

Fault-tolerant Parallel Applications with Dynamic Parallel Schedules

Sebastian Gerlach, Roger D. Hersch
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

School of Computer and Communication Sciences

Abstract
Commodity computer clusters are often composed of hundreds

of computing nodes. These generally off-the-shelf systems are not
designed for high reliability. Node failures therefore drive the
MTBF of such clusters to unacceptable levels. The software
frameworks used for running parallel applications need to be
fault-tolerant in order to ensure continued execution despite node
failures. We propose an extension to the flow graph based Dy-
namic Parallel Schedules (DPS) development framework that
allows non-trivial parallel applications to pursue their execution
despite node failures. The proposed fault-tolerance mechanism
relies on a set of backup threads located in the volatile storage of
alternate nodes. These backup threads are kept up to date by du-
plication of the transmitted data objects and periodical check-
pointing of thread states. In case of a failure, the current state of
the threads that were on the failed node is reconstructed on the
backup threads by re-executing operations. The corresponding
valid re-execution order is automatically deduced from the data
flow graph of the DPS application. Multiple simultaneous failures
can be tolerated, provided that for each thread either the active
thread or its corresponding backup thread survives. For threads
that do not store a local state, an optimized mechanism eliminates
the need for duplicate data object transmissions. The overhead
induced by the fault tolerance mechanism consists mainly of du-
plicate data object transmissions that can, for compute bound
applications, be carried out in parallel with ongoing computa-
tions. The increase in execution time due to fault tolerance there-
fore remains relatively low. It depends on the communication to
computation ratio and on the parallel program's efficiency.

Keywords: Parallel computing, clusters of workstations, par-
allel schedules, graceful degradation, fault tolerance, checkpoint-
ing, message logging

1. Introduction

Clusters of commodity workstations are rapidly growing in
size and complexity as computation power requirements increase.
The large number of computing nodes incorporated within a clus-
ter dramatically increases the likelihood of node failures during
program executions. Therefore, ongoing research focuses on
graceful degradation and the continuation of program execution
despite individual node failures.

In the context of message-passing systems, two major classes
of recovery schemes have been proposed: checkpoint-based and
message log-based recovery [11].

Checkpoint based approaches store the current state of compu-
tation to stable storage. Coordinated checkpointing on all partici-
pating nodes [22] may be achieved by stopping in an ordered
manner all computations and communications, and performing a
two-phase commit in order to create a consistent distributed
checkpoint. Checkpointing can also be performed independently
on all participating nodes (uncoordinated checkpointing). This
removes the performance bottlenecks induced by the global syn-
chronization required for coordinated checkpoints and allows
checkpointing at convenient times, for example when the data
size associated with a checkpoint is very small. Several check-
points need to be stored on each node, and a consistent state from
which to restart has to be found when a failure occurs [4]. In un-
favorable situations, the recovery can lead to the domino effect,
where no consistent checkpoint other than the initial state can be
found. In order to eliminate the domino effect, additional con-
straints on checkpointing sequences need to be introduced, for
example based on the applications' communication patterns [23].

Message logging approaches store in addition to checkpoints
all the messages flowing through the system. The logged mes-
sages allow bringing a node to any given state by re-executing its
application code with the corresponding sequence of logged input
messages. Three types of message logging are usually considered:
pessimistic, optimistic and causal. Pessimistic logging logs every
received message to stable storage before processing it [11]. This
ensures that the log is always up to date, but incurs a performance
penalty due to the blocking logging operation. The penalty can be
reduced by using specific storage hardware, or by using sender-
based message logging [14][7]. Optimistic logging begins proc-
essing messages without waiting for a successful write to stable
storage [21]. The overhead of pessimistic logging is removed, but
several messages might be lost in case of failures. When the sys-
tem is restarted it must roll back to a previous consistent state on
all nodes. Finally, causal logging also provides low overhead and
limits the backtracking that has to be performed during recovery.
It does however require the construction of an antecedence graph
for messages, and requires a rather complex recovery scheme [12].

These mechanisms make no assumptions about the internal
structure of the applications other than the use of message passing
for communications between processes. They are thus very well
suited for applications written with general-purpose message
passing libraries such as MPI [10]1. When parallel applications

1 Most fault-tolerant parallel MPI systems rely on coordinated checkpoint-

ing [20][1][8]. Further fault-tolerant implementations of MPI rely on uncoor-
dinated checkpointing either with pessimistic message logging [3][16][5] or
with pessimistic sender based message logging [6].

