting for its next input data object). The check-
point is then sent to the backup thread. It is composed of the cur-
rent state of the active thread, the list of currently suspended op-
erations as well as the list of all the data objects that have been 
processed since the last update. The new state replaces the previ-
ous state stored on the backup thread, and the listed data objects 
are removed from the backup thread's data object queue. 

Since copying the current state also removes part of the pend-
ing data object queue on the backup thread, it limits the memory 
requirements on the backup nodes. This checkpointing operation 



 

can be carried out asynchronously and independently on all indi-
vidual threads. Independent checkpointing of individual threads 
enables the compute nodes to remain potentially busy during the 
checkpointing process by executing operations attached to other 
threads. The effective overhead induced by stopping a thread in 
order to checkpoint can therefore be kept very low. 

Since the reconstruction time after a failure is equal to the time 
elapsed since the last checkpoint, periodic checkpointing is essen-
tial for quick reconstruction. 

6. Recovery without local thread state 

A DPS graph segment whose operations do not use local 
thread state data is similar to a simple task farm, where computa-
tion tasks are fully represented by their input data objects. The 
computation nodes are perfectly interchangeable, and no state 
needs to be restored. For graph segments located within stateless 
threads, we eliminate the need for backup threads by logging the 
data objects on the sender node's volatile storage. 

When a node fails, all tasks that were executing or queued on 
the failed node need to be resent to other nodes. Within a task 
farm model, resending tasks to other nodes is delegated to the 
master node of the task farm. Since DPS does not specify a mas-
ter node, resending of tasks is delegated to the nodes executing 
the split-merge operation pair. This makes sense since the split 
operation is responsible for the creation and distribution of tasks 
and the merge operation can monitor which tasks have already 
been successfully completed. 

In order to implement the task redistribution mechanism, DPS 
keeps for every split operation a copy of every sent data object 
(representing a task) in the split operation's local thread state. The 
data objects sent by the split operation are then processed by a 
pipeline of one or more stateless leaf operations, and the results 
are returned to the merge operation. When the merge operation 
receives the data object, it notifies the split operation that the 
processing operations associated with this data object have been 
carried out successfully. DPS subsequently removes the copy of 
the sent data object from the local thread state. 

When a failure is detected, the thread collection is recon-
structed by removing the failed nodes, i.e. by reducing the num-
ber of available threads within the thread collection. The split 
operation resends all its stored data objects. Since the thread col-
lection has changed, these data objects are routed to valid compu-
tation nodes. All data objects are sent, since their route beyond 
the first operation is not known to the split operation. An example 
of such a case is shown in Figure 6.  

After a failure, additional threads can be added to the thread 
collection so as to provide support for subsequent failures. In 
order to ensure the survival of a parallel schedule, at least the 
outermost split-merge pair must be located on threads with 

backup threads. Split-merge pairs having backup threads can, in 
case of failure, be recovered using the general recovery scheme 
and therefore always launch the re-execution of the enclosed op-
erations. 

Recovery without local state induces a memory overhead. 
During normal execution, the nodes that execute split operations 
must store the data objects until the corresponding notification 
from the merge operation is received. This overhead can be lim-
ited by using the DPS flow control mechanism, which limits the 
number of data objects that are simultaneously in circulation [13]. 
Recovery without local state data removes the need for transmit-
ting duplicate data objects. It also supports a larger number of 
simultaneous failures within a thread collection, since failed exe-
cutions can be re-executed as long as at least one thread in the 
thread collection remains valid.  

7. Performance evaluation 

In order to evaluate the performance overheads introduced by 
the fault tolerance mechanisms, we have developed a simple ana-
lytical model for predicting them. We tested the model by predict-
ing and measuring the overheads for a parallel implementation of 
Conway’s Game of Life. The game of life program has a non-
trivial parallel structure which is similar to many iterative finite 
difference computational problems [15]. 

 The world data structure is evenly distributed between the 
nodes, each node holding a horizontal band of the world. Each 
computation requires knowledge of the state of lines of cells held 
on neighboring nodes. A simple approach consists in first ex-
changing borders, and after a global synchronization, computing 
the future state of the world. The corresponding DPS flow graph 
is illustrated in Figure 7. 