19th International Parallel and Distributed Processing Symposium (IPDPS), 10th IEEE Workshop
on Dependable Parallel, Distributed and Network-Centric Systems (DPDNS'05), April 4-8,
Denver CO, USA, 2005, p. 278b

are described using high-level approaches, additional information
about the structure of the application is available. For example,
task graphs [9], Calypso [2] and Chime [18] make use of such
information for recovering and resuming computation after a fail-
ure.

Fault tolerance schemes also vary in the assumptions they
make about the number and nature of failures that can be recov-
ered. Placing additional limitations on the recoverable cases may
enable significant optimizations when compared to the general
case. For example, if the system has never more than one failure
at a time, stable storage can be replaced with transfers to
neighboring nodes [17].

In the present paper, we describe recovery mechanisms relying
on the flow graph structure of applications created with the Dy-
namic Parallel Schedules (DPS) framework [13]. The parallel
program's flow graph greatly simplifies message logging, check-
pointing and the recovery process in case of failures. We limit our
considerations to fail-stop failures [19].

2. The Dynamic Parallel Schedules framework

DPS applications are defined as directed acyclic graphs of op-
erations. The fundamental operation types are leaf, split, merge
and stream [13]. The inputs and outputs of the operations are
strongly typed data objects. Figure 1 illustrates the flow graph of
a simple parallel application, describing the asynchronous flow of
data between operations.

Split Merge

ComputeData Init Final

ComputeData

ComputeData

Leaf
Figure 1. Flow graph describing data distribution (split), parallel

processing, and collection of results (merge)

The split operations are used to divide the incoming data ob-
jects into smaller objects representing subtasks. These subtasks
are subsequently sent to the next operations specified by the flow
graph (e.g. ComputeData in Figure 1). The merge operations are
used to collect the results into a single large output object. Once
all the results corresponding to the data objects originally sent by
a split operation have been collected, the larger resulting data
object is sent out. Successive data objects arriving at the entry of
a split operation yield successive new instances of the split-merge
operation pair.

The stream operations combine a merge operation with a sub-
sequent split operation. Instead of waiting for the merge operation
to receive all its data objects before allowing the subsequent split
operation to send new data objects, the stream operation can
stream out new data objects based on groups of incoming data
objects. Stream operations allow programmers to finely tune their
processing pipeline and therefore to ensure a maximal utilization
of the underlying hardware.

All operations, including split and merge operations are exten-
sible constructs, i.e. the developer can provide his own code to
control how processing requests or data are distributed, and how
processed sub-results are merged into one result. The data objects

circulating in the flow graph may contain any combination of
simple types or complex types such as arrays or lists.

During execution, operation instances are identified with a hi-
erarchical operation identifier that is transferred along with the
data objects. These identifiers allow DPS to identify subgraphs
within the flow graph. A new identifier is added to the hierarchy
for every traversed split operation, and removed again in the cor-
responding merge. Figure 2 shows the identifiers generated for
two nested split-merge pairs.

Operations within a flow graph are carried out within threads
grouped in thread collections. Figure 2 illustrates the distribution
of flow graph elements into thread collections for a simple
neighborhood-dependent computation. Two thread collections are
created. The first, Main, handles the global split and merge opera-
tions, and contains only a single thread. The second, Compute,
handles the parallel computation, and contains one thread for each
compute node.

Main MainComp[0]

Comp[1]

Comp[2]

Main Comp[0]

Comp[1]

Comp[2]

Neighborhood Exchange Computation

0

0.0

0.1

0.2

0.0

0.1

0.2

0 1 1
0.0

0.0

0.1

0.1

0.2

0.2
1

1

1

Figure 2. A flow graph and its associated thread collections (the
communications between Comp[0] and Comp[2] wrap around).
The numbers inside the operations are the operation identifiers.

A thread in DPS is a logical construct representing an execu-
tion environment for a set of operations. In data parallel applica-
tions, data is stored within threads that are distributed across the
available compute nodes. For example, in a matrix computation,
matrix parts may be stored within each thread of a thread collec-
tion. DPS threads are mapped to operating system threads, al-
though not necessarily in a one-to-one relationship. For instance
several DPS threads residing on a single processor node may
share a single operating system thread.

The selection of the thread within a thread collection on which
an operation is to be executed is accomplished by evaluating at
runtime a user defined routing function attached to the corre-
sponding directed edge of the flow graph. Communication pat-
terns such as the neighborhood exchanges illustrated in Figure 2
can easily be specified by using relative thread indices.

By transferring data objects as soon as they are computed, and
maintaining queues of arriving data objects, execution of DPS
applications is fully pipelined and asynchronous. Data object
queues are associated with the thread that contains the operations
that will consume them. This macro data flow behavior enables
automatic overlapping of communications and computations.

The flow graph together with its collections of threads and its
routing functions forms a parallel schedule. A parallel schedule
describes a fine to medium-grained parallel application. Its opera-
tions represent the small subtasks that are executed in a pipeline-
parallel manner according to the flow graph. The DPS communi-
cation layer, hidden from the application programmer, relies on
TCP sockets, and uses an optimized data serialization scheme that
minimizes memory copies.

3. Fault-tolerance in DPS

The DPS flow graph with its associated thread collections is a
powerful tool for implementing fault-tolerance. Whereas imple-
mentations of fault-tolerance for low level message passing librar-
ies have little or no information about the application, high-level
frameworks provide information about the applications execution
patterns.

Every operation that is executed within the DPS framework
has two data input sources: the incoming data object(s), and the
local thread state data. Likewise, it has two outputs: the outgoing
data object(s), and any modifications made to the local thread
state data. Operations are assumed to be deterministic, i.e. for a
given initial thread state and set of incoming data objects, they
will always produce the same output.

The execution order of operations in a parallel schedule is de-
fined by the flow graph, and constrained by the split/merge opera-
tion pairs. Within a split-merge operation pair, the outgoing
branches of the split operation may be executed in any order. Let
us consider the flow graph shown in Figure 3a. By assuming that
the first split operation generates two data objects, and that the
second split operation splits each of them into three data objects,
we obtain the operation executions shown in Figure 3b. The exe-
cution order of the operations is only constrained by the flow
graph's directed edges. For instance, two valid execution orders
for the graph are {1,2a,3a1,3a2,3a3,4a,2b,3b1,3b2,3b3,4b,5} and
{1,2b,3b3,2a, 3b2,3a1,3b1,3a3,4b,3a2,4a,5}. Because of the
asynchronous execution model of DPS and of external factors
such as network load or operating system scheduling, the effec-
tive execution order cannot be predicted.

(a)

(b)

1

2a

2b

3a1
3a2
3a3

3b1
3b2
3b3

4a

5

4b

Figure 3. (a) Simple flow graph and (b) operations that are exe-
cuted when running the parallel schedule (each arrow represents

one data object).

However, in case of node failure, we may, thanks to a data ob-
ject numbering mechanism reflecting the flow graph's execution
constraints, reconstruct a failed node state on a backup node by

ensuring a valid execution order (section 4). The reconstruction of
a thread state lost due to a node failure has similar properties as
pessimistic logging [11]: incoming data objects are consumed
during re-execution according to a valid execution order and du-
plicata of outgoing data objects generated during re-execution
have no effect on other nodes (silent re-execution property [5]).

DPS detects node failures by monitoring communications.
When a node is not able to communicate with another node, that
node is considered to be failed1. The TCP/IP network layer used
by DPS reports these failures as disconnections. On a failure,
DPS starts a master election process among the participating
nodes. The master then polls all nodes to discover which node has
become unavailable. It updates the thread collections used by the
application by removing all threads that were located on the failed
node and by converting their backup threads into active threads
(section 4). The updated thread collections are distributed onto all
nodes. During the thread collection update process, execution of
operations is not suspended.

We have implemented two recovery mechanisms: the first for
the general case and the second optimized for handling graph
segments whose operations are executed within a stateless DPS
thread, i.e. a DPS thread without local state. Both types of graph
segments often coexist, since applications may use several dis-
tinct thread collections for executing their various subtasks, for
example by separating pure computation tasks from tasks that
require access to a distributed data structure stored in local thread
states. By examining the threads associated to the flow graph,
DPS can automatically apply the appropriate recovery mechanism
depending on whether a thread is stateless or not2.

4. General recovery scheme

In the general case, we have to be able to reconstruct the local
thread states of all threads that are located on the failed node. The
local thread state can only be modified by an operation associated
with this thread. The inputs of an operation can only be its input
data object and the local thread state. A new thread state T2 is
obtained by applying the operation UserOp to the input data ob-
ject D1 and the current state T1.

T2 = UserOp (T1, D1)

Our recovery mechanism relies on a set of backup threads. At
least one backup thread is created for every active thread in a
thread collection. These backup threads are mapped onto nodes
that differ from the nodes running the active threads, for example
by rotating the thread indices (Figure 4). When a data object is
sent to an operation on a given thread, it is also sent to the backup
thread.

This type of mapping provides partial support for simultane-
ous multiple node failures, since as long as for each thread either
the active thread or the backup thread survives, the application
can pursue its execution. In order to support successive failures,
the backup threads that were located on a failed node or that have

1 DPS assumes that the underlying network will not produce partial dis-

connections, i.e. that a failure will never allow a node to communicate only
with some of its peers.