The computation of the future state of the center of the part of 
the world stored on a node can be carried out without knowledge 
of any cell lines located on the neighboring nodes. We can per-
form this computation in parallel with the border exchange. A 
new flow graph ( Figure 8) can thus be constructed, by keeping 
most of the operations as they were in the previous graph. This 
improved flow graph enables DPS to hide most of the communi-
cation overhead incurred by the border exchange. 

The performance overhead prediction model only takes into 
account the additional network communications induced by fault 
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Figure 6. Example of complex routing within a split-merge op-
eration pair 
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Figure 7. Simple flow graph for the parallel game of life (un-
folded view): (1) split to worker nodes; (2) split border transfer 

request to neighboring nodes; (3) neighbors send the borders; (4) 
collect borders; (5) global synchronization to ensure that all bor-

ders have been exchanged; (6) split computation requests; (7) 
compute next state of world; (8) synchronize end of current itera-

tion. 



 

tolerance, since the overhead consists mainly of duplicate mes-
sages sent to backup threads and of thread state exchanges be-
tween active and backup threads. The following factors need to be 
considered: the application's communication to computation ratio1, 
the network bandwidth, the relative CPU load for network trans-
fers, and finally the size of the additional network transfers due to 
fault tolerance. For compute bound applications, the processing 
time required for the redundant network transfers (duplicate data 
objects sent to backup nodes) is added to the program execution 
time observed when fault tolerance is disabled. In communication 
bound applications, the full network transfer time of duplicate 
data objects is added. Duplicate data object transfers that take 
place at the end of the flow graph, such as values returned to the 
final merge function, can be ignored, since program execution 
will terminate before the duplicate data objects have been sent to 
their backup threads. 

We measure two overheads: the overhead induced by duplicate 
posting of data objects when fault tolerance is activated, and the 

                                                             
1 The communication to computation ratio is defined as the ratio between 

pure communication time, i.e. the sum of all data object transfer times, and 
pure computation time, i.e. the time to execute the application on a single 
node computer without any data transfers. 

overheads induced by checkpointing. These overheads are com-
puted by comparing the execution times of the application with 
fault tolerance enabled and disabled.  

Figure 9 illustrates timelines for the execution of one iteration 
of the game of life on a single node with and without fault toler-
ance. Separate timelines indicate incoming data object communi-
cations, computations, and outgoing data object communications. 
The additional communications induced by the fault tolerance 
scheme are carried out in parallel with the computation of the 
center cells and do therefore not significantly affect the parallel 
program's overall execution time.  

When using large world sizes, the game of life application is 
compute-bound and has a low communication to computation 
ratio. In order to demonstrate the influence of the communication 
to computation ratio, we create a variant of the application by 
artificially increasing the message size of the border exchange 
operation. Each node sends an additional 1 MB of data to each of 
its neighbors, inducing a higher parallel communication load. 

The performance measurements were taken on a network of 
Sun Ultra 10 workstations (360MHz, 256MB RAM) with a Fast 
Ethernet interconnect (100 Mb/s). Performing full-duplex net-
work transfers at maximum speed (9 MB/s in both directions) 
consumes 50% of the CPU of the Sun workstations. 

Figure 10 illustrates the overhead in parallel application exe-
cution time with the additional border communications. Without 
additional border communications, the communication to compu-
tation ratio is always lower than 0.3% and the corresponding 
overheads are too low to be measurable. With the additional bor-
der communications, Figure 10 shows that the overhead induced 
by fault tolerance is roughly proportional to the application's 
communication to computation ratio. The overheads closely 
match the predictions computed by using the previously described 
model.  

Figure 11 shows that fault tolerance has only a small impact 
on speedup. The overheads induced by fault tolerance are similar 
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Figure 8. Improved flow graph for the parallel game of life (un-
folded view): (1) split to worker nodes; (2) split border transfer 

request to neighboring nodes; (3) neighbors send the borders; (4) 
collect borders; (5) compute next state of borders; (6) compute 

next state of center; (7) synchronize end of current iteration. 
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Figure 9. Timelines for a worker node running the improved graph of the game of life, with (a) fault tolerance disabled and (b) fault 
tolerance enabled (illustrative example, does not reflect real time intervals). 