2 DPS considers a thread to have a state if it is defined as a custom class
within the application's implementation.

been consumed when replacing a failed active thread are recon-
structed on another node with the mechanism described in section
5.

When a data object is posted to an operation on a given thread,
the active thread performs the operation, and the backup thread
only stores a copy of the data object. When the node with the
active thread fails, the backup thread has all the data objects
needed for reconstructing the latest state.

 Node 1 Thread[1] Thread[3]

 Node 2 Thread[2] Thread[1]

 Node 3 Thread[3] Thread[2]

Active threads Backup threads

Figure 4. Mapping of active and backup threads onto processing
nodes

Since DPS operates asynchronously and the data objects sent
to the backup threads originate from multiple nodes, the data ob-
jects can potentially arrive into the backup thread queues in an
order that does not necessarily correspond to a valid execution
order. In order to ensure a successful recovery, it may be neces-
sary to reorder the data objects into a valid execution order as
described in section 3.

According to the flow graph, any data object leaving an opera-
tion depends on all data objects having previously entered this
operation. In order to reflect this dependency, each operation as-
signs a sequence number to all the data objects it generates. The
sequence number of an outgoing data object is larger than the
sequence number of all previously received data objects. We
compute the sequence number as follows:

SeqOutn+1 = max(SeqIn, SeqOutn) + 1

SeqIn is the collection of sequence numbers of all input data
objects that have been received by the operation and SeqOutn is
the sequence number of the previously sent object (if any). This
mechanism ensures that the sequence numbers steadily increase.
However it does not produce globally unique sequence numbers,
since two separate branches of the graph may produce the same
numbers. Nevertheless, it does accurately reflect the execution
order constraints induced by the DPS flow graph. Figure 5 shows
the sequence numbers generated for a neighborhood exchange
followed by a computation.

When recovering from a failure and initiating a re-execution
on the backup thread's node, the data objects present in the
backup thread's queue are sorted according to their sequence
numbers. The backup thread is subsequently marked as active,
causing execution of operations to resume with a valid execution
order. Since the stored data objects contain the operation identifi-
ers, split and merge operations occur with the same combinations
of data objects as the original failed execution.

Neighborhood Exchange Computation

0 8

9

13

1

2

3
2

3

3

4

4

5

6

4

4

5

5

3
5

10

11

6

7

10

11

12

Figure 5. Sequence numbers associated with the transmitted

data objects for a neighborhood-dependent computation.

Since operations are re-executed during the reconstruction
process, they will also repost their output data objects. If a data
object is sent to an operation on a thread where that operation has
already been successfully executed on a previous instance of the
same data object (same sequence number and same operation
identifier), that data object is discarded (silent re-execution prop-
erty).

The proposed recovery scheme induces a communication
overhead in running applications, since every data object is sent
twice, once to the active thread and once to the backup thread. On
applications that are not communication bound, part of this over-
head can be hidden, since network transfers are partially over-
lapped with computations. There is also a memory overhead in-
duced by the backup threads, which contain both a previous
thread state and the pending data object queue.

5. Checkpointing

In order to shorten the reconstruction time of a failed node,
one may copy the state of the active threads onto the correspond-
ing backup threads. Such copies are also needed in order to re-
generate new backup threads when the previous backup threads
have been consumed. Each DPS thread has three components that
must be conserved for successful reconstruction: the local thread
state, the queue of data objects that wait for processing, and the
state of active (but possibly suspended) operations within that
thread.

The data structures used for checkpointing and message log-
ging are very simple, since no additional elements such as de-
pendency graphs need to be created. All the necessary informa-
tion such as the sequence numbers and the operation identifiers
are already present within the data objects. When starting the
checkpointing process, DPS first waits for the currently executing
operation on the active thread to end or to be suspended (for ex-
ample when waiting for its next input data object). The check-
point is then sent to the backup thread. It is composed of the cur-
rent state of the active thread, the list of currently suspended op-
erations as well as the list of all the data objects that have been
processed since the last update. The new state replaces the previ-
ous state stored on the backup thread, and the listed data objects
are removed from the backup thread's data object queue.

Since copying the current state also removes part of the pend-
ing data object queue on the backup thread, it limits the memory
requirements on the backup nodes. This checkpointing operation

can be carried out asynchronously and independently on all indi-
vidual threads. Independent checkpointing of individual threads
enables the compute nodes to remain potentially busy during the
checkpointing process by executing operations attached to other
threads. The effective overhead induced by stopping a thread in
order to checkpoint can therefore be kept very low.

Since the reconstruction time after a failure is equal to the time
elapsed since the last checkpoint, periodic checkpointing is essen-
tial for quick reconstruction.

6. Recovery without local thread state

A DPS graph segment whose operations do not use local
thread state data is similar to a simple task farm, where computa-
tion tasks are fully represented by their input data objects. The
computation nodes are perfectly interchangeable, and no state
needs to be restored. For graph segments located within stateless
threads, we eliminate the need for backup threads by logging the
data objects on the sender node's volatile storage.

When a node fails, all tasks that were executing or queued on
the failed node need to be resent to other nodes. Within a task
farm model, resending tasks to other nodes is delegated to the
master node of the task farm. Since DPS does not specify a mas-
ter node, resending of tasks is delegated to the nodes executing
the split-merge operation pair. This makes sense since the split
operation is responsible for the creation and distribution of tasks
and the merge operation can monitor which tasks have already
been successfully completed.

In order to implement the task redistribution mechanism, DPS
keeps for every split operation a copy of every sent data object
(representing a task) in the split operation's local thread state. The
data objects sent by the split operation are then processed by a
pipeline of one or more stateless leaf operations, and the results
are returned to the merge operation. When the merge operation
receives the data object, it notifies the split operation that the
processing operations associated with this data object have been
carried out successfully. DPS subsequently removes the copy of
the sent data object from the local thread state.

When a failure is detected, the thread collection is recon-
structed by removing the failed nodes, i.e. by reducing the num-
ber of available threads within the thread collection. The split
operation resends all its stored data objects. Since the thread col-
lection has changed, these data objects are routed to valid compu-
tation nodes. All data objects are sent, since their route beyond
the first operation is not known to the split operation. An example
of such a case is shown in Figure 6.

After a failure, additional threads can be added to the thread
collection so as to provide support for subsequent failures. In
order to ensure the survival of a parallel schedule, at least the
outermost split-merge pair must be located on threads with

backup threads. Split-merge pairs having backup threads can, in
case of failure, be recovered using the general recovery scheme
and therefore always launch the re-execution of the enclosed op-
erations.

Recovery without local state induces a memory overhead.
During normal execution, the nodes that execute split operations
must store the data objects until the corresponding notification
from the merge operation is received. This overhead can be lim-
ited by using the DPS flow control mechanism, which limits the
number of data objects that are simultaneously in circulation [13].
Recovery without local state data removes the need for transmit-
ting duplicate data objects. It also supports a larger number of
simultaneous failures within a thread collection, since failed exe-
cutions can be re-executed as long as at least one thread in the
thread collection remains valid.

7. Performance evaluation

In order to evaluate the performance overheads introduced by
the fault tolerance mechanisms, we have developed a simple ana-
lytical model for predicting them. We tested the model by predict-
ing and measuring the overheads for a parallel implementation of
Conway’s Game of Life. The game of life program has a non-
trivial parallel structure which is similar to many iterative finite
difference computational problems [15].

 The world data structure is evenly distributed between the
nodes, each node holding a horizontal band of the world. Each
computation requires knowledge of the state of lines of cells held
on neighboring nodes. A simple approach consists in first ex-
changing borders, and after a global synchronization, computing
the future state of the world. The corresponding DPS flow graph
is illustrated in Figure 7.

The computation of the future state of the center of the part of
the world stored on a node can be carried out without knowledge
of any cell lines located on the neighboring nodes. We can per-
form this computation in parallel with the border exchange. A
new flow graph (Figure 8) can thus be constructed, by keeping
most of the operations as they were in the previous graph. This
improved flow graph enables DPS to hide most of the communi-
cation overhead incurred by the border exchange.

The performance overhead prediction model only takes into
account the additional network communications induced by fault

Split

LeafOperation 1

LeafOperation 1

LeafOperation 1 Merge

LeafOperation 2

LeafOperation 2

LeafOperation 2

Figure 6. Example of complex routing within a split-merge op-
eration pair

(1)
(2) (3) (4)

(5) (6)
(7)

(8)

master worker i worker i-1

worker i+1

worker i master master master
 worker i

 worker j worker j worker j-1

worker j+1

worker j

Figure 7. Simple flow graph for the parallel game of life (un-
folded view): (1) split to worker nodes; (2) split border transfer

request to neighboring nodes; (3) neighbors send the borders; (4)
collect borders; (5) global synchronization to ensure that all bor-

ders have been exchanged; (6) split computation requests; (7)
compute next state of world; (8) synchronize end of current itera-

tion.

tolerance, since the overhead consists mainly of duplicate mes-
sages sent to backup threads and of thread state exchanges be-
tween active and backup threads. The following factors need to be
considered: the application's communication to computation ratio1,
the network bandwidth, the relative CPU load for network trans-
fers, and finally the size of the additional network transfers due to
fault tolerance. For compute bound applications, the processing
time required for the redundant network transfers (duplicate data
objects sent to backup nodes) is added to the program execution
time observed when fault tolerance is disabled. In communication
bound applications, the full network transfer time of duplicate
data objects is added. Duplicate data object transfers that take
place at the end of the flow graph, such as values returned to the
final merge function, can be ignored, since program execution
will terminate before the duplicate data objects have been sent to
their backup threads.