 



 

for both the normal and improved graphs since the additional 
network load is identical. 

A further overhead induced by fault tolerance is the check-
pointing time. The overheads induced by checkpointing can be 
predicted using the same model as the message duplication over-
heads, since the checkpoints are transferred to the backup threads 
during program execution. The only additional overhead is caused 
by the necessity to lock the individual threads in order to take 
valid checkpoint images of their states. The overheads for check-
pointing were also measured on the game of life sample applica-
tion, using a 4000x4000 world size and the improved graph. The 
size of a checkpoint is 32 MB. 

The checkpointing overhead (Figure 12) shrinks with the 
number of iterations per checkpoint. The relative overhead is 
nearly independent of the number of nodes, since state replication 
is carried out in parallel, and both the size of the replicated state 
and the program execution time are inversely proportional to the 
number of nodes. 

8. Conclusions and future work 

DPS is a novel high-level environment for developing parallel 
applications specified as executable flow graphs. The DPS 
framework provides dynamic handling of resources, in particular 
the ability to specify the mapping of threads to nodes at runtime, 
and to modify this mapping during program execution. Flow 
graphs and updatable thread mappings are the foundation on 
which we build fault-tolerance.  

We implement fault tolerance by providing a hybrid recovery 
scheme using two compatible mechanisms for the recovery of 
flow graph program execution segments located on a failed node. 
The first general purpose mechanism relies on duplicate data ob-
jects sent to backup nodes in order to enable the reconstruction of 
the state of a thread upon node failure. Backup threads are kept up 
to date by periodical checkpointing of thread states.  Upon occur-
rence of a failure, the current state of the threads that were on the 
failed node is reconstructed on the backup threads by reexecuting 
operations. The valid execution sequence of operations is auto-
matically deduced from the flow graph of the corresponding DPS 
application by applying a simple sender-based data object num-
bering scheme. A second specialized sender-based mechanism is 
used for operations that do not depend on local state information, 
such as graph segments comprising simple compute farms. Since 
no state needs to be reconstructed in case of failures, the duplicate 
communications are avoided. The flow graph provides informa-
tion about the runtime execution patterns of applications, allow-
ing the framework to transparently select the appropriate recovery 
mechanism for the graph segments. For compute bound applica-
tions, the fault tolerance overheads during normal program execu-
tion remain low thanks to the DPS asynchronous communications 
that occur in parallel with computations. 

The general-purpose fault tolerance mechanism allows compu-
tation to continue as long as for each thread within every thread 
collection either the active thread or its backup thread remains 
valid. The optional compatible stateless recovery mechanism re-
quires that at least one thread remains valid within every stateless 
thread collection, and that the threads hosting the surrounding 
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Figure 10. Measured and predicted performance overhead of the 
Game of Life when fault tolerance is enabled (improved graph, 

1MB additional border communications) 
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Figure 11. Speedup of the Game of Life, world size 2000x2000, 
showing normal execution and execution with additional border 
communications, with and without fault tolerance enabled (f.t.) 
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Figure 12. Measured and predicted performance overhead of the 

Game of Life for checkpointing, world size 4000x4000. 

 



 

split-merge pair are recoverable with the general purpose recov-
ery mechanism. 

In the future, we intend to explore techniques for storing data 
objects at their source rather than on backup threads. This will 
lead to more complex reconstruction mechanisms, but may avoid 
network overheads, which is especially important for data inten-
sive applications.  

We also intend to automate the checkpointing operations by al-
lowing the DPS framework to decide when checkpointing should 
be carried out by monitoring the applications flow graph. The 
resulting fault tolerance scheme may then become fully transpar-
ent for the application developer. 

The DPS software is available on the Web under the GPL li-
cense at http://dps.epfl.ch. The version supporting graceful degra-
dation will soon become available. 
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