We measure two overheads: the overhead induced by duplicate
posting of data objects when fault tolerance is activated, and the

1 The communication to computation ratio is defined as the ratio between

pure communication time, i.e. the sum of all data object transfer times, and
pure computation time, i.e. the time to execute the application on a single
node computer without any data transfers.

overheads induced by checkpointing. These overheads are com-
puted by comparing the execution times of the application with
fault tolerance enabled and disabled.

Figure 9 illustrates timelines for the execution of one iteration
of the game of life on a single node with and without fault toler-
ance. Separate timelines indicate incoming data object communi-
cations, computations, and outgoing data object communications.
The additional communications induced by the fault tolerance
scheme are carried out in parallel with the computation of the
center cells and do therefore not significantly affect the parallel
program's overall execution time.

When using large world sizes, the game of life application is
compute-bound and has a low communication to computation
ratio. In order to demonstrate the influence of the communication
to computation ratio, we create a variant of the application by
artificially increasing the message size of the border exchange
operation. Each node sends an additional 1 MB of data to each of
its neighbors, inducing a higher parallel communication load.

The performance measurements were taken on a network of
Sun Ultra 10 workstations (360MHz, 256MB RAM) with a Fast
Ethernet interconnect (100 Mb/s). Performing full-duplex net-
work transfers at maximum speed (9 MB/s in both directions)
consumes 50% of the CPU of the Sun workstations.

Figure 10 illustrates the overhead in parallel application exe-
cution time with the additional border communications. Without
additional border communications, the communication to compu-
tation ratio is always lower than 0.3% and the corresponding
overheads are too low to be measurable. With the additional bor-
der communications, Figure 10 shows that the overhead induced
by fault tolerance is roughly proportional to the application's
communication to computation ratio. The overheads closely
match the predictions computed by using the previously described
model.

Figure 11 shows that fault tolerance has only a small impact
on speedup. The overheads induced by fault tolerance are similar

(1)

(2) (3) (4) (5)

(6)

(7)

Copy Border
Compute
Borders

worker i-1

worker i+1

worker j-1

worker j+1

worker i worker i

worker j

worker i

worker j
worker j

worker i

worker j

master master

Compute Center

Split
Border

Req.

Merge
Borders

Figure 8. Improved flow graph for the parallel game of life (un-
folded view): (1) split to worker nodes; (2) split border transfer

request to neighboring nodes; (3) neighbors send the borders; (4)
collect borders; (5) compute next state of borders; (6) compute

next state of center; (7) synchronize end of current iteration.

 Border
Exchange
Request

Center
Compute
Request
Split Border

Req Compute Center (next state)

Request
Border

Request
Border

Copy Border Copy Border

Send
Border

Merge Borders Compute Borders (next state)

Border
Done

Send
Border

Receive
Border

Receive
Border Receive data

Send data

Computation
(2 threads)

Center
Done

Request
Border

Request
Border

(a) Fault tolerance disabled

 Border
Exchange
Request

Compute
Center

Request
Split BrdrExchg

Compute Center (next state)

Request
Border

Request
Border

Copy Border Copy Border

Send
Border

Merge Border Exchange Compute Borders (next state)

Border
Done

Send
Border

Receive
Border

Receive
Border

Center
Done

Request
Border

Request
Border

Border
Exchange
Request

Compute
Center

Request

Request
Border

Request
Border

Request
Border

Request
Border

Send
Border

Send
Border

Receive
Border

Receive
Border

(b) Fault tolerance enabled

Figure 9. Timelines for a worker node running the improved graph of the game of life, with (a) fault tolerance disabled and (b) fault
tolerance enabled (illustrative example, does not reflect real time intervals).

for both the normal and improved graphs since the additional
network load is identical.

A further overhead induced by fault tolerance is the check-
pointing time. The overheads induced by checkpointing can be
predicted using the same model as the message duplication over-
heads, since the checkpoints are transferred to the backup threads
during program execution. The only additional overhead is caused
by the necessity to lock the individual threads in order to take
valid checkpoint images of their states. The overheads for check-
pointing were also measured on the game of life sample applica-
tion, using a 4000x4000 world size and the improved graph. The
size of a checkpoint is 32 MB.

The checkpointing overhead (Figure 12) shrinks with the
number of iterations per checkpoint. The relative overhead is
nearly independent of the number of nodes, since state replication
is carried out in parallel, and both the size of the replicated state
and the program execution time are inversely proportional to the
number of nodes.

8. Conclusions and future work

DPS is a novel high-level environment for developing parallel
applications specified as executable flow graphs. The DPS
framework provides dynamic handling of resources, in particular
the ability to specify the mapping of threads to nodes at runtime,
and to modify this mapping during program execution. Flow
graphs and updatable thread mappings are the foundation on
which we build fault-tolerance.

We implement fault tolerance by providing a hybrid recovery
scheme using two compatible mechanisms for the recovery of
flow graph program execution segments located on a failed node.
The first general purpose mechanism relies on duplicate data ob-
jects sent to backup nodes in order to enable the reconstruction of
the state of a thread upon node failure. Backup threads are kept up
to date by periodical checkpointing of thread states. Upon occur-
rence of a failure, the current state of the threads that were on the
failed node is reconstructed on the backup threads by reexecuting
operations. The valid execution sequence of operations is auto-
matically deduced from the flow graph of the corresponding DPS
application by applying a simple sender-based data object num-
bering scheme. A second specialized sender-based mechanism is
used for operations that do not depend on local state information,
such as graph segments comprising simple compute farms. Since
no state needs to be reconstructed in case of failures, the duplicate
communications are avoided. The flow graph provides informa-
tion about the runtime execution patterns of applications, allow-
ing the framework to transparently select the appropriate recovery
mechanism for the graph segments. For compute bound applica-
tions, the fault tolerance overheads during normal program execu-
tion remain low thanks to the DPS asynchronous communications
that occur in parallel with computations.

The general-purpose fault tolerance mechanism allows compu-
tation to continue as long as for each thread within every thread
collection either the active thread or its backup thread remains
valid. The optional compatible stateless recovery mechanism re-
quires that at least one thread remains valid within every stateless
thread collection, and that the threads hosting the surrounding

0%

2%

4%

6%

8%

2000x2000 8000x8000

O
ve

rh
ea

d

4 nodes
4 nodes pred.
8 nodes
8 nodes pred.
16 nodes
16 nodes pred.

cr = 0.04 0.08 0.16 0.003 0.005 0.010

cr: Comm./Comp. ratio

Figure 10. Measured and predicted performance overhead of the
Game of Life when fault tolerance is enabled (improved graph,

1MB additional border communications)

0

4

8

12

16

0 4 8 12 16
Nodes

Sp
ee

du
p

Normal
Normal + f.t.
Add border comm., imp. graph
Add border comm., imp. graph + f.t.
Add border comm.
Add border comm. + f.t.

Figure 11. Speedup of the Game of Life, world size 2000x2000,
showing normal execution and execution with additional border
communications, with and without fault tolerance enabled (f.t.)

0%

1%

2%

3%

4%

2 4 8
Number of iterations/Checkpoint

O
ve

rh
ea

d

4 nodes
4 nodes pred.
8 nodes
8 nodes pred.
16 nodes
16 nodes pred.

Figure 12. Measured and predicted performance overhead of the

Game of Life for checkpointing, world size 4000x4000.

split-merge pair are recoverable with the general purpose recov-
ery mechanism.

In the future, we intend to explore techniques for storing data
objects at their source rather than on backup threads. This will
lead to more complex reconstruction mechanisms, but may avoid
network overheads, which is especially important for data inten-
sive applications.

We also intend to automate the checkpointing operations by al-
lowing the DPS framework to decide when checkpointing should
be carried out by monitoring the applications flow graph. The
resulting fault tolerance scheme may then become fully transpar-
ent for the application developer.

The DPS software is available on the Web under the GPL li-
cense at http://dps.epfl.ch. The version supporting graceful degra-
dation will soon become available.

References
[1] A. Agbaria, R. Friedman, Starfish: Fault-tolerant dynamic

MPI programs on clusters of workstations, 8th International
Symposium on High Performance Distributed Computing
(HPDC-8’99), IEEE CS Press, August 1999

[2] A. Baratloo, P. Dasgupta, Z.M. Kedem, Calypso: A Novel
Software System for Fault-Tolerant Parallel Procssing on
Distributed Platforms, Proc. International Symposium on
High-Performance Distributed Computing, pp. 122-129,
1995

[3] R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua, A. Skjel-
lum, Y. Dandass, M. Apte, MPI/FT: Architecture and tax-
onomies for fault-tolerant, message-passing middleware for
performance-portable parallel computing, 1st IEEE Interna-
tional Symposium of Cluster Computing and the Grid, Mel-
bourne, Australia, 2001

[4] B. Bhargava, S.R. Lian, Independent Checkpointing and
Concurrent Rollback for Recovery – an Optimistic Approach,
Proc. IEEE Symposium on Reliable Distributed Systems, pp.
3-12, 1988

[5] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fédak,
C. Germain, T. Hérault, P. Lemarinier, O. Lodygensky, F.
Magniette, V. N´eri, A. Selikhov, MPICH-V: Toward a
scalable fault tolerant MPI for volatile nodes, High Per-
formance Networking and Computing (SC2002), Baltimore,
USA, November 2002

[6] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezick, P.
Lemarinier, F. Magniette, MPICH-V2, a fault-tolerant MPI
for volatile nodes based on pessimistic sender based mes-
sage logging, High Performance Networking and Computing
(SC2003), Phoenix, USA, November 2003

[7] S. Chakravorty, L.V. Kale, A fault tolerant protocol for mas-
sively parallel systems, 18th International Parallel and Dis-
tributed Processing Symposium (IPDPS'04), pp. 212-219,
April 2004

[8] Y. Chen, K. Li, J.S. Planck, Clip: A checkpointing tool for
message-passing parallel programs, High Performance Net-
working and Computing (SC97), IEEE/ACM, November
1997

[9] D. Das, P. Dasgupta, P.P. Das, A New Method for Transpar-
ent Fault Tolerance of Distributed Programs on a Network

of Workstations Using Alternative Schedules, Proc. Conf. on
Algorithms and Architectures for Parallel Processing
(ICAPP'97), pp. 479-486, 1997

[10] J. Dongarra, S. Otto, M. Snir, D. Walker, A message passing
standard for MPP and Workstations, Communications of
the ACM Vol. 39, No. 7, pp. 84-90, 1996

[11] E.N. Elnozahy, L. Alvisi, Y.M. Wang, D.B. Johnson, A Sur-
vey of Rollback-Recovery Protocols in Message-Passing
Systems, ACM Computing Surveys, Vol. 34, No. 3, pp. 375–
408, September 2002

[12] E.N. Elnozahy, W. Zwaenepoel, Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback
and Fast Output Commit, IEEE Transactions on Computers,
Vol. 41 No. 5, pp. 526-531, May 1992

[13] S. Gerlach, R.D. Hersch, DPS - Dynamic Parallel Schedules,
17th International Parallel and Distributed Processing Sym-
posium (IPDPS'03), Nice, France, pp. 15-24, April 2003

[14] D.B. Johnson, W. Zwaenepoel, Sender based message log-
ging, Digest of Papers, FTCS-17, Proc. 17th Annual Interna-
tional Symposium on Fault-Tolerant Computing, pp. 14-19,
1987

[15] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to
Parallel Computing, Benjamin Cummings Publishing Com-
pany, Chapter 11, Solving sparse systems of linear equations,
pp. 407-489, 1993

[16] S. Louca, N. Neophytou, A. Lachanas, P. Evripidou, MPI-
FT: Portable fault tolerance scheme for MPI, Parallel Proc-
essing Letters, Vol.10, No.4, World Scientific Publishing
Company, pp. 371-382, 2000

[17] J.S. Plank, Y. Kim, J.J. Dongarra, Algorithm-Based Diskless
Checkpointing for Fault Tolerant Matrix Operations, FTCS-
25, Proc. 25th Annual International Symposium on Fault-
Tolerant Computing, pp. 351-360, 1995

[18] S. Sardesai, Chime: A Versatile Distributed Parallel Proc-
essing Environment, PhD thesis, Arizona State University,
1997

[19] R.D. Schlichting, F.B. Schneider, Fail-stop processors: An
approach to designing fault-tolerant computing systems,
ACM Transactions on Computer Systems Vol. 1, No. 3, pp.
222–238, 1983

[20] G. Stellner, CoCheck: Checkpointing and Process Migration
for MPI, Proc. 10th International Parallel Processing Sym-
posium, April 1996

[21] R. Strom, S. Yemini, Optimistic recovery in distributed sys-
tems, ACM Transactions on Computer Systems, Vol. 3, No.
3, pp. 204–226, 1985

[22] Y. Tamir, C.H. Sequin, Error recovery in multicomputers
using global checkpoints, Proceedings of the International
Conference on Parallel Processing, pp. 32–41, 1984

[23] Y.M. Wang, W.K. Fuchs, Lazy Checkpoint Coordination for
Bounding Rollback Propagation, Proc. 12th Symposium on
Reliable Distributed Systems, pp. 78-85, October 1993

